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Abstract

We consider a broad class of Approximate Message Passing (AMP) algorithms defined as a
Lipschitzian functional iteration in terms of an n X n random symmetric matrix A. We establish
universality in noise for this AMP in the n-limit and validate this behavior in a number of
AMPs popularly adapted in compressed sensing, statistical inferences, and optimizations in
spin glasses.

1 Introduction

Motivated by the ideas from belief propagation algorithms, Approximate Message Passing (AMP)
algorithms were initially introduced in the context of compressed sensing, see [13, 14, 15, 16].
Thereafter they have received great popularity in a number of emerging applications in data science,
statistical physics, etc. concerning the development of efficient algorithms for some randomized
estimations and optimizations with large complexity.

One major application has been laid on the subject of matrix estimations, in which one aims
to extract the structure of a signal matrix in a randomized environment. A popular setting is the
so-called spiked model, where the data arrives as the sum of a noise, an n x n symmetric random
matrix A,, and the signal, an n x n symmetric low-rank matrix Z,,

~

A, = A, + Z,.

The goal is to recover the structure of Z,, from the realization of the matrix A,. A typical example
one considered in the literature is when A,, is the normalized Gaussian Wigner ensemble and Z,, is
given by

1 '
g 1 0 ot 1.1
R (L)
=1
where 2!, ..., 2" are non-random column vectors with ||2¢|lo = \/n and the parameters v, ..., v, > 0

are the signal-to-noise ratios (SNR’s). In probability and statistics, this spiked model has been in-
tensively studied by means of the spectral method, see [2, 7, 6, 9, 18, 20, 22, 32, 33]. In Bayesian
optimal approach, the setting often considered in the literature is to assume that the vectors
2, ..., 2" are randomized and their i-th marginal vectors, (zil, ..., 2l) for 1 <i < n, are indepen-
dently sampled from a given prior distribution. It turns out that the corresponding Minimum Mean
Square Error Estimator (MMSEE), E[(z1,...,2")|4,], can be connected to the Gibbs expectation
of the famous Sherrington-Kirkpatrick (SK) mean-field spin glass model arising from the statistical
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physics [35]. One peculiar feature within this connection is that this model satisfies the so-called
Nishimori identity, namely, the conditional distribution of the vectors z!,..., 2" given the data A,
is equal to the distribution of the vector-valued spin configuration of the corresponding SK model.
This allows one to fully understand the behavior of the MMSEE and its phase transition in terms
of SNR’s, see [3, 10, 11, 23, 24, 25, 26| for the recent progress.

The study of the above Bayesian estimation arises a challenging computational problem in
searching for polynomial-time algorithms in simulating the MMSEE. To this end, AMP algorithms
have been widely adapted [21, 28, 29, 30, 31, 34, 37] and known to achieve a good level of success;
in some cases, it allows to obtain the Bayesian-optimal error estimates, see [11, 12, 29]. In addition
to being useful in matrix estimations, AMP has also been applied to a number of randomized
optimization problems in mean-field spin glass models in recent years. In particular, it was shown
in [17, 27] that AMP allows to implement polynomial-time algorithms in the optimization of the
SK Hamiltonian and its variants.

In these applications, the AMP algorithm is formulated as a sequence of n-dimensional vectors
(v!*)) >0 of the form

k
U[k—i_l} = Anfk(v[k}a s 7?-][0}) - Z bk,jfjfl(v[j_l]a s aU[O])7
j=1

for
L~ Ok D)
bk7'=* '(Ui yeeey U; ),
J n ; aUZ[J]
where f, € C'(RF*1) and the two vectors fi(v!¥,... o) and f;_1(vlU=1, ... 0[) above are
defined coordinate-wise by v/, ... v and vU=1 ... 00 respectively. The key component here

is the initialization v/; it influences the convergence of the AMP in the large n limit.

When Z, is a zero matrix and the initialization v is independent of A, it was known [4, 5,
8, 19] that under mild assumptions on f;’s, this iterative algorithm converges in the sense that for
any Lipschitz function ¢ € C(R¥1), almost surely,

1 k 0
Jggonzlwi},...,vH):M(vk,...%)? (1.2)
1=
where (Vg,...,Vp) is a centered Gaussian random vector with covariance

EVa+1%+1 = ]Efa(vaa" a‘/O)fb(V;h 7‘/0)7 V0 < avb < kE—1.

When Z, is of the form (1.1) and the spectrum of A, exhibit the so-called Baik-Ben Arous-
Péché (BBP) phase transition [1], namely, the top eigenvalue of A, stays a gap away from the
rest of the eigenvalues and the principal eigenvector is correlated to the prior, a recent paper
[29] further showed that an analogous convergence remains valid when the AMP is initialized by
the principal eigenvector, see Example 2.2 below. The typical way to use AMP is to select the
functions ¢, fx,..., fo properly (usually are smooth and with bounded derivatives) so that the
limit (1.2) converges to the desired quantities of interest by adjusting the number of iteration k,
see, e.g., [15, 27, 29].

While the above convergences were known to be true when A, is Gaussian, in this work we
investigate their validity under general randomness. When the signal matrix is not presented, i.e.,
Z, = 0 (or equivalently, A, = Ay) and 4l is independent of A, this question was answered
earlier in the work [4], in which they showed that if the evolution functions f, ..., fo of the AMP
are polynomials, then the AMP converges to the same limit of (1.2) independent of the choice of



the randomness on A,. In our setting, we consider a generalized AMP with Lipschitz evolution
functions and let it iterate in the presence of the signal matrix. Our first main result validates the
universality of the AMP. As a consequence, this implies that the universality established in [4] also
holds for Lipschitz functions and under the presence of the signal matrix Z,. (We note here that
the work in [4] can be actually extended to Lipschitz evolution functions by [4, Proposition 6] and
its proof, but only when Z, = 0.) Furthermore, we show that universality of AMP with spectral
initialization remains valid when the system exhibits the BBP phase transition.

Our approach is based on a Gaussian interpolation argument. In doing so, the central ingredient
relies on a novel control on the moments of the partial derivatives of the AMP orbit with respect
to the entries of the noise matrix A,. While our argument are formulated for the purpose of this
paper, the same strategy is expected to be applicable in more general settings.

2 Main results

We begin with some notations. For any column vectors u?,u!,...,u* € R™ and a function f :
RF¥1 — R, we define f(u”,u*~1,... u°) as a column vector by
ko k—1 0 ko k—1 0
Ju a7 ut) = flug uy ).

For z,y € R", set ||zl = (X0, x%)lﬂ and (z,y) = >, z;y;. Let M, (R) be the collection of all
n X n real-valued symmetric matrices. For X, Z € M, (R), denote

X

X, = —

Vn

and x 7
%, =X 2

\/ﬁ+n

The generalized approximate message passing is formulated as follows.

Definition 2.1. Let ul? : M, (R) — R™ be a measurable function. For any k > 0, let F}, € C(RF1)
be Lipschitz. The generalized AMP orbit corresponding to (X, Z), (Fi)r>o0, and ul% is the sequence
of vector-valued functions ulk! : M, (R) — R™ for k > 0 defined iteratively by

WX = P (Xl (X0), ol 1 (00), ol 2 (00, ().

We now specify the randomness on X, Z, and u’ Let o > 0 be fixed. For any n > 1, let
u® = (u))icfy be an n-dimensional random vector and Z = (zji);se[m be an n X n random
symmetric matrix. Assume that there exists a constant C' (o) > 0 such that

02 0
sup(Eexp(”u Hz),maerxp(‘uZ’>, max IEexp<|ZZZ |)) < C(o). (2.1)
o

n>1 on i€[n] o 1,3’ €[n]

Suppose that A = (a); e[n] I8 an n X n random symmetric matrix, whose upper triangular entries
are independent with zero mean and unit variance and are o-subgaussian, i.e., Ee i < eNo?/2 for
all A € R.

We further assume that A is independent of «° and Z, but allow ©” and Z to be dependent on
each other. An important example of A is when the entries a;;’s are standard normal. In this case,
we denote A by G and we call Definition 2.1 associated to X = G a Gaussian AMP. Our main
result shows that if we initialize u[”) (X) = u", then the AMP corresponding to any A is essentially
the same as the Gaussian AMP.



Theorem 2.1. Let ul" (X) =u’. For any k > 0 and Lipschitz function ¢ on RFT!, we have that
in probability

lim }@kn (A) — CI)k,n(G)} =0,

n—oQ

where
D (X) = ;f: oM (X), ... (X)), X € M,(R). (2.2)

Next we introduce the AMP used in the matrix estimation and some optimization problems in
mean-field spin glasses.

Definition 2.2. Let f_; = 0. For k > 0, assume that f,, € CY(R¥1) is Lipschitz and its first-
order partial derivatives are also Lipschitz. Let X € M, (R). Starting from an initialization vI% (X),
define the AMP orbit for k > 0 iteratively by

oM (X) = X, (X, . Zb,w )1 H(X), Lol (X)), (2.3)

where

I~ Of 0]
b i(X)=— —(v; (X)), ..., v (X)).
kv.]( ) n;&uzm(X)( % ( )7 ’ V4 ( ))

Note that Definition 2.2 is not a direct example of the generalized AMP in Definition 2.1 due to
the term by, ;j(X). Nevertheless, since by ;(X) is an average of the partial derivatives, this quantity
is essentially indistinguishable between different randomness and this allows us to establish the
following universality.

Theorem 2.2. Let vl%(X) = u®. For any k >0, if ¢ is Lipschitz on RFt1, then in probability,
lim | (A) = dkn(G)| =0,
n— o0

where

n
Son(X) = %Z sM X0, 0(X), X € Mu(R).

i=1
Remark 1. As pointed out in the introduction, it was known [4, 5, 8, 19] that if Z = 0, the
Gaussian AMP in Definition 2.2 converges, see (1.2). If fy,..., fr are polynomials and Z = 0, it
was further understood in [4] that this convergence is independent of the choice of the randomness
of A. Theorem 2.2 here extends this universality to Lipschitz functions and in the presence of Z.
We refer the reader to check [17, 27] for the usage of this AMP in the optimization of the SK
Hamiltonian and related models.

Example 2.1. For v > 0, set Z = yu® ® u°. In this case, A, is a rank-one spiked matrix,

i - A u® ® u°
n — % + Y n
In matrix estimation, one would like to recover the vector u" from the realization of A,. When
A = @G, the MMSEE, ]E[uo\An], is popularly adapted for this purpose and it can be simulated
via the AMP in Definition 2.2 with specifically chosen functions fi’s, see, e.g., [11]. Theorem 2.2
here indicates that in a non-Gaussian noise environment, the AMP in Definition 2.2 still allows to
implement the same simulation for u° as the the Gaussian AMP.




Recall that the initialization u° and the signal matrix Z are assumed to be independent of the
noise. In Example 2.1, since the MMSEE is a measurable function of the spiked matrix fln, it is
often more desirable that the initialization depends on A, as it should provide a better estimate
for the MMSEE. When A = G, an attempt along this line has been successfully carried out in [29)].
Our last main result addresses universality towards this direction. For any X € M, (R), denote by
)\1()2'”) > )\Q(Xn) > > An(Xn) the eigenvalues of X,, and by 1/11()2'”) the top eigenvector of X,
with || (X,,)l2 = /. Set

Y(X) = sign((¥! (Xn), u”)) ! (Xn) (2.4)

whenever (1/!(X,,),u°) # 0. Note that although there are two possible choices of ¥!(X,) up to a
sign, the definition ¢ (X) here is not influenced by this difference.

Theorem 2.3. Assume that
lim inf Al(én) > max(lim sup max P\g(én)

71)7

e . noyoo ZSEsm (2.5)
ligg%réf M(Ay) > max(li;n_}sgp 21%1?5(71‘)\5(1471) 1),
and
lim inf - min (| (' (Gn), u")|, [(¥1(An),u")]) > 0. (2.6)

n—oo N

Consider the AMP orbit (v9)g<p<), defined in Definition 2.2. Let vI%(X) = (X). If € C(RF)
1s Lipschitz, then in probability,

Tim [¢p,(A) = ¢rn(G)] = 0.

The assumptions (2.5) and (2.6) say that the top eigenvalue stays a gap away from the rest of
the eigenvalues and the principal eigenvector is correlated to the prior vector u®. These behaviors
are not only required in our proofs for technical purposes, but also appear to be quite typical in
the BBP phase transition, see the following example.

Example 2.2. Recall A, from Example 2.1. Let u® = (u?,...,u0) for u?, ..., u? S w, where w
is a centered random variable with compact support and unit variance. Recall from [6] that the
BBP transition point is equal to 1: If v < 1,

lim A (Gn) =2, a.s.,

n—o0

. 1, 4 - . (2.7)
Jim E<¢ (Gp),u >—0, a.s.;
if v >1,
lim \(Gp) =7+~ >2, as.,
1 A .
lim ﬁ<¢1(Gn),u0> =1-7"2>0, a.s..

These imply that the spectral method can be used to gain useful information about u" only if the
SNR exceeds the critical threshold, i.e., v > 1, as in this case the principal eigenvector is positively
correlated to u®. In [29], the convergence of AMP in Definition 2.1 initialized by the top eigenvector
was investigated, which states that again when ~ > 1,

Jim 5" 6(l(6), (@) = Botw, praw + ovg). (2.9)
=1



Here, starting from pg = /1 —~2 and o9 = 1/7, (uu)k>1 and (og)g>1 are defined through

k1 = YE[w fr(upw + org)],
ory1 = E[fe(lew + 019)?,

where g ~ N(0,1) is independent of w. Note that G, isa perturbation of G, by a rank-one matrix.
The eigenvalue interlacing property implies that for any small § > 0, asymptotically

for all 2 < ¢ < n, where A\(Gy) and \,(G,) are the largest and smallest eigenvalues of G,
respectively. Note that this inequality, (2.7), and (2.8) are also valid for A. Hence, the assumptions
of (2.5) and (2.6) are valid and as a result, the convergence of (2.9) is universal in probability.

Our approach to proving Theorem 2.1 is to match the first and second moments of ®;, , between
A and G, respectively. To this end, we define a Gaussian interpolation X = A(t) := VtA++/1 -G
for 0 < ¢ < 1 and control the t-derivatives of E®y ,,(A(t)) and E® ,(A(t))?. The hope is that if the
total number of the terms as well as their orders appearing in these derivatives are small enough,
then we anticipate that an application of the approximate Gaussian integration by parts would
make the derivatives small. However, due to the iteration of the AMP, these derivatives involve
highly complicated Hadamard products of a large number of column vectors in terms of the higher
order partial derivatives of ul?(X) and X,ul?(X). As a result, the control of their p-th moments
are extremely delicate, especially for those of X,ull (X). The novelty of our analysis adapts a
Taylor expansion of the derivatives up to the p-th order, which allows us to extract the dependence
of the i-th row of X out of the derivatives. This combining with a subtle moment computation in
this expansion perfectly cancels out the majority of the smaller order terms and yields the following
moment controls (see Proposition 5.2 and Lemma 5.3) that for any p > 1, there exists a universal
constant C' > 0 such that for any collection P of variables x;; for 4,4 € [n] counting multiplicities
with |P| = m, we have

1/p c
<

sup sup (E‘apu[k”] (A)i‘p)

n>2 i€n]

sup sup (E}Gp (/lu[k} (A)) .‘p) p < ¢

— )
n>2ien] ’ nm/2

where Op is the partial derivatives with respect to the variables in P. Using the Markov inequality
and the union bound, these yield a uniform control on the derivatives that for any P with |P| =m
and ¢ > 0, with probability at least 1 — Cn=9,

max‘(?pu[k](A)i} < ;1,
i€[n] n?
max|6p(Au[k](A))i} < !

i€[n] - n%*‘S* )

m‘g

RS

Once Theorem 2.1 is established, the proof of Theorem 2.2 follows essentially by a special choice of
the functions Fp, ..., F},.... Although the term by ;(X) in (2.3) relies on all coordinates, its form
averages out the partial derivatives and consequently, by ;(A) and by ;(G) are asymptotically equal
in probability, which is already enough to establish Theorem 2.2 following an induction argument.
Lastly to show Theorem 2.3, recall that while both AMP’s in Theorems 2.2 and 2.3 share the same
iteration procedure, their initializations are of different kind; the former is initialized independent
of A,, but the latter adapts the principal eigenvector of A,. We show that this eigenvector can



be approximated very well by the power method (see Lemma 8.1). In view of this method, it is
essentially a special case of our generalized AMP with the choice Fy(z,...,z¢) = Xna:k and an
analogous argument as that for Theorem 2.2 allows to establish Theorem 2.3. One technicality
here is that in order to guarantee the convergence of the power method, one would have to choose
the initialization carefully and ensure that the principle eigenvalue of A, is well-separated from the
other eigenvalues. This explains why the assumptions (2.5) and (2.6) need to be in position.

We mention that many works in the literature, e.g., [19], also established high-dimensional
version of the AMP, in which the functions fj are allowed to be of vector-valued. In addition,
it was also discussed in [29] that one can initialize the AMP in Definition 2.2 via other leading
eigenvectors, whose corresponding eigenvalues exhibit the BBP phase transition. In view of the
present approach, it is plausible that universality under these settings can be obtained from our
results by a similar line of derivation. We do not address these directions here.

The rest of the paper is organized as follows. Sections 3-6 are the preparation for the proof of
Theorem 2.1. Section 3 establishes a Gaussian concentration inequality for the function @y, (X)
as well as a number of prior controls on the AMP orbit. In Section 4, we show that in proving
Theorem 2.1, it suffices to assume that ¢ and F}’s are smooth with uniformly bounded derivatives.
Section 5 provides the main estimates on the moments of the derivatives of the AMP orbits. In
Section 6, we carry out our interpolation argument and present the proof of Theorem 2.1. The
proofs of Theorems 2.2 and 2.3 are provided in Sections 7 and 8, respectively. Finally, the Appendix
gathers error estimates of some approximate Gaussian integration by parts.

3 Lipschitz property and concentration inequality

Consider the AMP in Definition 2.1 with initialization u[%(X) = u°. In this section, we establish
a Lipschitz property for this AMP and a concentration inequality for @, (G). These will be used
later in the proof of Theorem 2.1. Recall that the functions F}, in Definition 2.1 are Lipschitz. Let
Nk be the Lipschitz constant of Fj. For any X € M,(R), denote by || X||2 the ¢3 — ¢3 operator norm
of X.

Proposition 3.1. If ¢ € C(RF*) is Lipschitz with Lipschitz constant n > 0, then we have that

W) i
”\%)” + 1) ; O¢(Y)Ae(X)

4 B0 —u W)l § g )

\/ﬁ =1

(@ (X) = Ppn(V)] < kil X = Yall2

where
Akm:=2’f(<no+~-+nk_1><um2+1>+|Fo<o>r+~-+\Fk_1<o>r+1)'“ (3.1)

and
OK(Y) == (1 + ||V ll2) max(no, ..., 1) +2)". (3.2)

This proposition says that the AMP orbits behave stably subject to a small perturbation to the
matrix X and the initialization. From this, we show that the Gaussian AMP is concentrated.

Theorem 3.1. Let ul)(X) =u’. For any k > 0, if $ € C(R¥*1) is Lipschitz, then
lim E|®,(G) — Ed . (G)|* =0,
n—oo

where E is the expectation conditionally on u° and Z.

For the rest of this section, we establish these results.



3.1 Proof of Proposition 3.1

The proof of this proposition relies on two lemmas on the boundedness and the Lipschitz property
of the vector ulfl(X) following an iterative argument.

Lemma 3.1. For every k > 1,

l™(X) 12 < ARX) (|l (X [l2 + V), (3.3)
where Ak(X) is defined in (3.1).
Proof. Write

I = 3 Ay (), =X, .. O ()2

=1

Using the Lipschitz property of F;_; and the trivial bound (a + b)? < 4(a® + b?) yields
o2 < e 2 S 5 2) 2 2
I CONE < 7 (me (1Knul (X2 + > () )"+ 1Fa(0)])
i=1
<43 (o X 0P 402 Z W (P + Fra (0)?)

=1

= 477%71”)%“[6_1]( Hz + 477@ 1 Z Hu[r ||2 +4nFy_ 1(0)
so that from the Minkowski inequality,

1 X) 2 < 2001 )| Xanll2 a1 ()2 + 20 1ZHUT] Iz + 20" F1 (0)]

(Z [ (X) 2 + 7).

where
C =200+ + 1) (| Xnll2 + 1) + 2([Fo(0)] + - - - + | Fx_1(0)]).

If we let ty := |[uld(X)|| +n'/? and C’ := 1 4+ C, then the above inequality implies that

—1
ty<C'> ty, VIS Lk
r=0

Using induction yields that
ty < C'(1+CN g, V1 <L <E,
which implies that for Agx(X) := (1 4+ C)F = (2 + C)*,
[™(X)[l2 < €' (1 + ([N (X2 + Vi) < Ap(X) ([ (X) 2 + v/n)

and this completes our proof. O



Lemma 3.2. For any X,Y € M,(R),

ul (X)) — (V) [la < (V) AR(X) | X — Yall2 (| (X))l + v7)
+ 0, (V) [ul(X) — Ol (Y) 2,

where Ag(X) is defined in (3.2).

Proof. From the Lipschitz property of Fy_1,
. . -2
) = () 2 < e (1Kl =X) = G I@ ) o + 3 Jul(X) = I ())
r=0

Here, for any 1 < /¢ < k,

X H(X) = VoY) 2 < X 1201 X0 — Yall2
+ Yol () = (Y ) |2

If we let
C = (1+|[Vyl2) max(no, .. ., me—1),
D = Xy = Yalla max(Jul” (X) 2, .., [ul (X)),
then
-1
J () = (¥ 2 < € (D + 3 b (X) = ulT(¥)]l2).
r=0
If we let

to:= D+ |ul(X) = (Y)2,
then for C' := C +1,
—1
t<C'> ty, 1<L<k
r=0

and by induction, ¢, < C'(1 + C")*"ty. Consequently, for O (Y) := (1 + C")¥,
™ (X) = ul (Y2 < C'(1+ € o < O4(Y)to
and this completes our proof by noting that
D < |1 X = Yall2(u (X) 2 + V) Mgt (X) < [[Xn = Yall2(lu® (X)]2 + Vi) Ak (X).
O

Proof of Proposition 3.1. From the Lipschitz property of ¢ and Lemmas 3.1 and 3.2, our asser-
tion follows immediately. a



3.2 Some prior bounds

Lemma 3.3. For any integer p > 1, we have that

n>1 nP/2

Proof. Note that 227 < ple®® and |z|P < plel*l. The inequality (2.1) implies that

2
sup 21Nz ap(E ||“0‘p>1/2 < sup \/ploPEel®E/on < /piorCio).
np/2  ~ n>1

n>1 n>1

E|x0|5 E|Z N
sup(FL 1 EVZIE gy, 1 4, 8) < o0

Next, note that the operator norm is no larger than the Frobenius norm. This and the Jensen

inequality lead to

p
BIZEE _ gy Ehet
n>1 NP n>1 n

ploP &

<sup T 37 Eelwll7 < ploClo).

n2
nzl ii=1

D=1 |Zii’|2>l’/2 < sup E> i |zl
o>l

Finally, since the entries of A are independent o-subgaussian with zero mean, it is well-known (see,
for instance, Corollary 4.4.8 in [36]) that sup,s; E[|A,|5 < oo. Putting these bounds together

yields the uniform integrability of ||A,|/5 and this completes our proof.

Lemma 3.4. For any k > 0, we have that

supE
n>1

n

and if ¢ € C(RFH1) is Lipschitz,

sup E|®;, ,,(A)|* < 0.

n>1

Proof. The proof follows directly from Lemmas 3.1 and 3.3.

3.3 Proof of Theorem 3.1

First of all, we establish a Gaussian concentration inequality for the functional ®y, ,,.

(DY

Lemma 3.5. Let ul%(X) = u°. For any k > 0, if ¢ € C(R¥*Y) is Lipschitz, then there exists a

constant ¢ > 0 such that for every t > 0,

I~P’(‘<I>k7n(G) - E[@k,n(G)H >t—c(Qy+ 1)6_"/‘3) < cemm/ () 4 ce /e,

where P and E are the probability and expectation conditionally on u® and Z, and

Qy = (1+ HU0H2)<1 N Hi\b k

vn

10

(3.6)



Proof. From ul(X) = ul%(Y) = 0 and || X,|l2 < || Xn|l2 4 ||Z]|2/n, Proposition 3.1 implies

k
l L
[P (X) = (V)] < co@ull Xn = Yalla 3 (14 1Xallz) (14 [¥all2)

(=1

where ), is defined in (3.6) and ¢ is a constant independent of n. Observe that for any M > 0, if
[ Xnll2, [[Ynll2 < M, then

k
Bpn(X) < S (Y) + cou(|Xn = Yallz A (2M) D (14 [ Xalla A M) (L + [[Yall2)").
(=1

This implies that if

T(X):= inf

verr, inty, paear\ZEn(Y) + con((|Xn = Yall2 A (2M))

,n

Mw’é\

(L4 | Xalls A MY (L + [[Val]2)) ).

~
Il

1

then T'(X) > &y, ,(X) if | X, |l2 < M and consequently, T(X) = @, ,,(X) if || X,[|2 < M. Next, note
that for any Y,, € M, (R) with ||Y,]l2 < M and X, X' € M, (R),

15 = Yalla A (2M) < ([ Xn — Xpll2 + | X, — Yall2) A (2M)
<1 Xn = Xoll2 A (2M) + (1 X, = Yall2 A (2M)
< X5 = Xpll2 + [1X7, = Yall2 A (2M)

and

(L+ 1 Xall2 A M) < (14 [ Xn = Xpll2 A M + (| X7 ] A M)

¢

l _

=+ 1 AD + D (1) (1 = Xalla A D)0+ X A D)
a=1

l
14
< U 1AM+ 3 ()1 = Xl (4 20
a=1
Lo
= (14 X A M+ 1 - Xl D ()bt e
a=1

From these and noting that the ¢o-operator norm of a matrix is less than its Frobenius norm, we
see that T'(X) is Lipschitz with respect to the Frobenius norm with Lipschitz constant ¢;Q,,/n'/?
for some constant c¢; independent of n. Hence, the usual Gaussian concentration inequality for
Lipschitz functions implies that

P(|T(G) — E[T(G)]| > t) < 2¢7™/Ua™%) gy .
Now note that as long as we fix M large enough at the beginning,

B(T(G) ~ BT(G)| 2 1) > B(|%4(C) — ET(G)] > t, | Gull2 < M)
> B(|®4,0(G) — ET(G)| > 1) = P(|Gullz > M)

)

> P(|04.,(G) — ET(Q)| > t) — cge M=) /ez,

11



where the last inequality used the well-known bound that the largest eigenvalue of G is concentrated
around its mean with exponential tail bound, which follows by the Borell-TIS inequality and ¢z, c3
are two constants independent of n and M. On the other hand,

ET(G) = E[®},(G); |Gnll2 < M] 4+ E[T(G); | Gnll2 > M]

= E[®}, ,(G)] + E[- D, (G) + T(G); |Gpll2 > M].

Here,
~ on1/2 1/2
(B[~ 04n(G) + T(G): [ Gulz = M]| < (B(|®1n(@)] + [T(@)2) *B(| Gl = M)
< cg(Q + 1) MM c3)* /202
for some ¢4 independent of n and M. From these,

I@("Pk,n(G) — ]E[(I)k,n(G)H >t —cq(Q + 1)e*n(M703)2/202)
< 2e—nt2/(4012§2%) + 626—n(M—03)2/c2'

This completes our proof. a

Proof of Theorem 3.1. From Lemmas 3.3 and 3.5 and the Markov inequality, in probability P,
lim |®,,(G) — E[®@,(G)]| = 0.

n—oo
In addition, from

1/4

(B[40 (Q) — E[@rn(@)][)* < (Edpn(@))* + (EE[R Q) )" < 2(Edy (@)Y,

the uniform upper bound (3.5) gives

sup (B[ ®p.n (G) — E[®rn(@)]|)* < 0.

n>1

Hence, the assertion follows. ]

4 Smooth approximation

Recall that the functions F} in Definition 2.1 and ¢ in Theorem 2.1 are Lipschitz. In this section,
we show that to prove Theorem 2.1, it suffices to assume that these functions are smooth and their
derivatives of any nonzero orders are uniformly bounded.

Proposition 4.1. For any k > 0 and € > 0, there exist a constant C independent of n and some
functions ¢ € C°(R**1) and F, € C®(R™) for 0 < ¢ < k — 1, whose partial derivatives of any
nonzero orders are uniformly bounded such that

k—1
|Prn(X) = Prn(X)| <O [ Xnlls, (4.1)

where

Pen(X) = iim&“ o, al ), el (x)
=1

and ¥ is the k-th AMP orbit in Definition 2.1 associated to the functions Fy, ..., Fi_1 and the
initial condition al%(X) = ul%(X).

12



Proof. Denote by 7, the Lipschitz constant of Fy. Let ¢ > 0 be fixed. Assume that ¢, € C®(R1)
is a mollifier with ¢, > 0 and [ (,dz = 1 and it is supported on the unit ball {z € R : ||z[]2 < 1}.
Define (y(z) = e~ ¢ (x/e). Set

Fpe(x) = Fox Cre(a /Czs x —y)Fu(y)dy.

Note that for any € > 0 and = € R*1,

Fo(w) — @) = | [ G Erle - e2) - Fua))dz] < nee [ Nolaguz)ds < mie

for some constant 7, > 0. In addition, for any index o = (ay, ..., ) € ({0} UN)*! with |af :=
Zﬁ:o ar > 1, if a,, > 1 for some 0 < rg < ¢, then
0 Fy(x ﬁ+|a\ /aa Gl — 5yro Fy(y)dy = e'~1 /8a Ce(2)0y,, Fu(z — e2)dz,
where
o = (ap, .y g1, g — 1, g1, -+, ).

Since F} is Lipschitz and (; is supported on the unit ball, it follows that the partial derivatives of
all nonzero orders of Fy are uniformly bounded. In particular, sup, |V Ey(z)|]2 < 1), independent
of e. Let n = maxi<;<¢{n},n;}. To show (4.1), note that

[ulH1 — g+, < HFK (Xpul w1 0y — ’K(Xnﬂ[fl’ﬂ[ﬁ—l]’_,.,5[0})”2
HFg X uld =1 ...,u[o]) — 7g(Xnu[€],u[£_1],...,u[o} H2
| F (R, Y, ) - By(Ra®, Y, )|
{—1
< e+ (| Kalloul? = @z + 37 flul — al))).
r=0
Since @l” = %, an induction argument implies that
{—1
[ (x) — al(X)||2 < eC Y |1 Xall3, (4.2)
j=0

where C' is a constant depending only on ¢ and 7. Finally, by the same argument, for any € > 0,
there exists a ¢ € C*°(R¥*!) with uniformly bounded partial derivatives of any nonzero orders such
that [|¢ — ¢]|co < €. From (4.2) and the Lipschitz property of ¢, our proof is completed. O

5 Bounding the derivatives

We establish uniform moment controls on the partial derivatives of the generalized AMP orbit in
Definition 2.1. For ¢ > 0, recall the random vector u" and the random matrix Z from (2.1). Let
Gn(o) be the collection of n x n symmetric random matrices A = (a;ir); i7¢[n), Whose entries are
centered independent and each of them are ¢’-subgaussian for some 0 < ¢/ < 0. We also assume
that G, (o) is independent of u° and Z.

For any m € N, denote by [m] = {1,...,m}. For any n > 2, let 7, be the collection of all
sequences (i, i.)r>1 C [n]? with i, < i/ for all r > 1. Let P be an arbitrary finite subset of N and
let m = |P|. For h € C"™(M,(R)) and (ir,i.)r>1 € Tn, denote by

(9ph(X) eR

13



the partial derivative of h with respect to the variables x; i for all r € P counting multiplicities.
For a vector-valued function H = (hq,...,hy,) for hy,..., h, € C™(M,(R)), we also set the partial
derivative of H by

OpH(X) = (0ph1(X),...,0phy(X)) € R"

and denote

For any n > 2, k>0, p> 1, and m > 0, denote by B, (k,p,m) the collection of all
(Pa (ir, i;«)r21a A7 Z)
for P C N with |P| =m, (ir,i,) € Tn, A € G,(0), and i € [n]. The following is our main estimate.

T

Proposition 5.1. Consider the AMP orbit (ul(X))>o in Definition 2.1 with ul®(X) = uO.
Assume that the functions Fy in Definition 2.1 satisfy the following assumption:

Fy, € C®(R*1) and its partial deriatives of all nonzero orders are uniformly bounded.  (5.1)

Letk>0,p>1,and m >0. Let U € C‘X’(]Rz(k“)). Assume that its partial derivatives of nonzero
orders are uniformly bounded. Define a vector-valued random function on M, (R) by

UX) = U(Xuf(X), ..., X, (X)), o X),. .. u%(X)) e R".

There exists a universal constant TV such that

k,p,m
FU

sup (E}@pU ! )l/p < ’p/’ Vn > 2.
Bn(k7p7 ) n

As we shall see, this bound will be used to control the Gaussian interpolation between the first
two moments of ®,,,(A) and @y ,(G). For the rest of this section, we establish this proposition in
three subsections. First of all, we derive explicit formulas for the derivatives of the AMP orbit.
Next, we show that Proposition 5.1 is valid if U depends only on the marginal variables. The
general case is treated in the last subsection.

5.1 Some auxiliary lemmas

Let k > 0 and m > 1 be fixed. Let vy, ..., v, € C"™(M,(R)) and F € C™(R**+1). Set
V(X) = F(op(X),...,v0(X)) € R, VX € My(R).

Let (ir,i.)r>1 € Tp. Let P be a finite subset of N with |[P| = m. For any 1 < r < m, set
Jr(k) = {0,...,k}" and set P,(P) the collection of all partitions P = {Py,...,P.} of P into r
nonempty subsets. For J = (j1,...,7,) € Jr(k), set

0sF (yg, ..., y0) = 8ij.‘.yle(yk, ey Y0)-

Lemma 5.1. We have that

opV = Z Z Z 01F (vk, ... ,v0)0p, vy, - - - Op,vj, .

1<r<m JeJ, (k) PePr(P)

14



Proof. We argue by induction on the size of the set P. The case |P| =1 is obvious. Suppose that
the conclusion holds for some m > 1 and all P C N with |P| = m. Without loss of generality, it
suffices to show that the conclusion holds for P = [m + 1]. From induction hypothesis, we compute
directly to get

OV = Oy @V) = 30 D 2 (90F 0y (Orv - O,
1<r<mJ€._7r(kI)'P€'Pr m])

+ (Z 3j,JF3{m+1}Uj) Op,vjy - apﬂfjr) :
j=0
To handle the first summation, note that

r

Opmi1y (0P vj, - Op,s) =D (Op,) - (0P, vj,1) Opma13up, v3,) (OPeyy Vi) - - (Op,05,),
s=1

which implies that

YooY Y 95F0uiy(0nvy, -Opuj,)

1<r<m JeJ-(k) PEP:([m])

> 2 > 8y F (dp,vj, - -~ Op,vj, ).

1<r<m JeJ, (k) PEPy([m+1]):{m+1}¢P

On the other hand, since

k k
(Z 95 F a{m+1}%‘> Opvj, - Opvj, = > 0 g FOp ), - 0PV, a1} Vs
_]:0 jT'Jrl:O

it follows that

k
)P (Za',JFa{mH}Uj)@Pl%'--8prvjr

1<r<m jeJ, (k) PEPr(Im]) =0

Z Z Z aIFaPlUjl T 8Pr+lvjr+l .

1<r<m JeJr41(k) PEPr41([mA+1]):{m+1}€P
To simplify this summation, we write

Z Z Z 91F0p,vjy -~ Op, 1 V), 1y

1<r<m JeJr41(k) PEPr41([m+1]):{m+1}€P

= Z Z Z 8JF6p1vj1 cee 8P,,’UjT

2<r<m+1 JeJ, (k) PEPr([m+1]):{m+1}€P

> > 0y F0p,vj, - -~ Op,vj,

1<r<m jeJ, (k) PEP,([m+1]):{m+1}eP

+ Z Z OyFOp,vj, -+ 0Py i1 Vjnia»
J€Tm+1(k) PEPm11([m+1])

where in the first equality we changed the variable »r+1 — r, while in the second equality we divide
2<r<m+1linto2 <r <mand r =m+ 1 and use the observation that P;([m + 1]) contains no
element P so that {m + 1} € P. Combining this summation with (5.2) yields the desired formula.
g
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Lemma 5.2. For any H = (hy,...,hy) for hy,..., h, € C"(M,(R)), we have that

N 1 A
Op(XnH (X)) = 7 > Edp\H(X) + X, 0pH(X),
reP

where E, € M, (R), whose entries are equal to 1 at (i,i.) and (i.,i,) and are zero otherwise.

Proof. Tt suffices to assume that P = [m]. If m = 1, then Jf, (XnH(X)) = n V2B H(X) +
Xn(?{l}H (X). Assume that the assertion is valid for m > 1. Then

1 N
% Z Era[m}\{T}H(X) + Xna[m]H(X)>
re[m)]

> By H(X) + g1y (Xn Ol H(X))

re[m)]

Opm41) (XnH(X)) = Opmy1y (

1

n

1 N
- Era[m+1]\{T}H(X) + ch‘)[eruH(X).
€

re[m+1]

B

B

5.2 Moment control

The most crucial ingredient of this paper lies on the following proposition, which establishes two
special cases of Proposition 5.1.

Proposition 5.2. Consider the AMP orbits in Definition 2.1 with the initialization u%(X) = u°
and assume that (F})i>o0 satisfies (5.1). For any k > 0, p > 1, and m > 0, there exist constants
Ty pm and T such that for any n > 2,

k,p,m
sup (E‘apu[k](A)i‘p)l/p < Lopm (5.3)
and
. 1/ I
Bn(sggm) (E‘@p (Anu[k‘}(A))i‘P) P < HT%, (5.4)

Proof. We argue by induction on k > 0. First assume that £ = 0. We aim to show that (5.3) and
(5.4) are valid for all p > 1 and m > 0. For any P with |P| = m, since dpul?(X) = u® if m = 0
and dpul’(X) = 0 if m > 1, (2.1) obviously implies (5.3). To show (5.4), note that for any P with
[Pl =m,

T X, it m =0,
Op(X,ul (X)) = ﬁEruo, if m=1and P = {r} for some r > 1,
0 if m>2,

where E, € M, (R) is equal to 1 on the entries (i,,4.) and (i}, 4,) and is zero elsewhere. To control
the first case, note that u? is independent of A and the entries in A are independent. From the
subgaussianity of a;; and (2.1), there exist positive constants A(o) and D(o) such that for any
n>1and A € [-A(0), A(0)],

Ee)\n’l/Q i aijug < Ee)\2a2Hu0||2/2n < EBA(U)QJZHUOHQ/??L < D(O’)
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Consequently, from z?? < (2p)! coshz and the Jensen inequality,

Z?: a;jul p (2p)!D(0)
E| T | < Mo

On the other hand, the Cauchy-Schwarz and Jensen inequalities imply that
P/2<Hu0\lz)f’
Vn

Y12 P)W (E(||u$”%>p>l/2

n

< (E‘ZJ it ))1/2(]15(’“0”%)10)1/2 < D'(o),
n n

where D'(0) is a constant independent of n and is guaranteed by the moment assumption (2.1).
Combining these two inequalities validates (5.4) for (k,p,m) = (0,p,0). In the second case, since
E,u’ has only two nonzero entries and they are u) and u?,r, the bound (2.1) implies (5.4) for
(k,p,m) = (0,p,1). The third case is evident. In conclusion, (5.4) holds for k = 0, p > 1, and
m > 0.

Next, we assume that there exists some ky > 0 such that (5.3) and (5.4) are valid for all
0<k<kyp=>1,and m > 0. Our goal is to show that they are also valid for k = kg + 1, p > 1,
and m > 0. Denote by

n n 2
ES 2" <k 21 %
n I n
Jj=1

(s

vl (X)) = Xulkol (X)), olbo=t (X)) = wlho=t (X)L ol (X)) = 0 (X).
First we verify (5.3). Assume that m = 0. From the Lipschitz property of Fj,,,

1 1
(Elulor(A4),7)77 = (B| iy (019 (4), ..., o (4)),7) 7
ko

< i > (EI(A) )7 + | By (0)],

=0

where 7y, is the Lipschitz constant of Fj,. By induction hypothesis, (5.3) follows when (k,p,m) =
(ko + 1,p,0) for all p > 1. Now suppose that m > 1. For n > 2, consider an arbitrary P with
|P| =m, (ir,i.)r>1 € Tn, A € Gy(0), and i € [n]. From Lemma 5.1,

opu ko+1] Z Z ) Fiy (v [ko]( X),..., EO}(X))

reP JeJy(ko),PEP,(P)

Op,v [Jl]( X)---0p []T}(X).

K3 T

From this, Minkowski’s inequality, Holder’s inequality, and the boundedness of the partial deriva-
tives of I}, there exist constants 7, ;’s such that

(E]@pu[k0+1] (A)z|p) l/p S Z Z nko,J H(E’aPlU[JZ](A)sz) 1/7”17'

1<r<m JeJ, (ko),PEP:(P) =1
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Since each vUl(A) is either A, ull(A) or ulll(A), this implies that

(E|3pu[k0+1 ‘p 1/p < Z Z H max Fkoﬂpifl”/; ko,rp, ‘Pl|)
reP JeJy (ko),PEP,(P) I=1 nitt

,
— /
- m/2 Z Z H max(rkwp,le\’Fkoﬂ‘p,Ile)

TEPJGJr(kO) PEPT( )l 1

1
nm/2 Fko+1:p,m'

Hence, (5.3) is valid for k = ko + 1, p > 1, and m > 1. Putting these two cases together yields the
validity of (5.3) for k = ko + 1, p> 1, and m > 0.

Now we verify (5.4). Let P C N with |P| = m, (ir,i,)r>1 € Tn, A € Gy(0), and i € [n]. Note
that from Lemma 5.2,

8}3 (Xnu[kOJrl]( Z E 813\{ }u[kOJrl] (X) + X’napu[’“o“] (X) (55)
\/> repP
The first term can be controlled by

( ‘ \fZE Op\ ryu 0 TH(A); \ )Up

reP
p)l/P

f Z E‘éz zraP\{r}u[ko—H] (A) + 511 8P\{ }u[k0+1](‘4)ir

reP

< = 3 ((El0p oy u ) 1)+ (Bloy gyl ) 7))

reP
— nm/2 b

where §; y = 1 if ¢ = ¢’ and it is zero if ¢ # ¢'. As for the second term, note that for any u € R",

. 1 /<& 1/2
[(Fn)il < [(uuil + (32 2)  ull

Jj=1

This implies that

(E|(A,0pultott(4)).

7

< (E|(Andpulotia)) )77 4 L (E[(Z zgj)”/ *|[apuliot (A)Hg]>” '

n
J=1

n p
< (B[ (Andpulot1l(4)) [P) 7 + (E(ZF1 i) ) (elon

npP

‘p) 1/p

[ko+1]( 4) Hii’

)1/2]).

npb

Here, from (2.1), n p]E(Z] 1 23]) is bounded above by a constant independent of n. From the

validity of (5.3) for k = ko + 1, p > 1, and m > 0 that we established above, we also have that

2 n
(]EHaPU[kOH](A)HQp)1/2p < (Ezz‘:1 |3Pu[k°+1] (A)i|2p)1/2p < Crot1,2p,m

npP n nm/2
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and from Lemma 5.3 below,

(E‘ (Anapu[kOH] (A))z ‘p) 1/p < M7

nm/2
where Yy, 41p m is a universal constant independent of n. Therefore, we arrive at

C

nm/2’

(E| (Anapu[koJrl] (A)) |p) 1/p <

()

where C' is a constant independent of n. Plugging this inequality and (5.6) into (5.5) yields (5.4)
for k=ko+ 1, p>1, and m > 0. This completes our proof. O

At the end of this subsection, we establish the following lemma used in the above proof.

Lemma 5.3. Let k > 1. Assume that for any p > 1 and m > 0, there exists a constant I'y, p , such
that

Lkpm
sup (E‘@pu[k](A)i‘p) Yr < %, Vn > 2. (5.7)
By, (k,p,m) nm

Then for any p > 1 and m > 0, there exists a constant Yy p , such that

sup (E’(Anapu[k](A))“p)l/p < Lrepm Vn > 2.

> )
By, (k,p,m) ‘ nm/2

Proof. Our idea is to use the Taylor expansion to track the dependence of
(An0pulM(A))P

on each variable a;; in each iteration. By Jensen’s inequality, it suffices to assume that p is even.
Let m > 0 be fixed. Let P C N with |P| =m, (ir,i.)r>1 € Tn, A € Gn(0), and i € [n]. Denote

V(X) = opulf(X).

For any D C [p], let Zp be the collection of all I = (¢1,...,tp) € [n|P such that ¢s are distinct for
s€ D and

{ts :s € D} C{15:s € D}. (5.8)

For I € Zp and X € M,(R), let X! € M,(R), in which each entry of X' is equal to that of X
except that it vanishes on the sites (7,¢s) and (ts,4) for all s € D. For ¢ € [n] and 0 < ¢ < 1, define

£.(t) = V(XT(t))

for
XIt):=tX + (1 —t)x’.

Here, V, is the ¢-th entry of V. Write by Taylor’s theorem,

p—1 () 1
Vi) = 10 = X2 s [t = ml 00 + 5000,
> |

Note that here

a g XI
F@(0) = Z Lfﬂusl“'ﬂfibsa'

S1y.sSa €D tsa tsy
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Also, note that Zp N Zps = () for distinct D and D" and that [n]? = UpcpZp. Write

E(A V(A np/2 Z Z Eag, -+ ai, Vi, (A) -V, (A)

DClp 1€

= m 2 3 3 E(T ) (T i) (TT Vi)
DClp) I€Tp SClp]  lefp] les lese

= 2 5 3 ([ w) (TT 4k 0) (T M)

DClp] I€Tp SCp]  lep] les lese

+ o 2 3 (I ea) (T M)
DClp| I€Zp l€[p] le[p]

=: An,l + Amg.

To control these two terms, note that from x?? < (2p)! cosh z and the o-subgaussianity, we have
the bound

SHF](E’az‘jp)l/p < Sul[i)](E|aij|2p)1/2p < &pi= (2p)!e”2/2, Vp > 1.
1,7€[N i,jE[n

First we handle A,, 1. From the given assumption,
(E oV, (AT 210) 1/2p

8xibs ... axibs
< (& ‘%‘419)1/419(% e, [9) < DhapatmSiap
815u 8xu e Hea n(‘”‘m)/Q

az’le Ce Qg

Using the Minkowski inequality, this inequality, and (5.7) yields that after dropping 1/a!,

r amaa
[LE) > <[5 3 kg

les leS a=0s1,...,8¢€D
p—1
< (S D Tants,) = 2
— n|5|m/2 ‘ Ap,a+mSdap : n|5|m/2’
a=

Also, since

1
E| / o | < / 1 0la)” < [ B @
0

we have, by dropping 1/(p — 1)!, that

Lo oPV, (AL(t)
H (E‘ |2p 2w < H Z (/ 633“5 l. . 8xuSl Qirgy * " Qi

leSe 1€S¢€ s81,...,84€D

2pdt) 1/2p

| DIPLrap il
H np+m)/2

1

= sz L 1P Thappimé
leSe

lese

!
. D,S
7 pm)lsel/2r
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Combining these together leads to

|An,1‘ < np/2 Z Z Z H E|CL |2p 1/2pH E’MI ‘2p 1/2p H E’ |2p 1/2p

DClp| I€Ip SC[p] l€(p] leS lese

Cb,s Cb,s
S p£2p Z Z nlSlm/2 y (p+m)|Se|/2
DCp] SC[p]

CpsChs
=&, > D (S —1)+pm)/2
DC[p] Sc[p]

< S Y nsths

DClp] SC[p]

where the last inequality used the fact that |[S¢| > 1 since S C [p].
Next we turn to the control of A, 5, which requires more steps. Let D C [n] and I € Zp. Write

[ Zav (HH “’“)(H 6:c6 V 8x12r )’

I€[p) Lok, Telp] b=1 !
where the first summation is over all a = (a1,...,ap) € {0,...,p — 1}? and a! := a1!---ap!, while
the second summation is over all 57 = (s7,...,s; ) € D for 1 <r <p. Set Sg = D™ x --- x D%,

Note that from our construction of A’, its entries at (i,.s) and (1, %) are all zero for all s € D and
consequently, (5.8) implies that A’ is independent of a;,,, ... , @y, It follows that

S DI DD ID I )

DC[p| I€Ip Sa

where

rE[p ] b=1
oV, (A
1 . Lr
E(Ia Sa17 ) ap - ( H ax“ T‘ ax“ T )’
r€[p]
AE(I,éél,...,sgp) = .A(I,sal,... )L’(I,Sal, ,ggp)
To control the right-hand side, note that
p+|@|
’A( ) al’-' ’ = +|&\

and from (5.7),

lc(1,58L,, ..., H( 0" V., (A7)

1/p
T ap 837% rt 8$u N )
51

II“W“W* S
(m+ar)/2 g (pm+lal)/2 k.pmtar;
relp] relp]

where |a| :== a1 + -+ -+ ap. For any fixed D C [p] and 0 < b < |D|, let Zp be the collection of all
I € Ip such that there are exactly b many entries that appear once in I. For any I € Zp, let S 14
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be the collection of all (5
appear in

Says- - sap) € &; such that all entries that appear exactly once in I also

{LS%, L TR TERRRRL > 2 "’sap}

Note that when b = 0, every entry in I € Zp ¢ must appear at least twice in I and hence, Sz 1, = Sa,
or equivalently, 87 /|, = (). Also, note that Sz rp is nonempty only if |a| > b. From these, we can

write
|D| |D|
IIDIDIED I DD VD IED I DD IEDD
a Ielp Sa a b=0 IGID,bSa,I,b a b=0 IeID,ng[b
|D|Alal |D|

DD IED D ID VDI

a b=0 I€IpySarpy @ b=11€Ip;SE,,

To control the first summation, note that for any I € Zpj, there are exactly b many entries in I
that appear once and the other entries are repeated. This implies that

Zps| < Cp bnbﬂ(pfb)/?J?

where Cp p is a universal constant independent of n. Plugging this inequality to the above equation
yields that

|D|Aal

np/QZ Z Z Z}’Aﬁ ’alv"'7 ap)‘

a b=0 IGZDbSa]b

+
B T A
- 2 +lal)/2 pym+ar
2 S b2 4
|DIAal ) .
jal gp+]a
<2 Z e 1o O PP G 1_[[p Lkpmia,
a : re
|DIAfal
<Z Z npm/2+(p— )/2 L(p—b)/2] p+|al L pm+ar
re|p,
|DIAal
- nl’m/2 Z p+|a\ DMy (5.9)
a Tep]

where the third inequality used |a| > b. As for the second summation, observe that for 1 < b < |D],
if I € Ipy and (5L sap) € SCIb, then there exists one entry, say t¢, in I that appears only

al,..

once in I and it does not appear in the entries of 3. 8 p. Hence, a;,, is independent of
ar
Ajyy =" Qg g aib[+1 e Gup H H ail,sg7
re[p] b=1

which results in EA(I , 8b,) = 0. Therefore,

5 a17'.

|D|

np/Q ZZ Z Z AE a1""7 ap):o~ (5.10)

a b= IIGIDbS*[b
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Finally, combining (5.9) and (5.10) together and dropping 1/a! lead to

|D|Aal
1 a| -p+lal
|An,2 < W Z Z Z CD,b|D|‘a|€p+|a\ H Fk@m-&-ar‘
DClp] @ b=0 relp]
This completes our proof. O

5.3 Proof of Proposition 5.1

Let m = |P|. From Lemma 5.1, the Minkowski inequality, and the Cauchy-Schwarz inequality, we

can compute the partial derivatives of U(X); to see that (E|0pU(A);|") e
sum, in which each summand is of the form

is bounded above by a

(E[0p, v, (A) - - Op,vj, (A)[F) /P

for some 1 <7 <m and (j1,...,Jr) € J-(2(k +1)). More importantly, P = {P1,..., P} € Pr(P)
and each term v;_(A) is equal to either (X,ul(A)); or ull(A); for some 0 < £ < k. Now, using the
Holder inequality gives that

(E|0p,vj, (A) - 0p,0;, (A)[P) P < (E|ap, 0, (A)|)7 - (B|0p,v;, (4)] 7).

Here, from Proposition 5.2, each term on the right-hand side is bounded above by a term of order
1/nlPs1/2 and they together yield that a bound of order 1/nlPl/2 since |Py| + - - - + |P,| = |P|. This
completes our proof.

6 Proof of Theorem 2.1

We establish universality for the generalized AMP in Definition 2.1. Recall that in Theorem 3.1,
we use P and E to denote the probability and expectation conditionally on u°, Z. The following
proposition shows that conditionally on u", Z, the first two moments of the AMP orbits between A
and G asymptotically match each other.

Proposition 6.1. Consider the AMP orbit in Definition 2.1 with the initialization ul%(X) = u°
and assume that (F},)g>o satisfies (5.1). Let k > 0. Assume that ¢ € C°(R*1) has uniformly
bounded partial derivatives of any nonzero orders. There exists a universal constant C independent
of n such that for any n > 2,

E}Eq)k,n(A) - fE(I)k,n(G)‘ <

sl

and

E[EDk,(A)? — E®y,(G)?| <

ER

where @, ,(X) is defined in (2.2).

The proof of Theorem 2.1 is argued as follows. From Proposition 4.1, it suffices to assume
that the functions ¢ and F}’s in Definition 2.1 have uniformly bounded partial derivatives of any
nonzero orders. First of all, we claim that

lim E(®,(A) — By, (4))% = lim E(®,,(G) — EDy . (G))* = 0.

n—o0 n—oo
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Note that from Theorem 3.1,

lim E|®y ,(G) — E®y,,(G)> = 0.

n—o0

Now from Proposition 6.1,

lim |[E®y,,(A)? — EQ,(G)?| < lim E|E®,(A)? — E®k,(G)?| = 0.

Since
E(EDy,,(A))% — E(ED, . (G))°
= E(|E®sn(A) — B n(G)||ERs 1 (A) + By, (G)])
< (B(|EDyn(A4) — By o (G)[*) (B[ 0 (4) + BP0 (G)])
By, (A) — By, (G))) P (B2 () + (ES1(6)2) ),

1/2

it follows from Proposition 6.1 and the moment control in (3.5),

. ~ 2 = 2

lim |E(E®y(A))” — E(ER,,(G))"| =0.
Putting these limits together yields the claim. Consequently, the proof of Theorem 2.1 follows by
our claim and Proposition 6.1,

E(®, (A) — B (G))* < IE(Dy , (A) — EDy 0 (4))°
+ IR (EDy ,(A) — By, (@)
+9E(94,,(G) — EDy . (@) — 0.

For the rest of this section, we establish Proposition 6.1 in five subsections using the Gaussian
interpolation and approximate Gaussian integration by parts. In doing these, Proposition 5.1 will
be of great use in tracking the error terms. Subsection 6.1 shows that to prove Proposition 6.1,
it suffices to assume that the main diagonals of A,G,Z are all equal to zero. The Gaussian
interpolation between ®j ,(A) and ®,,(G) is introduced in Subsection 6.2 and the control of its
derivative is handled in Subsection 6.3. Finally, the proofs of (6.1) and (6.2) are established in
Subsections 6.4 and 6.5, respectively.

6.1 Deletion of the main diagonal

By the virtue of Proposition 3.1, it suffices to assume that the main diagonals in A and Z are zero.
To see this, recall @y, (X), Ax(X), and O (X) from Proposition 3.1. Assume that A’ is equal to A
except that the main diagonal vanishes. Note that from Lemma 3.3, ||A,||2 and || A}, |2 are of order
O(1). On the other hand, since

1
[An — Apll2 = —= max |ay]
V/n 1<i<n

and

1 9.2
P(% g@lanl > t) < Z P(laii] > tv/n) <ne "7 /2,

i€[n]
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these imply that in probability,
Tim (A, — A2 = 0.

As a result, Proposition 3.1 implies that the AMP orbits corresponding to (A, Z) and (A, Z) satisfy
that in probability,

lim [®y,,(A) — Ppn(4)] =0,

n—oo

which together with Lemma 3.4 gives that

lim E|®,(A) — @, (A")] = 0.

n—oo

Next one can prove by an almost identical argument to show that the AMP orbits correspond to
(A',Z) and (A’, Z') are also asymptotically the same under the L!(P)-distance, where Z’ is the
same as Z except that its main diagonal is zero. From this, in what follows, we assume that the
main diagonals of A, GG, and Z are all equal to zero.

6.2 Interpolation

Define the Gaussian interpolation between A and G by

A(t) = (aij(t))ijepn = VEA+ VI —1G, 0 <t < 1.

Denote
_ A
An(t) - \/ﬁ
and
LA L 2
Ap(t) = NG + o

For ¢ € C°(R**1) with uniformly bounded partial derivatives of all nonzero orders, define
Opo (1) = @y (A(1)).
Note that
E[E®k,,(A) — EDpn(G)| = E|@pp(1) — Bpn(0)]-
To show (6.1), our goal is to show that

roo C
E|®, . (t)|dt < —

for some constant C' independent of n. Note that ul%(X) = u. A direct differentiation gives

k n
=3 ! ZE@W(UW (At), ..., ul (A1) o %u[g](A(t)))i, 0<t<l. (6.3)
/=1 i=1

n-

Here and thereafter, if v,v" € R™, we define v o v = (v;v});c[,) as the Hadamard product between
v and v'. Note that this operation is commutative.
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To simplify our notation, denote

Ap(t) = (@i (1)) i€ )

) 1 /a:: Giit
aii,@):g(\%_ 1"_1:)'

for

Also, denote
ulfl(t) = u(A)),
By, Fo(t) = 0y, Fy(An()uld(t), w11, ... u(1)).
Observe that

and

For general 1 < /¢ < k,

£—2
d 4 i £—1 A d -1 d s
Jul(t) = 0y, Fra(t) (An(t)u[ W) + An(t) ol 1(t)) + Z; By, Fea () - ul (8).

From these equations, one readily sees that the vector
By, d(uM(t), ..., u0(t)) o %M(A(t))

appearing in (6.3) can be written as a summation of column vectors, in which each summand is of
the form w" () = (wj (t));epn for some 0 < r < £—1 that is defined by an iterative procedure through
some functions LO, L' ..., L' € C™(R*), whose partial derivatives of any nonzero orders are
uniformly bounded. More precisely, starting from

w0 (t) = UM(A()) o (A, (1)UL (A(1))),

define
wll(t) = UFTU(A®)) o (A (w1 (@), V1 < s <, (6.4)
where
UMl(X) = L (Xpu (X)), .., Xpu (X)), (X)), dO(X), VO<s<r  (65)
and

Urt(x) == 9, (u¥ (X), ...« (X))
o L' (Xl =1(X), .., Xpul(X), w1 (X), L ul) (X)),

Finally, set w”(t) = w™(t).
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6.3 Bounding the derivative of the interpolation

For r > 0, from the iteration (6.4) and expanding the Hadamard product,

I~z 1 -
i=1 I€T,
for
o _ .
Vi) := (TTONEA®) (@i (0 + 17220 100) UL AW® i a0 (UL (A1)
=1
it . (6.8)
l _ .
- <H Ui[l]<A(t))) (H (aiz+17il (t) +n 1/22'1';_‘_1,1’1))@1‘1,1‘0 (t)7
1=0 =1
where Z, is the collection of all I = (i, i1, ..., ir,ir+1) € [n]" T2 with ig # i1 # - -+ # i # ip41. Here

we view each I as a directed graph of length r+1 with vertices (is)o<s<r+1 and edges er (1) = (i7,941)
for 0 <1 <. For any I € Z,, disregard the direction, let A} be the collection of all 0 < I < r with
er(l) = er(0). Let Z,(s) be the collection of all graphs in Z, so that disregard the direction there
are exactly s many edges that appear once.

Proposition 6.2. For any I € Z,(s), we have that for any 0 < t < 1,

- S, i IA <2,
/E\Evf(t)]dtg
0 Lo, ifIAY >3,

where E is the expectation conditionally on u°, Z and Cs is a universal constant independent of n.

To prove this proposition, we first establish a key lemma. For any 0 < b <r+1, let Z,.(s,b) be
the collection of all I € Z,(s) with |[A}| = b. Note that when b = 1, the set Z,(s,b) is nonempty for
all 1 <s<r+1and when 2 <b<r+1, the set Z,(s,b) is nonempty only if 0 < s <r+1—0b.

Lemma 6.1. If b= 1, then for any 1 <s <r+41,

IZ,(5,1)] < Cpp,enl =7 4ot (6.9)

If2<b<r+1, then forany0 < s <r+1-0>,

T —b—s
IZ,(5,b)| < Crpsnt™ 7 572, (6.10)
Here, Cy.p s ’s are universal constants independent of n.

Proof. For any graph I € Z,(s,1), let I’ be the graph, in which we disregard both multiplicities
and directions of the edges. See Figure 1 for examples. Observe that there are at most |(r + 1 —
$)/2] many edges in I’ that appear at least twice in I and the total number of edges of I’ is at
most [(r + 1 — s)/2| + s. This implies that the total number of vertices of I’ should be at most
|(r+1—s5)/2] + s+ 1 so there are at most pl= 2 st many such I”.

Since different I can correspond to the same I’ (again we refer the reader to Figure 1 for
examples), it remains to show that for each I’, there are at most a constant multiple (independent
of n) of many different I that corresponds to I'. First fix such a possible I’ and write E(I’) for the
edge set of I'. Each edge of I’ may correspond to an edge of multiplicity 1 in I or to an edge of
multiplicity at least 2 in I (ignoring directions). We choose s edges in I’ so that they correspond to
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the multiplicity 1 edges in I. There are (‘E (SI /)‘) ways to choose such s edges. Now, for the remaining

(|[E(I")] — s) many edges, the multiplicities are at least 2 in I and they add up to r+1—s. To count
how many possibilities there are, it is equivalent to find how many ways r + 1 — s can be written
as sum of (|E(I')| — s) many integers which are at least 2, which in turn is bounded above by the
number of ways to partition the integer r + 1 — s as sum of (|E(I’)|" — s) many positive integers,
and it is well-known that the number of ways is (| B 17)_|is—1)' Moreover, each edge has two possible
directions in I. Finally, each vertex in I’ can correspond to several iy (0 <t < r+ 1) in I (see
Figure 1). As there are at most |(r+1—s)/2|+s+1 vertices in I, and each vertex can correspond
to at most 7 4+ 1 many i;’s, there are at most (r + 1)L+1=9)/214s+1 many such correspondence.
Therefore, the total number of I that an I’ can correspond to is bounded above by

T—5

BN, r+l—s r—s
(7‘ + 1)L(r+1—s)/2j+s+12( s ) (\E(I/)‘,s—l) < (74 + 1)L(7’+1—5)/2J+5+122L( +1-s)/2] .9 _. Cr,l,s-

This proves (6.9).

To prove (6.10), note that in this case, the edge e7(0) has multiplicity b, and hence there are at
most | (r+1—b—s)/2] + 1 many edges in I’ that appear at least twice in I. Here, the latest +1
comes from ey(0). The remaining of the proof is similar to that of (6.9), and we omit the detail. O

lo =14 = 1g ig = U4 = ig

(a) One example of I € Z,.(s,1) (b) Another example of I € Z,.(s, 1)

(c) The corresponding undirected graph I’

Figure 1: (a) and (b) are two different directed graphs in Z,(s,1) for r = 7 and s = 2. After we disregard
the multiplicities and directions, they correspond to the same I’ as shown in (c), where the solid edges
correspond to the edges in I that appear only once and the dashed edges correspond to those in I with
multiplicity > 2.

Proof of Proposition 6.2. Let I € Z,(s) be fixed. Disregard the direction, let A} be the collec-
tion of all I ¢ AY so that er(l) appears exactly once in I and A? be the collection of all I ¢ AY
so that e;(l) appears more than once in I. In addition, for any R C [r], set AYR) = AN R,
AN(R) = A}N R, and A2(R) = A2N R. Let Ar(R) := A}(R) U {0}. From these and (6.8), after

expanding
T

H (ail+17il (t) + nil/inHl,il) )

=1
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we can write

BVI(1) = 3 e B[Ur(AW) ALR(®) (ac, 0,0/ Pl 1)) II e 0®)]
RC[r] leANR
for
r+1
Ur(X) := H Ui[ll](X) Arr(t) H ae,y(t), Z1R = H Ziy 1yt
=0 IEAZ(R) lIERe

Note that inside the expectation, the two parentheses are independent of Ay r(t), and each term
in the second parentheses appears only once in I. From these, we can apply Proposition 5.1 and
Lemmas A.1, A.2, and A.3 in Appendix to control V;(¢). To see this, note that for any 0 < ¢ < 1
and p > 1,

(Elac, @) (") * < G, (6.11)
and

(Blie 0P < o Z2 + =)

for some universal constant C), independent of t. Let E; g be the expectation only with respect to
ae,y(t) for all I € A;(R). Using these bounds and Lemmas A.1, A.2, and A.3, we get that

E12 [UH(AW®) (0,00 P, 0)0) ( T aesn®))]]

leA}(R)

is bounded above, up to an absolute constant independent of I and n, by

(i + =) P ([ mrallotevnawon ),

where A(t,&) = (ar(t,€)); e is defined as azy (t,€) = Eaz(t) for all 4,4 € [n] satisfying (4,4") =
er(l) or (i',i) = er(l) for some I € Aj(R) and a;(t,€) = a;(t) otherwise. Here,

IAJ(R)|+2, if [AY(R)| =0 by (A.4),
IAL(R)| + 1, if [AY(R)| =1 by (A.1), (6.12)
[AF(R), if [A(R)| > 2 by (A.3).

The summand in the above bound is over all o := (a)ien,(r) € ({0} UN)™, [af := 37 cp () s

and 8})‘7 g is the partial derivative with respect to ., of order aq for all I € Ar(R). From th1s
inequality, it follows that

/’E Ur(A() Ar,r (1) (0,0 ()M Plag,00)) ( T] “ef@(t))”dt

leAL(R)
1 1/2
<C 1A Err[|0f gUI(A(t,€)))|*]de) |d
<0 % [ el /mumm i) s
<c /0 EAI,RW)”Z}: ( /0 |07 aUr(A(t,€)))[2dg) ' a
/ Z /EWIRUI ’df) (6.13)
ja|=s
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for some constants C' and C’ independent of I and n, where the second inequality used the Cauchy-
Schwarz inequality, while the third inequality used the Holder inequality and the bounds (2.1) and
(6.11). The last inequality can further be controlled as follows. From the product rule,

r—+1
0¢ U = ) IEEA:I . (lep ( )) (g 5§<e>Ugf1>,

where the summand is over all 3, € ({0} UN)"*2 satisfying that ZZI& Bie = o for I € Af(R)

and 81’8 ) is the partial derivative (‘35,;[ for all [ € Aj(R). Now, using the Minkowski and Holder
inequalities leads to

(E|0g gUr( At ) )

< ¥ (I () IEwiacore) "
=1

BileAr(R) leAL(

1@

From (6.5) and (6.6), note that any nonzero-order partial derivatives of Ul’s are uniformly bounded.
From Proposition 5.1, each term on the right-hand side is bounded by

} T+2))1/2(r+2) _ Iy

Bl 4 ~— 7
(E’@IR U ( ( g)) - nzleAI(R) Bl,l/z’

where I'y is a constant independent of n. Consequently,

N 2\1/2 @ HT+1
(E‘QLRUI(A(t7§)))‘) < Z (H (ﬁj))nze_ozl@[(mgup

BileAr(R) leAr(R)

- T (I ()R

Bi:leAr(R) leAr(R)

~om X (I ()1

Br:leAr(R) €A (R)

Plugging this inequality into (6.13) and noting that Z is independent of A, G together with the
bound (2.1) yield that

"

| B0 210100) (00,0 0P Py 0) (1T i) < etz

leAL(R)
Here, note that

R+ AT(R)| = (|A

= [A}
[A]

7R+ [AT(RO)] + [AF(R)]) + [AL(R)]

(R + [AF([FD)] + A7 (R)]
(IrDI-

Also, note that s is the number of edges in I that are crossed once disregard the direction. This

implies that A}([r]) > s —1 and that AL([r]) = s if [A}(R)| > 1 since |AY| > 1+ |AY(R)| > 2. Recall
(6.12). If [A}(R)| = 0, then

v

R+ 50 = |R| + [A[(R)| +22 (s = 1) +2=s+ 15
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if |JA%(R)| = 1, then
|R¢| 4 50 = |RY| + [AHR)| +1>s5+1;

if [AJ(R)| > 2, then
|R| + 50 = |R| + [A}(R)| = s.

From these, if |A9| < 2, then |[A}(R)| can only be 0 or 1 for any R C [r] and this implies that

1
= Cs
/0 E[EV;(t)|dt < a2

and if |[AY] > 3, then |A%(R)| could be larger than 2 for some R C [r] and hence,

1
_ C,
/0 ]E‘IEV[(t) <
for some constant Cg > 0. This completes our proof.
O
6.4 Proof of Proposition 6.1: first moment
Recall (6.7). Our proof will be completed once we establish that
1 C
e ETCreyY > / E|EV;(t)|dt < 7 (6.14)

1€,

where C' is an absolute constant independent of n. Recall from the definition of 7,(s, b) that when
b=1,7Z.(0,b) =0 and Z.(s,b) # () for all 1 < s <r + 1 and that the set Z.(s,b) is nonempty only
if 0 <s<r+1-—>b. From these,

r+1
SEG@ =Y Y BVl
I€l, s=0I€Z,(s)
T+l r4+1r+1-b (6.15)
S D IETIES b SITTURS 3 Db SR 110)
s=1T1€Z,(s,1) s=11T1€Z,(s,2) b=3 s=0 I€Z,(s,b)

In what follows, we let C,p s and C/, . be absolute constants independent of n. Here, from the first
case of Proposition 6.2 and Lemma 6 1 the first two summations can be controlled by

1 1 r4+l—s Cl
- o, [E5=2]+s+1  _Tmls
PIF )2 > / E[EV;(t)|dt < S i Orasnt T T s

I€Z,(s,1)
= Cr,l,scvlﬂ 1 s”LHliSJ_(H;S)_l
< CT 1,s“r1 sn_1/2

for1<s<r+1and

1 C
. P ts 42 28
n1+ (r+1)/ Z / E|EV; (t)|dt < 1+(r+1)/2 5 Crasn 2 070 n(s+1)/2

IEIT (s,2)
r—l-s|_(r=1—s) 1
= CrasClomt 2 172 2
—-1/2
<C"“25 r2sn /
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for 0 < s <r —1. To control the second summation, from the second case of Proposition 6.2 and
Lemma 6.1,

!/

C
. |52 s +2 | Tmbis
n1+ (r+1)/ Z /E“EVI |dt< plt(r+1)/2 Crpsnt > ns/2
IEIr (s,b)
1—b— 1—b— b
= ULrbs ;bsnLH—Q SJ_H—Q )

b
< Cr,b,sc, b,sn_(g_l)

Ty

for 0 < s <r+41—b. Plugging these into (6.15) yields (6.14) and this completes our proof.

6.5 Proof of Proposition 6.1: second moment
Our approach is the same as that for the first moment. Set
Upn(t) = B (A1), 0 <t < 1.
Note that
E[EDk,(A)? — E@p n(G)?| = E[Upn(1) — g (0)].
To control this expectation, we again consider the derivative

d ~ d

$\pk7n(t) = QE(I)k’n(A(t)) @q)k,n(A(t))

Again, our goal would be to show that
1 ~
/ E|[EW}, ,(t)|dt
0

is bounded above, up to an absolute constant, by n~1/2. To see this, recall from Section 6.2 that
@) . (t) can be written as a summation, in which each summand is of the form

1 n
- Z w; (1)
=1

for some 0 < <k — 1. In a similar manner, from (6.7) and (6.8), E¥} , () can also be written as
a sum, in which each term is equal to

By (AW) (- Z}w;(t)) U S BV

i=1I€Z,

where

T

for
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Here, V; 1(t) is essentially the same as Vi(t) (see (6.8)) except that it contains one extra term

UZ.[HQ] (A(t)). In view of the proof of Proposition 6.2, an identical argument implies that for any
i € [n]and I € Z,(s),

Cl
I e i [AY] <2,
/ E|EV; ;(t)|dt <
0 Lo A >3,

where C’ is a universal constant independent of n and i. Consequently, as in the proof of (6.14), it
follows that

1 C
n1+’"+1/2§/ E[EV; (t)]dt < ~7

for some constant C independent of n and ¢ and the same inequality remains valid after taking

n~t Y,
n1+ 1+(r+1)/2 Z Z / E‘EV” )|dt < 1/27

=1 I€Z,

which completes our proof.

7 Proof of Theorem 2.2

We establish the proof of Theorem 2.2. For notational convenience, if a,, and b,, are two random
variables, we denote
an < by,

if |ap, — by| — 0 in probability; if they are n-dimensional random vectors, then this notation means
that in probability,

Jim = flay — b3 =0.

To begin with, recall from Lemma 3.4 and Theorem 3.1 that due to the Lipschitz property of
the functions (F)g>0, the AMP orbit defined in Definition 2.1 is uniformly square-integrable and
the average along the Gaussian AMP orbit is concentrated with respect to E. Here, in the setting
of Definition 2.2, since both f; and its first-order derivatives are Lipschitz, an identical argument
also allows to show that (v[k])k>0 is uniformly squared-integrable and when X = G, its average
along the orbit is self-averaged with respect to E. More precisely, for any Lipschitz ¢ € C (RFHD),

% 3 o(H(G), ..., oG fE > 6H(G). .. (6. (7.1)

Denote by (v%[k]);~q the AMP orbit in Definition 2.2 with the replacement of bi,; by

0
—E > 2 W), (@))

i€[n] au

and initialization v&0 = 40,
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Lemma 7.1. For any Lipschitz ¢ € C(RFF1),

LS (8 H(6), ... oP(6) = L 3 0 ), .. P ).

ze [n] 1€[n
Proof. Consider the initialization
(X)) =l (X) = O,

Set

and for £ > 1, set

u[3€+1] (X) =0,

uB(X) = fo(uP(X0), PV, B0, w0 (X)),
¢

u[3f+3] (X) X u[3f+2] Z bG [3] 1]

The main feature of this construction is that u%(X) = v@¥(X) for all £ > 0. Note that bzG,j
depends only on «°, Z and it is uniformly bounded. Although Definition 2.1 assumes that F},’s are
nonrandom, with no essential changes to the proof, Theorem 2.1 indeed extends to randomized
F’s that are dependent only on u°, Z and the Lipschitz constants of Fj’s are bounded by some

constants independent of u°, Z. Hence, the assertion follows by applying Theorem 2.1 to (um)gzo
and ¢@(ulk) wBE=DI 0], O

Lemma 7.2. For any k > 0,
(@) < v H(@).

Proof. We argue by induction. Obviously the assertion is valid for k& = 0. Assume that there exists
some k' > 0 such that it is also valid for all 0 < k < k’. From the triangle inequality,

Hv[k’+1](G) . UG,[k’H}(G Hz

< | Gullz]| i (0FHG), .. 0NG)) = fr(F (@), .. 0@,

k:/
+ 3 b (D1 (0TG- oH@) = fim (0@, Sl @)
—

k/
+ ) b (G) = b ||| £ TG, S EN@G)),
j=1

By induction hypothesis, Lemma 3.3, and noting that the first-order partial derivatives of f;’s are
uniformly bounded, the first two terms after dividing by 1/n converge to zero in probability. As for
the last term, note that (7.1) implies that b3 ;= by j(G) for all 1 < j < k. Also, note that from

G,lf]

the relation, ul3 = v in the proof of Lemma 7.1, the Lipschitz property of fj—1 and Lemmas
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3.3 and 3.4 (here, again Lemma 3.4 is valid despite of the fact that Fj’s are dependent on Z and
u®) imply

sgll) —EHf WSi-1(@),. .. ,vG’[O](G))H2 < 00. (7.2)
Hence, the third term also vanishes in probability and this validates the announced result. O

We are ready to prove Theorem 2.2, namely, for any k > 0 and Lipschitz ¢ € C (Rkﬂ),

% S (0 (G), .. Z ool (4),... WY (a)). (7.3)

i€[n] ZE[n

We argue by induction. Evidently this is valid for & = 0. Assume that there exists some k' > 0
such that it is also valid for all 0 < k < k’. From Lemmas 7.1 and 7.2,

Zgb M (@), 0%G) Z¢> SEH@), .o (@)

16 n] ze[n]
Z p(uE T A W0 4)).
ze[n]
We claim that
1 A +1] G,[0] 1 [k +1] [0]
ez[:qb ), (A)) < n§]¢(vz (A),...,v;"(4)).

If this is valid, then (7.3) is also true for k& + 1 and this would complete our proof. It suffices to
show that

V&) < oM(A4), VO <k <K +1.

Easy to see that this is valid if £ = 0. Assume that there exists some 0 < k” < &k’ such that this
equation holds for all 0 < k < k. Write

[ (A) — oS (A

< | Anll2|| frr @A), .. 0O (A)) = fr(EF(A), . 0P O A))
k_l/
+ 3 bl Fi— @E(A), ol A)) — o I (A), 0@l A))),

k_//

+ 3 fbrr i (A) = b 1[| £ (0 EH(A), 0O (A,

Here, from the induction hypothesis, after dividing by \/n, the first two lines vanish in probability
by using the fact that by~ ; is uniformly bounded and Lemma 3.3. As for the last one, write

byr j(A) = bfr 5 = (b j(A) — by j(G)) + (b 5(G) — b ).

Note that (7.1) implies bk,, - < by j(G), while the induction hypothesis of (7.3) implies that ka,, ;=
bk;", ;- Hence, by ;(A) < bg,, This and (7.2) imply that the third line also vanishes in probability.
Hence, v*"+1(4) < v& [k”‘H] (A) and this completes the proof of our claim.
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8 Proof of Theorem 2.3

We establish the proof of Theorem 2.3. Our strategy is to approximate the principal eigenvector
by the power method. In view of this, it is essentially a special case of the generalized AMP in
Definition 2.1. Once this is done, universality would follow by an analogous argument as that for
Theorem 2.3. Again, we adapt the notation a,, =< b, from Section 7.

8.1 Power method

The well-known power method states that if the principal eigenvalue stays a gap away from the
other eigenvalues, then one can generate the principal eigenvector via an iteration procedure.

Lemma 8.1 (Power method). Let Y € M, (R) and y € R™ with ||y|l2 = 1. Let Ay > -+ > X\, be the
eigenvalues of Y satisfying A1 > maxa<,<p |A:| and y* be the normalized eigenvector associated to
M. If A\ #0 and y Y y', then for any d > 1,

1 Ar |
. 1 1H Ar 8.1
— sign , — max .
e ||Ydy||2 e v, < oy 25, (51
Proof. Let y',...,y" be the orthonormal eigenvectors associated to A1, ..., \,. Write
y=cy' + -+ ey’
where ¢ = (cy,...,c,) € R" satisfies ||c[|2 = ||y|l2 = 1. Note that
Vi = My' + -+ cndiy”
and
1/2
[Yy[ly = (EA3 + -+ 22202, (8.2)
From these,
Yi oAyt 44 eyt
Yoyl (202 44 2 220) 12
— sign(c1) eIy + sign(en) o0y ?/"Z/\fﬂlyT
(c%)\%d 4t 62>\2d)
. A
. ( )yl + Slgn(cl) Z’r‘ 2 |Zl)\d|y
= sign(cy 23173
(1+Zr 2 2(?:) ) /
If we denote "
2
2 /2
S
; C% )\1
then
1 —V1I+1)24+1I\1/2 12 + 11\ 1/2
ity o], - (LR (g
Y yHQ 2 1+11 1411
where we used that /1 +x — 1 < z for z > 0. Now, the assertion follows by
1 . 12d 1 .. 12d
Hg—z max —‘ chgﬁ max | —
cf 2<r<nl Al =~ [{y, y1)|? 2<r<nl )\
O
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We continue to show that the AMP orbits in Definition 2.1 initialized by the principal eigen-
vector and the power method can be as close as we want by increasing the power iteration d. Let
e € (0,1). For any d > 1, let

vd
uA,a,d(X) - _ \/ﬁXnUO
E[[Adu0]l; + v/nie

and

uG,a,d<X) - _ A\/ﬁXgUO .

E[|Gaulll2 + v/ne
Let A1(X,) > --- > A, (X,,) be the eigenvalues of X,,. Let 1'(X,,) be the principal eigenvector
of X,, with ||} (X,))|l2 = v/n. Recall the vector ¢ defined through (2.4). Let v, pAed}  and
v 4F he three AMP orbits that are defined via Definition 2.1 associated to the initializations 1,
u?4 and u®4, respectively. For any Lipschitz ¢ € C(R*¥+1), denote by qﬁ}fn, gb};ff’d, and qbifi’m
the averages of ¢ over these AMP orbits, respectively. ? 7 ’

Lemma 8.2. Assume that (2.5) and (2.6) are valid. Suppose that ¢ € C(RF*Y) is Lipschitz. We
have that in probability,

Aje,d

. . W i _
lim lim lim |¢;,,(4) — ¢ (4)] =0,
lim lim lim |6} (G) — oo " (G)] = 0.

el0 d—oo n—0o0

Proof. We only need to establish the first equality. First of all, we claim that in probability

lim lim lim lH?,/}(A) - uA’E’d(A)Hz =0.

el0 d—ocon—oo n

Define o
ue,d(X) — \/ﬁXnuo ]
[ Xfulll2 + v
From (2.5), (2.6), and (8.2), there exist 0 < § < 1 and ¢’,0” > 0 such that

lim sup max Ar(f}n) <9,
n—oo 25r<n )\1(14”)
liminf ~[(¢) (A,),u®)| > &,

n—oo mn

and

1 . 1 N .
liminf — || A%40||, > lini)inf f’(wl(An), u0>‘)\1(An)d > §'(1+ 0"
n—oo n,

n—o00 \/ﬁ

Note that (8.1) implies that

From these inequalities, as long as d is large enough such that

uE:d(A) — ¥(4) H < " max
Vi Vil T (A, )] 25rsn

)|? €
T 1A
Jn

A (A
A1 (An + 6.

5 €

Y 5/(1 + 5//)d + e <&
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we have ad(A) HA)
NG |, ==

lim sup
n—oo

Next, note that
LHua,d(A) _ uA,s,d(A)H _ HA%’U,OHQ ‘ _ ”Agbu0|’2/f_ ENEH‘?guO‘b/\/ﬁ ‘
vn ? v (|| Adulla /v + €) (B[ Adu®ll2/v/n + €)
_ AG]l ’ [AguCll2 EM%U%’
="a2/m | Jn N

From Lemmas 3.3 and 8.3 (established below), in probability,

lim —[[ud(4) — uded(a)|? = 0.

n—oo n

Combining this with (8.3), our claim follows.

Now to establish the first assertion, note that similar to Proposition 3.1, the assumption that
both f; and its first-order partial derivative are Lipschitz ensures that the average ¢ ,(X) of ¢
along the AMP orbit (v[k})kzl is Lipschitz with respect to its initialization. The proof of this fact
follows directly from the same proof as that of Proposition 3.1. Hence, it suffices to show that in
probability,

lim lim lim lva (A) — UA"’:’d’M(A)H2 =0, Vk > 0.

el0 d—ocon—oo n

When k = 0, this is valid by our claim. Assume that this is also valid for all 0 < k < k’ for some
k’. We prove that this is also valid for &’ + 1. To see this, we use triangle inequality to write

H,U[k/—i-l] (A) _ UA,E,d,[k/—l-l] (A) H2
< | Anlla|| fer WET(A), ... 0l A)) — fro (A2 ET(A), . oAl (4))]]

k,/
3 gAY fi—a (0 (A), . o0 (A)) = oy (o), L Aot 0 ),
j=1

k,/
+ 3 b (A) = b S A fi-a (0T A), Lot dla)) ),
j=1

where

Aed 1 Ofwr | Aedk Ae,d,0
b (A) = - PwT (o= Ay, et gy,
i€ln] YV

Here by Lemma 3.3, Lemma 3.4, and the Lipschitz property of f; and its first-order derivative,
these terms vanish in probability from the induction hypothesis. O

At the end of this subsection, we establish the following lemma, which was used in the above
proof.

Lemma 8.3.

.1 P A 2
Jim B[] Aqu’l2 — | Grulllo]” =0, (8.4)
1 A A 2
lim —E|[|GIu’(|z — E|GEu®||2|” = 0. (8.5)
n—oo N
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Proof. We establish (8.4) first. Consider the AMP orbit
ul% (X) =",
WX = Xpulf (X)) = XFG, k > 0.
Note that ul™1(G) = G4u® and ult+1(A) = A%40. Recall that Theorem 2.1 implies that if ¢ €
C(R¥*1) is Lipschitz, then limy,—eo [¢kn(A) — ¢rn(G)| = 0 in probability. However, we can not
apply this result directly to [|ul®t(X)|3 since each term inside the summation is not Lipschitz. To
this end, we adapt a truncation argument For any M > 1, let p € C'(R) be uniformly bounded

by 2M? and satisfy that p(z) = 2% on [-M, M] and p(z) = (M + 1)? for z ¢ [—(M + 1), M + 1].
Note that for any =z € R,

2 — p(x) = (2° — p(2)) L{jalepm, vy + (@7 — (M +1)*)1fjg1e(m+1,00)}
which implies that
2% — p(2)]* < 4(z* + IM) L {jz>an-

It follows that from the Jensen and Cauchy-Schwarz inequalities,

E)% Z;(UEdH] (G)? — p(u£d+1](G))) ‘2
<ig Z WG VRG] = M)V + OMHP(TI ()] > M)).

n
=1

Here, from Proposition 5.2, there exists a constant C' > 0 independent of n, ¢, and M > 1,

Elu, (@) <C

and
[d+1] ]
Bl ()] = ay) < P LOE < O
Consequently,
I~ [ d 2 40C
B S @6 - o o) < T

=1

Similarly, the same inequality is valid for A. Now from Theorem 2.1 and the dominated convergence

theorem,

. 1< [d+1] [d+1] 2

Jim |~ z(p(ui (@) = p(ul™ay)| =0,
1=

Hence, we arrive at

HGE)E ~ u

2
ligi)s;ip %E‘Hu [d+1](A)H§’ < 6;‘35.
Since this is valid for all M > 1, this limit is indeed equal to zero. From this, since both
n~ 12wl (G)|2 and n=1/2||ult(A)||, are uniformly square-integrable by Lemma 3.4, the as-
sertion (8.4) follows. The proof of (8.5) can be established by using Theorem 3.1 and an identical
truncation argument. As this part of the proof does not involve additional complications, we omit
the details here. O
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8.2 Main argument

We are ready to establish the proof of Theorem 2.3. Recall the AMP orbits (v45®k]), 54 and
(v&edlkly, S from last subsection. Define

,UA,e,d,[—d} (X) - _ \/ﬁuo
B[ Adu]s + v
0
vG,s,d,[fd} (X) \/ﬁu

- E[GduOz + v/ne
For —d < k < —1, set

pAedll ) = X, e d (X)),
pGedlkHl(x) = X, G bH (X)),

Note that v45%0/(X) = y454(X) and v&5401(X) = 4F=4(X). This implies that (v>=4HF),5
and (v&5%HF) S 4 are again AMP orbits with the initializations v4=4[=4(X) and v&=d-d(X).
The key feature of this construction is that the initializations are independent of X and its norm is
bounded above by ||u°||2/c. Hence, the assumption (2.1) is satisfied with possibly a larger o. From
an identical argument as that of Theorem 2.2, we see that the AMP orbit (vA’e’d’[k})kZ,d satisfies
universality. In particular, for any Lipschitz ¢ € C(R*+1), this implies that

Ae,d Ae,d

Pkn (A) = op, (G).
Finally, since Lemma 8.3 implies that the initialization satisfies
,UA,a,d,[—d}(G) _ uA,a,d(G) — uG,a,d(G) _ UG’a’d’[_d](G),

the argument in the second half of the proof of Lemma 8.2 applies to the present setting and it
yields that
v (G) < oG dlE (@)

for all k > —d. Consequently,

A,e,d G,e,d

Pkn (G) =X dkn (G).

From this and Lemma 8.2, the announced result follows.

A Approximate Gaussian integration by parts

This appendix gathers three inequalities of approximate Gaussian integration by parts. Let s > 1 be
fixed. Let aq,...,as be independent random variables with zero mean and unit variance. Suppose
that gi1,...,9gs are i.i.d. standard standard normal and are independent of a1, ..., as. Set

aj(t) = \/iaj +v1-— tgj

for 0 <t <land1l < j < s. Seta(t) = (a1(t),...,as(t)). In what follows, we denote a =
(a1,...,a5) € {0} UN)*, a! = a1!---a,l, and |of = a; + -+ + a5 Also, 0% = 09} --- 09 and

« Qs

= a]‘.--
% =17 Ty,
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Lemma A.1. Let f € C*(R%). For any 0 <t < 1, we have that
IEf < )---a5<t>a1(t)|
1/4 4 ! feY 1/2 Al
S - 1 S T[] 1/4</0 B[|0° f(¢a(t))|*]d¢) (A1)

lo=sj=1
Proof. From Taylor’s theorem, for any x € R®,

aOt
o= ¥ PO LSt a [osena

o] <s—1 ' lal=s

From these, for any « satisfying that |a| < s — 1, we can write
Ea(t)*ai(t) - - - an(t)ai(t) = Bay ()™ aq () - Eag(t)*2 ™+ - - Bas(t)* (1),

If aj = 0 for some 2 < j < s, then this expectation vanishes. If o; # 0 for all 2 < j < s, then the
condition |a] < s —1 forces that a1 =0 and ag = -+ = a5 = 1 so that

Eay(t)* ™ ay (t) - Eag(t)22 T - Eay ()T H(t) = Eay(t)a(t) - Eag(t)? - - - Eas(t)> = 0

since
E . _ ai g1
ar(t)ar (t) = E(Vtar + V1 —tgr) <% - \/1—_7)
R Vi : 2
= Ea7 — Eaig1 + Eaig1 — Eg7; = 0.
1 N 191 N 191 91
From these,

Ef(a(®)as(6)- as(t)in (1)
1 ].
_((3_1)!2/0 Efaa(t) -+ au ()i (1a(t)*9° S (€a(t))]d¢|

< o X Bl aa@aw)] ([ Ellon fcanl)ag)

0
laf=s

Finally applying the Cauchy-Schwarz inequality and the independence of a; (%), ..., as(t) to the first
expectation in the last line ends our proof. O

Lemma A.2. Let f € C*~Y(R®). For any 0 <t <1 and r > 2, we have that
[Ef(a(t)ar(t)"az(t) - as(t)ar (1)]
< w Z E[al(t)4(a1+r)]1/4HE[aj(t)4(aj+l)]1/4(/OlE[}aaf(ga(t))‘Q]d£>l/2. (A3)

—9)!
(5 -2 loa|=5—1 j=2

Proof. Consider Taylor’s expansion,

foy= 3 L0 / o f(ex)d

al (s
|| <s—2

|a|sl
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For any « satisfying |a| < s — 2, we can write
Ea(t)a1(t)" - - as(t)a(t) = Bay (t)** T a(t) - Eag(t)*2 ™ - - - Eas(£)* T (¢).

Observe that if a; > 1 for all 2 < i <'s, then |a| > s — 1, which is not possible. Thus, one of the
g, ...,0s must be zero so that this expectation vanishes. Consequently,

[Ef(a(t))ar(t) as(®) - au(t)in (1)
Z/ [ar (8 (1) -+ as()in (1)ar)"0  (al)] de]

which leads to the assertion by applying the Cauchy-Schwarz inequality to the first expectation in
the last line. O

Lemma A.3. Let f € C5TY(R?®). For any 0 <t < 1, we have that
[Ef(a(t))ax(t) - as(t)ar (t)|
< EOTE 5 wlasen L elos0 0 ([ o s Pla) . &0

- s!
|a|=s+1 j=2

Proof. Write
604
fay= 3 P00 L5y /a‘* (6x)de,
la|<s ’ |o¢\ s+1
For « satisfying |a| < s, write
Ea(t)%as(t) - - - as(t)ai(t) = Bay (t)* a1 (t)Bag(t)** T - - - Eag ()T

If a; = 0 for some 2 < j < s, then this expectation is equal to zero. If a;; > 0 for all 2 < j < s, then
a1 = 0 or a; = 1. In the former case, the expectation vanishes; in the latter case, this expectation
is also equal to zero since Eaj(t)a(t) = 0 due to (A.2). Consequently,

IEf(a(t))as(t). .a(t)dl(t)}
l. Z / [az(t) -+~ as(B)n (t)a(t)*0" f(§a dg\
|a|=s+1
1
Sﬁ > E[(aa(t) - as(t)in (Da()) ] ( /0 E[!@“f(ga(t))ﬁdg)m
|a|=s+1

The rest of the proof follows by using the Cauchy-Schwarz inequality and the independence of
ai(t),...,as(t) to the first expectation of the last line. O
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