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Abstract—The increasingly central role of speech based human
computer interaction necessitates on-device, low-latency, low-
power, high-accuracy key word spotting (KWS). State-of-the-
art accuracies on speech-related tasks have been achieved by
long short-term memory (LSTM) neural network (NN) models.
Such models are typically computationally intensive because
of their heavy use of Matrix vector multiplication (MVM)
operations. Compute-in-Memory (CIM) architectures, while well
suited to MVM operations, have not seen widespread adoption
for LSTMs. In this paper we adapt resistive random access
memory based CIM architectures for KWS using LSTMs. We
find that a hybrid system composed of CIM cores and digital
cores achieves 90% test accuracy on the google speech data set
at the cost of 25 uJ/decision. Our optimized architecture uses
5-bit inputs, and analog weights to produce 6-bit outputs. All
digital computation are performed with 8-bit precision leading
to a 3.7x improvement in computational efficiency compared to
equivalent digital systems at that accuracy.

I. INTRODUCTION

With the spread of “smart” virtual assistants and mobile
devices, speech-based human computer interaction has be-
come increasingly prevalent. For such speech-based systems to
become commonplace in mobile, energy-constrained devices,
the friction of interacting with them must be minimized.
Consequently, they must be extremely responsive and highly
accurate. One way of ensuring responsiveness is to implement
the “smarts” on the device. Accuracy, in turn, depends on
the “smart” algorithms. This creates a tension between im-
plementing complex, energy-intensive algorithms for accuracy
and implementing lightweight, hardware-friendly algorithms
on device. This work, analyzes these trade-offs and proposes
a hardware-friendly algorithm for keyword spotting (KWS) to
enable always-on voice-based interactive systems. Keyword
Spotting is a central part of the speech processing pipeline for
energy-constrained, always-on devices. Thus, hardware that
implements energy-efficient, on-device KWS is a must for
bringing voice-interactivity to the edge [1].

Long short-term memory (LSTM) neural networks (NNs),
are state-of-the-art autoregressive networks used as primitives
in many state of the art NN models, e.g., speech synthesis [2],
speech recognition [3], and KWS [4]. While accurate, LSTMs
are energy intensive because they employ a large number of
parameters in comparison to fully-connected (FC) layers and
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consequently incur a large number of matrix-vector multi-
plications (MVMs) [5]. Specialized hardware has previously
been employed to reduce the energy consumption of LSTMs,
especially targeting KWS tasks [6]-[8].

Previous research has demonstrated that compute-in-
memory (CIM) architectures can deliver energy-savings of
up to 68x for certain deep neural network (DNN) models
such as convolutional neural networks (CNNs) [9], [10]. Thus,
it is natural to ask: can a mixed-signal, CIM-based system
capable of implementing energy-efficient MVMs improve the
energy-efficiency of KWS systems while still operating at
low latency? This is especially important since state-of-the-art
KWS implementations leverage LSTMs [1], [6], [11]. CIM
architectures implementing a recurrent attention model have
been employed for KWS tasks [12] and CIM architectures em-
ploying resistive RAM (ReRAM) elements have implemented
binarized LSTMs [5]. However, to the best of our knowledge,
implementing LSTM-based KWS using CIM architectures in
an energy-efficient fashion has remained elusive.

This work presents a hardware-aware approach to training
LSTMs for the KWS task. We partition LSTM operations
across a heterogeneous architecture that employs ReRAM-
based CIM cores together with digital processing elements
(PEs). The contributions of this paper are three-fold: i) We
describe a novel CIM-friendly LSTM structure together with a
training method for low-precision operation;' ii) we compare
the accuracy and energy-efficiency of this structure on our
proposed hybrid system against conventional implementations;
and iii) we study the effect of various parameters on the energy
consumption of our proposed hybrid system.

II. BACKGROUND

This work integrates low-precision LSTM model design
and CIM-based system design. In comparison to a digital
implementation of KWS, our system offers improved energy-
efficiency for competitive accuracy in KWS. These improve-
ments are achieved by trading-off CIM energy-efficiency
against the resilience achieved through increased redundancy.

Applying LSTMs to the KWS task requires extracting
informative features from raw audio signals, followed by
decision-making on these features. In this work, we build upon
microcontroller-friendly LSTMs [13]. First, Mel-frequency

'PyTorch code and models available under https:/github.com/Intelligent-
Microsystems-Lab/QuantizedLSTM
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Fig. 1. System-level block diagram of our proposed compute-in-memory
(CIM) based keyword spotting system. Mel-frequency cepstral coefficient
(MFCC) feature extraction provides inputs to the multiple parallel long short-
term memory (LSTM) cells. The outputs of these cells are concatenated into
one vector which is then evaluated against a one-hot encoded target vector.

cepstral coefficients (MFCC) are extracted from the raw audio
signals over a window of 40.0625 ms with a stride of 20 ms.
These MFCC features are then fed to a NN model composed
of LSTM cells and FC layers. The KWS system processes the
features to decide whether an input audio snippet included a
specific set of key words. This work focuses on the LSTM cells
and subsequent FC layers, assuming that the MFCC features
are extracted and provided as inputs.
A. Long short-term memory (LSTM)
The core of our system is the LSTM cell described by [14]:
iy = sigmoid(W'xy + U'h;_1),
fi = sigmoid(W/zy + U hy_1),
o¢ = sigmoid(W°x + U°hy_1),
ét = tanh(cht + U'Chtfl)7
ct =1 ©C + fr + C-1,
hi = o¢ ® tanh(cy).

(D

Here, x is the input, h is the hidden state, ¢ is the mem-
ory cell state and ¢ the current time step. Correspondingly,
(Wi, W, We, we Ut UF, U°,U¢) are learnable weights, in-
cluding biases. The current state depends on the previous state
through ¢, and h;_; as well as the current inputs x;. Each
LSTM cell is followed by a FC, trainable, layer to map the
cell output to a vector the size of the output classes.

B. ReRAM Based Compute-In-Memory (CIM)

Examining (1), each LSTM cell employs eight independent
MVMs. LSTMs implemented on a digital accelerator incur
significant energy-costs due to data-movement resulting from
repeatedly fetching parameters from memory. Consequently,
the energy-costs of digital MVMs are dominated by data
movement [15]. Thus, architectures that minimize weight
movement can be used for energy-efficient implementations
of LSTMs. Dense storage of LSTM parameters in emerg-
ing nonvolatile resistive RAM arrays, coupled with energy-
efficient compute-in-memory architectures address precisely

this challenge. In such architectures, the NN model weights
are stored as conductances of the memory elements. CIM
architectures implement in-situ MVM by using digital-to-
analog converters (DACs) to drive the bitlines by voltages
proportional to the input activation. This induces currents
accumulating on the bitlines, where the current is the sum
of activation-weight products through Kirchoff’s current law.
Integrating the current onto a capacitance and reading out
the voltage value through analog-to-digital converters (ADCs)
results in an effective MVM [16], [17]. CIM architectures
can use a range of nonvolatile storage elements, including
Ferroelectric devices, metal-oxide based devices, or spin-based
devices [18]. This work uses metal oxide-based ReRAM to
model the storage device due to the availability of calibrated
models from fabricated CIM arrays [5], [17], [19].

C. Quantization

In energy-optimized digital implementations of LSTMs, the
LSTM weights, activations, and inputs must all be heavily
quantized [13]. Primarily driven by the energy and latency
impact of computing at high-precisions. However, the trade-
offs are different for CIM based system, for example CIM
architectures can employ write-verify schemes to set conduc-
tances to arbitrary values with some degree of precision [17],
[19]. Thus avoids quantizing weight values in the LSTM, at
the cost of weight-noise induced by imprecision in setting the
conductance values. Similarly, the use of ADCs to digitize the
output of the MVMs results in exponentially more energy ex-
pended in digitizing this ‘pre-activation’. Thus, reducing ADC
precision through coarser quantization of the pre-activation
is critical to ensuring CIM energy-efficiency. In this work,
we develop a symmetric variation of “PArameterized Clipping
acTivation” (PACT) [20]:

PACT(z) = 0.5sgn(z)(|z| — ||z] — a] + a)

—a, x€(—00,—q)
=4z, z€[-a,q]
a, 7€ (a,+00).

PACT learns the clipping parameter «, and taken together
with an Ly regularization of its magnitude maintains LSTM
accuracy while aggressively quantizing the ‘pre-activation’
value. In contrast to the original PACT [20] which replaced a
ReLU activation our variation is symmetric and clips negative
as well as positive values at the learned threshold «. To
quantize clipped values we first scale the values into a range
between —1 and 1 and then apply:

Q(z, k) = o(k) - round [Ufk)} ,

where o(x) = 217% [21]. Subsequently we apply a clipping
operation to ensure that the values are within the viable range
of =1+ o(k) and +1 — o (k).

D. Regularized Learning

We employ multiple regularization techniques for improved
model accuracy. We use an LSTM-specific DropConnect [22]
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Fig. 2. An illustration of our proposed hybrid architecture using compute-in-memory (CIM) cores and digital processing elements (PEs). The CIM core is
expanded on the left, with DACs driving the bitlines and a 1TIR scheme employed per resistive RAM device. The voltages applied on the bit line (BL)
are weighed by the individual conductances of each ReRAM element followed by parallel accumulation on to the source line (SL). The resulting charge is
digitized by the analog-to-digital converters (ADCs) at the periphery. The output of the ADC is digitally added followed by the application of a nonlinearity.
These nonlinearities are applied through a lookup table (stored in a local register file) mapping the bits onto the nonlinear function. This application of the

nonlinearity is followed by elementwise multiplication when required.
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Fig. 3. Energy-accuracy trade-offs for CIM and digital implementations.
Each line represents a efficient frontier for energy and performance. Blue and
green represent CIM based solution whereby the green frontier is a restricted
version of the blue based upon [17]. The red and magenta frontier stand for
digital solution, whereby red is a digital implementation of our proposed CIM
architecture and magenta an architecture proposed by [13].

for an initial training phase of 20,000 epochs (one epoch is
100 — 474 training examples). This is followed by 10,000
epochs of training with Gaussian random noise added to the
model weights, emulating device noise and mismatch [23].
Characterization of ReRAM weight noise from literature [17],
indicates that the standard deviation of the weight noise, opoise,
should be set to 10% of the maximum weight stored in the
CIM core. However we found through a grid search that during
training weight noise of 16% results in better accuracies on
the test set with 10% weight noise during inference.

III. METHODS

The externally-digital, internally-analog computational in-
terface provided by CIM-based architectures offer a different
set of trade-offs compared to conventional digital systems.

Thus, algorithms tailored to digital systems under-perform on
CIM architectures — in terms of energy-efficiency and accu-
racy [24]. In this work we address two limitations of energy-
efficient CIM systems. First, the energy-efficiency gained from
employing a CIM-based architecture is completely negated
when MVMs larger than core-size are required. This is driven
by the higher linearity requirements from the ADCs at the
CIM core periphery. Additionally, any technique that generates
partial sums further incurs the same energy-cost. Second,
device-to-device variation as well as noise due to analog
computation drastically limits the algorithmic performance of
a model on CIM architectures [23], [25].

A. System Architecture

Our proposed solution, shown in Fig. 1, separates the com-
putation of different output classes across smaller, independent
LSTM cells. A group of 9 CIM cores of size 128 x 128
compose one LSTM cell and one FC layer, as shown in
Fig. 2. This allows for a set of CIM-tiles to be specialized
to certain output classes. Figure 2 shows the internal working
of a single CIM core and the placement of CIM cores in the
computational flow for LSTM computation. The size of the
CIM core, determines the size of the hidden dimension. The
nonlinearities like the sigmoid and tanh operations as well
as the element-wise operations are implemented digitally. For
our simulations, we define a default configuration to be one
where CIM cores take 4-bit inputs, generate 6-bit outputs, and
incur 10% weight-noise. All digital operations are performed
with 8-bit accuracy. All energy numbers were obtained using
Accelergy [26] and Timeloop [27], evaluated on a generic
32 nm technology node. Accelergy is a compound energy
estimation tool, which provides a breakdown of the total
system energy into its components.
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Fig. 4. (a) Effect of varying bit-widths of CIM inputs, outputs and non-CIM/digital operations as well as number of blocks and hidden state vector size on
energy consumption. Hidden dimensionality has a major effect on the energy consumption as well as the output activation bit-width due to the necessity of
increased ADC accuracy. (b) Effect of varying bit-widths of CIM inputs, outputs and non-CIM/digital operations as well as number of blocks and hidden
state vector size on test accuracy. Accuracy is most sensitive towards low bit-widths of input activations and digital operations. (c) A comparison of the
breakdown of energy expended by different subsystems in the default CIM configuration and the default digital configuration. The energy expenditure of the
digital implementation is dominated by the global buffer. Note the order of magnitude difference between CIM and digital solutions. The right hand side is a
enlarged version of the CIM bar in left plot highlighting the energy consumption of the ADC compared other components.

B. LSTM Model Evaluation

We evaluated KWS performance on the Google Speech
Commands dataset [28]. We trained LSTM networks to de-
tect 10 different keywords as well as silence and unknown
utterances from 1 second sound snippets (total of 12 output
classes). The data was enriched with 10% background noise
during training and random time-shifts of 100 ms. The input
data to the LSTM cells consisted of 40 MFCCs as described
in II. We selected the final model based on the performance
on the validation data and all numbers reported here are
obtained from the test set. The data was split 80% training,
10% validation and 10% test.

IV. ENERGY IMPACT

Given the constraint from CIM architectures, limited in-
put/output resolution and analog noise, the energy savings
come at the cost of reduced accuracy. Figure 3 shows the
accuracy-energy trade-offs for CIM implementations, includ-
ing configurations previously realized through an ASIC im-
plementation [17]. We contrast this performance against that
of a digital solution implementing an optimized model [13].
LSTMs designed for digital systems are much less resilient to
aggressive quantization [13], demonstrating a dramatic decline
in performance once the digital bit-width is below 6 bits. Our
proposed model is optimized for more aggressive quantization,
demonstrating a more graceful degradation in performance.
Thus, using the computational efficiency of a single CIM-
core, we can achieve KWS task performance comparable to
microcontroller-targeted digital implementations while oper-
ating with an order-of-magnitude greater energy-efficiency.
However the maximum achievable accuracy of CIM archi-
tecture is also lower than their digital counterpart, limited in
part by ADC resolution. The digital model delivers 3.85%
improvement in accuracy on the test-set.

Figure 4a breaks down how different model sizes and hard-
ware configurations impact the energy-efficiency of the sys-

tem. Only a single parameter changes in each column, all other
parameters are assigned their default value. As expected, ADC
resolution has a significant effect on the energy-consumption.
Otherwise the hidden dimensionality has the biggest effect on
the energy consumption, e.g. increased vector size for hidden
LSTM output causes the biggest increase in energy consump-
tion. Similarly, Fig. 4b depicts how different parameters affect
the model’s accuracy on the test-set. Saliently, quantization
of the input and the number of bits allocated to the digital
PE significantly impact the accuracy. Contrasting Figs 4a
and 4b, it becomes clear that parameters most sensitive to the
accuracy are not necessarily the parameters that impact energy-
efficiency. This opens up opportunities for energy-accuracy
optimizations, with the pareto curves shown in Figure 3.
Figure 4c offers insight into the main energy drivers of
a LSTM cell. Energy consumption in CIM architectures is
dominated by the energy expended by the ADCs, in the digital
PEs this is dominated by the memory-access energy. In both of
these cases, these dominant components expend 83% to 98%
of the total energy, opening the way to future optimizations.

V. CONCLUSION

We developed a LSTM model targeting CIM architectures,
demonstrating a different set of accuracy-energy trade-offs
compared to models optimized for digital architectures. Our
tailored model, achieves 90% test accuracy on the google
speech dataset at 25 ul/decision, a 3.7x improvement over
digital systems. Our findings suggest that memory man-
agement and storage have the largest impact on resource
constrained architectures. Meanwhile the energy-efficiency of
CIM architectures is dominated by ADCs and the accuracy is
limited by input bit-widths.
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