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Abstract
Can linear systems be solved faster than matrix multipli-
cation? While there has been remarkable progress for the
special cases of graph structured linear systems, in the gen-
eral setting, the bit complexity of solving an n � n linear
system Ax � b is Õpnωq, where ω   2.372864 is the ma-
trix multiplication exponent. Improving on this has been an
open problem even for sparse linear systems with polypnq
condition number.

In this paper, we present an algorithm that solves linear
systems in sparse matrices asymptotically faster than matrix
multiplication for any ω ¡ 2. This speedup holds for any
input matrix A with opnω�1{ logpκpAqqq non-zeros, where
κpAq is the condition number of A. For polypnq-conditioned

matrices with Õpnq nonzeros, and the current value of ω,
the bit complexity of our algorithm to solve to within any
1{polypnq error is Opn2.331645q.

Our algorithm can be viewed as an efficient, randomized

implementation of the block Krylov method via recursive

low displacement rank factorizations. It is inspired by the

algorithm of [Eberly et al. ISSAC ‘06 ‘07] for inverting

matrices over finite fields. In our analysis of numerical

stability, we develop matrix anti-concentration techniques

to bound the smallest eigenvalue and the smallest gap in

eigenvalues of semi-random matrices.

1 Introduction

Solving a linear system Ax � b is a basic algorithmic
problem with direct applications to scientific comput-
ing, engineering, and physics, and is at the core of al-
gorithms for many other problems, including optimiza-
tion [Ye11], data science [BHK20], and computational
geometry [EH10]. It has enjoyed an array of elegant ap-
proaches, from Cramer’s rule and Gaussian elimination
to numerically stable iterative methods to more modern
randomized variants based on random sampling [ST11,
KMP12] and sketching [DMM08, Woo14]. Despite much
recent progress on faster solvers for graph-structured
linear systems [Vai89, Gre96, ST14, KMP12, Kyn17],
progress on the general case has been elusive.

Most of the work in obtaining better running time
bounds for linear systems solvers has focused on effi-
ciently computing the inverse of A, or some factoriza-
tion of it. Such operations are in turn closely related
to the cost of matrix multiplication. Matrix inversion
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can be reduced to matrix multiplication via divide-and-
conquer, and this reduction was shown to be stable
when the word size for representing numbers1 is in-
creased by a factor of Oplog nq [DDHK07]. The cur-
rent best runtime of Opnωq with ω   2.372864 [LG14]
follows a long line of work on faster matrix multipli-
cation algorithms [Str69, Pan84, CW87, Wil12, LG14]
and is also the current best running time for solving
Ax � b: When the input matrix/vector are integers,
matrix multiplication based algorithms can obtain the
exact rational value solution using Opnωq word opera-
tions [Dix82, Sto05].

Methods for Matrix inversion or factorization are
often referred to as direct methods in the linear sys-
tems literature [DRSL16]. This is in contrast to it-
erative methods, which gradually converge to the so-
lution. Iterative methods have little space overhead,
and therefore are widely used for solving large, sparse,
linear systems that arise in scientific computing. An-
other reason for their popularity is that they are natu-
rally suited to producing approximate solutions of de-
sired accuracy in floating point arithmetic, the de facto
method for representing real numbers. Perhaps the
most famous iterative method is the Conjugate Gra-
dient (CG) / Lanczos algorithm [HS52, Lan50]. It was
introduced as an Opn � nnzq time algorithm under ex-
act arithmetic, where nnz is the number of non-zeros
in the matrix. However, this bound only holds under
the Real RAM model where the words have with un-
bounded precision [PS85, BSS�89]. When taking bit
sizes into account, it incurs an additional factor of n.
Despite much progress in iterative techniques in the in-
tervening decades, obtaining analogous gains over ma-
trix multiplication in the presence of round-off errors
has remained an open question.

1We will be measuring bit-complexity under fixed-point arith-
metic. Here the machine word size is on the order of the maximum
number of digits of precision in A, and the total cost is measured
by the number of word operations. The need to account for bit-
complexity of the numbers naturally led to the notion of condition
number [Tur48, Blu04]. The logarithm of the condition number
measures the additional number of words needed to store A�1

(and thus A�1b) compared to A. In particular, matrices with
polypnq condition number can be stored with a constant factor
overhead in precision, and are numerically stable under standard
floating point number representations.
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The convergence and stability of iterative methods
typically depends on some condition number of the in-
put. When all intermediate steps are carried out to
precision close to the condition number of A, the run-
ning time bounds of the conjugate gradient algorithm,
as well as other currently known iterative methods, de-
pend polynomially on the condition number of the input
matrix A. Formally, the condition number of a sym-
metric matrix A, κpAq, is the ratio between the max-
imum and minimum eigenvalues of A. Here the best
known rate of convergence when all intermediate opera-
tions are restricted to bit-complexity OplogpκpAqq is to
an error of ε in Op

a
κpAq logp1{εqq iterations. This is

known to be tight if one restricts to matrix-vector mul-
tiplications in the intermediate steps [SV13, MMS18].
This means for moderately conditioned (e.g. with κ �
polypnq), sparse, systems , the best runtime bounds
are still via direct methods, which are stable when
Oplogp1{κqq words of precision are maintained in inter-
mediate steps [DDHK07].

Many of the algorithms used in scientific computing
for solving linear systems involving large, space, matri-
ces are based on combining direct and iterative meth-
ods: we will briefly discuss this perspectives in Sec-
tion 1.3. From the asymptotic complexity perspective,
the practical successes of many such methods naturally
leads to the question of whether one can provably do
better than the Opmintnω, nnz �

a
κpAquq time corre-

sponding to the faster of direct or iterative methods.
Somewhat surprisingly, despite the central role of this
question in scientific computing and numerical analysis,
as well as extensive studies of linear systems solvers,
progress on this question has been elusive. The contin-
ued lack of progress on this question has led to its use
as a hardness assumption for showing conditional lower
bounds for numerical primitives such as linear elasticity
problems [KZ17] and positive linear programs [KWZ20].
One formalization of such hardness is the Sparse Lin-
ear Equation Time Hypothesis (SLTH) from [KWZ20]:
SLTHγ

k denotes the assumption that a sparse linear sys-
tem with κ ¤ nnzpAqk cannot be solved in time faster
than nnzpAqγ to within relative error ε � n�10k. Here
improving over the smaller running time of both direct
and iterative methods can be succinctly encapsulated as

refuting SLTH
mint1�k{2,ωu
k . 2

In this paper, we provide a faster algorithm for
solving sparse linear systems. Our formal result is the
following (we use the form defined in [KWZ20] [Linear
Equation Approximation Problem, LEA]).

2The hardness results in [KWZ20] were based on SLTH1.99
1.5

under the Real RAM model in part due to the uncertain status
of conjugate gradient in different models of computation.

Theorem 1.1. Given a matrix A with max dimension
n, nnzpAq non-zeros (whose values fit into a single
word), along with a parameter κpAq such that κpAq ¥
σmaxpAq{σminpAq, along with a vector b and error re-
quirement ε, we can compute, under fixed point arith-
metic, in time

O
�

max
!
nnzpAqω�2

ω�1n2, n
5ω�4
ω�1

)
log2 pκ{εq

	
a vector x such that

}Ax� ΠAb}22 ¤ ε }ΠAb}22 ,

where c is a fixed constant and ΠA is the projection
operator onto the column space of A.

Note that }ΠAb}2 � ��AT b��pATAq�1 , and when A is

square and full rank, it is just }b}2.
The cross-over point for the two bounds is at

nnzpAq � n
3pω�1q
ω�1 . In particular, for the sparse case

with nnzpAq � Opnq, and the current best ω ¤
2.372864 [LG14], we get an exponent of

max

"
2� ω � 2

ω � 1
,

5ω � 4

ω � 1

*
  maxt2.271595, 2.331645u � 2.331645.

As n ¤ nnz, this also translates to a running time

of Opnnz 5ω�4
ω�1 q, which as 5ω�4

ω�1 � ω � pω�2q2
ω�1 , refutes

SLTHω
k for constant values of k and any value of ω ¡ 2.

We can parameterize the asymptotic gains over
matrix multiplication for moderately sparse instances.
Here we use the rOp�q notation to hide lower-order terms,

specifically rOpfpnqq denotes Opfpnq � logcpfpnqqq for
some absolute constant c.

Corollary 1.1. For any matrix A with dimension at
most n, Opnω�1�θq non-zeros, and condition number
nOp1q, a linear system in A can be solved to accuracy

n�Op1q in time rOpmaxtn 5ω�4
ω�1 , nω�

θpω�2q
ω�1 uq.

Here the cross-over point happens at θ �
pω�1qpω�2q

ω�1 . Also, because 5ω�4
ω�1 � ω � pω�2q2

ω�1 , we can
also infer that for any 0   θ ¤ ω�2 and any ω ¡ 2, the
runtime is opnωq, or asymptotically faster than matrix
multiplication.

1.1 Idea At a high level, our algorithm follows the
block Krylov space method (see e.g. Chapter 6.12 of
Saad [Saa03]). This method is a multi-vector extension
of the conjugate gradient / Lanczos method, which in
the single-vector setting is known to be problematic
under round-off errors both in theory [MMS18] and in

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited505

D
ow

nl
oa

de
d 

06
/2

7/
21

 to
 1

43
.2

15
.3

8.
55

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



practice [GO89]. Our algorithm starts with a set of s
initial vectors, B P <n�s, and forms a column space
by multiplying these vectors by A repeatedly, m times.
Formally, the block Krylov space matrix is

K � �
B AB A2B . . . Am�1B

�
.

The core idea of Krylov space methods is to efficiently
orthogonalize this column space. For this space to be
spanning, block Krylov space methods typically choose
s and m so that sm � n.

The conjugate gradient algorithm can be viewed
as an efficient implementation of the case s � 1,
m � n, and B is set to b, the RHS of the input
linear system. The block case with larger values of s
was studied by Eberly, Giesbrecht, Giorgi, Storjohann,
and Villard [EGG�06, EGG�07] over finite fields, and
they gave an Opn2.28q time algorithm for computing the
inverse of a sparse matrix over a finite field.

Our algorithm also leverages the top-level insight of
the Eberly et al. results: the Gram matrix of the Krylov
space matrix (which can be used inter-changeably for
solving linear systems) is a block Hankel matrix. That
is, if we view the Gram matrix pAKqT pAKq as an m-
by-m matrix containing s-by-s sized blocks, then all the
blocks along each anti-diagonal are the same:

pAKqT pAKq

�

����
BTA2B BTA3B . . . BTAm�1B
BTA3B BTA4B . . . BTAm�2B
. . . . . . . . . . . .

BTAm�1B BTAm�2B . . . BTA2mB

����
Formally, the s-by-s inner product matrix formed from
AiB and AjB is BTAi�jB, and only depends on i� j.
So instead of m2 blocks each of size s � s, we are able
to represent a n-by-n matrix with about m blocks.

Operations involving these m blocks of the Hankel
matrix can be handled using rOpmq block operations.
This is perhaps easiest seen for computing matrix-vector
products using K. If we use tiu to denote the ith block
of the Hankel matrix, that is

Hti,ju �M pi� jq

for a sequence of matrices M , we get that the ith block
of the product Hx can be written in block-form as

pHxqtiu �
¸
j

Hti,juxtju �
¸
j

M pi� jqxtju.

Note this is precisely the convolution of (a sub-interval)
of M and x, with shifts indicated by i. Therefore, in
the forward matrix-vector multiplication direction, a
speedup by a factor of about m is possible with fast

convolution algorithms. The performance gains of the
Eberly et al. algorithms [EGG�06, EGG�07] can be
viewed as of similar nature, albeit in the more diffi-
cult direction of solving linear systems. Specifically,
they utilize algorithms for the Padé problem of com-
puting a polynomial from the result of its convolu-
tion [XB90, BL94]. Over finite fields, or under exact
arithmetic, such algorithms for matrix Padé problems
take Opm logmq block operations [BL94], for a total ofrOpsωmq operations..

The overall time complexity follows from two op-
posing goals:

1. Quickly generate the Krylov space: repeated mul-
tiplication by A allows us to generate AiB using
Opms � nnzq � Opn � nnzq arithmetic operations.
Choosing a sparse B then allows us to compute
BTAiB in Opn � sq arithmetic operations, for a to-
tal overhead of Opn2q � Opn � nnzq.

2. Quickly invert the Hankel matrix. Each operation
on an s-by-s block takes Opsωq time. Under the

optimistic assumption of rOpmq block operations,

the total is rOpm � sωq.
Under these assumptions, and the requirement of n �
ms, the total cost becomes about Opn � nnz � m �
sωq, which is at most Opn � nnzq as long as m ¡
n
ω�2
ω�1 . However, this runtime complexity is over finite

fields, where numerical stability is not an issue, instead
of over reals under round-off errors, where one must
contend with numerical errors without blowing up the
bit complexity. This is a formidable challenge; indeed,
with exact arithmetic, the CG method takes time Opn �
nnzq, but this is misleading since the computation is
effective only the word sizes increase by a factor of
n (to about n log κ words), which leads to an overall
complexity of Opn2 � nnz � log κq.

1.2 Our Contributions Our algorithm can be
viewed as the numerical generalization of the algorithms
from [EGG�06, EGG�07]. We work with real num-
bers of bounded precision, instead of entries over a finite
field. The core of our approach can be summarized as:

The block Krylov space method together with
fast Hankel solvers can be made numerically
stable using rOpm logpκqq words of precision.

Doing so, on the other hand, requires developing
tools for two topics that have been extensively studied
in mathematics, but separately.

1. Obtain low numerical cost solvers for block Han-
kel/Toeplitz matrices. Many of the prior algo-
rithms rely on algebraic identities that do not
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generalize to the block setting, and are often
(experimentally) numerically unstable [GTVDV96,
Gra06].

2. Develop matrix anti-concentration bounds for an-
alyzing the word lengths of inverses of random
Krylov spaces. Such bounds upper bound the prob-
ability of random matrices being in some set of
small measure, which in our case is the set of
nearly singular matrices. Previously, they were
known assuming the matrix entries are indepen-
dent [SST06, TV10], while Krylov spaces have cor-
related columns.

Furthermore, due to the shortcomings of the matrix
anti-concentration bounds, we modify the solver algo-
rithm so that it uses a more limited version of the block-
Krylov space that fall under the cases that could be
analyzed.

Before we describe the difficulties and new tools
needed, we first provide some intuition on why a factor
m increase in word lengths may be the right answer
by upper-bounding the magnitudes of entries in a m-
step Krylov space. The maximum magnitude of Amb
is bounded by the max magnitude of A to the power
of m, times a factor corresponding to the number of
summands in the matrix product:

}Amb}8 ¤ pn~A~8qm }b}8 .
So the largest numbers in K (as well as AK) can be
bounded by pnκqOpmq, or Opm log κq words in front of
the decimal point under the assumption of κ ¡ n.

Should such a bound of Opm log κq hold for all
numbers that arise, including the matrix inversions,
and the matrix B is sparse with Opnq entries, the
cost of computing the block-Krylov matrices becomes
Opm log κ � ms � nnzq, while the cost of the matrix
inversion portion encounters an overhead of Opm log κq,
for a total of rOpm2sω log κq. In the sparse case of
nnz � Opnq, and n � ms, this becomes:

O
�
n2m log κ�m2sω log κ

�
� O

�
n2m log κ� nω

mω�2
log κ



.(1.1)

Due to the gap between n2 and nω, setting m appropri-
ately gives improvement over nω when log κ   nop1q.

However, the magnitude of an entry in the inverse
depends on the smallest magnitude, or in the matrix
case, its minimum singular value. Bounding and prop-
agating the min singular value, which intuitively cor-
responds to how close a matrix is to being degenerate,
represents our main challenge. In exact/finite fields set-
tings, non-degeneracies are certified via the Schwartz-
Zippel Lemma about polynomial roots. The numerical

1

1

1

1

. . .. . .

α

α

α

α

α

α

α

. . .. . .

2

2

2

n

n

Figure 1: The difference between matrix anti-
concentration over finite fields and reals: a matrix that
is full rank for all α � 0, but is always ill conditioned.

analog of this is more difficult: the Krylov space matrix
K is asymmetric, even for a symmetric matrix A. It is
much easier for an asymmetric matrix with correlated
entries to be close to singular.

Consider for example a two-banded, two-block ma-
trix with all diagonal entries set to the same random
variable α (see Figure 1):

Aij �

$''''''&''''''%

1 if i � j and j ¤ n{2,
α if i � j � 1 and j ¤ n{2,
α if i � j � 1 and n{2   j,

2 if i � j � 1 and n{2   j,

0 otherwise.

In the exact case, this matrix is full rank unless
α � 0, even over finite fields. On the other hand, its
minimum singular value is close to 0 for all values of α
because:

Observation 1.1. The minimum singular value of
a matrix with 1s on the diagonal, α on the en-
tries immediately below the diagonal, and 0 every-
where else is at most |α|�pn�1q, due to the test vector
r1;�α;α2; . . . ; p�αqn�1s.
Specifically, in the top-left block, as long as |α| ¡ 3{2,
the top left block has minimum singular value at most
p2{3qn�1. On the other hand, rescaling the bottom-
right block by 1{α to get 1s on the diagonal gives 2{α
on the off-diagonal. So as long as |α|   3{2, this value is
at least 4{3, which in turn implies a minimum singular
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value of at most p3{4qn�1 in the bottom right block.
This means no matter what value α is set to, this matrix
will always have a singular value that’s exponentially
close to 0. Furthermore, the Gram matrix of this matrix
also gives such a counter example to symmetric matrices
with (non-linearly) correlated entries. Previous works
on analyzing condition numbers of asymmetric matrices
also encounter similar difficulties: a more detailed
discussion of it can be found in Section 7 of Sankar et
al. [SST06].

In order to bound the bit complexity of all interme-
diate steps of the block Krylov algorithm by rOpmq�log κ,
we devise a more numerically stable algorithm for solv-
ing block Hankel matrices, as well as provide a new per-
turbation scheme to quickly generate a well-conditioned
block Krylov space. Central to both of our key compo-
nents is the close connection between condition number
and bit complexity bounds.

First, we give a more numerically stable solver for
block Hankel/Toeplitz matrices. Fast solvers for Han-
kel (and closely related Toeplitz) matrices have been ex-
tensively studied in numerical analysis, with several re-
cent developments on more stable algorithms [XXG12].
However, the notion of numerical stability studied in
these algorithms is the more practical variant where
the number of bits of precision is fixed. As a re-
sult, the asymptotic behavior of the stable algorithm
from [XXG12] is quadratic in the number of digits in
the condition number, which in our case would trans-
late to a prohibitive cost of rOpm2q (i.e., the overall cost
would be higher than nω).

Instead, we combine developments in recur-
sive block Gausssian elimination [DDHK07, KLP�16,
CKK�18] with the low displacement rank representa-
tion of Hankel/Toeplitz matrices [KKM79, BA80]. Such
representations allow us to implicitly express both the
Hankel matrix and its inverse by displaced versions of
rank 2s matrices. This means the intermediate sizes of
instances arising from recursion is Opsq times the di-
mension, for a total size of Opn log nq, giving a total

of rOpnsω�1q arithmetic operations involving words of

size rOpmq. We provide a rigorous analysis of the accu-
mulation of round-off errors similar to the analysis of
recursive matrix multiplication based matrix inversion
from [DDHK07].

Motivated by this close connection with the con-
dition number of Hankel matrices, we then try to ini-
tialize with Krylov spaces of low condition number.
Here we show that a sufficiently small perturbation
suffices for producing a well conditioned overall ma-
trix. In fact, the first step of our proof, that a small
sparse random perturbation to A guarantees good sep-
arations between its eigenvalues is a direct combination

of bounds on eigenvalue separation of random Gaus-
sians [NTV17] as well as min eigenvalue of random
sparse matrices [LV18]. This separation then ensures
that the powers of A, A1, A2, . . . Am, are sufficiently dis-
tinguishable from each other. Such considerations also
come up in the smoothed analysis of numerical algo-
rithms [SST06].

The randomness of the Krylov matrix induced by
the initial set of random vectors B is more difficult to
analyze: each column of B affects m columns of the
overall Krylov space matrix. In contrast, all existing
analyses of lower bounds of singular values of possibly
asymmetric random matrices [SST06, TV10] rely on the
randomness in the columns of matrices being indepen-
dent. The dependence between columns necessitates an-
alyzing singular values of random linear combinations
of matrices, which we handle by adapting ε-net based
proofs of anti-concentration bounds. Here we encounter
an additional challenge in bounding the minimum sin-
gular value of the block Krylov matrix. We resolve this
issue algorithmically: instead of picking a Krylov space
that spans the entire <n, we stop things short by picking
ms � n� rOpmq This set of extra columns significantly
simplify the proof of singular value lower bounds. This
is similar in spirit to the analysis of minimum singular
values of random matrices, which is significantly easier
for non-square matrices [RV10]. In the algorithm, the
remaining columns are treated as a separate block that
we reduce to via a Schur complement at the very end
of the block elimination algorithm. Since the block is
small, so is its overhead on the running time.

1.3 History and Related Work Our algorithm
has close connections with multiple lines of research
on more efficient solvers for sparse linear systems.
This topic has been extensively studied not only in
computer science, but also in applied mathematics
and engineering. For example, in the Editors of the
Society of Industrial and Applied Mathematics News’
‘top 10 algorithms of the 20th century’, three of them
(Krylov space methods, matrix decompositions, and
QR factorizations) are directly related to linear systems
solvers [Cip00].

At a high level, our algorithm is a hybrid lin-
ear systems solver. It combines iterative methods,
namely block Krylov space methods, with direct meth-
ods that factorize the resulting Gram matrix of the
Krylov space. Hybrid methods have their origins in the
incomplete Cholesky method for speeding up elimina-
tion/factorization based direct solvers. A main goal of
these methods is to reduce the Ωpn2q space needed to
represent matrix factorizations / inverses, which is even
more problematic than time when handling large sparse
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matrices. Such reductions can occur in two ways: either
by directly dropping entries from the (intermediate) ma-
trices, or by providing more succinct representations of
these matrices using additional structures.

The main structure of our algorithm is based on
the latter line of work on solvers for structured matri-
ces. Such systems arise from physical processes where
the interactions between objects have invariances (e.g.
either by time or space differences). Examples of such
structure include circulant matrices [Gra06], Toeplitz
/ Hankel matrices [KKM79, BA80, XXG12, XXCB14],
and distances from n-body simulations [CRW93]. Many
such algorithms require exact preservation of the struc-
ture in intermediate steps. As a result, many of these
works develop algorithms over finite fields [BA80, BL94,
BJMS17].

More recently, there has been work on developing
more numerically stable variants of these algorithms for
structured matrices, or more generally, matrices that
are numerically close to being structured [XCGL10,
LLY11, XXG12, XXCB14]. However, these results only
explicitly discussed the entry-wise Hankel/Toeplitz case
(which corresponds to s � 1). Furthermore, because
they rely on domain-decomposition techniques similar
to fast multiple methods, they produce one bit of
precision per each outer iteration loop. As the Krylov
space matrix has condition number exppΩpmqq, such
methods would lead to another factor of m in the solve
cost when directly invoked.

Instead, our techniques for handling and bounding
numerical errors are more closely related to recent devel-
opments in provably efficient sparse Cholesky factoriza-
tions [KLP�16, KS16, Kyn17, CKK�18]. These meth-
ods generated efficient preconditioners using only the
condition of intermediate steps of Gaussian eliminat-
nion, known as Schur complements, having small repre-
sentations. They avoided the explicit generation of the
dense representations of Schur complements by treat-
ment them as operators, and implicitly applied random-
ized tools to directly sample/sketch the final succinct
representations, which have much smaller algorithmic
costs.

On the other hand, previous works on spare
Choleskfy factorizations required the input matrix to
be decomposable into a sum of simple elements, of-
ten through additional combinatorial structure of the
matrices. In particular, this line of work on com-
binatorial preconditioning was initiated through a fo-
cus on graph Laplacians, which are built from 2-by-
2 matrix blocks corresponding to edges of undirected
graphs [Vai89, Gre96, ST14, KMP12]. Since then, there
has been substantial generalizations to the structures
amenable to such approaches, notably to finite element

matrices [BHV08] and directed graphs / irreversible
Markov chains [CKP�17]. However, recent works have
also shown that many classes of structures involving
more than two variables are complete for general linear
systems [Zha18]. Nonetheless, the prevalence of approx-
imation errors in such algorithms led to the development
of new ways of bounding numerical/round-off errors in
algorithms that are critical to our elimination routine
for block-Hankel matrices.

Key to recent developments in combinatorial pre-
conditioning is matrix concentration [RV07, Tro15].
Such bounds provide guarantees for (relative) eigenval-
ues of random sums of matrices. For generating pre-
conditioners, such randomness arise from whether each
element is kept, and a small condition number (which
in turn implies a small number of outer iterations usign
the preconditioners) corresponds to a small deviation
between the original and sampled matrices. In con-
trast, we introduce randomness in order to obtain block
Krylov spaces whose minimum eigen-value is large. As
a result, the matrix tool we need is anti-concentration,
which somewhat surprisingly is far less studied. Previ-
ous works on it are mostly related by similar problems
from numerical precision [SST06, TV10], and mostly ad-
dress situations where the entries in the resulting matrix
are independent. Our bound on the min singular value
of the random Krylov space can yield a crude bound
for a sum of rectangluar random matrices, but we be-
lieve much better matrix anti-concentration bounds are
possible.

Due to space constraints, we will only describe the
overall algorithm in Section 2, and give an outline of its
analysis in Section 3. Section 3.2 contains a breakdown
of the main components of the analysis, whose details
and proofs can be found in the arXiv version [PV20].
Some research directions raised by this work, including
possible improvements and extensions are discussed in
Section 4.

2 Algorithm

We describe the algorithm, as well as the running times
of its main components in this section. To simplify
discussion, we assume the input matrix A is symmetric,
and has polypnq condition number. If it is asymmetric
(but invertible), we implicitly apply the algorithm to
ATA, using the identity A�1 � pATAq�1AT derived
from pATAq�1 � A�1A�T . Also, recall from the

discussion after Theorem 1.1 that we use rOp�q to hide
lower order terms in order to simplify runtimes.

Before giving details on our algorithm, we first dis-
cuss what constitutes a linear systems solver algorithm,
specifically the equivalence between many such algo-
rithms and linear operators.
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For an algorithm Alg that takes a matrix B as
input, we say that Alg is linear if there is a matrix
ZAlg such that for any input B, we have

Alg pBq � ZAlg.

In this section, in particular in the pseudocode in
Algorithm 2, we use the name of the procedure,
SolveApb, δq, interchangeably with the operator correp-
sonding to a linear algorithm that solves a system in A,
on vector b, to error δ ¡ 0. In the more formal analysis,
we will denote such corresponding linear operators us-
ing the symbol Z, with subscripts corresponding to the
routine if appropriate.

This operator/matrix based analysis of algorithms
was first introduced in the analysis of recursive Cheby-
shev iteration by Spielman and Teng [ST14], with cred-
its to the technique also attributed to Rohklin. It the
advantage of simplifying analyses of multiple iterations
of such algorithms, as we can directly measure Frobe-
nius norm differences between such operators and the
exact ones that they approximate.

Under this correspondence, the goal of producing
an algorithm that solves Ax � b for any b as input
becomes equivalent to producing a linear operator ZA
that approximates A�1, and then running it on the
input b. For convenience, we also let the solver take
as input a matrix instead of a vector, in which case the
output is the result of solves against each of the columns
of the input matrix.

The high-level description of our algorithm is in Fig-
ure 2. To keep our algorithms as linear operators, we
will ensure that the only approximate steps are from
inverting matrices (where condition numbers naturally
lead to matrix approximation errors), and in forming
operators using fast convolution. We will specify ex-
plicitly in our algorithms when such round-off errors
occur.

Some of the steps of the algorithm require care
for, efficiency, as well as tracking the number of words
needed to represent the numbers. We assume the
bounds on bit-complexity in the analysis (Section 3)

below, which is rOpmq when κ � polypnq, and use this in
the brief description of costs in the outline of the steps
below.

We start by perturbing the input matrix, resulting
in a symmetric positive definite matrix where all eigen-
values are separated by αA. Then we explicitly form
a Krylov matrix from sparse Random Gaussians: For
any vector u, we can compute Aiu from Ai�1u via a
single matrix-vector multiplication in A. So computing
each column of K requires OpnnzpAqq operations, each

involving a length n vector with words of length rOpmq.

BlockKrylov( MatVecApx, δq: symmetric matrix
given as implicit matrix vector muliplication
access, αA: eigenvalue range/separation bounds
for A that also doubles as error threshold, m:
Krylov step count, )

1. (FORM KRYLOV SPACE)

(a) Set sÐ tn{mu�Opmq,
h Ð Opm2 logp1{αAqq. Let GS be an n � s
random matrix with GSij set to N p0, 1q with

probability h
n , and 0 otherwise.

(b) (Implicitly) compute the block Krylov space

K � �
GS AGS A2GS . . . Am�1GS

�
,

2. (SPARSE INVERSE) Use fast solvers for block
Hankel matrices to obtain a solver for the matrix:

M Ð pAKqT pAKq ,

and in turn a solve to arbitrary error which we
denote SolveM p�, εq.

3. (PAD and SOLVE)

(a) Let r � n � ms denote the number of
remaining columns. Generate a n � r dense
Gaussian matrix G, use it to complete the
basis as: Q � rK|Gs.

(b) Compute the Schur complement of
pAQqTAQ onto its last r � n � ms en-
tries (the ones corresponding to the columns
of G) via the operation

pAGqT AG� pAGqT �AK
� SolveM

�
pAKqT AG,α10m

A

	
and invert this r-by-r matrix.

(c) Use the inverse of this Schur complement, as
well as SolveM p�, εq to obtain a solver for
QTQ, SolveQTQp�, εq.

4. (SOLVE and UNRAVEL) Return the operator Q �
SolvepAQqTAQppAQqTx, α10m

A q as an approximate
solver for A.

Figure 2: Pseudocode for block Krylov space algorithm:
Solve�p�, �q are operators corresponding to linear system
solving algorithms whose formalization we discuss at the
start of this section.
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GS AGS A2GS Am�1GS

s

. . .

s s s

n

Figure 3: Randomized m-step Krylov Space Matrix
with n-by-s sparse Gaussian GS as starter

So we get the matrix K, as well as AK, in timerO pnnz pAq � n �mq .
To obtain a solver for AK, we instead solve its

Gram matrix pAKqT pAKq. Each block of KTK has
the form pGSqTAiGS for some 2 ¤ i ¤ 2m, and can be
computed by multiplying pGSqT and AiGS . As AiGS

is an n-by-s matrix, each non-zero in GS leads to a
cost of Opsq operations involving words of length rOpmq.
Then because we chose GS to have rOpm3q non-zeros per
column, the total number of non-zeros in GS is aboutrOps �m3q � rOpnm2q. This leads to a total cost (across
the m values of i) of: rO �

n2m3
�
.

The key step is then Step 2: a block version of the
Conjugate Gradient method. It will be implemented us-
ing a recursive data structure based on the notion of dis-
placement rank [KKM79, BA80]. To get a sense of why
a facter algorithm may be possible, note that there are
only Opmq distinct blocks in the matrix pAKqT pAKq.
So a natural hope is to invert these blocks by them-
selves: the cost of (stable) matrix inversion [DDH07],

times the rOpmq numerical word complexity, would then
give a total of

rO �
m2sω

� � rO �
m2

� n
m

	ω	
� rO �

nωmω�2
�
.

Of course, it does not suffice to solve these m s-by-s
blocks independently. Instead, the full algorithm, as
well as the SolveM operator, is built from efficiently
convolving such s-by-s blocks with matrices using Fast
Fourier Transforms. Such ideas can be traced back to
the development of super-fast solvers for (entry-wise)
Hankel/Toeplitz matrices [BA80, LS92, XXCB14].

Choosing s and m so that n � sm would then
give the overal running time, assuming that we
can bound the minimum singular value of K
by expp� rOpmqq. This is a major shortcoming of our
analysis: we can only prove such a bound when n�sm ¥
Ωpmq. Its underlying cause is that rectangular semi-
random matrices can be analyzed using ε-nets, and thus
are significantly easier to analyze than square matrices.

This means we can only use m and s such that
n � ms � Θpmq, and we need to pad K with n � ms
columns to form a full rank, invertible, matrix. To this
end we add Θpmq dense Gaussian columns to K to form
Q, and solve the system AQ, and its associated Gram
matrix pAQqT pAQq instead. These matrices are shown
in Figure 4.

Because these additional columns are entry-wise
i.i.d, its minimum singular value can be analyzed using
existing tools [SST06, TV10], namely lower bounding
the dot product of a random vector against any normal
vector. Thus, we can lower bound the minimum singular
value of Q, and in turn AQ, by expp� rOpmqq as well.

This bound in turn translates to the minimum
eigenvalue of the Gram matrix of AQ, pAQqT pAQq.
Partitioning its entries by those from K and G gives
four blocks: one psmq-by-psmq block corresponding to
pAKqT pAKq, one Θpmq-by-Θpmq block corresponding
to pAGqT pAGq, and then the cross terms. To solve this
matrix, we apply block-Gaussian elimination, or equiv-
alently, form the Schur complement onto the Θpmq-by-
Θpmq corresponding to the columns in AG.

To compute this Schur complement, it suffices to
solve the top-left block (corresponding to pAKqT pAKq)
against every column in the cross term. As there are
at most Θpmq   s columns, this solve cost comes out

to less than rOpsωmq as well. We are then left with a
Θpmq-by-Θpmq matrix, whose solve cost is a lower order
term.

So the final solver operator costsrO �
nnzpAq � nm� n2m3 � nωm2�ω�

which leads to the final running time by choosing m to
balance the terms. This bound falls short of the ideal
case given in Equation 1.1 mainly due to the need for a
denser B to the well-conditionedness of the Krylov space
matrix. Instead of Opnq non-zeros total, or about Opmq
per column, we need polypmq non-zero variables per
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AGS A2GS AmGS AG

s s s Θpmq

n . . .

pAKqTAK pAKqTAG

pAGqTAK pAGqTAG

ms

Θpmq

ms Θpmq

n

Figure 4: Full matrix AQ and its Associated Gram Ma-
trix pAQqT pAQq. Note that by our choice of parameters
m is much smaller than s � n{m.

column to ensure the an expp�Opmqq condition number
of the block Krylov space matrix K. This in turn leads
to a total cost of Opn �nnz � polypmqq for computing the
blocks of the Hankel matrix, and a worse trade off when
summed against the nω

mω�2 term.

3 Outline of Analysis

In this section we outline our analysis of the algorithm
through formal theorem statements. We start by for-
malizing our tracking of convergence, and the tracking
of errors and roundoff errors.

3.1 Preliminaries We will use capital letters for
matrices, lower case letters for vectors and scalars. All
subscripts are for indexing into entries of matrices and
vectors, and superscripts are for indexing into entries of
a sequence.

Norms and Singular Values. Our convergence
bounds are all in terms of the Euclidean, or `2 norms.
For a length n vector x, the norm of x is given by

}x} �
b°

1¤i¤n x
2
i . Similarly, for a matrix M , the

norm of its entries treated as a vector is known as the
Frobenius norm, and we have

}M}F �
d¸

ij

M2
ij �

b
Trace pMTMq.

We will also use ~�~ to denote entry-wise norms
over a matrix, specifically }M}8 to denote the max
magnitude of an entry in M . Note that }M}F � ~M~2,
so we have ~M~8 ¤ }M}F ¤ n~M~8.

The minimum and maximum singular values of a
matrix M are then defined as the min/max norms of its
product against a unit vector:

σmin pMq � min
x

}Mx}2
}x}2

σmax pMq � max
x

}Mx}2
}x}2

,

and the condition number of M is defined as κpMq �
σmaxpMq{σminpMq.

Bounds on the minimum singular value allows us to
transfer perturbation errors to it to its inverse.

Lemma 3.1. If M is a full rank square matrix with min
and max singular values in the range rσmin, σmaxs, and�M is some approximation of it such that

����M �M
���
F
¤ ε

for some ε   σmin{2, then

1. All singular values in �M are in the range rσmin �
ε, σmax � εs, and

2. The inverse of �M is close to the inverse of M :����M�1 �M�1
���
F
¤ 10σ�2

minε.
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Proof. The bound on singular values follows from the
norm minimization/maximization definition of singular
values. Specifically, we get that for a unit vector x,�������Mx

���
2
� }Mx}2

��� ¤ �����M �M
	
x
���
2

¤
����M �M

���
2
}x}2 ¤ ε,

which means all singular values can change by at most
ε.

Note that this implies that �M is invertible. For the
bounds on inverses, note that

�M�1 �M�1 �M�1
�
M�M�1 � I

	
�M�1

�
M ��M	�M�1.

So applying bounds on norms, as well as
����M�1

���
2
¤

pσmin � εq�1 ¤ 2σ�1
min gives����M�1 �M�1

���
F

¤ ��M�1
��
2

���M ��M ���
F

����M�1
���
2
¤ 2σ�2

minε.

Error Accumulation. Our notion of approximate
operators also compose well with errors.

Lemma 3.2. If Zp1q and Zp2q are linear operators with
(algorithmic) approximations rZ p1q and rZ p2q such that
for some ε   0.1, we have���Zp1q � rZ p1q

���
F
,
���Zp2q � rZ p2q

���
F
¤ ε

then their product satisfies���Zp1qZp2q � rZ p1qrZ p2q
���
F
¤ 10εmax

!
1,
���Zp1q

���
2
,
���Zp2q

���
2

)
.

Proof. Expanding out the errors gives

Zp1qZp2q � rZ p1qrZ p2q

�
�
Zp1q � rZ p1q

	
Zp2q �

�
Zp2q � rZ p2q

	
Zp1q

�
�
Zp1q � rZ p1q

	�
Zp2q � rZ p2q

	
The terms involving the original matrix against the

error gets bounded by the error times the norm of the
original matrix. For the cross term, we have����Zp1q � rZ p1q

	�
Zp2q � rZ p2q

	���
¤

���Zp1q � rZ p1q
���
F
�
���Zp2q � rZ p2q

���
2
¤ ε2,

which along with ε   0.1 gives the overall bound.

Randomization and Normal Distributions
Our algorithms rely on randomly perturbing the input
matrices to make them non-degenerate, and much of
our analysis revolving analyzing the effect of such per-
turbations on the eigenvalues. We make use of stan-
dard notions of probability, in particular, the union
bound, which states that for any two events E1 and
E2, Pr rE1 Y E2s ¤ Pr rE1s � Pr rE2s.

Such a bound means that it suffices to show that
the failure probability of any step of our algorithm is
n�c for some constant c. The total number of steps is
polypnq, so unioning over such probabilities still give a
success probability of at least 1� n�c�Op1q.

We will perturb our matrices using Gaussian ran-
dom variables. These random variables Np0, σq have

density function gpxq � 1
σ
?
2π
e�x

2{2σ2

. They are par-

ticularly useful for showing anti-concentration because
the sum of Gaussians is another Gaussian, with variance
equalling to the sum of squares, or `22-norm, of the vari-
ance terms. That is, for a vector x and a (dense) Gaus-
sian vector with entry-wise i.i.d. Np0, 1q normal random
variables, aka. g � Np0, 1qn, we have xT g � Np0, }x}2q.

The density function of Gaussians means that
their magnitude exceed n with probability at most
Opexpp�n2qq. This probability is much smaller than
the n�c failure probabilities that we want, so to sim-
plify presentation we will remove it at the start.

Claim 3.1. We can analyze our algorithm condition-
ing on any normal random variable with variance σ,
Np0, σq, having magnitude at most nσ.

Tracking Word Length. The numerical round-
ing model that we will use is fixed point precision. The
advantage of such a fixed point representation is that
it significantly simplifies the tracking of errors during
additions/subtractions. The need to keep exact opera-
tors means we cannot omit intermediate digits. Instead,
we track both the number of digits before and after the
decimal point.

The number of trailing digits, or words after the
decimal point, compound as follows:

1. adding two numbers with L1 and L2 words after
the decimal point each results in a number with
maxtL1, L2u words after the decimal point.

2. multiply two numbers with L1 and L2 words after
the decimal point each results in a number with
L1 � L2 words after the decimal point.

As maxtL1, L2u ¤ L1 � L2 when L1 and L2 are
non-negative, we will in general assume that when we
multiply matrices with at most L1 and L2 words after
the decimal point, the result has at most L1�L2 words
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after the decimal point. In particular, if Z is an operator
with LZ words after the decimal point, and its input B
has LB words after the decimal point, the output has
at most LZ � LB words after the decimal point.

Note that both of these bounds are for exact compu-
tations. The only round off errors come from round-off
errors by dropping some of the digits, as the matrices
themselves are created.

On the other hand, we need to bound the maximum
magnitude of our operators. The number of digits before
the decimal point is given by bounds on the magnitude
of the numbers themselves. Such bounds also propagate
nicely along multiplications.

Lemma 3.3. If the maximum magnitude of entries in
two matrices Y and Z with dimension at most n are
both at most α, then all entries in Y Z have magnitude
at most nα2 as well.

Proof.

���pY Zqij ��� �
�����¸
k

YikZkj

����� ¤¸
k

|Yik| |Zkj | ¤ nα2

Throughout our analyses, we will often rescale the
matrices so that their max magnitudes are n�2. This
allows us to absorb any constant factor increases in mag-
nitudes from multiplying these matrices by Lemma 3.3
because pc � n�2q2 ¤ n�2.

Finally, by doing FFT based fast multiplications
for all numbers involved [CLRS09, HVDH19], we can
multiple two numbers with an Oplog nq factor in their
lengths. This means that when handling two matrices
with L1 and L2 words after the decimal point, and
whose maximum magnitude is µ, the overhead caused
by the word-lengths of the numbers involved is rOpµ �
L1 � L2)

Random Variables and Probability For our
perturbations we use standard Gaussian N p0, 1q ran-
dom variables.

Fact 3.1. For x � N p0, 1q, we have Prp|x| ¥ tq ¤
2

t
?
2π
e�t

2{2.

Thus, with probability at least 1 � expp�n{2q, a stan-
dard Gaussian variable is bounded by

?
n. We will use

Opn2q such variables and condition on the event that all
their norms are bounded by

?
n.

3.2 Main Technical Ingredients The main tech-
nical components of the analysis can be summarized as
follows:

1. A can be perturbed so that its eigenvalues are
separated (Theorem 3.1).

2. Such a separation implies a well-conditioned Krylov
space, when it is initialized with sparse random
Gaussian vectors. (Theorem 3.2)

3. This Krylov matrix can be solved efficiently using a
combination of low displacement rank solvers and
fast convolutions (Theorem 3.3).

4. The last few rows/columns can be solved efficiently
via the Schur complement (Lemma 3.4).

Due to space constraints, we refer to the reader to
the full version of the paper [PV20] for proofs of these
components.

Anti-Concentration of semi-random matri-
ces. A crucial part of our analysis is bounding the
spectrum of semi-random matrices. Unfortunately, the
highly developed literature on spectral properties of ran-
dom matrices assumes independent entries or indepen-
dent columns, which no longer hold in the semi-random
case of K. However, getting tight estimates is not im-
portant for us (the running time is affected only by the
logarithm of the gap/min value). So we adapt meth-
ods from random matrix theory to prove sufficient anti-
concentration.

Specifically, after symmetrizing the potentially
asymmetric input A by implicitly generating the op-
erator ATA, we need to bound (1) the minimum eigen-
value gap of the coefficient matrix after perturbation by
a symmetric sparse matrix and (2) the minimum sin-
gular value of the block Krylov matrix constructed by
multiplying with a sparse random matrix.

The first step of showing eigenvalue separation is
needed because if A has a duplicate eigenvalue, the
resulting Krylov space in it has rank at most n � 1.
We obtain such a separation by perturbing the matrix
randomly: its analysis follows readily from recent results
on separations of eigenvalues in random matrices by Luh
and Vu [LV18].

Theorem 3.1. For any n� n symmetric positive defi-
nite matrix A with:

1. entries at most 1{n,

2. eigenvalues at least 1{κ for some κ ¥ n3,

and any probability where

p ¥ 300 log κ log n

n

the symmetrically random perturbed matrix A defined as

Aij � Aji
def�

#
Āij � 1

n2κN p0, 1q w.p. p,

Āij w.p. 1� p,
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with probability at least 1 � n�10 has all eigenvalues
separated by at least κ�5 logn.

Given this separation, we show that a random n-
by-s B gives a m-step Krylov space matrix, as long
as n � ms � Ωpmq. Furthermore, we pick this B to
be sparse in the columns, so we can quickly compute
BTAiB.

Theorem 3.2. Let A be an n � n symmetric positive
definite matrix with entries at most 1{n, and αA   n�10

a parameter such that:

1. all eigenvalues of A are at least αA, and

2. all pairs of eigenvalues of A are separated by at least
αA.

Let s and m be parameters such that n0.01 ¤ m ¤ n
1
4

and s �m ¤ n�5m. The n-by-s sparse Gaussian matrix
GS where each entry is set to N p0, 1q with probability
at least

10000m3 log p1{αAq
n

leads to the Krylov space matrix

K � �
GS AGS A2GS . . . Am�1GS

�
.

With probability at least 1 � n�2 (over randomness in
GS), K has maximum singular value at most n2, and
minimum singular value at least α5m

A .

These bounds allow us to bound the length of
numbers, and in turn running time complexity of solving
pAKqTAK.

Solvers for block Hankel matrices. An impor-
tant ingredient in our algorithm is a numerically effi-
cient solver for block Hankel matrices. For this we use
the notion of displacement rank by Kailath, Kung and
Morf [KKM79]. Its key statement is that any Schur
Complement of a Toeplitz Matrix has displacement rank
2, and can be uniquely represented as the factorization
of a rank 2 matrix. This combined with the fact that
the displacement rank of the inverse is the same as that
of the matrix is used to compute the Schur comple-
ment in the first super-fast/asymptotically fast solvers
for Toeplitz matrices by Bitmead and Anderson [BA80].
Here we extend this to block Toeplitz/Hankel matrices
and prove numerical stability, using the natural preser-
vation of singular values of Schur complements. Specif-
ically, the analysis from Demmel, Dumitriu, Holtz and
Kleinberg [DDHK07] can be readily adapted to this set-
ting.

Theorem 3.3. If H is an sm� sm symmetric s-block-
Hankel matrix and 0   αH   psmq�100 is a parameter

such that every contiguous square block-aligned minor
of H containing the top-right or bottom left corner have
minimum eigenvalue at least αH :

σmin

�
Ht1:i,pm�i�1q:mu

�
, σmin

�
Htpm�i�1q:m,1:iu

� ¥ αH

for all 1 ¤ i ¤ m, and all entries in H have magnitude
at most psmq�2α�1

H , then for any error ε, we can

pre-process H in time rOpmsω logpα�1
H ε�1qq to form

SolveHp�, εq that corresponds to a linear operator ZH
such that:

1. For any pmsq � k matrix B with max magni-
tude ~B~8 and LB words after the decimal point,
SolveHpB, εq returns ZHB in time

rO �
m �max

 
sω�1k, s2kω�2

( ��
log

� p1� ~B~8qms
αHε



� LB




.

2. ZH is a high-accuracy approximation to H�1:��ZH �H�1
��
F
¤ ε.

3. the entries of ZH have at most
Oplog2m logpα�1

H ε�1qq words after the decimal
point.

The overhead of log2m in the word lengths of ZH
is from the Oplog nq layers of recursion in Fast Fourier
Transform times the Oplog nq levels of recursion in the
divide-and conquer block Schur complement algorithm.
Note that the relation between the ith block of H �
KTK and K itself is:

Ht1:i,pn�i�1q:mu � KT
t:,1:iuKt:,pn�i�1q:mu

� KT
t:,1:iuA

m�i�1Kt:,1:iu.

So the min/max singular values of these matrices off by
a factor of at most αmA from the singular value bounds
on H itself.

It remains to pad K with random columns to make
it a square matrix, Q. We bound the condition number
of this matrix, and turn a solver for M � pAKqT pAKq
to one for pAQqT pAQq. Specifically, combining Theo-
rems 3.2 and 3.3 leads to:

Lemma 3.4. Let A be an n � n symmetric positive
definite matrix with entries at most 1{n, and 0   αA  
n�10 a parameter such that:

1. all eigenvalues of A are at least αA, and at most
α�1
A ,
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2. all pairs of eigenvalues of A are separated by at least
αA,

3. all entries in A have magnitude at most αA, and at
most Oplogp1{αAqq words after the decimal point.

For any parameter m such that n0.01 ¤ n ¤ 0.01n0.2,
the routine BlockKrylov as shown in Figure 2 pre-
processes A in time:

1. Opnq matrix-vector multiplications of A against
vectors with at most Opm logp1{αAqq words both
before and after the decimal point,

2. plus operations that cost a total of:

rO �
n2 �m3 � log2 p1{αAq � nωm2�ω log p1{αAq

�
.

and obtains a routine SolveA that when given a vector
b with Lb words after the decimal point, returns ZAb in
time rO �

n2m � plog p1{αAq � ~b~8 � Lbq
�
,

for some ZA with at most Oplogp1{αAqq words after the
decimal point such that��ZA �A�1

��
F
¤ αA.

Note that we dropped ε as a parameter to simplify
the statement of the guarantees. Such an omission is
acceptable because if we want accuracy less than the
eigenvalue bounds of A, we can simply run the algorithm
with αA Ð ε due to the pre-conditions holding upon
αA decreasing. With iterative refinement (e.g. [Saa03],
it’s also possible to lower separate the dependence on
logp1{εq to linear instead of the cubic dependence on
logp1{αHq.

3.3 Proof of Main Theorem It remains to use
the random perturbation specified in Theorem 3.1 and
taking the outer product to reduce a general system to
the symmetric, eigenvalue well separated case covered
in Lemma 3.4.

The overall algorithm then takes a symmetrized
version of the original matrix A, perturbs it, and then
converts the result of the block Krylov space method
back. Its pseudocode is in Figure 5

Proof. (Of Theorem 1.1) Let pA be the copy of A scaled
down by n2θA:

pA � 1

n2θA
A � 1

n2 }A}8
A.

This rescaling gives us bounds on both the maximum
and minimum entries of pA. The rescaling ensures that
the max magnitude of an entry in pA is at most 1{n2.

LinearEquationApproximation( A, b: integer
matrix/vector pair, κ: condition number bound
for A, ε: error threshold. )

1. Compute θA Ð ~A~8.

2. Generate random symmetric matrix R with

Rij � Rji � ε

n10κ2
N p0, 1q

with probability Oplogpκ{εq lognq
n .

3. Implicitly generate

rA � 1

n4θ2A
ATA�R

and its associated matrix-multiplication operator
MatVec

rAp�, δq.

4. Build solver for rA via

Solve
rA Ð BlockKrylov

�
MatVec

rA p�, δq ,�
n8κ2ε�1

��5 logn
, n

ω�2
ω�1nnz pAqω�2

ω�1

	
.

5. Return
1

n4θ2A
� Solve

rA

�
AT b

�
.

Figure 5: Pseudocode for block Krylov space algorithm

Therefore its Frobenius norm, and in turn max singular
value, is at most 1. On the other hand, the max
singular of A is at least ~A~8 � θA: consider the
unit vector that’s 1 in the entry corresponding to the
column containing the max magnitude entry of A, and
0 everywhere else. This plus the bound on condition
number of κ gives that the minimum singular value of
A is at least

σmin pAq ¥ 1

κ
σmax pAq ¥ θA

κ
,

which coupled with the rescaling by 1
n2θA

gives

σmin

�pA	
¥ 1

n2θA
� θA
κ

� 1

n2κ
.

The matrix that we pass onto the block Krylov
method, rA, is then the outer-product of pA plus a
sparse random perturbation R with each entry is set
(symmetrically when across the diagonal) to ε

n4κNp0, 1q
with probability Oplog n logpκ{εqq{nrA Ð pAT pA �R.
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This matrix rA is symmetric. Furthermore, by Claim 3.1,
we may assume that the max magnitude of an entry in
R is at most εn�9κ�2, which gives

}R}F ¤ ε

n8κ2
.

So we also get that the max magnitude of an entry inrA is still at most 2n�2. Taking this perturbation bound
into Lemma 3.1 also gives that all eigenvalues of rA are
in the range �

1

n5κ2
, 1

�
.

By Theorem 3.1, the minimum eigenvalue separa-
tion in this perturbed matrix rA is at least�

n8κ2ε�1
��5 logn

.

Also, by concentration bounds on the number of entries
picked in R, its number of non-zeros is with high prob-
ability at most Opn log n logpκn{εqq � rOpn logpκ{εqq.

As we only want an error of ε, we can round all
entries inA to precision ε{κ without affecting the quality
of the answer.

So we can invoke Lemma 3.4 with

α
rA � �

n8κ2ε�1
��5 logn

,

which leads to a solve operator Z
rA such that���Z

rA � rA�1
���
F
¤ α

rA ¤ �
n8κ2ε�1

��5 logn ¤ ε

n40κ10
.

The error conversion lemma from Lemma 3.1 along with
the condition that the min-singular value of rA is at least

1
n5κ2 implies that���Z�1

rA
� rA���

F
¤ ε

n30κ6

or factoring into the bound on the size of R via triangle
inequality: ���Z�1

rA
� pAT pA���

F
¤ 2ε

n8κ4
,

which when inverted again via Lemma 3.1 and the min
singular value bound gives����ZrA �

�pAT pA	�1
����
F

¤ ε

n2
.

It remains to propagate this error across the rescal-
ing in Step 5. Since pA � 1

n2θA
A, we have

�
ATA

��1 � 1

n4θ2A

�pAT pA	�1

,

and in turn the error bound translates to���� 1

n4θ2A
Z �

�pAT pA	�1
����
F

¤ ε

n4θ2A
.

The input on the other hand has

ΠAb � A
�
ATA

��1
AT b,

so the error after multiplication by A is

A

�
1

n4θ2A
Z �

�pAT pA	�1


AT b,

which incorporating the above, as well as }A}2 ¤ nθA
gives ����A �

1

n4θ2A
ZAT b

�
� πAb

����
2

¤ ε

n3θA

��AT b��
2
.

On the other hand, because the max eigenvalue of ATA
is at most }A}2F ¤ n2θ2A, the minimum eigenvalue of
pATAq�1 is at least θ�2

A . So we have

}ΠAb}2 �
��AT b��pATAq�1 ¥ 1

n2θA

��AT b��
2
.

Combining the two bounds then gives that the error in
the return value is at most ε }ΠAb}2.

For the total running time, the number of non-zeros
in R implies that the total cost of mutliplying rA against
a vector with rOpm logp1{αAqq � rOpm log n logpκ{εqq �rOpm logpκ{εqq is

rO �pnnz pAq � nqm log2 pκ{εq� ¤ rO �
nnz pAqm log2 pκ{εq� ,

where the inequality of nnzpAq ¤ n follows pre-
processing to remove empty rows and columns. So the
total construction cost given in Lemma 3.4 simplifies to

O
�
n2m3 log2 pκ{εq � nωm2�ω log pκ{εq

�n � nnz pAq �m log pκ{εqq
The input vector, 1

θY
y has max magnitude at most

1, and can thus be rounded to Oplogpκ{εqq words after
the decimal point as well. This then goes into the solve
cost with logp~b~8q�Lb ¤ Oplogpnκ{εqq, which gives a

total of rOpn2m logpκ{εqq, which is a lower order term
compared to the construction cost. The cost of the
additional multiplication in A is also a lower order term.

Optimizing m in this expression above based on
only n and nnzpAq gives that we should choose m so
that

max
 
n � nnz pAqm,n2m3

( � nωm2�ω,

or
max

 
n � nnz pAqmω�1, n2mω�1

( � nω.

The first term implies

m ¤
�
nω�1 � nnz pAq�1

	 1
ω�1 � n � nnz pAq �1

ω�1
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while the second term implies

m ¤ n
ω�2
ω�1 .

Substituting the minimum of these two bounds back
into nωm2�ω and noting that 2 � ω ¤ 0 gives that the
total runtime dependence on n and nnzpAq is at most

nω �max
!
n
pω�2qp2�ωq

ω�1 , n2�ω � nnz pAq�p2�ωqω�1

)
� max

!
n

5ω�4
ω�1 , n2 � nnz pAqω�2

ω�1

)
.

Incorporating the trailing terms, then gives the the
bound stated in Theorem 1.1, with c set to 2 plus the
number of log factors hidden in the rO.

4 Discussion

We have presented a faster solver for linear systems with
moderately sparse coefficient matrices under bounded
word-length arithmetic with logarithmic dependence on
the condition number. This is the first separation be-
tween the complexity of matrix multiplication and solv-
ing linear systems in the bounded precision setting.
While both our algorithm and analysis are likely im-
provable, we believe they demonstrate that there are
still many sparse numerical problems and algorithms
that remain to be better understood theoretically. We
list a few avenues for future work.

Random Matrices. The asymptotic gap between
our running time of about n2.33 and the Opn2.28q
running time of computing inverses of sparse matrices
over finite fields [EGG�06] is mainly due to the overhead
our minimum singular value bound from Theorem 3.2,
specifically the requirement of Ωpm3q non-zeros per
column on average. We conjecture that a similar bound
holds for rOpmq non-zeros per column, and also in the
full Krylov space case.

1. Can we lower bound the min singular value of
a block Krylov space matrix generated from a
random matrix with rOpmq non-zeros per column?

2. Can we lower bound the min singular value of a
block Krylov space matrix where m � s � n for
general values of s (block size) and m (number of
steps)?

The second improvement of removing the additional
Ωpmq columns would not give asymptotic speedups.
It would however remove the need for the extra
steps (padding with random Gaussian columns) in
Lemma 3.4. Such a bound for the square case would
likely require developing new tools for analyzing matrix
anti-concentration.

3. Are there general purpose bounds on the min
singular value of a sum of random matrices, akin
to matrix concentration bounds (which focus on the
max singular value) [RV10, Tro15].

The connections with random matrix theory can also be
leveraged in the reverse direction:

4. Can linear systems over random matrices with i.i.d.
entries be solved faster?

An interesting case here is sparse matrices with non-
zeros set to �1 independently. Such matrices have con-
dition number Θpn2q with constant probability [RV10],
which means that the conjugate gradient algorithm has
bit complexity Opn � nnzq on such systems. There-
fore, we believe these matrices present a natural start-
ing point for investigating the possibility of faster algo-
rithms for denser matrices with nnz ¡ Ωpnω�1).

Numerical Algorithms. The bounded precision
solver for block Hankel matrices in Theorem 3.3 is
built upon the earliest tools for speeding up solvers
for such structured matrices [KKM79, BA80], as well
as the first sparsified block Cholesky algorithm for
solving graph Laplacians [KLP�16]. We believe the
more recent developments in solvers for Hankel/Toeplitz
matrices [XXCB14] as well as graph Laplacians [KS16]
can be incorporated to give better and more practical
routines for solving block-Hankel/Toeplitz matrices.

5. Is there a superfast solver under bounded precision
for block Hankel/Toeplitz matrices that does not
use recursion?

It would also be interesting to investigate whether recent
developments in randomized numerical linear algebra
can work for Hankel / Toeplitz matrices. Some possible
questoins there are:

6. Can we turn m � sω into Opms2 � sωq using
more recent developments sparse projections (e.g.
CountSketch / sparse JL / sparse Gaussian instead
of a dense Gaussian).

7. Is there an algorithm that takes a rank r fac-
torization of I � XY P <n�n, and computes
in time rOpnpolyprqq the a rank r factoriza-
tion/approximation of I � Y X?

Another intriguing question is the extensions of
this approach to the high condition number, or exact
integer solution, setting. Here the current best run-
ning time bounds are via p-adic representations of frac-
tions [Dix82], which are significantly less understood
compared to decimal point based representations. In
the dense case, an algorithm via shifted p-adic num-
bers by Storjohann [Sto05] achieves an Opnωq bit com-
plexity. Therefore, it is natural to hope for a similar
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rOpn � nnzq bit complexity algorithm for producing ex-
act integer solutions. A natural starting point could be
the role of low-rank sketching in solvers that take ad-
vantage of displacement rank, i.e., extending the p-adic
algorithms to handle low rank matrices:

8. Is there an Opn � rω�1q time algorithm for exactly
solving linear regression problems involving an n-
by-n integer matrix with rank r?

Finally, we note that the paper by Eberly et
al. [EGG�06] that proposed block-Krylov based meth-
ods for matrix inversion also included experimental re-
sults that demonstrated good performances as an ex-
act solver over finite fields. It might be possible to
practically evaluate block-Krylov type methods for solv-
ing general systems of linear equations. Here it is
worth remarking that even if one uses naive Θpn3q time
matrix multiplication, both the Eberly et al. algo-
rithm [EGG�07] (when combined with p-adic represen-
tations), as well as our algorithm, still take sub-cubic
time.
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