
Integrity: finding integer errors by targeted
fuzzing

Yuyang Rong1, Peng Chen2, and Hao Chen1

1 University of California, Davis
{ptrrong, chen}@ucdavis.edu

2 ByteDance Inc.
spinpx@gmail.com

Abstract. Integer arithmetic errors are a major source of software vul-
nerabilities. Since they rarely cause crashes, they are unlikely found by
fuzzers without special techniques to trigger them. We design and im-
plement Integrity, which finds integer errors using fuzzing. Our key con-
tribution is that, by targeted instrumentation, we empower fuzzers with
the ability to trigger integer errors. In our evaluation, Integrity found
all the integer errors in the Juliet test suite with no false positive. On
9 popular open source programs, Integrity found a total of 174 true er-
rors, including 8 crashes and 166 non-crashing errors. A major challenge
during error review was how to determine if a non-crashing error was
harmful. While solving this problem precisely is challenging because it
depends on the semantics of the program, we propose two methods to
find potentially harmful errors, based on the statistics of traces produced
by the fuzzer and on comparing the output of independent implementa-
tions of the same algorithm. Our evaluation demonstrated that Integrity
is effective in finding integer errors.

Keywords: Fuzzing · Integer Errors · Software Security

1 Introduction

Integer arithmetic errors are a significant source of security vulnerabilities [21].
Integer overflow and underflow3 are undefined behavior in many languages, such
as C/C++, and may cause security check bypass or malicious code execution.
For example, on April 22, 2018, attackers created a massive number of Beauty
Coins (BEC) in two transactions by exploiting an integer overflow in ERC20 [2],
which forced the exchange platform OKEx to roll back all the transactions two
days later [3]. Divide-by-zero causes the program to crash and so may be used
to launch denial of service attacks. The number of reported integer arithmetic
bugs has been increasing rapidly in recent years, which account for 104, 232,
3 The term underflow sometimes refers to float point underflow. However, in accor-

dance with Common Weakness Enumeration (CWE) [4], in this paper underflow
means that the result of an integer arithmetic operation is smaller than the smallest
value that the type can represent.

2 Yuyang Rong, Peng Chen, and Hao Chen

Table 1: Verified, unique arithmetic errors that Integrity found in real world
applications, compared with Angora + UBSan. Note that the total numbers of
unique errors at the bottom are fewer than the sums of the rows above because
some programs share the same library and therefore we removed these duplicate
errors when calculating the totals.

Program Errors found by Integrity Errors found by Improvement
Crashing Non-crashing Total(I) Angora + UBSan(A) (I - A)

cjpeg 1 12 13 0 +13
djpeg 17 17 14 +3
file 17 17 0 +17
img2txt 3 21 24 2 +22
jhead 2 4 6 4 +2
objdump 5 5 0 +5
readelf 38 38 0 +38
tiff2ps 27 27 1 +26
tiffcp 2 31 33 2 +31

Total 8 166 174 23 +151

and 635 Common Vulnerabilities and Exposures (CVE) in 2016, 2017, and 2018,
respectively.

Prior work showed how to detect integer overflows when they happen. For
example, Integer Overflow Checker (IOC)[16,15], which has been included in
Undefined Behavior Sanitizer (UBSan) [8] since LLVM 3.5. However, they relied
on the programmer to manually create test cases to trigger those bugs, which
is laborious and unreliable. We face the challenge of how to generate these test
cases automatically and efficiently.

Fuzzing is an automated approach for finding software bugs. Starting with
AFL, graybox fuzzers have made great strides in finding bugs fast. They in-
strument programs with the code for recording program state during execu-
tion and use that information to guide input mutation. Fuzzers differ in their
strategies for exploration, which aims at expanding branch coverage. Previous
exploration strategies include matching magic bytes [28], finding sanity checks
and checksums [24,35], measuring the distance between the input and target
location [11,12], and solving constraints like Angora [13]. Besides exploration,
another goal of fuzzing is exploitation. In the context of fuzzing, exploitation
refers to triggering bugs, regardless if the bug may be used to launch attacks.
It is difficult to find good exploitation strategies. As a result, most fuzzers ran-
domly mutate the input to hope that some mutated input might trigger bugs.
Given the huge space of input, the probability that a randomly mutated input
will trigger a bug is low. Moreover, fuzzers have difficulty in detecting bugs that
do not crash the program because they lack reliable signals that indicate bugs in
those cases. For example, arithmetic errors cause a program to misbehave (e.g.,
to produce wrong results), but they rarely cause the program to crash.

Integrity 3

Our goal is to allow fuzzers to exploit integer arithmetic errors efficiently.
Our key technique is to provide fuzzers with critical information by targeted
instrumentation such that the information can later be used to guide fuzzers to
exploit potential bugs. For example, to detect overflow when adding two 32-bit
signed integers, we extend both the operands to 64 bits, compute their sum
(which cannot overflow), and, if the sum is out of the range of 32-bit signed
integers, execute a special guard branch to send a signal to the fuzzer to indicate
the error. This way, if the fuzzer can reach the guard branch, then an integer
overflow occurs. The same idea can be used to check for other bugs, such as
index out of range, null pointer dereference, etc.

In principle, the above idea works with any fuzzer. However, to find bugs ef-
ficiently, we need to overcome three challenges. First, we need to select a fuzzer
that efficiently solves the constraints indicating arithmetic errors (Section 3.2).
Second, the guard branches inserted by the fuzzer have much lower expected
reachability than the original branches, because the guard branches indicate
arithmetic errors but most arithmetic operations should not have such errors.
Therefore, we need to redesign the fuzzer’s scheduling algorithm to assign dif-
ferent priorities to the original and guard branches, respectively (Section 3.2).
Finally, we need to send a unique signal to the fuzzer to indicate arithmetic
errors if the guard branches are explored. The fuzzer should let the program
continue exploring branches after receiving the signal, in contrast to when the
signal indicates a memory violation (Section 3.2).

It might be tempting to implement the above idea by simply combining a
sanitizer (e.g., UBSan [8]) with a fuzzer. However, because of the challenges
described above, such a naive combination would result in poor performance,
as we will show in Section 5.4. Instead, we implemented our approach in a tool
called Integrity. As we will show in Section 5, Integrity is effective in finding
integer arithmetic errors in both standard test suites and popular open source
programs. On the Juliet Test Suite [9], Integrity found all the bugs with no false
positive (Table 2). Table 1 shows the bugs that Integrity found on 9 popular
open source programs from 6 packages. In total, Integrity found 174 unique
arithmetic errors, where 8 caused crash but 166 did not. We define a unique
error by a unique (file name, line number, column number) tuple.

Fuzzing is attractive because it provides inputs that witness errors. When
an error caused a crash, there is no doubt that the program misbehaved. How-
ever, when the error did not cause a crash, verifying whether the error caused
the program to misbehave becomes difficult as the decision must take domain
knowledge into consideration. We made progress on this problem by proposing
two methods. The first method is based on the statistics of the traces generated
by the fuzzer. If an integer arithmetic error occurred on most traces generated
by the fuzzer where the arithmetic operation executed, then the error was likely
benign, as long as the fuzzer had adequate path coverage. The other method
is based on comparing the output of independent implementations of the same
algorithm on the same input. If an integer error caused one implementation to
misbehave, then the other independent implementation of the same algorithm

4 Yuyang Rong, Peng Chen, and Hao Chen

will unlikely generate a similar output, as long as the output is a deterministic
function of the input. These two approaches, when applicable, call attention to
integer errors that are potentially harmful.

2 Background

2.1 Integer arithmetic errors

In statically typed languages such as C, the type of a variable is determined at
compile time. An integer type has a fixed width and so can represent only a
range of integers. For example, an unsigned 32-bit integer variable can represent
only integers in [0, 232 − 1]. When the result of an arithmetic operation exceeds
the upper/lower bound of its type, overflow/underflow occurs. Another common
arithmetic error is divide by zero.

Some compilers have the option to insert code that checks for integer arith-
metic error at runtime. However, the checks cause runtime overhead. Moreover,
some arithmetic errors are benign because they are intended by the programmer.
For example,

v << (32 - b) >> (32 - b)

is a common idiom to extract the lower b bits from the unsigned 32-bit integer v.
As long as b is in (0, 32]4, the implementation correctly achieved the program-
mer’s goal, even though overflow might happen during the left shift. It would be
undesirable to terminate the program upon detecting such benign overflows.

2.2 Fuzzing

To avoid runtime overhead or terminating programs upon benign arithmetic
errors, we would like to find those errors during testing. Fuzzing is a popular
technique for finding bugs automatically with Graybox fuzzing being particularly
popular. It instruments programs with the code for recording program state
during execution and uses that information to guide input mutation. However,
integer overflow/underflow bugs rarely cause crashes, and most fuzzers cannot
detect bugs that do not crash the program. In this paper, we propose an approach
to instrument arithmetic operations to give the fuzzer critical information to help
it find potential errors in arithmetic operations.

3 Design

Fuzzers mutate the input to find bugs in the program. They have two goals: (1)
exploration: explore different paths; and (2) exploitation: trigger bugs (regard-
less whether they can be used to launch attacks). Previously, fuzzers were used
4 It is undefined behavior when b is a constant 0. Some architectures only allow 5

bits for the second operand, making shift by 32 bits equivalent to shift by 0 bits,
producing v as the result; yet compilers, when -O2 optimization is turned on, will
optimize this line to 0 if b is compile-time known to be 0.

Integrity 5

predominantly to find memory errors. To use fuzzers to find integer arithmetic
errors effectively, we need to modify both their exploration and exploitation
strategies.

3.1 Exploitation

Arithmetic operations We detect integer overflow and underflow during ad-
dition (+), subtraction (-), multiplication (*), shift left (<<), and divide by zero
during division (/) and remainder (%). We instrument LLVM IR code to detect
those errors as follows.

– +, -, *: We promote both the operands to the next longer type (e.g., from
int32_t to int64_t, and from uint32_t to uint64_t), evaluate the ex-
pression in the longer type, and check if the result is out of the range of the
original type. As long as the width of the next longer type is as least doubled
(e.g., int8_t, int16_t, int32_t, int64_t), which is the case in C and most
C-like languages, the operation in the longer type never overflows. For exam-
ple, to check if (int8_t)x + (int8_t)y overflows, we compute (int16_t)x
+ (int16_t)y and check if the sum is out of the range of int8_t.

– <<: A left shift operation x << n overflows if and only if hp(x)+n is greater
than or equal to the width of (number of bits in) the result type, where the
function hp(x) is the position of the highest non-zero bit of x. For example,
hp(0b00000001) = 0, hp(0b10000000) = 7.

– / and %: We check if the second operand is 0. For /, we also check if the
operands are MININT and -1 because MININT / -1 = MAXINT + 1 over-
flows.

Range inference Integer types have different ranges. To infer the correct in-
teger type, we must determine both the bit width and sign.

Bit width inference For each operation, LLVM promotes every operand shorter
than 32 bits to 32 bits, executes the operation, and then truncates the result
back to the destination type when necessary. Therefore, if a truncation follows
the operation, then we use the destination type of the truncation to infer the bit
width; otherwise, we use the left-hand side of the operation.

Sign inference LLVM IR does not distinguish between signed and unsigned
variables. LLVM determines if an operation on 32 or more bits may have signed
overflow or unsigned overflow using the sign information from abstract syntax
tree (AST), and encodes that information as a tag in the arithmetic instructions.
For example, add nsw (no signed wrap) and add nuw (no unsigned wrap). We
use these tags to infer the sign. However, operations on integers shorter than 32
bits carry no such tag because they never overflow in the range of 32-bit integers.
In those cases, we infer the sign of each operand using the cast operation before
the arithmetic operation. When LLVM casts the shorter type to 32 bits, we

6 Yuyang Rong, Peng Chen, and Hao Chen

examine if the cast is signed or unsigned. If both operands are cast, we take the
sign of the operand of the longer type if the operands have different bit widths.
If they have the same bit width, and if either operand undergoes an unsigned
cast, we infer the sign of the destination type as unsigned; otherwise, we infer
the sign as signed.

Instrumentation reduction When we instrument an integer arithmetic op-
eration to check for arithmetic errors, we create new branches. When a program
has many integer arithmetic operations, the instrumentation would create many
new branches for the fuzzer to explore. However, these branches differ from the
original branches in the program in a very important way for the fuzzer: we
expect most original branches to be reachable but few instrumented branches
to be reachable (because the latter represent arithmetic errors). Since unreach-
able branches waste the fuzzer’s computing budget, during instrumentation we
eliminate branches that are guaranteed unreachable as follows:

– While we need to check both overflow and underflow of signed operations, we
need not check underflow of unsigned operations, because once promoted to a
wider type, underflow becomes overflow. For example, when the original type
is 8-bit unsigned int, (uint8_t)0 - 1 = 0xff causes underflow. However,
when promoted to 16-bit unsigned int, (uint16_t)0 - 1 = 0xffff causes
an overflow on the original type because the result 0xffff is larger than the
upper limit of the original type, 0xff.

– We do not check shift operation on negative integers for the same reason as
above.

– When an operation is square, we do not check for underflow because it
cannot.

– When a value is added to a negative constant or is subtracted by a positive
constant, we do not check for overflow; similarly, when a value is added to
a positive constant or is subtracted by a negative constant, we do not check
for underflow.

Section 5.5 will show that the above optimization significantly reduced the
number of branches that the instrumentation added to the program, and hence
the number of constraints that the fuzzer tries to solve.

3.2 Exploration

The instrumentation described in Section 3.1 reduces the problem of exploita-
tion to the problem of exploration. At each operation with potential integer
arithmetic errors, Integrity inserts a conditional statement to check for integer
arithmetic errors. When an error happens, the conditional statement executes a
branch, called the guard branch. In principle, we can use any fuzzer to do the
exploration. However, we desire to select a fuzzer that can explore arithmetic
errors efficiently. Moreover, since the guard branches are inherently different
from the branches in the original program (original branches), the fuzzer must

Integrity 7

Algorithm 1 Integrity’s scheduling algorithm.
function pop ▷ Returns the next branch to fuzz

return priorityQueue.pop()
end function
function push(b) ▷ Pushes a new or existing branch onto the queue

if b is a newly found branch then
if b.tag = Tag.Original then

b.priority ←MAX_PRIORITY

else
b.priority ← GUARD_INIT_PRIORITY

end if
else

b.priority ← b.priority − 1

end if
priorityQueue.push(b)

end function

treat them differently: the fuzzer should triage between the original and guard
branches when scheduling branches (Section 3.2), and should behave differently
between when arithmetic errors occur and when other errors occur (Section 3.2).

Fuzzer choice Section 3.1 provides critical information to the fuzzer by instru-
menting the guard branches that represent those errors. While we may use any
fuzzer to take advantage of that information, we selected Angora [13] for its two
beneficial properties.

First, Angora fuzzes individual branches and can prioritize different branches.
With enough computing budget, Angora fuzzes every branch on a path at least
once. Since we associate every potential arithmetic error with a guard branch,
Angora exploits (tries to trigger) every arithmetic error on the path. Angora
also allows us to triage different branches, which is handy because the original
branches and guard branches have different expected reachability (Section 3.2).

Second, Angora’s input mutation strategy fits our goal well. When fuzzing a
branch, Angora uses byte-level taint tracking to identify the input byte offsets
that flow into the predicate that guards the branch. Then, Angora considers the
predicate as a blackbox function on those byte offsets and uses gradient descent
to find an input that satisfies the predicate. When the blackbox function is linear
or monotonic, this mutation strategy guarantees to find a solution quickly. + and
- are linear functions, and * is a monotonic function. When their operands take
their values directly from in the input, Angora can solve the predicates of those
operations efficiently.

Branch triage As discussed in Section 3.1, original branches and guard branches
have different expected reachability: we expect most original branches to be
reachable but few guard branches to be reachable because few arithmetic opera-
tions have errors. Moreover, before the fuzzer can reach an original branch b, it

8 Yuyang Rong, Peng Chen, and Hao Chen

cannot explore any guard branch that b dominates.5 Therefore, we must let the
fuzzer assign higher priority to the original branches than to the guard branches.

We replaced Angora’s scheduling with the following algorithm:

– At compile time, instrument each branch with a tag to indicate whether it
is an original branch or a guard branch.

– At run time, store all the branches to be fuzzed in a priority queue.
– When finding a new branch, assign the branch a priority according to the

branch tag (original or guard branch), and then push the branch onto the
priority queue (PUSH in Algorithm 1).

– When failing to solve a branch, lower the priority of the branch and push it
onto the priority queue (PUSH in Algorithm 1).

– When ready to explore a new branch, call POP in Algorithm 1 to get the
branch with the highest priority.

Signal of errors When the fuzzer receives a signal indicating an error in the
program, it stops the program execution and records the input, and the error
and its location. Memory access violation, such as segmentation fault, is the
most common signal. To reuse this framework, Integrity lets the instrumented
branches send a pre-determined signal to the fuzzer to indicate arithmetic errors.

However, merely sending a signal would be inadequate. Fuzzers stop the
program when receiving signals. It makes sense when the signal is triggered by
a memory error because the program cannot continue anyway. However, when
the signal is triggered by an arithmetic error, the fuzzer should let the program
continue to explore more paths, particularly when the error is false positive
(see Section 5.2 for examples). Without this ability, a false positive arithmetic
error early in the program would prevent the fuzzer from exploring most paths
because most paths descend from the location of that error. We implemented
this desirable function in Angora.

4 Implementation

We implemented Integrity as an LLVM pass in 924 lines of C++. We also mod-
ified Angora to do branch triage (Section 3.2) and to deal with the new signal
of arithmetic errors (Section 3.2) in 3419 lines of Rust.

We found that some programs may use 64-bit types (uint64_t, for example).
However, Angora supported only 64-bit constraints, which was inadequate to
check the overflow of the arithmetic operation on two 64-bit integers. To tackle
this problem, we extended Angora to support 128-bit constraints. We did so by
using u128 and __uint128_t in Rust and C, respectively. In the case of a 128-bit
or higher precision integer operation, we created a new struct that has two (or
more) 128-bit unsigned integers inside and implemented all the arithmetic traits
(Add, Sub, Mul, etc.) for it.
5 A node d dominates a node n if every path from the entry node to n must go through
d.

Integrity 9

5 Evaluation

We evaluated the performance of Integrity on both the Juliet test suite [9] and
popular open source programs. We also evaluated the impact of instrumentation
reduction described in Section 3.1.

All our experiments ran on a Linux server with two Intel Xeon Gold 5118
CPUs and 256 GB RAM.

We set MAX_PRIORITY and GUARD_INIT_PRIORITY in Algo-
rithm 1 to 65 535 and 65 534, respectively, to guarantee that the fuzzer will try
to solve all the original branches at least once before solving the guard branches.

5.1 Juliet test suite

The Juliet test suite, developed by the National Security Agency (NSA), contains
tests for errors listed in Common Weakness Enumeration (CWE) [4]. It organizes
the tests in a hierarchy: at the top level, the suite contains one test set for each
CWE. Then, each test set contains many subsets, and each subset contains
many tests. Each test is a C or C++ program containing a carefully designed
and inserted error. This test suite provides ground truth for evaluating the false
positive and false negative of Integrity.

We used Juliet Test Suite v1.3 and selected the following test sets relevant
to integer arithmetic errors:

– CWE190_Integer_Overflow
– CWE191_Integer_Underflow
– CWE194_Unexpected_Sign_Extension
– CWE197_Numeric_Truncation_Error
– CWE369_Divide_by_Zero

We excluded the following tests in the above test sets:

– Deterministic errors: These errors always happen regardless of the input,
e.g., overflow caused by constant integers.

– Floating point errors, since we focus on integer arithmetic errors only.
– C++ programs. As discussed in Section 3.2, we used Angora as the fuzzer,

and currently it supports only C programs. This is not an inherent limitation
of Integrity.

Two CWEs related to integer arithmetic errors are worth mentioning. One
of them is CWE197_Numeric_Truncation_Error. Integer truncation causes an
error when the result is out of the range of the destination type. Therefore, to
detect this error accurately, we must detect the destination type (both sign and
width) accurately. For example, consider x & 0x0000ffff. If the destination
type has more than 16 bits or if it is unsigned 16-bit integer, then no overflow
can happen. In all the tests of CWE197, it is easy to infer the destination types
accurately because of the way how those errors were injected. However, in real
world programs, we found that accurately inferring the destination type in the

10 Yuyang Rong, Peng Chen, and Hao Chen

Table 2: Errors that Integrity found on the Juliet test suite. A“-” cell means
that the corresponding test set on the top contains no corresponding subset on
the left. Integrity found all the errors with no false positive. Every test contains
one inserted arithmetic error except subset s02 of CWE197, where half of its
inserted bugs contain two truncation errors each.

Subset
Set CWE190 CWE191 CWE194 CWE197 CWE369

bugs
added

bugs
found

bugs
added

bugs
found

bugs
added

bugs
found

bugs
added

bugs
found

bugs
added

bugs
found

s01 114 114 76 76 304 304 152 152 112 112
s02 38 38 38 38 0 0 76 114 38 38
s03 190 190 114 114 - - - - - -
s04 114 114 190 190 - - - - - -
s05 114 114 190 190 - - - - - -
s06 190 190 - - - - - - - -
s07 190 190 - - - - - - - -

1 short CWE_197_s02_trunc_twice(char∗ inputBuf fer) {
2 short data = 0 ;
3 i f (f g e t s (inputBuffer , 14 , s td in) != NULL) {
4 data = (short) a to i (inputBuf fer) ;
5 }
6 return (char) data ;
7 }

Fig. 1: A test in CWE197 s02, which contains two truncation errors on Line 4
and 6.

context of integer truncation was difficult. Therefore, we disabled this rule when
checking real world programs in Section 5.2.

The other one is CWE680_Integer_Overflow_to_Buffer_Overflow. This er-
ror happens when calling the function malloc(site_t) and when size_t is de-
fined by uint32_t, which occurs on only 32-bit platforms. Since the fuzzer that
we used(Angora) ran only on 64-bit platforms, we did not test this error.

Table 2 shows that Integrity found all the bugs in the test sets of the above
five CWEs with no false positives. Every test case has one inserted arithmetic
error except subset s02 of CWE197. This subset contains 76 tests, where half of
the tests contains two truncation errors each as shown in Figure 1: first trun-
cating the result of atoi into short, and then further into char, both of which
cause truncation errors. Therefore, Integrity found a total of 38 + 38× 2 = 114
unique errors in this subset of 76 tests.

We tried Angora and Angora + UBSan on this test set, respectively. Neither
of them found any bugs.

Integrity 11

Table 3: Unique errors that Integrity found in common open source programs.
Note that the total numbers of unique errors at the bottom are fewer than the
sums of the rows above because when calculating the totals we removed the
duplicate errors in the libraries shared by different programs.

Package Version Program
Unique errors

Divide
by zero

Overflow
to crashing Non-crashing Benign

libjpeg-ijg v9a cjpeg 1 12 63
djpeg 17 101

file 5.32 file 17 7
libcaca 0.99beta99 img2txt 1 2 21 36
jhead 3.00 jhead 2 4 4
binutils 2.29 objdump -x 5 11

readelf -a 38 27
libtiff 4.0.7 tiff2ps 27 36

tiffcp -i 2 31 49

Total 4 4 166 315

5.2 Real world applications

We evaluated Integrity on popular real world applications. We selected 9 ap-
plications from 6 packages that have many integer operations, such as image
processing and executable file parsing. Detailed version and command line argu-
ments are shown in Table 3. On each program, we ran Integrity on 12 cores for
72 hours.

Table 3 shows all the unique errors that Integrity found. We identified a
unique error by the (file name, line number, column number) tuple where the
error occurs. We divide those errors into three categories. The first category
contains all errors that caused crashes (Section 5.2). Then, we manually reviewed
the remaining errors to identify benign ones. We determined an error to be
benign when we found that the error did not cause the program to misbehave
(Section 5.2). After excluding those benign errors, the remaining errors belong
to the non-crashing error category (Section 5.3).

It is also worth mentioning that tiff2ps and tiffcp share the same underlying
library(libtiff). As a result, Integrity found 6 duplicate non-crashing errors and
19 benign errors in both program. We removed those duplicate errors from total
error count in Table 1 and Table 3.

Benign errors An error is benign when we found strong evidence that the error
had been expected by the programmer and therefore did not cause the program
to misbehave. We classify all the benign errors found into two classes:

Intentional overflows The programmer intended to use the result of an over-
flown value. One example is v << (32 - b) >> (32 - b), where the program-

12 Yuyang Rong, Peng Chen, and Hao Chen

mer intended to exact the lower b bits from the unsigned 32-bit integer v, and
implemented it by shifting v by 32− b bits to the left and then shifting by 32− b

bits to the right. As long as b is in (0, 32], the implementation correctly achieved
the programmer’s goal, even though overflow might happen during the left shift.

Unused overflown values This class of benign errors is commonly introduced by
compiler optimization.

while (i--) { /* loop body */ }

is an example, Figure 2 shows the compiled LLVM IR. The loop subtracts 1 from
the loop variable (an unsigned integer) and saves the result in another variable
just before checking the predicate that if the loop variable is not 0. When the
loop variable is 0, the subtraction underflows, but its result will never be used
because the loop finishes.

1 ; <labe l >:loop_head :
2 %loop_var = load i32 , i32∗%loop_ptr , a l i gn 4
3 %next_loop_var = add nsw i32 %loop_var , −1
4 s to r e i32 %next_loop_var , i32∗%loop_ptr , a l i gn 4
5 %cond = icmp ne i32 %loop_var , 0
6 br i1 %cond , l a b e l %loop_body , l a b e l %loop_end
7 ; <labe l >:loop_body : /∗ body ∗/
8 br l a b e l %loop_head
9 ; <labe l >:loop_end :

Fig. 2: An example of benign integer overflow. After LLVM optimization passes,
the C program was translated into the IR shown in the figure, the syntax slighted
modified for readability. On Line 3, the add instruction overflows when the loop
variable %iter_var is 0, but the overflown result will never be used.

Crashes Arithmetic errors may cause crashes in two different ways. Divide by
zero causes a crash immediately, while overflown or underflown values may cause
a crash when used as indices to arrays. Integrity discovered eight crashes, among
which four are divide by zero, and four are overflow.

Figure 3 shows a divide by zero error on Line 4 in the program libjpeg-ijp.
Integrity found an input that caused the parameter samplesperrow to become
0, which then caused divide by zero on Line 4.

5.3 Which non-crashing error is harmful?

An error is said to be harmful when it triggers unexpected behavior, e.g. to
produce a wrong result. Harmful errors may or may not be exploitable in the

Integrity 13

1 // jmemmgr . c :395~435
2 . . . a l loc_sarray (. . . , unsigned samplesperrow , . . .) {
3 . . .
4 ltemp = . . . / ((long) samplesperrow ∗ SIZEOF(JSAMPLE)) ;
5 . . .
6 }

Fig. 3: Divide by zero error in jmemmgr.c of libjpeg-ijg happens when the pa-
rameter samplesperrow is zero.

context of software security, yet they still cause problems in software correctness
and reliability. If an arithmetic error causes a crash, it is definitely a harmful
error. However, when it does not cause a crash, it is non-trivial to validate
whether it is harmful.

We manually inspected all the 481 non-crashing errors reported by Integrity
and determined that 315 (or 65 %) were benign. However, manual inspection is
tedious and unscalable.

Automatically determining if an arithmetic error is harmful is challenging
because it depends on the semantics of the application. Nevertheless, we made
progress on this problem by proposing two methods, one based on statistics
of the traces generated by the fuzzer, and the other based on comparing the
output of independent implementations of the same algorithm on the same input.
These two approaches, when applicable, call attention to integer errors that are
potentially harmful.

By statistics of traces This method is based on the conjecture that a harmful
bug in a popular open source program unlikely occurs during most executions,
because otherwise it would have been noticed, reported, and fixed with high
probability. By this conjecture, if an integer arithmetic error occurred on most
traces generated by the fuzzer where the arithmetic operation executed, then
the error was likely benign, as long as the fuzzer had adequate path coverage.

To implement the above idea, for each non-crashing arithmetic error, we
measured its rate of occurrence on all the traces where the arithmetic operation
occurred. When this rate is above a threshold, we consider this error to be benign.
We used the benign errors that we manually determined in Table 3 as the ground
truth. Then, at each threshold, we counted the number of benign errors using
the rule above, and calculated precision and recall based on the ground truth.
That is, let G be the set of benign errors that we manually determined, and S

be the set of benign errors that we identified by the statistics of traces. Then
precision is |S∩G|

|S| and recall is |S∩G|
|G| .

Table 4 shows the number of benign arithmetic errors and their precision
and recall with regard to the ground truth. The overall precision is 79.2% at
the threshold of 0.95, and is 75.7% at the threshold of 0.70. The overall recall is
37.5% at the threshold of 0.95, and is 67.3% at the threshold of 0.70. On several

14 Yuyang Rong, Peng Chen, and Hao Chen

Table 4: Benign arithmetic errors determined by statistics of traces. We use the
benign errors found by manual inspection as the ground truth when calculating
the precision and recall of the benign errors determined by statistics of traces.

Program
Benign errors Benign errors determined by statistics of traces

found by Threshold=0.95 Threshold=0.70
manual inspection Count Precision Recall Count Precision Recall

cjpeg 63 8 100.0 % 12.7 % 48 87.5 % 66.7 %
djpeg 101 19 100.0 % 18.8 % 42 97.6 % 40.6 %
file 7 6 83.3 % 71.4 % 8 87.5 % 100.0 %
img2txt 36 18 88.9 % 44.4 % 39 59.0 % 69.9 %
jhead 4 4 100.0 % 100.0 % 5 80.0 % 100.0 %
objdump 11 12 83.3 % 90.9 % 12 83.3 % 90.9 %
readelf 27 28 71.4 % 74.1 % 36 72.2 % 96.3 %
tiff2ps 36 25 88.0 % 61.1 % 37 62.2 % 63.9 %
tiffcp 49 46 67.4 % 63.3 % 53 67.9 % 73.5 %

Total 315 149 79.2 % 37.5 % 280 75.7 % 67.3 %

programs, this method was quite accurate. For example, at the threshold of 0.95,
this method achieved both 100% precision and 100% recall on jhead, and 100%
precision on cjpeg. On 7 out of 9 programs the precision reaches above 80%,
which indicates that our method can efficiently rule out part of benign error and
thus reduce human labor.

By comparing independent implementations This method uses two inde-
pendent implementations P and Q of the same algorithm to evaluate whether
an arithmetic error is likely harmful. If P and Q (1) agree (have identical or
similar output) on all the inputs that trigger no arithmetic errors but (2) dis-
agree (have different outputs) on the inputs that trigger arithmetic errors in P ,
then the errors in (2) are likely harmful. This is based on the conjecture that
when an input triggers a harmful arithmetic error in P , it unlikely also triggers
an arithmetic error in Q, and even if it does, the two errors unlikely cause P

and Q to generate similar output. Obviously, the first property above requires
the output to be a deterministic function of the input, i.e., no randomness may
affect the output.

We applied the above method on the program djpeg in the libjpeg-ijg pack-
age. A JPEG encoder compresses an image by (1) dividing the image into 8× 8
matrices and applying discrete cosine transform (DCT) to each matrix, (2) sup-
pressing the high-frequency signals by element-wise dividing each matrix by a
predefined matrix and rounding the result to the nearest integer, and (3) dis-
carding all the tailing zeros. The decoder reverses the above operations, where
it can infer the number of discarded zeros based on the size of the small matrix
and that of the image.

Integrity 15

Since a JPEG decoder uses floating point arithmetic, two independent de-
coders may create slight different outputs on the same input. However, if the
difference is large, then at least one decoder is misbehaving. We measured the
difference as the average L1 distance between two images. More precisely, let

– A and B: two images of dimension m× n.
– Ai,j : a 3-channel vector representing the RGB values of the pixel at (i, j)

– A
(k)
i,j : the value of the kth channel. This value is in the range [0, 255], and

k ∈ {1, 2, 3}.

Definition 1. The average L1 distance between two images A and B of identical
size is:

D(A,B) =

∑
c∈C(A,B)

∑
k∈[1,3] | c

(k) |

| C(A,B) |
(1)

where

C(A,B) = {Ai,j −Bi,j : i ∈ [1,m], j ∈ [1, n], A[i, j] ̸= B[i, j]}

To evaluate whether non-crash arithmetic errors in libjpeg-ijg are harmful,
we selected libjpeg-turbo as an alternative, independent implementation. libjpeg-
turbo has the same API as libjpeg-ijg; however, its decoder uses SIMD instructions
to accelerate arithmetic operations while libjpeg-ijg does not.

We prepared two sets of JPEG images as input to the decoders:

– Normal images: We randomly picked 100 JPEG images from Android sys-
tem images, LATEX testing images, libjpeg testing images, and GNOME 3.28
desktop images. None of them triggered arithmetic errors on either decoder.

– Exploit images: We collected images produced by Integrity that triggered
arithmetic errors in the program djpeg in the package libjpeg-ijg, and then
removed the following from the collection:
• Broken images: Integrity generated many images that are invalid JPEG

and therefore cannot be rendered.
• Images whose width or height is less than 8 pixels. Since JPEG encoder

partitions images into 8 × 8 matrices, the decoder’s behavior on those
images may be implementation-dependent.

• Images that triggered only the benign errors described in Section 5.2
After filtering, we were left with 67 exploit JPEG images.

Figure 4 compares the cumulative distribution functions (CDF) of the average
L1 distance (Equation 1) between normal and exploit images. The figure cleanly
separates the CDF of normal and exploit images with no overlap: the L1 distance
of normal images ranges from 0.0 to 6.0 with a median of 2.4, while the distance
of exploit images ranges from 16.9 to 342.4 with a median of 217.2. This implies
that those arithmetic errors that Integrity found in libjpeg-ijg are harmful.

16 Yuyang Rong, Peng Chen, and Hao Chen

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Average L1 difference

C
D

F

normal images
exploit images

Fig. 4: Cumulative distribution function (CDF) of the average L1 distance (Equa-
tion 1) between the output of two decoders on the same input JPEG image. The
CDF of the normal images is cleanly separable from that of the exploit images.

5.4 Comparison with Angora + UBSan

We compared Integrity with simple combination of Angora and UBSan. We ran
Angora with UBSan in the same experimental configuration as we described in
Section 5.2.

Table 1 compares the number of verified bugs found by Integrity and An-
gora+UBSan, respectively. Integrity found many more bugs than Angora on
each program. On all program together, Integrity found 174 bugs while An-
gora+UBScan found only 23 bugs. Angora+UBSan found no bug in file, obj-
dump and readlef, but Integrity found a total of 60 bugs in them. This result
shows that Integrity performs far superior than simple combination of Angora
and UBSan. Without proper information sharing (Section 3.2 and Section 3.2),
the fuzzer and the sanitizer cannot cooperate well because the fuzzer would not
know where the potential bugs lie and divert computation power accordingly.

As a side note, we had to overcome engineering difficulties to combine Angora
and UBSan. Angora compiles two binaries for each program: one uses Data Flow
Sanitizer (DFSan) [6] to do taint tracking, and the other monitors the execution
traces. DFSan instruments instructions to track data flow. If the program calls a
function in third-party libraries, DFSan needs a modeled function to know how
to propagate the taint. When we initially compiled the programs using UBSan
and DFSan, it failed because DFSan could not find the modeled functions instru-
mented by UBSan. [31] also warned such issues when using multiple sanitizers.
We applied a temporary hack to overcome the compilation problem: we enabled
DFSan and disabled UBSan when compiling the binary for taint tracking, and
enabled UBSan and disabled DFSan when compiling the binary for monitoring
execution traces.

5.5 Instrumentation reduction

To evaluate the effect of instrumentation reduction described in Section 3.1, we
instrumented five libraries with and without reduction and compared the number

Integrity 17

Table 5: Number of instrumented arithmetic operations before and after instru-
mentation reduction

Library # of instrumentation Remaining
after reduction before reduction instrumentation

libpng 2518 2773 90.80 %
binutils 16 432 18 203 90.27 %
libjpeg 14 335 15 312 93.62 %
libtiff 7383 8123 90.89 %
libpcap 714 887 80.50 %

Total 41 382 45 298 91.36 %

of instrumented arithmetic operations. Table 5 shows that overall this technique
eliminated 9% instrumented arithmetic operations.

6 Related work

6.1 Detecting integer overflow

Integer overflow has been extensively studied [15,16,34,27,22,36]. IOC [15,16]
instruments AST to test for overflow. It is now part of LLVM’s UBSan [8].

IOC tends to generate many benign overflows. IntEQ [34] and IntFlow [27]
intend to cut down reported benign overflows. Both use the assumption that an
overflown value is benign unless it is used in a sink. IntFlow combines static and
dynamic analysis to determine if any overflown value flows into a sink. IntEQ
relies on symbolic execution to achieve this goal. It computes a value flown into
a sink in both high and low precision and compares the two values. Both these
tools rely on the user to provide input (test cases) for finding overflows. Integrity
overcomes this limitation by triggering arithmetic errors automatically through
program instrumentation targeting arithmetic errors.

z3 [22] is a tool for solving integer-related symbolic constraints. IntScope [36]
uses symbolic execution to detect integer overflow. Unlike IOC, IntScope does
not rely on source code but translates x86 binary to an intermediate represen-
tation called PANDA first, then symbolically executes PANDA to detect possi-
ble arithmetic errors. Since Integrity uses fuzzing, it inherits the advantages of
fuzzing over symbolic execution, such as faster execution and tolerating obscure
code (e.g., external libraries, system API, etc).

6.2 Coverage-directed fuzzers

A coverage-directed fuzzer mutates the input to explore paths in the hope to
trigger bugs on some of these paths [13,14,1,5,33,37,28,10,30,11,12]. If a mu-
tated input explores a new path, the fuzzer keeps the input as a seed. AFL [1]
and LibFuzzer [5] employ evolutionary algorithms to mutate input. Driller [33]

18 Yuyang Rong, Peng Chen, and Hao Chen

and QSYM [37] try to solve complex path constraints by concolic execution.
VUzzer[28] and REDQUEEN [10] learn magic bytes and generate satisfying in-
put without symbolic execution. AFLGo [11] and Hawkeye [12] direct fuzzing
to a set of target program locations efficiently. Angora [13] models a path con-
straint as a black-box function, and uses optimization methods such as gradient
descent to solve it. NEUZZ [30] also uses gradient descent to explore new paths
and approximates the target program’s branch coverage by a neural network.

Many coverage-directed fuzzers can turn on various sanitizers to detect bugs
during exploration [31,29,32,18,7,8]. For example, Address Sanitizer [29], Mem-
ory Sanitizer [32], Thread Sanitizer [7], and Undefined Behavior Sanitizer [8]
detect invalid memory addresses, use of uninitialized memory, data races, and
undefined behavior, respectively. However, those fuzzers only passively detect
those bugs when they are triggered by random mutation. By contrast, Integrity
instruments arithmetic operations with potential errors to triggers them actively.

6.3 Bug-directed fuzzers
Besides integer arithmetic errors, researchers developed fuzzers to exploit other
vulnerabilities. SlowFuzz [26] targets algorithmic complexity vulnerabilities guided
by resource usage. RAZZER [20] guides fuzzing towards potential data races in
the kernel, then deterministically triggers a race. NEZHA [25] exploits the be-
havioral asymmetries between multiple test programs to focus on inputs that
are more likely to trigger semantic bugs. Tensorfuzz [23] use coverage-guided
fuzzing methods for neural networks to find numerical errors in a trained neural
network. Dowser [17] determines “interesting” array accesses that likely harbor
buffer overflow, and triggers overflow by taint tracking and symbolic execution.
TIFF [19] infers input types by dynamic taint analysis, and sets input bytes
with defined interesting values based on its type to maximize the likelihood of
triggering memory-corruption bugs. Compared with those fuzzers, which were
built to detect those specific bugs, Integrity reduces the problem of exploitation
to the problem of exploration, and therefore can work with most fuzzers and can
benefit from the advances of exploration technologies.

7 Conclusion
We designed and implemented Integrity for triggering integer arithmetic errors
using fuzzing. By finding and instrumenting integer arithmetic operations with
potential errors, Integrity passes critical information to the fuzzer to help it
trigger potential bugs. Integrity found all the integer errors in the Juliet test
suite with no false positive. On 9 popular open source programs, Integrity found
a total of 174 true errors, including 8 crashes and 166 non-crashing errors. To
make progress on the challenge of determining if a non-crashing error is harmful,
we proposed two methods to find potentially harmful errors, based on the statis-
tics of traces produced by the fuzzer and on comparing the output of indepen-
dent implementations of the same algorithm on the same input. Our evaluation
demonstrated that Integrity is effective in finding integer errors.

Integrity 19

Acknowledgment

This material is based upon work supported by the National Science Foundation
under Grant No. 1801751 and 1956364.

References
1. American fuzzy lop, http://lcamtuf.coredump.cx/afl/
2. Batchoverflow exploit creates trillions of ethereum tokens, major ex-

changes halt erc20 deposits | cryptoslate, https://cryptoslate.com/
batchoverflow-exploit-creates-trillions-of-ethereum-tokens/

3. Beautychain (bec) withdrawal and trading sus-
pended, https://support.okex.com/hc/en-us/articles/
360002944212-BeautyChain-BEC-Withdrawal-and-Trading-Suspended-Update-

4. Cwe - common weakness enumeration, https://cwe.mitre.org/
5. libfuzzer – a library for coverage-guided fuzz testing., https://llvm.org/docs/

LibFuzzer.html
6. LLVM dataflowsanitizer, https://clang.llvm.org/docs/DataFlowSanitizer.

html
7. LLVM threadsanitizer, https://clang.llvm.org/docs/ThreadSanitizer.html
8. LLVM undefinedbehaviorsanitizer, https://clang.llvm.org/docs/

UndefinedBehaviorSanitizer.html
9. Software assurance reference dataset, https://samate.nist.gov/SARD/

testsuite.php
10. Aschermann, C., Schumilo, S., Blazytko, T., Gawlik, R., Holz, T.: Redqueen:

Fuzzing with input-to-state correspondence (2019)
11. Böhme, M., Pham, V.T., Nguyen, M.D., Roychoudhury, A.: Directed greybox

fuzzing. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. pp. 2329–2344. ACM (2017)

12. Chen, H., Xue, Y., Li, Y., Chen, B., Xie, X., Wu, X., Liu, Y.: Hawkeye: towards a
desired directed grey-box fuzzer. In: Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security. pp. 2095–2108. ACM (2018)

13. Chen, P., Chen, H.: Angora: Efficient fuzzing by principled search. In: 2018 IEEE
Symposium on Security and Privacy (SP). pp. 711–725. IEEE (2018)

14. Chen, P., Liu, J., Chen, H.: Matryoshka: fuzzing deeply nested branches. In: ACM
Conference on Computer and Communications Security (CCS). London, UK

15. Dietz, W., Li, P., Regehr, J., Adve, V.: Understanding integer overflow in c/c++.
In: 34th International Conference on Software Engineering, ICSE 2012 (2012)

16. Dietz, W., Li, P., Regehr, J., Adve, V.: Understanding integer overflow in c/c++.
ACM Transactions on Software Engineering and Methodology (TOSEM) 25(1), 2
(2015)

17. Haller, I., Slowinska, A., Neugschwandtner, M., Bos, H.: Dowsing for overflows: a
guided fuzzer to find buffer boundary violations. In: USENIX security. pp. 49–64
(2013)

18. Han, W., Joe, B., Lee, B., Song, C., Shin, I.: Enhancing memory error detection
for large-scale applications and fuzz testing. In: Symposium on Network and Dis-
tributed Systems Security (NDSS). p. 148 (2018)

19. Jain, V., Rawat, S., Giuffrida, C., Bos, H.: Tiff: Using input type inference to im-
prove fuzzing. In: Proceedings of the 34th Annual Computer Security Applications
Conference. pp. 505–517. ACM (2018)

20 Yuyang Rong, Peng Chen, and Hao Chen

20. Jeong, D.R., Kim, K., Shivakumar, B., Lee, B., Shin, I.: Razzer: Finding kernel
race bugs through fuzzing. In: Razzer: Finding Kernel Race Bugs through Fuzzing.
IEEE (2018)

21. Martin, B., Brown, M., Paller, A., Kirby, D., Christey, S.: 2011 cwe/sans top 25
most dangerous software errors. Common Weakness Enumer 7515 (2011)

22. Moy, Y., Bjørner, N., Sielaff, D.: Modular bug-finding for integer overflows in the
large: Sound, efficient, bit-precise static analysis. Microsoft Research 11 (2009)

23. Odena, A., Goodfellow, I.: Tensorfuzz: Debugging neural networks with coverage-
guided fuzzing. arXiv preprint arXiv:1807.10875 (2018)

24. Peng, H., Shoshitaishvili, Y., Payer, M.: T-fuzz: fuzzing by program transformation.
In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 697–710. IEEE (2018)

25. Petsios, T., Tang, A., Stolfo, S., Keromytis, A.D., Jana, S.: Nezha: Efficient domain-
independent differential testing. In: 2017 IEEE Symposium on Security and Privacy
(SP). pp. 615–632. IEEE (2017)

26. Petsios, T., Zhao, J., Keromytis, A.D., Jana, S.: Slowfuzz: Automated domain-
independent detection of algorithmic complexity vulnerabilities. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security.
pp. 2155–2168. ACM (2017)

27. Pomonis, M., Petsios, T., Jee, K., Polychronakis, M., Keromytis, A.D.: Intflow: im-
proving the accuracy of arithmetic error detection using information flow tracking.
In: Proceedings of the 30th Annual Computer Security Applications Conference.
pp. 416–425. ACM (2014)

28. Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: VUzzer:
application-aware evolutionary fuzzing. In: NDSS (Feb 2017)

29. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: Addresssanitizer: A fast
address sanity checker. In: USENIX ATC 2012 (2012)

30. She, D., Pei, K., Epstein, D., Yang, J., Ray, B., Jana, S.: Neuzz: Efficient fuzzing
with neural program learning (2019)

31. Song, D., Lettner, J., Rajasekaran, P., Na, Y., Volckaert, S., Larsen, P., Franz, M.:
Sok: sanitizing for security (2019)

32. Stepanov, E., Serebryany, K.: Memorysanitizer: fast detector of uninitialized mem-
ory use in c++. In: Proceedings of the 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization. pp. 46–55. IEEE Computer
Society (2015)

33. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshi-
taishvili, Y., Kruegel, C., Vigna, G.: Driller: augmenting fuzzing through selective
symbolic execution. In: Proceedings of the Network and Distributed System Secu-
rity Symposium (2016)

34. Sun, H., Zhang, X., Zheng, Y., Zeng, Q.: Inteq: recognizing benign integer overflows
via equivalence checking across multiple precisions. In: Proceedings of the 38th
International Conference on Software Engineering. pp. 1051–1062. ACM (2016)

35. Wang, T., Wei, T., Gu, G., Zou, W.: Taintscope: a checksum-aware directed fuzzing
tool for automatic software vulnerability detection. In: Security and privacy (SP),
2010 IEEE symposium on. pp. 497–512 (2010)

36. Wang, T., Wei, T., Lin, Z., Zou, W.: Intscope: Automatically detecting integer
overflow vulnerability in x86 binary using symbolic execution. In: NDSS. Citeseer
(2009)

37. Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: QSYM : A practical concolic execution
engine tailored for hybrid fuzzing. In: 27th USENIX Security Symposium (USENIX
Security 18). pp. 745–761. USENIX Association, Baltimore, MD (2018)

	Integrity: finding integer errors by targeted fuzzing

