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Abstract. The transferability of adversarial examples across deep neu-
ral network (DNN) models is the crux of a spectrum of black-box attacks.
In this paper, we propose a novel method to enhance the black-box trans-
ferability of baseline adversarial examples. By establishing a linear map-
ping of the intermediate-level discrepancies (between a set of adversarial
inputs and their benign counterparts) for predicting the evoked adver-
sarial loss, we aim to take full advantage of the optimization procedure of
multi-step baseline attacks. We conducted extensive experiments to ver-
ify the effectiveness of our method on CIFAR-100 and ImageNet. Experi-
mental results demonstrate that it outperforms previous state-of-the-arts
considerably. Our code is at https://github.com/qizhangli/ila-plus-plus.
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1 Introduction

The adversarial vulnerability of deep neural networks (DNNs) has been exten-
sively studied over the years [34, 8, 25, 3, 24, 1, 11, 10]. It has been demonstrated
that intentionally crafted perturbations, that are small enough to be impercepti-
ble to human eyes, on a natural image can fool advanced DNNs to make arbitrary
(incorrect) predictions. Along with this intriguing phenomenon, it is also pivotal
that the adversarial examples crafted on one DNN model can fail another with
a non-trivial success rate [34, 8]. Such a property, called the transferability (or
generalization ability) of adversarial examples, plays a vital role in many black-
box adversarial scenarios [27, 28], where the architecture and parameters of the
victim model is hardly accessible.

Endeavors have been devoted to studying the transferability of adversarial ex-
amples. Very recently, intermediate-layer attacks [41, 18, 15] have been proposed
to improve the transferability. It was empirically shown that larger mid-layer
disturbance (in feature maps) leads to higher transferability in general. In this
paper, we propose a new method for improving the transferability of adversarial
examples generated by any baseline attack, just like in [15]. Our method op-
erates on the mid-layer feature maps of a source model as well. It attempts to
take full advantage of the directional guides gathered at each step of the baseline
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attack, by maximizing the scalar projection on a spectrum of intermediate-level
discrepancies. The effectiveness of the method was testified on a variety of image
classification models on CIFAR-100 [20] and ImageNet [30], and we show that
it outperforms previous state-of-the-arts considerably.

2 Related Work

Adversarial attacks can be categorized into white-box attacks and black-box
attacks, according to how much information of a victim model is leaked to the
adversary [27]. Initial attempts of performing black-box attacks rely on the trans-
ferability of adversarial examples [27, 28, 23]. Despite the excitement about the
possibility of performing attacks under challenging circumstances, early transfer-
based methods often suffer from low success rates, and thus an alternative trail
of research that estimates gradient from queries also becomes prosperity [4, 16,
17, 9, 26, 36, 2, 38]. Nevertheless, there exist applications where queries are diffi-
cult and costly to be issued to the victim models, and it is also observed that
some stateful patterns can be detected in such methods [5].

Recently, a few methods have been proposed to enhance the transferability
of adversarial examples, boosting the transfer-based attacks substantially. They
show that maximizing disturbance in intermediate-level feature maps instead
of the final cross-entropy loss delivers higher adversarial transferability. To be
more specific, Zhou et al. [41] proposed to maximize the discrepancy between
an adversarial example and its benign counterpart on DNN intermediate layers
and simultaneously reduce spatial variations of the obtained results. Requiring
a target example in addition, Inkawhich et al. [18] also advocated performing
attacks on the intermediate layers. The most related work to ours comes from
Huang et al. [15]. Their method works by maximizing the scalar projection of the
adversarial example onto a guided direction (which can be obtained by perform-
ing one of many off-the-shelf attacks [8, 21, 24, 7, 41]) beforehand, on a specific
intermediate layer. Our method is partially motivated by Huang et al.’s [15]. It
is also proposed to enhances the adversarial transferability, yet our method takes
the whole optimization procedure of the baseline attacks rather than their final
results as guidelines. As will be discussed, we believe temporary results probably
provide more informative and more transferable guidance than the final result
of the baseline attack. The problem setting will be explained in the following
subsection.

2.1 Problem Setting

In this paper, we focus on enhancing the transferability of off-the-shelf attacks,
just like Huang et al.’s intermediate-level attack (ILA) [15]. We mostly consider
multi-step attacks which are generally more powerful on the source models. Sup-
pose that a basic iterative FGSM (I-FGSM) is performed a priori as the baseline
attack, we have

xadv
t+1 = ΠΨ (x

adv
t + α · sgn(∇L(xadv

t , y))), (1)
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“perturbations” of feature maps) and adversarial loss values {(hadv
t −hadv

0 , lt)},
and further establish a direct mapping of the intermediate-level discrepancies to
predicting the adversarial loss. For instance, a linear (regression) model can be
obtained by simply solving a regularized problem.

min
w

p∑

t=0

(wT (hadv
t − hadv

0 )− lt)
2 + λ‖w‖2, (2)

in which w ∈ R
m is the parameter vector to be learned. The above optimization

problems can be written in a matrix/vector form: minw ‖r−Hw‖2 + λ‖w‖2, in
which the t-th row of H ∈ R

p×m is (hadv
t − hadv

0 )T and the t-th entry of r ∈ R
p

is lt, and the problem has a closed-form solution: w∗ = (HTH+ λIm)−1HT r.
Rather than maximizing the conventional cross-entropy loss as in FGSM [8],

I-FGSM [21], and PGD [24], we opt to optimizing

max
∆x

(g(x+∆x)− hadv
0 )Tw∗, s.t. (x+∆x) ∈ Ψ (3)

to generate pixel-level perturbations with maximum expected adversarial loss in
the sense of the established mapping from the feature space to the loss space.
Both one-step (e.g., FGSM) and multi-step algorithms (e.g., I-FGSM and PGD)
can be used to naturally solve the optimization problem (3). Here we mostly con-
sider the multi-step algorithms, and as will be explained, our method actually
boils down to ILA [15] in a one-step case. Note that the intermediate-level feature
maps are extremely high dimensional. The matrix (HTH+ λIm) ∈ R

m×m thus
becomes very high dimensional as well, and calculating its inverse is computa-
tional demanding, if not infeasible. While on the other hand, multi-step baseline
attacks only update for tens or at most hundreds of iterations in general, and
we have p � m. Therefore, we utilize the Woodbury identity

HTH+ λIm =
1

λ
I −

1

λ2
HT (

1

λ
HHT + Ip)

−1H

=
1

λ
I −

1

λ
HT (HHT + λIp)

−1H

(4)

so as to calculate the matrix inverse of (HHT + λIp) instead, for gaining higher
computational efficiency. We can then rewrite the derived optimization problem
in Eq. (3) as

max
∆x

(g(x+∆x)− hadv
0 )T (Ip −HT (HHT + λIp)

−1H)HT r,

s.t. (x+∆x) ∈ Ψ.
(5)

It is worth mentioning that, with a drastically large “regularizing” parameter
λ, we haveHT (HHT+λI)−1H ≈ 0 and, in such a case, the optimization problem
in Eq. (5) approximately boils down to: max∆x

(g(x+∆x)−hadv
0 )THT r. If only

the intermediate-level discrepancy evoked by the final result xadv
p along with its

corresponding adversarial loss is used in the optimization (or a single-step base-
line attack is applied), the optimization problem is mathematically equivalent
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to that considered by Huang et al. [15], making their ILA a special case of our
method. In fact, the formulation of our method suggests a maximized projection
on a linear combination of the intermediate-level discrepancies, which are de-
rived from the temporary results xadv

0 . . .xadv
t . . .xadv

p−1 and the final result xadv
p

of the multi-step baseline attack. Since the temporary results possibly provide
complementary guidance to the final result, our method can be more effective.

In (3) and (5), we encourage the perturbation g(x +∆x) − hadv
0 on feature

maps to align with w∗, to gain more powerful attacks on the source model. In the
meanwhile, the magnitude of the intermediate-level discrepancy ‖g(x + ∆x) −
hadv
0 ‖ is anticipated to be large to improve the transferability of the generated

adversarial examples, as also advocated in ILA. Suppose that we are given two
directional guides that would lead to similar adversarial loss values on the source
model, yet remarkably different intermediate-level disturbance via optimization
using for instance ILA. One may anticipate the one that causes larger disturbance
in an intermediate layer to show better black-box transferability. Nevertheless,
it is not guaranteed that the final result of the baseline attack offers an exciting
prospect of achieving satisfactory intermediate-level disturbance in the followup
phase. By contrast, our method endows the enhancement phase some capacities
of exploring a variety of promising directions and their linear combinations that
trade off the adversarial loss on the source model and the black-box transferabil-
ity. Experimental results in Section 4.3 shows that our method indeed achieves
more significant intermediate-level disturbance in practice.

3.1 Intermediate-level Normalization

In practice, the intermediate-level discrepancies at different timestamps t and t′

during a multi-step attack have very different magnitude, varying from ∼ 0 to
≥ 100 for CIFAR-100. To take full advantage of the intermediate-level discrepan-
cies in Eq. (3), we suggest performing data normalization before solving the linear
regression problem. That being said, we suggest w̃∗ = (H̃T H̃+ λIm)−1H̃T r, in
which the t-th row of the matrix H̃ is the normalized intermediate-level discrep-
ancy (hadv

t − hadv
0 )/‖hadv

t − hadv
0 ‖ obtained at the t-th iteration of the baseline

attack. We here optimize a similar problem as in Eq. (3), i.e.,

max
∆x

(g(x+∆x)− hadv
0 )T w̃∗, s.t. (x+∆x) ∈ Ψ, (6)

as both
(g(x+∆x)−h

adv

0
)T w̃

∗

‖g(x+∆x)−hadv

0
‖

and ‖g(x+∆x)−hadv
0 ‖ are expected to be maximized.

4 Experimental Results

In this section, we show experimental results to verify the efficacy of our method.
We will first compare the usefulness of different intermediate-level discrepancies
when being applied as the directional guides in our framework and ILA, and then
compare plausible settings of our method on CIFAR-100. We will show that our
method significantly outperforms its competitors on CIFAR-100 and ImageNet
in Section 4.3. Our experimental setting are deferred to Section 4.4.
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Table 2. Performance of transfer-based attacks on CIFAR-100 using I-FGSM with an
`∞ constraint of the adversarial perturbation in the untargeted setting. The symbol *
indicates when the source model is the target. The best average results are in red.

Dataset Method ε VGG-19* WRN ResNeXt DenseNet GDAS Average

CIFAR-100

-
0.1 100.00% 74.90% 69.33% 71.77% 66.93% 70.73%
0.05 100.00% 64.67% 57.63% 61.13% 56.00% 59.86%
0.03 100.00% 48.27% 41.20% 43.83% 39.13% 43.11%

ILA [15]
0.1 99.07% 97.53% 96.90% 97.30% 96.03% 96.94%
0.05 99.03% 93.90% 90.73% 91.60% 88.73% 91.24%
0.03 98.77% 82.73% 76.53% 77.87% 72.83% 77.49%

Ours
0.1 98.83% 97.80% 97.07% 97.50% 96.51% 97.22%

0.05 98.87% 94.03% 91.27% 91.73% 89.37% 91.60%

0.03 98.53% 84.57% 78.70% 79.60% 74.63% 79.38%

Table 3. Performance of transfer-based attacks on ImageNet using I-FGSM with `∞

constraint in the untargeted setting. We use the symbol * to indicate when the source
model is used as the target. The lower sub-table is the continuation of the upper sub-
table. The best average results are marked in red.

Dataset Method ε ResNet-50* VGG-19 ResNet-152 Inception v3 DenseNet MobileNet v2

ImageNet

-
0.1 100.00% 67.70% 61.10% 36.36% 65.00% 65.60%
0.05 100.00% 54.46% 44.74% 24.68% 49.90% 52.12%
0.03 100.00% 36.80% 26.56% 13.72% 32.08% 34.56%

ILA [15]
0.1 99.96% 97.62% 96.96% 87.94% 96.76% 96.54%
0.05 99.96% 88.74% 86.02% 61.20% 86.42% 85.62%
0.03 99.96% 69.96% 63.14% 34.86% 64.52% 65.68%

Ours
0.1 99.92% 97.60% 96.98% 88.46% 97.02% 96.74%
0.05 99.92% 89.40% 87.12% 64.96% 88.14% 86.98%
0.03 99.90% 72.88% 67.82% 39.40% 68.38% 69.20%

Dataset Method ε SENet ResNeXt WRN PNASNet MNASNet Average

ImageNet

-
0.1 45.32% 56.36% 56.96% 35.34% 63.68% 55.34%
0.05 29.92% 41.74% 40.82% 22.76% 49.46% 41.06%
0.03 15.94% 23.46% 24.32% 11.90% 33.12% 25.25%

ILA [15]
0.1 93.76% 96.00% 95.62% 91.04% 96.70% 94.89%
0.05 74.36% 82.54% 81.80% 65.74% 84.32% 79.68%
0.03 46.50% 59.24% 58.58% 37.22% 64.78% 56.45%

Ours
0.1 94.00% 96.16% 95.74% 91.22% 96.86% 95.08%

0.05 76.26% 84.00% 83.50% 69.24% 86.26% 81.59%

0.03 50.26% 63.48% 62.72% 42.16% 67.94% 60.42%

collected from Github5 and the torchvision repository6. We mostly compare our
method with ILA, since the two share the same problem setting as introduced in
Section 2.1. We first compare their performance on the basis of I-FGSM, which
is viewed as the most basic baseline attack in the paper. Table 2 and 3 summa-
rize the results on CIFAR-100 and ImageNet, respectively. It can be seen that
our method outperforms ILA remarkably on almost all test cases. As has been
explained, both methods work better with relatively earlier I-FGSM results. The
results in Table 2 and 3 are obtained with p = 10. We also tested with p = 100,
30, and 20, and our method is superior to ILA in all these settings. Both methods
chose the same intermediate layer according to the procedure introduced in [15].

5 https://github.com/Cadene/pretrained-models.pytorch
6 https://github.com/pytorch/vision/tree/master/torchvision/models
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Table 4. Performance of transfer-based attacks on ImageNet. Different baseline attacks
are compared in the same setting of ε = 0.03. The best average result is marked in red.

MI-FGSM [7] PGD [24] TAP [41]

- ILA [15] Ours - ILA [15] Ours - ILA [15] Ours

ResNet-50* 100.00% 99.94% 99.90% 100.00% 99.94% 99.88% 100.00% 99.98% 99.96%
VGG-19 46.46% 67.18% 70.28% 40.80% 70.38% 72.22% 58.34% 78.00% 77.96%
ResNet-152 37.90% 60.76% 63.62% 31.06% 64.32% 68.02% 45.04% 67.42% 68.52%
Inception v3 21.50% 33.98% 37.26% 16.60% 37.76% 41.52% 25.50% 40.70% 42.88%
DenseNet 42.14% 63.02% 65.86% 37.78% 67.14% 69.94% 49.02% 70.56% 71.98%
MobileNet v2 45.78% 63.92% 67.04% 39.02% 66.62% 69.66% 54.98% 72.72% 73.84%
SENet 24.60% 45.26% 48.14% 18.28% 46.32% 49.60% 33.68% 55.30% 56.26%
ResNeXt 34.28% 56.08% 59.64% 27.78% 60.16% 63.72% 41.30% 64.50% 66.20%
WRN 34.20% 56.28% 59.66% 27.92% 60.08% 62.82% 45.08% 66.24% 67.06%
PNASNet 18.36% 34.82% 38.56% 13.82% 38.50% 42.68% 22.20% 42.24% 44.76%
MNASNet 43.26% 62.34% 65.36% 37.08% 65.08% 67.76% 53.64% 71.64% 72.64%
Average 34.85% 54.36% 57.54% 29.01% 57.64% 60.79% 42.88% 62.93% 64.21%

In addition to ILA, there exist several other methods in favor of black-box
transferability, yet most of them are orthogonal to our method and ILA and they
can be applied as baseline attacks in a similar spirit to the I-FGSM baseline. We
tried adopting the two methods based on PGD [24], TAP [41], and I-FGSM with
momentum (MI-FGSM) [7], which are probably more powerful than I-FGSM.
Their default setting all choose the cross-entropy loss for optimization with an
`∞ constraint. In fact, I-FGSM can be regarded as a special case of the PGD
attack with a random restart radius of zero. TAP and MI-FGSM are specifically
designed for transfer-based black-box attacks and the generated adversarial ex-
amples generally show better transferability than the I-FGSM examples. Table 4
shows that TAP outperforms the other three (including the basic I-FGSM) multi-
step baselines. MI-FGSM and PGD are the second and third best, while the basic
I-FGSM performs the worst in the context of adversarial transferability without

further enhancement. Nevertheless, when further equipped with our method or
ILA for transferability enhancement, PGD and I-FGSM become the second and
third best, respectively, and TAP is still the winning solution showing 64.21%
success rates. The MI-FGSM-related results imply that introducing momentum
leads to less severe overfitting on the source model, yet such a benefit diminishes
when being used as directional guides for ILA and our method. Whatever base-
line attack is applied, our method always outperforms ILA in our experiment,
which is conducted on ImageNet with ε = 0.03.

It can be observed from all results thus far that our method bears a slightly
decreased success rate on the source model, yet it delivers an increased capability
of generating transferable adversarial examples. It is discussed in Section 3 that
our method provides an advantage over the status quo that it is not guaranteed to
achieve optimal intermediate-level disturbance. To further analyze the function-
ality of our method, we illustrate the cross-entropy loss and intermediate-level
disturbance on the ImageNet adversarial examples crafted using our method
and ILA in Fig. 7. It depicts that our method gives rise to larger intermediate-
level disturbance in comparison to ILA, with a little sacrifice of the adversarial
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0.1 and 1.0 on the two datasets respectively. Other hyper-parameters were kept
the same for all methods under both the `∞ and `2 constraints. We randomly
sampled 3000 and 5000 test images that are correctly classified by the victim
models from the two datasets respectively to initialize the baseline attacks and
generate 3000 and 5000 adversarial examples using each method, as suggested in
many previous works in the literature. For CIFAR-100, they were sampled from
the official test set consisting of 10 000 images, while for ImageNet, they were
sampled from the validation set. We run our method and ILA for 100 iterations
on the two datasets, such that they both reached performance plateaux. Input im-
ages to all DNNs were re-scaled to [0, 1] and the default pre-processing pipeline
was adopted when feeding images to the DNNs. For ILA and TAP, followed the
open-source implementation from Huang et al. [15]. An optional setting for im-
plementing transfer-based attacks is to save the adversarial examples as bitmap
images (or not) before feeding them to the victim models. The adversarial exam-
ples will be in an 8-bit image format for the former and a 32-bit floating-point
format for the latter. We consider the former to be more realistic in practice.

Our learning objective does not employ an explicit term for encouraging large
norms of the intermediate-level discrepancies. It is possible to further incorporate
one such term in (3) and (5). However, an additional hyper-parameter will be in-
troduced inevitably, as discussed by ILA regarding the flexible loss [15]. We shall
consider such a formulation in future work. Our code is at https://github.com/
qizhangli/ila-plus-plus.

5 Conclusions

In this paper, we have proposed a novel method for improving the transferabil-
ity of adversarial examples. It operates on baseline attack(s) whose optimization
procedures can be analyzed to extract a set of directional guides. By establishing
a linear mapping to estimating the adversarial loss using intermediate-layer fea-
ture maps, we have developed an adversarial objective function that could take
full advantage of the baseline attack(s). The effectiveness of our method has been
shown via comprehensive experimental studies on CIFAR-100 and ImageNet.
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