Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

Solving Sparse Linear Systems Faster than Matrix Multiplication

Richard Peng*

Abstract

Can linear systems be solved faster than matrix multipli-
cation? While there has been remarkable progress for the
special cases of graph structured linear systems, in the gen-
eral setting, the bit complexity of solving an n x n linear

system Az = b is O(n”), where w < 2.372864 is the ma-
trix multiplication exponent. Improving on this has been an
open problem even for sparse linear systems with poly(n)
condition number.

In this paper, we present an algorithm that solves linear
systems in sparse matrices asymptotically faster than matrix
multiplication for any w > 2. This speedup holds for any
input matrix A with o(n“~'/log(x(A))) non-zeros, where
k(A) is the condition number of A. For poly(n)-conditioned

matrices with O(n) nonzeros, and the current value of w,
the bit complexity of our algorithm to solve to within any

1/poly(n) error is O(n?-331645),

Our algorithm can be viewed as an efficient, randomized
implementation of the block Krylov method via recursive
low displacement rank factorizations. It is inspired by the
algorithm of [Eberly et al. ISSAC ‘06 ‘07] for inverting
matrices over finite fields. In our analysis of numerical
stability, we develop matrix anti-concentration techniques
to bound the smallest eigenvalue and the smallest gap in
eigenvalues of semi-random matrices.

1 Introduction

Solving a linear system Ax = b is a basic algorithmic
problem with direct applications to scientific comput-
ing, engineering, and physics, and is at the core of al-
gorithms for many other problems, including optimiza-
tion [YeId], data science [BHE2Q], and computational
geometry [EHIO]. Tt has enjoyed an array of elegant ap-
proaches, from Cramer’s rule and Gaussian elimination
to numerically stable iterative methods to more modern
randomized variants based on random sampling [STT1]

[KMPT2] and sketching [DMMO8] [WooTI4]. Despite much

recent progress on faster solvers for graph-structured

linear systems [Vai89 [Gred6l BTT4 [KMP12 [Kynld],

Santosh Vempalal

can be reduced to matrix multiplication via divide-and-
conquer, and this reduction was shown to be stable
when the word size for representing numbersEl is in-
creased by a factor of O(logn) [DDHEKOT7]. The cur-
rent best runtime of O(n*) with w < 2.372864 [LGI4]
follows a long line of work on faster matrix multipli-
cation algorithms [StrG9] [Pan34] WiIT2] [LGT4)
and is also the current best running time for solving
Az = b: When the input matrix/vector are integers,
matrix multiplication based algorithms can obtain the
exact rational value solution using O(n“) word opera-
tions [Dix82 [Sto0H].

Methods for Matrix inversion or factorization are
often referred to as direct methods in the linear sys-
tems literature [DRSLIG]. This is in contrast to it-
erative methods, which gradually converge to the so-
lution. Iterative methods have little space overhead,
and therefore are widely used for solving large, sparse,
linear systems that arise in scientific computing. An-
other reason for their popularity is that they are natu-
rally suited to producing approximate solutions of de-
sired accuracy in floating point arithmetic, the de facto
method for representing real numbers. Perhaps the
most famous iterative method is the Conjugate Gra-
dient (CG) / Lanczos algorithm [HS52] [Can50]. It was
introduced as an O(n - nnz) time algorithm under ex-
act arithmetic, where nnz is the number of non-zeros
in the matrix. However, this bound only holds under
the Real RAM model where the words have with un-
bounded precision [PS85, [BSSTRIY]. When taking bit
sizes into account, it incurs an additional factor of n.
Despite much progress in iterative techniques in the in-
tervening decades, obtaining analogous gains over ma-
trix multiplication in the presence of round-off errors
has remained an open question.

progress on the general case has been elusive.

Most of the work in obtaining better running time
bounds for linear systems solvers has focused on effi-
ciently computing the inverse of A, or some factoriza-
tion of it. Such operations are in turn closely related
to the cost of matrix multiplication. Matrix inversion

Georgia Tech rpeng@cc.gatech.edu
tGeorgia Tech vempala@gatech.edu

TWe will be measuring bit-complexity under fixed-point arith-
metic. Here the machine word size is on the order of the maximum
number of digits of precision in A, and the total cost is measured
by the number of word operations. The need to account for bit-
complexity of the numbers naturally led to the notion of condition
number [[urd8 [BIu04]. The logarithm of the condition number
measures the additional number of words needed to store A1
(and thus A~1'b) compared to A. In particular, matrices with
poly(n) condition number can be stored with a constant factor
overhead in precision, and are numerically stable under standard
floating point number representations.

Copyright © 2021 by SIAM

504 Unauthorized reproduction of this article is prohibited

Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

The convergence and stability of iterative methods
typically depends on some condition number of the in-
put. When all intermediate steps are carried out to
precision close to the condition number of A, the run-
ning time bounds of the conjugate gradient algorithm,
as well as other currently known iterative methods, de-
pend polynomially on the condition number of the input
matrix A. Formally, the condition number of a sym-
metric matrix A, x(A), is the ratio between the max-
imum and minimum eigenvalues of A. Here the best
known rate of convergence when all intermediate opera-
tions are restricted to bit-complexity O(log(k(A)) is to
an error of € in O(4/k(A)log(1/e)) iterations. This is
known to be tight if one restricts to matrix-vector mul-
tiplications in the intermediate steps [SV13] [MMSIg].
This means for moderately conditioned (e.g. with xk =
poly(n)), sparse, systems , the best runtime bounds
are still via direct methods, which are stable when
O(log(1/k)) words of precision are maintained in inter-
mediate steps [DDHEKQT].

Many of the algorithms used in scientific computing
for solving linear systems involving large, space, matri-
ces are based on combining direct and iterative meth-
ods: we will briefly discuss this perspectives in Sec-
tion [[.3] From the asymptotic complexity perspective,
the practical successes of many such methods naturally
leads to the question of whether one can provably do
better than the O(min{n*,nnz - 1/k(A)}) time corre-
sponding to the faster of direct or iterative methods.
Somewhat surprisingly, despite the central role of this
question in scientific computing and numerical analysis,
as well as extensive studies of linear systems solvers,
progress on this question has been elusive. The contin-
ued lack of progress on this question has led to its use
as a hardness assumption for showing conditional lower
bounds for numerical primitives such as linear elasticity

problems [KZ17] and positive linear programs [KWZ20)].
One formalization of such hardness is the Sparse Lin-

ear Equation Time Hypothesis (SLTH) from [KWZ20]:
SLTH, denotes the assumption that a sparse linear sys-
tem with x < nnz(A)* cannot be solved in time faster
than nnz(A)" to within relative error € = n=1%%. Here
improving over the smaller running time of both direct
and iterative methods can be succinctly encapsulated as
refuting SLTHZHD{HWZW}.

In this paper, we provide a faster algorithm for
solving sparse linear systems. Our formal result is the
following (we use the form defined in [KWZ20] [Linear
Equation Approximation Problem, LEA]).

2The hardness results in [RWZ20] were based on SLTH%:%Q
under the Real RAM model in part due to the uncertain status
of conjugate gradient in different models of computation.

THEOREM 1.1. Given a matriz A with maz dimension
n, nnz(A) non-zeros (whose values fit into a single
word), along with a parameter k(A) such that k(A) =
Omax(A)/omin(A), along with a vector b and error re-
quirement €, we can compute, under fized point arith-
metic, in time

w—2

O (max {Tmz(A)ﬁnQ, neF } log? (n/e))
a vector x such that
| Az —TLabl5 < € |TLabl5 ,

where ¢ is a fived constant and 114 is the projection
operator onto the column space of A.

Note that [[IIab[, = HATb”(ATA)_l, and when A is

square and full rank, it is just |b],.

The cross-over point for the two bounds is at
3(w—1) .
nnz(A) = n «* . In particular, for the sparse case

with nnz(A) = O(n), and the current best w <
2.372864 [LGI4], we get an exponent of

w—2 bw—4
max{2+4+ ——, ———
w—1 w+1

< max{2.271595,2.331645} = 2.331645.

As n < nnz, this also translates to a running time

fwsl ; 5w—4 (w=2)*
of O(nnz«¥1), which as 2?75 = w — 75, refutes
SLTHY, for constant values of k and any value of w > 2.
We can parameterize the asymptotic gains over
matrix multiplication for moderately sparse instances.

Here we use the O(-) notation to hide lower-order terms,

specifically O(f(n)) denotes O(f(n) - log(f(n))) for

some absolute constant c.

COROLLARY 1.1. For any matriz A with dimension at
most n, O(n“~17%) non-zeros, and condition number
, a linear system in A can be solved to accuracy

~ - 6(w—2)
n=O%W in time O(max{n55+14,n“_ = H.

Here the cross-over point happens at 6 =

2

%. Also, because 55;14 = w— (UZ;_+21) , We can
also infer that for any 0 < § < w—2 and any w > 2, the
runtime is o(n*), or asymptotically faster than matrix

multiplication.

1.1 Idea At a high level, our algorithm follows the
block Krylov space method (see e.g. Chapter 6.12 of
Saad [SaaQ3]). This method is a multi-vector extension
of the conjugate gradient / Lanczos method, which in
the single-vector setting is known to be problematic
under round-off errors both in theory [MMSI§ and in

Copyright © 2021 by SIAM

505 Unauthorized reproduction of this article is prohibited

Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

practice [GOR9]. Our algorithm starts with a set of s
initial vectors, B € R"**, and forms a column space
by multiplying these vectors by A repeatedly, m times.
Formally, the block Krylov space matrix is

K=[B|AB|AB|... | A"'B .

The core idea of Krylov space methods is to efficiently
orthogonalize this column space. For this space to be
spanning, block Krylov space methods typically choose
s and m so that sm = n.

The conjugate gradient algorithm can be viewed
as an efficient implementation of the case s = 1,
m = n, and B is set to b, the RHS of the input
linear system. The block case with larger values of s
was studied by Eberly, Giesbrecht, Giorgi, Storjohann,
and Villard [EGGT06l [EGGT0T] over finite fields, and
they gave an O(n?28) time algorithm for computing the
inverse of a sparse matrix over a finite field.

Our algorithm also leverages the top-level insight of
the Eberly et al. results: the Gram matrix of the Krylov
space matrix (which can be used inter-changeably for
solving linear systems) is a block Hankel matrix. That
is, if we view the Gram matrix (AK)T(AK) as an m-
by-m matrix containing s-by-s sized blocks, then all the
blocks along each anti-diagonal are the same:

(AK)" (AK)
BT A%B BT A®B BT Am+1pB
| BTA*B | BTA'B BTA™2R
BTAm+1B BTAm+2B BTA2mB

Formally, the s-by-s inner product matrix formed from
A'B and A’B is BT A" B, and only depends on i + j.
So instead of m? blocks each of size s x s, we are able
to represent a n-by-n matrix with about m blocks.

Operations involving these m blocks of the Hankel
matrix can be handled using O(m) block operations.
This is perhaps easiest seen for computing matrix-vector
products using K. If we use {i} to denote the ith block
of the Hankel matrix, that is

Hy; jy =M (i +j)

for a sequence of matrices M, we get that the 7" block
of the product Hz can be written in block-form as

(Ha)gy, = Y Hupwgy = O, M (i +)z
J J

Note this is precisely the convolution of (a sub-interval)
of M and z, with shifts indicated by i. Therefore, in
the forward matrix-vector multiplication direction, a
speedup by a factor of about m is possible with fast

convolution algorithms. The performance gains of the
Eberly et al. algorithms [EGGT06l [EGGT0T7| can be
viewed as of similar nature, albeit in the more diffi-
cult direction of solving linear systems. Specifically,
they utilize algorithms for the Padé problem of com-
puting a polynomial from the result of its convolu-
tion [XBAQ [BL94]. Over finite fields, or under exact
arithmetic, such algorithms for matrix Padé problems
take O(mlogm) block operations [BL94], for a total of
O(s“m) operations..

The overall time complexity follows from two op-
posing goals:

1. Quickly generate the Krylov space: repeated mul-
tiplication by A allows us to generate A’B using
O(ms - nnz) = O(n - nnz) arithmetic operations.
Choosing a sparse B then allows us to compute
BT A'B in O(n - s) arithmetic operations, for a to-
tal overhead of O(n?) = O(n - nnz).

2. Quickly invert the Hankel matrix. Each operation
on an s-by-s block takes O(s*) time. Under the
optimistic assumption of O(m) block operations,
the total is O(m - s*).

Under these assumptions, and the requirement of n =
ms, the total cost becomes about O(n - nnz + m -
s*), which is at most O(n - nnz) as long as m >

ne=t, However, this runtime complexity is over finite
fields, where numerical stability is not an issue, instead
of over reals under round-off errors, where one must
contend with numerical errors without blowing up the
bit complexity. This is a formidable challenge; indeed,
with exact arithmetic, the CG method takes time O(n -
nnz), but this is misleading since the computation is
effective only the word sizes increase by a factor of
n (to about nlogk words), which leads to an overall
complexity of O(n? - nnz - log k).

1.2 Owur Contributions Our algorithm can be
viewed as the numerical generalization of the algorithms
from [EGGT06l [EGGT07]. We work with real num-
bers of bounded precision, instead of entries over a finite
field. The core of our approach can be summarized as:

The block Krylov space method together with
fast Hankel solvers can be made numerically
stable using O(m log(k)) words of precision.

Doing so, on the other hand, requires developing
tools for two topics that have been extensively studied
in mathematics, but separately.

1. Obtain low numerical cost solvers for block Han-
kel/Toeplitz matrices. Many of the prior algo-
rithms rely on algebraic identities that do not

Copyright © 2021 by SIAM

506 Unauthorized reproduction of this article is prohibited

Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

generalize to the block setting, and are often
(experimentally) numerically unstable [GTVDV9G]
[GraQ6].

2. Develop matrix anti-concentration bounds for an-
alyzing the word lengths of inverses of random
Krylov spaces. Such bounds upper bound the prob-
ability of random matrices being in some set of
small measure, which in our case is the set of
nearly singular matrices. Previously, they were
known assuming the matrix entries are indepen-

dent [ESTOG [TVTIQ], while Krylov spaces have cor-

related columns.

Furthermore, due to the shortcomings of the matrix
anti-concentration bounds, we modify the solver algo-
rithm so that it uses a more limited version of the block-
Krylov space that fall under the cases that could be
analyzed.

Before we describe the difficulties and new tools
needed, we first provide some intuition on why a factor
m increase in word lengths may be the right answer
by upper-bounding the magnitudes of entries in a m-
step Krylov space. The maximum magnitude of A™b
is bounded by the max magnitude of A to the power
of m, times a factor corresponding to the number of
summands in the matrix product:

[A™0],, < (nlIAllL)™] -

So the largest numbers in K (as well as AK) can be
bounded by (nk)°™) or O(mlogk) words in front of
the decimal point under the assumption of x > n.
Should such a bound of O(mlogk) hold for all
numbers that arise, including the matrix inversions,
and the matrix B is sparse with O(n) entries, the
cost of computing the block-Krylov matrices becomes
O(mlogk - ms - nnz), while the cost of the matrix
inversion portion encounters an overhead of O(mlog k),

for a total of O(m?s¥logk). In the sparse case of
nnz = O(n), and n ~ ms, this becomes:

O (nzm log + m?s® log K)
nUJ

o log Ii) .

Due to the gap between n? and n®, setting m appropri-

ately gives improvement over n® when log x < n°(1),
However, the magnitude of an entry in the inverse

depends on the smallest magnitude, or in the matrix

case, its minimum singular value. Bounding and prop-

agating the min singular value, which intuitively cor-

responds to how close a matrix is to being degenerate,

represents our main challenge. In exact/finite fields set-

tings, non-degeneracies are certified via the Schwartz-
Zippel Lemma about polynomial roots. The numerical

(1.1) =0 (anlogFH—

Figure 1: The difference between matrix anti-
concentration over finite fields and reals: a matrix that
is full rank for all o % 0, but is always ill conditioned.

analog of this is more difficult: the Krylov space matrix
K is asymmetric, even for a symmetric matrix A. It is
much easier for an asymmetric matrix with correlated
entries to be close to singular.

Consider for example a two-banded, two-block ma-
trix with all diagonal entries set to the same random
variable « (see Figure|l)):

1 ifi=jandj<n/2,

a ifi=j+1andj<n/2,
Aj=3a ifi=j+1andn/2<j,

2 ifi=j+1andn/2 <y,

0 otherwise.

In the exact case, this matrix is full rank unless
o = 0, even over finite fields. On the other hand, its
minimum singular value is close to 0 for all values of «
because:

OBSERVATION 1.1. The minimum singular value of
a matriz with 1s on the diagonal, o on the en-
tries immediately below the diagonal, and 0 every-
where else is at most |a|~("=V | due to the test vector
[1;—a;a%;. .5 (=)™ ']

Specifically, in the top-left block, as long as |a| > 3/2,
the top left block has minimum singular value at most
(2/3)""1. On the other hand, rescaling the bottom-
right block by 1/a to get 1s on the diagonal gives 2/«
on the off-diagonal. So as long as |a| < 3/2, this value is
at least 4/3, which in turn implies a minimum singular

Copyright © 2021 by SIAM

507 Unauthorized reproduction of this article is prohibited

Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

value of at most (3/4)"~! in the bottom right block.
This means no matter what value « is set to, this matrix
will always have a singular value that’s exponentially
close to 0. Furthermore, the Gram matrix of this matrix
also gives such a counter example to symmetric matrices
with (non-linearly) correlated entries. Previous works
on analyzing condition numbers of asymmetric matrices
also encounter similar difficulties: a more detailed
discussion of it can be found in Section 7 of Sankar et
al. [SSTQG].

In order to bound the bit complexity of all interme-
diate steps of the block Krylov algorithm by O(m)-log s,
we devise a more numerically stable algorithm for solv-
ing block Hankel matrices, as well as provide a new per-
turbation scheme to quickly generate a well-conditioned
block Krylov space. Central to both of our key compo-
nents is the close connection between condition number
and bit complexity bounds.

First, we give a more numerically stable solver for
block Hankel/Toeplitz matrices. Fast solvers for Han-
kel (and closely related Toeplitz) matrices have been ex-
tensively studied in numerical analysis, with several re-
cent developments on more stable algorithms [XXGI2].
However, the notion of numerical stability studied in
these algorithms is the more practical variant where
the number of bits of precision is fixed. As a re-
sult, the asymptotic behavior of the stable algorithm
from [KXGIZ] is quadratic in the number of digits in
the condition number, which in our case would trans-
late to a prohibitive cost of O(m?) (i.e., the overall cost
would be higher than n*).

Instead, we combine developments in recur-
sive block Gausssian elimination [DDHEKQT,
m with the low displacement rank representa-
tion of Hankel/Toeplitz matrices [KKMT79 [BASQ. Such
representations allow us to implicitly express both the
Hankel matrix and its inverse by displaced versions of
rank 2s matrices. This means the intermediate sizes of
instances arising from recursion is O(s) times the di-
mension, for a total size of O(nlogn), giving a total
of O(ns“~!) arithmetic operations involving words of
size 6(m) We provide a rigorous analysis of the accu-
mulation of round-off errors similar to the analysis of
recursive matrix multiplication based matrix inversion
from [DDHEKQT].

Motivated by this close connection with the con-
dition number of Hankel matrices, we then try to ini-
tialize with Krylov spaces of low condition number.
Here we show that a sufficiently small perturbation
suffices for producing a well conditioned overall ma-
trix. In fact, the first step of our proof, that a small
sparse random perturbation to A guarantees good sep-
arations between its eigenvalues is a direct combination

of bounds on eigenvalue separation of random Gaus-
sians [NTVIT as well as min eigenvalue of random
sparse matrices [LVI8]. This separation then ensures
that the powers of A, A' A2, ... A™ are sufficiently dis-
tinguishable from each other. Such considerations also
come up in the smoothed analysis of numerical algo-
rithms [SST06].

The randomness of the Krylov matrix induced by
the initial set of random vectors B is more difficult to
analyze: each column of B affects m columns of the
overall Krylov space matrix. In contrast, all existing
analyses of lower bounds of singular values of possibly
asymmetric random matrices [SST06] [TVIQ| rely on the
randomness in the columns of matrices being indepen-
dent. The dependence between columns necessitates an-
alyzing singular values of random linear combinations
of matrices, which we handle by adapting e-net based
proofs of anti-concentration bounds. Here we encounter
an additional challenge in bounding the minimum sin-
gular value of the block Krylov matrix. We resolve this
issue algorithmically: instead of picking a Krylov space
that spans the entire R", we stop things short by picking
ms = n — O(m) This set of extra columns significantly
simplify the proof of singular value lower bounds. This
is similar in spirit to the analysis of minimum singular
values of random matrices, which is significantly easier
for non-square matrices [RYI0]. In the algorithm, the
remaining columns are treated as a separate block that
we reduce to via a Schur complement at the very end
of the block elimination algorithm. Since the block is
small, so is its overhead on the running time.

1.3 History and Related Work Our algorithm
has close connections with multiple lines of research
on more efficient solvers for sparse linear systems.
This topic has been extensively studied not only in
computer science, but also in applied mathematics
and engineering. For example, in the Editors of the
Society of Industrial and Applied Mathematics News’
‘top 10 algorithms of the 20th century’, three of them
(Krylov space methods, matrix decompositions, and
QR factorizations) are directly related to linear systems
solvers [Cip00].

At a high level, our algorithm is a hybrid lin-
ear systems solver. It combines iterative methods,
namely block Krylov space methods, with direct meth-
ods that factorize the resulting Gram matrix of the
Krylov space. Hybrid methods have their origins in the
incomplete Cholesky method for speeding up elimina-
tion/factorization based direct solvers. A main goal of
these methods is to reduce the 2(n?) space needed to
represent matrix factorizations / inverses, which is even
more problematic than time when handling large sparse

Copyright © 2021 by SIAM

508 Unauthorized reproduction of this article is prohibited

Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

matrices. Such reductions can occur in two ways: either
by directly dropping entries from the (intermediate) ma-
trices, or by providing more succinct representations of
these matrices using additional structures.

The main structure of our algorithm is based on
the latter line of work on solvers for structured matri-
ces. Such systems arise from physical processes where
the interactions between objects have invariances (e.g.
either by time or space differences). Examples of such
structure include circulant matrices [GraQf], Toeplitz
/ Hankel matrices [KKM79} [BARQ, XXCB14],
and distances from n-body simulations [CRW93]. Many
such algorithms require exact preservation of the struc-
ture in intermediate steps. As a result, many of these

works develop algorithms over finite fields [BASQ [BL.94,
[BIMSTD.

More recently, there has been work on developing
more numerically stable variants of these algorithms for
structured matrices, or more generally, matrices that
are numerically close to being structured [XCGLIQ
[CIY11 XXCBI4]. However, these results only
explicitly discussed the entry-wise Hankel/Toeplitz case
(which corresponds to s = 1). Furthermore, because
they rely on domain-decomposition techniques similar
to fast multiple methods, they produce one bit of
precision per each outer iteration loop. As the Krylov
space matrix has condition number exp(§2(m)), such
methods would lead to another factor of m in the solve
cost when directly invoked.

Instead, our techniques for handling and bounding
numerical errors are more closely related to recent devel-
opments in provably efficient sparse Cholesky factoriza-
tions [KLPT16] [KSI6), [CKKT1§). These meth-
ods generated efficient preconditioners using only the
condition of intermediate steps of Gaussian eliminat-
nion, known as Schur complements, having small repre-
sentations. They avoided the explicit generation of the
dense representations of Schur complements by treat-
ment them as operators, and implicitly applied random-
ized tools to directly sample/sketch the final succinct
representations, which have much smaller algorithmic
costs.

On the other hand, previous works on spare
Choleskfy factorizations required the input matrix to
be decomposable into a sum of simple elements, of-
ten through additional combinatorial structure of the
matrices. In particular, this line of work on com-
binatorial preconditioning was initiated through a fo-
cus on graph Laplacians, which are built from 2-by-
2 matrix blocks corresponding to edges of undirected
graphs [Vail9 [Gredal [KMPT2]. Since then, there
has been substantial generalizations to the structures
amenable to such approaches, notably to finite element

matrices [BHVOR| and directed graphs / irreversible
Markov chains [CKP*17]. However, recent works have
also shown that many classes of structures involving
more than two variables are complete for general linear
systems [Zhal8]. Nonetheless, the prevalence of approx-
imation errors in such algorithms led to the development
of new ways of bounding numerical/round-off errors in
algorithms that are critical to our elimination routine
for block-Hankel matrices.

Key to recent developments in combinatorial pre-
conditioning is matrix concentration [RVQ7 [MroIf].
Such bounds provide guarantees for (relative) eigenval-
ues of random sums of matrices. For generating pre-
conditioners, such randomness arise from whether each
element is kept, and a small condition number (which
in turn implies a small number of outer iterations usign
the preconditioners) corresponds to a small deviation
between the original and sampled matrices. In con-
trast, we introduce randomness in order to obtain block
Krylov spaces whose minimum eigen-value is large. As
a result, the matrix tool we need is anti-concentration,
which somewhat surprisingly is far less studied. Previ-
ous works on it are mostly related by similar problems
from numerical precision [SST06 [TVI0], and mostly ad-
dress situations where the entries in the resulting matrix
are independent. Our bound on the min singular value
of the random Krylov space can yield a crude bound
for a sum of rectangluar random matrices, but we be-
lieve much better matrix anti-concentration bounds are
possible.

Due to space constraints, we will only describe the
overall algorithm in Section[2] and give an outline of its
analysis in Section[J] Section [3.2] contains a breakdown
of the main components of the analysis, whose details
and proofs can be found in the arXiv version [PV20].
Some research directions raised by this work, including
possible improvements and extensions are discussed in
Section [l

2 Algorithm

We describe the algorithm, as well as the running times
of its main components in this section. To simplify
discussion, we assume the input matrix A is symmetric,
and has poly(n) condition number. If it is asymmetric
(but invertible), we implicitly apply the algorithm to
AT A, using the identity A=1 = (ATA)"1AT derived
from (ATA)"! = A=1A-T Also, recall from the
discussion after Theorem that we use O(-) to hide
lower order terms in order to simplify runtimes.

Before giving details on our algorithm, we first dis-
cuss what constitutes a linear systems solver algorithm,
specifically the equivalence between many such algo-
rithms and linear operators.

Copyright © 2021 by SIAM

509 Unauthorized reproduction of this article is prohibited

Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

For an algorithm ALG that takes a matrix B as
input, we say that ALG is linear if there is a matrix
ZaLe such that for any input B, we have

ALG (B) = Zpic-

In this section, in particular in the pseudocode in
Algorithm we use the name of the procedure,
SOLVE4 (b, §), interchangeably with the operator correp-
sonding to a linear algorithm that solves a system in A,
on vector b, to error § > 0. In the more formal analysis,
we will denote such corresponding linear operators us-
ing the symbol Z, with subscripts corresponding to the
routine if appropriate.

This operator/matrix based analysis of algorithms
was first introduced in the analysis of recursive Cheby-
shev iteration by Spielman and Teng [ST14], with cred-
its to the technique also attributed to Rohklin. It the
advantage of simplifying analyses of multiple iterations
of such algorithms, as we can directly measure Frobe-
nius norm differences between such operators and the
exact ones that they approximate.

Under this correspondence, the goal of producing
an algorithm that solves Ax = b for any b as input
becomes equivalent to producing a linear operator Z4
that approximates A~!, and then running it on the
input b. For convenience, we also let the solver take
as input a matrix instead of a vector, in which case the
output is the result of solves against each of the columns
of the input matrix.

The high-level description of our algorithm is in Fig-
ure To keep our algorithms as linear operators, we
will ensure that the only approximate steps are from
inverting matrices (where condition numbers naturally
lead to matrix approximation errors), and in forming
operators using fast convolution. We will specify ex-
plicitly in our algorithms when such round-off errors
occur.

Some of the steps of the algorithm require care
for, efficiency, as well as tracking the number of words
needed to represent the numbers. We assume the
bounds on bit-complexity in the analysis (Section
below, which is O(m) when x = poly(n), and use this in
the brief description of costs in the outline of the steps
below.

We start by perturbing the input matrix, resulting
in a symmetric positive definite matrix where all eigen-
values are separated by a4. Then we explicitly form
a Krylov matrix from sparse Random Gaussians: For
any vector u, we can compute A‘u from A*~l'u via a
single matrix-vector multiplication in A. So computing
each column of K requires O(nnz(A)) operations, each
involving a length n vector with words of length O(m).

BlockKrylov(MatVec(z,d): symmetric matrix
given as implicit matrix vector muliplication
access, a4: eigenvalue range/separation bounds
for A that also doubles as error threshold, m:
Krylov step count,)

1. (FORM KRYLOV SPACE)

(a) Set s « |n/m|— O(m),
h «— O(m?log(1/as)). Let G¥ be an n x s
random matrix with GJ; set to N'(0,1) with
probability %, and 0 otherwise.

(b) (Implicitly) compute the block Krylov space
K=[G* ‘ AGHS ‘ A2GS ‘ ‘ AmTIGS

2. (SPARSE INVERSE) Use fast solvers for block
Hankel matrices to obtain a solver for the matrix:

M « (AK)" (AK),

and in turn a solve to arbitrary error which we
denote SOLVE (-, €).

3. (PAD and SOLVE)

(a) Let = n — ms denote the number of
remaining columns. Generate a n X r dense
Gaussian matrix G, use it to complete the
basis as: Q = [K|G].

(b) Compute the Schur complement of
(AQ)TAQ onto its last 7 = n — ms en-
tries (the ones corresponding to the columns
of G) via the operation

(AG)T AG — (AG)" - AK
- SOLVE ((AK)T AG, a}fm)

and invert this r-by-r matrix.

(c) Use the inverse of this Schur complement, as
well as SOLVE)(+,€) to obtain a solver for
QTQ, SOVEgrg (-, €).

4. (SOLVE and UNRAVEL) Return the operator Q-
SOLVE(AQ)TAQ((AQ)Tm, alY™) as an approximate
solver for A.

Figure 2: Pseudocode for block Krylov space algorithm:
SOLVE.(, -) are operators corresponding to linear system
solving algorithms whose formalization we discuss at the
start of this section.

Copyright © 2021 by SIAM

510 Unauthorized reproduction of this article is prohibited

Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

n GS AGS AZGS Am—lGS

Figure 3: Randomized m-step Krylov Space Matrix
with n-by-s sparse Gaussian G*° as starter

So we get the matrix K, as well as AK, in time

~

O (nnz(A)-n-m).

To obtain a solver for AK, we instead solve its
Gram matrix (AK)T(AK). Each block of KTK has
the form (G°)T A'G*® for some 2 < i < 2m, and can be
computed by multiplying (G°)T and A'G®. As A'G®
is an n-by-s matrix, each non-zero in G* leads_to a
cost of O(s) operations involving words of length O(m).
Then because we chose G to have 5(m3) non-zeros per
column, the total number of non-zeros in G* is about
O(s-m3) = O(nm?). This leads to a total cost (across
the m values of 7) of:

O (n*m?).

The key step is then Step B} a block version of the
Conjugate Gradient method. It will be implemented us-
ing a recursive data structure based on the notion of dis-
placement rank [KKMT79) [BA8Q]. To get a sense of why
a facter algorithm may be possible, note that there are
only O(m) distinct blocks in the matrix (AK)T(AK).
So a natural hope is to invert these blocks by them-
selves: the cost of (stable) matrix inversion [DDHOT,
times the 5(m) numerical word complexity, would then
give a total of

0 (ms?) = 0 (m* (2)7) = O (nom=2).

m

511

Of course, it does not suffice to solve these m s-by-s
blocks independently. Instead, the full algorithm, as
well as the SOLVE); operator, is built from efficiently
convolving such s-by-s blocks with matrices using Fast
Fourier Transforms. Such ideas can be traced back to
the development of super-fast solvers for (entry-wise)
Hankel /Toeplitz matrices [BASQ [LS92 XXCBI4].

Choosing s and m so that n = sm would then
give the overal running time, assuming that we
can bound the minimum singular value of K
by exp(—O(m)). This is a major shortcoming of our
analysis: we can only prove such a bound when n—sm >
Q(m). Its underlying cause is that rectangular semi-
random matrices can be analyzed using e-nets, and thus
are significantly easier to analyze than square matrices.

This means we can only use m and s such that
n —ms = ©(m), and we need to pad K with n — ms
columns to form a full rank, invertible, matrix. To this
end we add ©(m) dense Gaussian columuns to K to form
@, and solve the system AQ), and its associated Gram
matrix (AQ)T(AQ) instead. These matrices are shown
in Figure [

Because these additional columns are entry-wise
i.i.d, its minimum singular value can be analyzed using
existing tools [SSTQ6 [TVIQ], namely lower bounding
the dot product of a random vector against any normal
vector. Thus, we can lower bound the minimum singular
value of @, and in turn AQ, by exp(—O(m)) as well.

This bound in turn translates to the minimum
eigenvalue of the Gram matrix of AQ, (AQ)T(AQ).
Partitioning its entries by those from K and G gives
four blocks: one (sm)-by-(sm) block corresponding to
(AK)T(AK), one ©(m)-by-©(m) block corresponding
to (AG)T(AG), and then the cross terms. To solve this
matrix, we apply block-Gaussian elimination, or equiv-
alently, form the Schur complement onto the ©(m)-by-
O(m) corresponding to the columns in AG.

To compute this Schur complement, it suffices to
solve the top-left block (corresponding to (AK)T(AK))
against every column in the cross term. As there are
at most ©(m) < s columns, this solve cost comes out
to less than O(s*m) as well. We are then left with a
O(m)-by-©(m) matrix, whose solve cost is a lower order
term.

So the final solver operator costs

0 (nnz(A) - nm + n®m?® + n“m? ¥)

which leads to the final running time by choosing m to
balance the terms. This bound falls short of the ideal
case given in Equation [1.1] mainly due to the need for a
denser B to the well-conditionedness of the Krylov space
matrix. Instead of O(n) non-zeros total, or about O(m)
per column, we need poly(m) non-zero variables per

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

n AGS A2GS AmGY |AG
ms ©(m)
ms (AK)TAK (AK)TAG
O(m) (AG)TAK (AG)TAG
n

Figure 4: Full matrix AQ and its Associated Gram Ma-
trix (AQ)T (AQ). Note that by our choice of parameters
m is much smaller than s ~ n/m.

column to ensure the an exp(—O(m)) condition number
of the block Krylov space matrix K. This in turn leads
to a total cost of O(n-nnz - poly(m)) for computing the
blocks of the Hankel matrix, and a worse trade off when

nw

summed against the %= term.

3 Outline of Analysis

In this section we outline our analysis of the algorithm
through formal theorem statements. We start by for-
malizing our tracking of convergence, and the tracking
of errors and roundoff errors.

3.1 Preliminaries We will use capital letters for
matrices, lower case letters for vectors and scalars. All
subscripts are for indexing into entries of matrices and
vectors, and superscripts are for indexing into entries of
a sequence.

Norms and Singular Values. Our convergence
bounds are all in terms of the Euclidean, or 5 norms.
For a length n vector x, the norm of z is given by

2
A/ Z1si<n Ty
norm of its entries treated as a vector is known as the
Frobenius norm, and we have

M|y = (> M2 =4/ TrRACE(MTM).
J

We will also use |||-|| to denote entry-wise norms
over a matrix, specifically |M], to denote the max
magnitude of an entry in M. Note that |M | = ||M]|,,
so we have [[M]]., < [M]p < n[[M][,.

The minimum and maximum singular values of a
matrix M are then defined as the min/max norms of its
product against a unit vector:

M
Omin (M) _ : H 37”2

lz| = Similarly, for a matrix M, the

M
Omax (M) _ H $||2

ER E v el

and the condition number of M is defined as k(M) =
Umax(M)/Umin(M)-

Bounds on the minimum singular value allows us to
transfer perturbation errors to it to its inverse.

LEMMA 3.1. If M is a full rank square matriz with min
and max singular values in the range [Omin, Omax], and

<e€

M is some approximation of it such that HM — M‘
F

for some € < opin/2, then

1. All singular values in M are in the range [omin —
€, Omax + €], and

2. The inverse ofM is close to the inverse of M :

Hﬁfl — M71H <1002 ¢
F

min ~*

Copyright © 2021 by SIAM

512 Unauthorized reproduction of this article is prohibited

Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

Proof. The bound on singular values follows from the
norm minimization/maximization definition of singular
values. Specifically, we get that for a unit vector =z,

], -t < |-)
< - <

which means all singular values can change by at most
€.

Note that this implies that M is invertible. For the
bounds on inverses, note that

M;l—mr4=ﬂr4@wﬂ—%—ﬂ
=Ar4@4—M)M*.

So applying bounds on norms, as well as HM*H <
2

(Omin —)71 < 20;}11 gives
[t 2]
F
<=5 |7 <202
F 2
|

Error Accumulation. Our notion of approximate
operators also compose well with errors.

LEMMA 3.2. If ZV) and Z are linear operators with
(algorithmic) approzimations Z) and Z® such that
for some € < 0.1, we have

- 21
F’

gm_%ﬂ‘ge
F

then their product satisfies

2020 3030, < ocmas 120, 2]).
2 2

F

Proof. Expanding out the errors gives
71 72 _ 7(1)7(2)
:<ﬂU_§m)ﬂ%+(ﬂ%_§®)ﬂD
+(ﬂn_200(ﬂ%_2®)

The terms involving the original matrix against the
error gets bounded by the error times the norm of the
original matrix. For the cross term, we have

(- 20) (- 2)

<V®_2mHWV®_§®H<g
F 2

)

which along with € < 0.1 gives the overall bound. a

Randomization and Normal Distributions
Our algorithms rely on randomly perturbing the input
matrices to make them non-degenerate, and much of
our analysis revolving analyzing the effect of such per-
turbations on the eigenvalues. We make use of stan-
dard notions of probability, in particular, the union
bound, which states that for any two events E; and
Es, Pr [E1 U EQ] < Pr [El] + Pr [EQ]

Such a bound means that it suffices to show that
the failure probability of any step of our algorithm is
n~¢ for some constant c. The total number of steps is
poly(n), so unioning over such probabilities still give a
success probability of at least 1 — n—c¢+O1),

We will perturb our matrices using Gaussian ran-
dom variables. These random variables N(0,c) have
density function g(x) = ﬁe‘“’z/%z.
ticularly useful for showing anti-concentration because
the sum of Gaussians is another Gaussian, with variance
equalling to the sum of squares, or £3-norm, of the vari-
ance terms. That is, for a vector z and a (dense) Gaus-
sian vector with entry-wise i.i.d. N (0, 1) normal random
variables, aka. g ~ N(0,1)", we have z7g ~ N(0, |z|,).

The density function of Gaussians means that
their magnitude exceed m with probability at most
O(exp(—n?)). This probability is much smaller than
the n~¢ failure probabilities that we want, so to sim-
plify presentation we will remove it at the start.

They are par-

Cram 3.1. We can analyze our algorithm condition-
g on any normal random variable with variance o,
N(0,0), having magnitude at most no.

Tracking Word Length. The numerical round-
ing model that we will use is fixed point precision. The
advantage of such a fixed point representation is that
it significantly simplifies the tracking of errors during
additions/subtractions. The need to keep exact opera-
tors means we cannot omit intermediate digits. Instead,
we track both the number of digits before and after the
decimal point.

The number of trailing digits, or words after the
decimal point, compound as follows:

1. adding two numbers with L; and Lo, words after
the decimal point each results in a number with
max{Ly, Lo} words after the decimal point.

2. multiply two numbers with L; and Ly words after
the decimal point each results in a number with
L1 + Lo words after the decimal point.

As max{Ly, Ly} < Ly + L when L; and Lo are
non-negative, we will in general assume that when we
multiply matrices with at most L; and Lo words after
the decimal point, the result has at most L; 4+ Lo words

Copyright © 2021 by SIAM

513 Unauthorized reproduction of this article is prohibited

Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

after the decimal point. In particular, if Z is an operator
with Lz words after the decimal point, and its input B
has Lp words after the decimal point, the output has
at most Ly + Lp words after the decimal point.

Note that both of these bounds are for exact compu-
tations. The only round off errors come from round-off
errors by dropping some of the digits, as the matrices
themselves are created.

On the other hand, we need to bound the maximum
magnitude of our operators. The number of digits before
the decimal point is given by bounds on the magnitude
of the numbers themselves. Such bounds also propagate
nicely along multiplications.

LEMMA 3.3. If the mazimum magnitude of entries in
two matrices Y and Z with dimension at most n are
both at most «, then all entries in Y Z have magnitude
at most na? as well.

Proof.

(vz),

= ‘Z YirZij| < Z Yie| | Z1s] < no?
k k

a

Throughout our analyses, we will often rescale the
matrices so that their max magnitudes are n=2. This
allows us to absorb any constant factor increases in mag-
nitudes from multiplying these matrices by Lemma [3.3
because (c-n 2)2 <n 2

Finally, by doing FFT based fast multiplications
for all numbers involved [CLRSQ9 [HVDHIY], we can
multiple two numbers with an O(logn) factor in their
lengths. This means that when handling two matrices
with L; and Lo words after the decimal point, and
whose maximum magnitude is p, the overhead caused
by the word-lengths of the numbers involved is O(u +
Ly + Ls)

Random Variables and Probability For our
perturbations we use standard Gaussian A(0,1) ran-
dom variables.

Fact 3.1. For x ~ N(0,1), we have Pr(jz| = t) <
2 1?2

tv2r ’

Thus, with probability at least 1 — exp(—n/2), a stan-

dard Gaussian variable is bounded by /n. We will use

O(n?) such variables and condition on the event that all

their norms are bounded by +/n.

3.2 Main Technical Ingredients The main tech-
nical components of the analysis can be summarized as
follows:

1. A can be perturbed so that its eigenvalues are
separated (Theorem [3.1]).

2. Such a separation implies a well-conditioned Krylov
space, when it is initialized with sparse random
Gaussian vectors. (Theorem [3.2))

3. This Krylov matrix can be solved efficiently using a
combination of low displacement rank solvers and
fast convolutions (Theorem (3.3).

4. The last few rows/columns can be solved efficiently
via the Schur complement (Lemma [3.4)).

Due to space constraints, we refer to the reader to
the full version of the paper [PY20] for proofs of these
components.

Anti-Concentration of semi-random matri-
ces. A crucial part of our analysis is bounding the
spectrum of semi-random matrices. Unfortunately, the
highly developed literature on spectral properties of ran-
dom matrices assumes independent entries or indepen-
dent columns, which no longer hold in the semi-random
case of K. However, getting tight estimates is not im-
portant for us (the running time is affected only by the
logarithm of the gap/min value). So we adapt meth-
ods from random matrix theory to prove sufficient anti-
concentration.

Specifically, after symmetrizing the potentially
asymmetric input A by implicitly generating the op-
erator AT A, we need to bound (1) the minimum eigen-
value gap of the coefficient matrix after perturbation by
a symmetric sparse matrix and (2) the minimum sin-
gular value of the block Krylov matrix constructed by
multiplying with a sparse random matrix.

The first step of showing eigenvalue separation is
needed because if A has a duplicate eigenvalue, the
resulting Krylov space in it has rank at most n — 1.
We obtain such a separation by perturbing the matrix
randomly: its analysis follows readily from recent results
on separations of eigenvalues in random matrices by Luh

and Vu [LYIF].

THEOREM 3.1. For any n x n symmetric positive defi-
nite matriz A with:
1. entries at most 1/n,

2. eigenvalues at least 1/k for some k = n®,

and any probability where

S 3001og x logn
bz ———7—
n

the symmetrically random perturbed matriz A defined as

Ao A def Aij + nTlﬂN'(O,l) w.p. p,
“ 7 Aij w.p. 1 —p,
Copyright © 2021 by SIAM

514 Unauthorized reproduction of this article is prohibited

Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

with probability at least 1 — n™19 has all eigenvalues
separated by at least k~°108™,

Given this separation, we show that a random n-
by-s B gives a m-step Krylov space matrix, as long
as n —ms = (m). Furthermore, we pick this B to

be sparse in the columns, so we can quickly compute
BTA'B

THEOREM 3.2. Let A be an n x n symmetric positive
definite matriz with entries at most 1/n, and ay < n=19
a parameter such that:

1. all eigenvalues of A are at least ay, and

2. all pairs of eigenvalues of A are separated by at least
ay.

1
Let s and m be parameters such that n®%" < m < ni

and s-m < n—>5m. The n-by-s sparse Gaussian matric
G® where each entry is set to N'(0,1) with probability
at least

10000m? log (1/c4)

n

leads to the Krylov space matrix

K=[G5|AGS | A2G5 | ... | am1GS].
With probability at least 1 — n=2 (over randomness in
G?), K has mazimum singular value at most n?, and
minimum singular value at least a5™.

These bounds allow us to bound the length of
numbers, and in turn running time complexity of solving
(AK)TAK.

Solvers for block Hankel matrices. An impor-
tant ingredient in our algorithm is a numerically effi-
cient solver for block Hankel matrices. For this we use
the notion of displacement rank by Kailath, Kung and
Morf [KKMT9]. Its key statement is that any Schur
Complement of a Toeplitz Matrix has displacement rank
2, and can be uniquely represented as the factorization
of a rank 2 matrix. This combined with the fact that
the displacement rank of the inverse is the same as that
of the matrix is used to compute the Schur comple-
ment in the first super-fast/asymptotically fast solvers
for Toeplitz matrices by Bitmead and Anderson [BASQ.
Here we extend this to block Toeplitz/Hankel matrices
and prove numerical stability, using the natural preser-
vation of singular values of Schur complements. Specif-
ically, the analysis from Demmel, Dumitriu, Holtz and
Kleinberg [DDHEKOT] can be readily adapted to this set-
ting.

THEOREM 3.3. If H is an sm x sm symmetric s-block-
Hankel matriz and 0 < ag < (sm) 1% is a parameter

such that every contiguous square block-aligned minor
of H containing the top-right or bottom left corner have
minimum eigenvalue at least oy :

Omin (H{l:i,(me»l):m}) » Omin (H{(mfiﬁ»l):m,l:i}) Z oy

forall1 <
at most (sm)

< m, and all entries in H have magnitude

2aH1, then for any error €, we can
pre-process H in time O(ms¥ log(agz'e ™)) to form
SOLVEp (-, €) that corresponds to a linear operator Zg
such that:

1. For any (ms) x k matriz B with maz magni-
tude || B||,. and Lp words after the decimal point,
SOLVE (B, €) returns Zg B in time

~

O (m - max {s“’_lk, SQICW_Z} -

(i (UL ms)Y

2. Zy 1is a high-accuracy approximation to H~1:

|20 = H, <€
3. the entries of Zpu have at most
O(log® mlog(ag'e™")) words after the decimal
point.

The overhead of log® m in the word lengths of Zx
is from the O(logn) layers of recursion in Fast Fourier
Transform times the O(logn) levels of recursion in the
divide-and conquer block Schur complement algorithm.
Note that the relation between the i'" block of H =
KTK and K itself is:

H{l:i,(nfiJrl):m} = K{T;,l;i}K{:,(anl)rm}

= K:{1:71:i}Am7171K{:71:i}.
So the min/max singular values of these matrices off by
a factor of at most o’} from the singular value bounds
on H itself.

It remains to pad K with random columns to make
it a square matrix, Q. We bound the condition number
of this matrix, and turn a solver for M = (AK)T(AK)
to one for (AQ)T(AQ). Specifically, combining Theo-
rems 3.2 and B.3] leads to:

LEMMA 3.4. Let A be an n X n symmetric positive

definite matriz with entries at most 1/n, and 0 < ay <

n~19 a parameter such that:

1. all eigenvalues of A are at least oy, and at most
-1
ay,

Copyright © 2021 by SIAM

515 Unauthorized reproduction of this article is prohibited

Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

2. all pairs of eigenvalues of A are separated by at least
a4,

3. all entries in A have magnitude at most a4, and at
most O(log(1/a4)) words after the decimal point.

For any parameter m such that n°°' < n < 0.01n%2,
the routine BLOCKKRYLOV as shown in Figure [] pre-
processes A in time:

1. O(n) matriz-vector multiplications of A against
vectors with at most O(mlog(1l/aa)) words both
before and after the decimal point,

2. plus operations that cost a total of:

O (n*-m? -log? (1/aa) + nm* “log (1/a4)) .

and obtains a routine SOLVE that when given a vector
b with Ly words after the decimal point, returns Z b in
time N

O (n*m - (log (1/aca) +|[b]l. + Ls)) ,

for some Z 4 with at most O(log(1/aa)) words after the
decimal point such that

|22~ 47|, <

Note that we dropped € as a parameter to simplify
the statement of the guarantees. Such an omission is
acceptable because if we want accuracy less than the
eigenvalue bounds of A, we can simply run the algorithm
with a4 < € due to the pre-conditions holding upon
a4 decreasing. With iterative refinement (e.g. [Saald],
it’s also possible to lower separate the dependence on
log(1/¢) to linear instead of the cubic dependence on

log(1/am).

3.3 Proof of Main Theorem It remains to use
the random perturbation specified in Theorem and
taking the outer product to reduce a general system to
the symmetric, eigenvalue well separated case covered
in Lemma B.41

The overall algorithm then takes a symmetrized
version of the original matrix A, perturbs it, and then
converts the result of the block Krylov space method
back. Its pseudocode is in Figure

Proof. (Of Theorem Let A be the copy of A scaled
down by n%64:
1 1

A= A= .
n26 4 n? Al

This rescaling gives us bounds on both the maximum
and minimum entries of A. The rescaling ensures that
the max magnitude of an entry in A is at most 1/n?.

LinearEquationApproximation(A, b: integer
matrix/vector pair, x: condition number bound
for A, e: error threshold.)

1. Compute 64 « ||A]|..-

2. Generate random symmetric matrix R with

€
sN(0,1)

Ri‘ :R'i =
J J nlOH

with probability w -

3. Implicitly generate

1

AT A
T ATA+R

2:

and its associated matrix-multiplication operator
MATVEC5(+, d).

4. Build solver for A via

SOLVEy < BLOCKKRYLOV (MATVECj (-,),

w—2

(n8:‘62671) —ologn , neF nnz (A)TH> .

5. Return

Ty -Sowvey (ATb) .

Figure 5: Pseudocode for block Krylov space algorithm

Therefore its Frobenius norm, and in turn max singular
value, is at most 1. On the other hand, the max
singular of A is at least [|A||,, = 6a: consider the
unit vector that’s 1 in the entry corresponding to the
column containing the max magnitude entry of A, and
0 everywhere else. This plus the bound on condition
number of x gives that the minimum singular value of
A is at least

Omin (A) 2 %Umax (A) 2 Hia

1
n264

Umin(;l)Z ! 97,4: !

n204 K n2k’

which coupled with the rescaling by gives

The matrix that we pass onto the block Krylov
method, A, is then the outer-product of A plus a
sparse random perturbation R with each entry is set
(symmetrically when across the diagonal) to ——N (0, 1)

with probability O(lognlog(r/¢))/n "
Zl “— :ZlT:‘\l + R.

Copyright © 2021 by SIAM

516 Unauthorized reproduction of this article is prohibited

Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

This matrix A is symmetric. Furthermore, by Claim
we may assume that the max magnitude of an entry in
R is at most en™?x 72, which gives

€
Rl < —.
H HF n8/$2

So we also get that the max magnitude of an entry in
A is still at most 2n~2. Taking this perturbation bound

into Lemma also gives that all eigenvalues of A are

in the range
1
]

By Theorem the minimum eigenvalue separa-
tion in this perturbed matrix A is at least

(1’L8I$26_1) —5logn .

Also, by concentration bounds on the number of entries
picked in R, its number of non-zeros is with high prob-
ability at most O(nlognlog(kn/e)) = O(nlog(k/e)).
As we only want an error of ¢, we can round all
entries in A to precision ¢/k without affecting the quality
of the answer.
So we can invoke Lemma B4 with

ay = (n8H2 —1) 5logn

which leads to a solve operator Z5 such that

—5logn €

N_N—l N 8 .2 —1 -
HZA A HF<064<(”"€€) = 40,.10°

The error conversion lemma from Lemma[3.T)along with
the condition that the min-singular value of A is at least
——> implies that

HZINZ AH n30/$6
or factoring into the bound on the size of R via triangle
inequality:
_ T 2¢
HZA -4 AH = skt
which when inverted again via Lemma [3.1] and the min
singular value bound gives

It remains to propagate this error across the rescal-
ing in Step |5} Since A= —AA we have

-1

73 - (A72)

5"
F n

1

(AT4) = 492 (ara) -,

and in turn the error bound translates to

H n4193 z-(Ara)

<76
S
nt0y

F

The input on the other hand has
Tab = A(ATA)™" AT,

so the error after multiplication by A is
1 PN
Al —z- (ATA) AT,
nt0%

which incorporating the above, as well as |A|, < nfa
gives

<

~

1 T T
HA[WLQ%ZA b] =z AT,

On the other hand, because the max eigenvalue of AT A
is at most |A[3 < n26%, the minimum eigenvalue of

(AT A) 1 is at least 0;12. So we have
1
TLabll, = [ATb] 47 4=+ = 1= 470, -

Combining the two bounds then gives that the error in
the return value is at most € [IL4b],.

For the total running time, the number of non-zeros
in R implies that the total cost of mutliplying A against
a vector with O(mlog(1/as)) = O(mlognlog(k/e)) =

O(mlog(r/e)) is
9] ((nnz (A) +n) mlog® (k/€)) <

where the inequality of nnz(A4) < n follows pre-
processing to remove empty rows and columns. So the
total construction cost given in Lemma simplifies to

O (n*m®log” (k/e) + n“m* * log (k/e)
+n-nnz (A) - mlog (k/€))

The input vector, éy has max magnitude at most
1, and can thus be rounded to O(log(k/€)) words after
the decimal point as well. This then goes into the solve
cost with log(||b]|.) + Ly < O(log(nk/e)), which gives a
total of O(n?mlog(k/e)), which is a lower order term
compared to the construction cost. The cost of the
additional multiplication in A is also a lower order term.

Optimizing m in this expression above based on
only n and nnz(A) gives that we should choose m so
that

max {n - nnz (A) m,n*m?} = n*m?7%,

or

max {n - nnz (A)m* ', n*m“ !} = n

The first term implies

1
—1

m < (n“_1 -nnz (A)_l)m =n-nnz(A)=+t

Copyright © 2021 by SIAM

517 Unauthorized reproduction of this article is prohibited

(nnz (A) mlog? (k/€))

Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

while the second term implies

Substituting the minimum of these two bounds back
into n“m?~“ and noting that 2 — w < 0 gives that the
total runtime dependence on n and nnz(A) is at most

w (=2C@=w) o5 —(2=w)
n -max{n oFT T nfTY .z (A) e }

Sw—d o w=2
=max{n “¥T n®-nnz (A)w“}.

Incorporating the trailing terms, then gives the the
bound stated in Theorem [} with ¢ set to 2 plus the
number of log factors hidden in the O. a

4 Discussion

We have presented a faster solver for linear systems with
moderately sparse coefficient matrices under bounded
word-length arithmetic with logarithmic dependence on
the condition number. This is the first separation be-
tween the complexity of matrix multiplication and solv-
ing linear systems in the bounded precision setting.
While both our algorithm and analysis are likely im-
provable, we believe they demonstrate that there are
still many sparse numerical problems and algorithms
that remain to be better understood theoretically. We
list a few avenues for future work.

Random Matrices. The asymptotic gap between
our running time of about n?3% and the O(n??2%)
running time of computing inverses of sparse matrices
over finite fields [EGGT Q6] is mainly due to the overhead
our minimum singular value bound from Theorem [3:2}
specifically the requirement of Q(m3) non-zeros per
column on average. We conjecture that a similar bound
holds for O(m) non-zeros per column, and also in the
full Krylov space case.

1. Can we lower bound the min singular value of
a block Krylov space matrix generated from a
random matrix with O(m) non-zeros per column?

2. Can we lower bound the min singular value of a
block Krylov space matrix where m - s = n for
general values of s (block size) and m (number of
steps)?

The second improvement of removing the additional
Q(m) columns would not give asymptotic speedups.
It would however remove the need for the extra
steps (padding with random Gaussian columns) in
Lemma [3.4 Such a bound for the square case would
likely require developing new tools for analyzing matrix
anti-concentration.

3. Are there general purpose bounds on the min
singular value of a sum of random matrices, akin
to matrix concentration bounds (which focus on the

max singular value) [RVI0} [TroTH].

The connections with random matrix theory can also be
leveraged in the reverse direction:

4. Can linear systems over random matrices with i.i.d.
entries be solved faster?

An interesting case here is sparse matrices with non-
zeros set to +1 independently. Such matrices have con-
dition number ©(n?) with constant probability [REYI0],
which means that the conjugate gradient algorithm has
bit complexity O(n - nnz) on such systems. There-
fore, we believe these matrices present a natural start-
ing point for investigating the possibility of faster algo-
rithms for denser matrices with nnz > Q(nv~1).
Numerical Algorithms. The bounded precision
solver for block Hankel matrices in Theorem is
built upon the earliest tools for speeding up solvers
for such structured matrices [KKMT79, [BASQ, as well
as the first sparsified block Cholesky algorithm for
solving graph Laplacians ﬂm We believe the
more recent developments in solvers for Hankel/ Toeplitz
matrices [KXCBT4] as well as graph Laplacians [KS10]
can be incorporated to give better and more practical
routines for solving block-Hankel/Toeplitz matrices.

5. Is there a superfast solver under bounded precision
for block Hankel/Toeplitz matrices that does not
use recursion?

It would also be interesting to investigate whether recent
developments in randomized numerical linear algebra
can work for Hankel / Toeplitz matrices. Some possible
questoins there are:

6. Can we turn m x s* into O(ms? + s*) using
more recent developments sparse projections (e.g.
CountSketch / sparse JL. / sparse Gaussian instead
of a dense Gaussian).

7. Is there an algorithm that takes a rank r fac-
torization of I — XY € R"*", and computes
in time O(mpoly(r)) the a rank r factoriza-
tion/approximation of I — Y X?

Another intriguing question is the extensions of
this approach to the high condition number, or exact
integer solution, setting. Here the current best run-
ning time bounds are via p-adic representations of frac-
tions [Dix82], which are significantly less understood
compared to decimal point based representations. In
the dense case, an algorithm via shifted p-adic num-
bers by Storjohann [Sto05] achieves an O(n®) bit com-
plexity. Therefore, it is natural to hope for a similar

Copyright © 2021 by SIAM

518 Unauthorized reproduction of this article is prohibited

Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

~

O(n - nnz) bit complexity algorithm for producing ex-
act integer solutions. A natural starting point could be
the role of low-rank sketching in solvers that take ad-
vantage of displacement rank, i.e., extending the p-adic
algorithms to handle low rank matrices:

8. Is there an O(n - 1~ 1) time algorithm for exactly
solving linear regression problems involving an n-
by-n integer matrix with rank r?

Finally, we note that the paper by Eberly et
al. ﬂm that proposed block-Krylov based meth-
ods for matrix inversion also included experimental re-
sults that demonstrated good performances as an ex-
act solver over finite fields. It might be possible to
practically evaluate block-Krylov type methods for solv-
ing general systems of linear equations. Here it is
worth remarking that even if one uses naive ©(n?) time
matrix multiplication, both the Eberly et al. algo-
rithm [EGGF07] (when combined with p-adic represen-
tations), as well as our algorithm, still take sub-cubic
time.

Acknowldgements

Richard Peng was supported in part by NSF CAREER
award 1846218, and Santosh Vempala by NSF awards
AF-1909756 and AF-2007443. We thank Mark Gies-
brecht for bringing to our attention the works on block-
Krylov space algorithms; Yin Tat Lee for discussions
on random linear systems; Yi Li, Anup B. Rao, and
Ameya Velingker for discussions about high dimensional
concentration and anti-concentration bounds; Mehrdad
Ghadiri, He Jia and anonymous reviewers for comments
on earlier versions of this paper.

References

[BA80] Robert R Bitmead and Brian DO Anderson.
Asymptotically fast solution of Toeplitz and related
systems of linear equations. Linear Algebra and its
Applications, 34:103-116, 1980.

[BHK20] Avrim Blum, John Hopcroft, and Ravindran Kan-
nan. Foundations of Data Science. Cambridge Univer-
sity Press, 2020.

[BHVO08] Erik G. Boman, Bruce Hendrickson, and
Stephen A. Vavasis. Solving elliptic finite element sys-
tems in near-linear time with support preconditioners.
SIAM J. Numer. Anal., 46(6):3264-3284, 2008.

[BJMS17] Alin Bostan, C-P Jeannerod, Christophe
Mouilleron, and E Schost. On matrices with dis-
placement structure: Generalized operators and faster
algorithms. SIAM Journal on Matrix Analysis and
Applications, 38(3):733-775, 2017.

[BL94] Bernhard Beckermann and George Labahn. A uni-
form approach for the fast computation of matrix-type

519

padé approximants. SIAM Journal on Matriz Analysis
and Applications, 15(3):804-823, 1994.

[Blu04] Lenore Blum. Computing over the reals: Where
turing meets newton. Notices of the AMS, 51(9):1024—
1034, 2004.

[BSS*89] Lenore Blum, Mike Shub, Steve Smale, et al.
On a theory of computation and complexity over the
real numbers: np-completeness, recursive functions
and universal machines. Bulletin (New Series) of the
American Mathematical Society, 21(1):1-46, 1989.

[Cip00] Barry A Cipra. The best of the 20th
century: Editors name top 10 algorithms.
SIAM news, 33(4):1-2, 2000. Available at:
https://archive.siam.org/pdf/news/637.pdf.

[CKK'18] Michael B. Cohen, Jonathan A. Kelner, Ras-
mus Kyng, John Peebles, Richard Peng, Anup B. Rao,
and Aaron Sidford. Solving directed laplacian sys-
tems in nearly-linear time through sparse LU factor-
izations. In Mikkel Thorup, editor, 59th IEEE An-
nual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages
898-909. IEEE Computer Society, 2018. Available at:
https://arxiv.org/abs/1811.10722.

[CKPT17] Michael B. Cohen, Jonathan A. Kelner, John
Peebles, Richard Peng, Anup B. Rao, Aaron Sidford,
and Adrian Vladu. Almost-linear-time algorithms for
markov chains and new spectral primitives for di-
rected graphs. In Hamed Hatami, Pierre McKenazie,
and Valerie King, editors, Proceedings of the 49th An-
nual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2017, Montreal, QC, Canada, June 19-
23, 2017, pages 410-419. ACM, 2017. Available at:
https://arxiv.org/abs/1611.00755.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, 3rd Edition. MIT Press, 2009.

[CRW93] Ronald Coifman, Vladimir Rokhlin, and Stephen
Wandzura. The fast multipole method for the wave
equation: A pedestrian prescription. IEEE Antennas
and Propagation magazine, 35(3):7-12, 1993.

[CW8T7] Don Coppersmith and Shmuel Winograd. Matrix
multiplication via arithmetic progressions. In Alfred V.
Aho, editor, Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, 1987, New York,
New York, USA, pages 1-6. ACM, 1987.

[DDHO7] James Demmel, Ioana Dumitriu, and Olga Holtz.
Fast linear algebra is stable. Numerische Mathematik,
108(1):59-91, 2007.

[DDHKO07] James Demmel, Ioana Dumitriu, Olga Holtz,
and Robert Kleinberg. Fast matrix multiplication is
stable. Numerische Mathematik, 106(2):199-224, 2007.

[Dix82] John D Dixon. Exact solution of linear equations
using P-adic expansions. Numerische Mathematik,
40(1):137-141, 1982.

[DMMO8] Petros Drineas, Michael W Mahoney, and Shan
Muthukrishnan. Relative-error cur matrix decomposi-
tions. SIAM Journal on Matrix Analysis and Applica-
tions, 30(2):844-881, 2008. Available at:.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

[DRSL16] Timothy A Davis, Sivasankaran Rajamanickam,
and Wissam M Sid-Lakhdar. A survey of direct
methods for sparse linear systems. Acta Numerica,
25:383-566, 2016.

[EGG106] Wayne Eberly, Mark Giesbrecht, Pascal Giorgi,
Arne Storjohann, and Gilles Villard. Solving sparse
rational linear systems. In Symbolic and Algebraic
Computation, International Symposium, ISSAC 2006,
Genoa, Italy, July 9-12, 2006, Proceedings, pages 63—
70, 2006.

[EGG*107] Wayne Eberly, Mark Giesbrecht, Pascal Giorgi,
Arne Storjohann, and Gilles Villard. Faster inversion
and other black box matrix computations using ef-
ficient block projections. In Symbolic and Algebraic
Computation, International Symposium, ISSAC 2007,
Waterloo, Ontario, Canada, July 28 - August 1, 2007,
Proceedings, pages 143-150, 2007.

[EH10] Herbert Edelsbrunner and John Harer. Computa-
tional topology: an introduction. American Mathemat-
ical Soc., 2010.

[GO89] Gene H Golub and Dianne P O’Leary. Some his-
tory of the conjugate gradient and lanczos algorithms:
1948-1976. SIAM review, 31(1):50-102, 1989.

[Gra06] Robert M Gray. Toeplitz and circulant matrices: A
review. now publishers inc, 2006.

[Gre96] Keith D. Gremban. Combinatorial Preconditioners
for Sparse, Symmetric, Diagonally Dominant Linear
Systems. PhD thesis, Carnegie Mellon University,
Pittsburgh, October 1996. CMU CS Tech Report
CMU-CS-96-123.

[GTVDV96] KA Gallivan, S Thirumalai, Paul Van Dooren,
and V Vermaut. High performance algorithms for
toeplitz and block toeplitz matrices. Linear algebra
and its applications, 241:343-388, 1996.

[HS52] Magnus Rudolph Hestenes and Eduard Stiefel.
Methods of conjugate gradients for solving linear sys-
tems, volume 49-1. NBS Washington, DC, 1952.

[HVDH19] David Harvey and Joris Van Der Hoeven. Poly-
nomial multiplication over finite fields in time o(nlogn).
Available at [https://hal.archives-ouvertes.fr/|
[pa1-02070816/document]} 2019.

[KKM79] Thomas Kailath, Sun-Yuan Kung, and Martin
Morf. Displacement ranks of matrices and linear
equations. Journal of Mathematical Analysis and
Applications, 68(2):395-407, 1979.

[KLP*16] Rasmus Kyng, Yin Tat Lee, Richard Peng,
Sushant Sachdeva, and Daniel A Spielman. Spar-
sified cholesky and multigrid solvers for connec-
tion laplacians. In Proceedings of the 48th An-
nual ACM SIGACT Symposium on Theory of Com-
puting, pages 842-850. ACM, 2016. Available at
http://arxiv.org/abs/1512.01892.

[KMP12] Ioannis Koutis, Gary L. Miller, and
Richard Peng. A fast solver for a class of lin-
ear systems. Communications of the ACM,
55(10):99-107, October 2012. Available at
https://cacm.acm.org/magazines/2012/10/155538-a~
fast-solver-for-a-class-of-linear-systems/fulltext.

520

[KS16] Rasmus Kyng and Sushant Sachdeva. Approxi-
mate gaussian elimination for laplacians - fast, sparse,
and simple. In Irit Dinur, editor, IEEE 57th An-
nual Symposium on Foundations of Computer Science,
FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA, pages 573-582, 2016.
Available at: https://arxiv.org/abs/1605.02353.

[KWZ20] Rasmus Kyng, Di Wang, and Peng Zhang.
Packing Ips are hard to solve accurately, as-
suming linear equations are hard. In Shuchi
Chawla, editor, Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA
2020, Salt Lake City, UT, USA, January 5-8,
2020, pages 279-296. SIAM, 2020. Available at:
https://dl.acm.org/doi/pdf/10.5555/3381089.3381106.

[Kynl17] Rasmus Kyng. Approzimate Gaussian Elimina-
tion. PhD thesis, Yale University, 2017. Available at:
[pttp://rasmuskyng. com/rjkyng-dissertation.pdf]

[KZ17] Rasmus Kyng and Peng Zhang. Hardness results
for structured linear systems. In 58th IEEE An-
nual Symposium on Foundations of Computer Sci-
ence, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 684-695, 2017. Available at:
https://arxiv.org/abs/1705.02944.

[Lan50] Cornelius Lanczos. An iteration method for the
solution of the eigenvalue problem of linear differential
and integral operators. Journal of Research of the
National Bureau of Standards, 1950.

[LG14] Francois Le Gall. Powers of tensors and fast ma-
trix multiplication. In Proceedings of the 39th inter-
national symposium on symbolic and algebraic com-
putation, pages 296-303. ACM, 2014. Available at
http://arxiv.org/abs/1401.7714.

[LLY11] Lin Lin, Jianfeng Lu, and Lexing Ying. Fast con-
struction of hierarchical matrix representation from
matrix—vector multiplication. Journal of Computa-
tional Physics, 230(10):4071-4087, 2011.

[LS92] George Labahn and Tamir Shalom. Inversion of
toeplitz matrices with only two standard equations.
Linear algebra and its applications, 175:143-158, 1992.

[LV18] Kyle Luh and Van Vu. Sparse random matrices have
simple spectrum. arXiv preprint arXiv:1802.03662,
2018.

[MMS18] Cameron Musco, Christopher Musco, and Aaron
Sidford. Stability of the lanczos method for matrix
function approximation. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2018, New Orleans, LA, USA, Jan-
uary 7-10, 2018, pages 1605-1624, 2018. Available at:
https://arxiv.org/abs/1708.07788.

[NTV17] Hoi Nguyen, Terence Tao, and Van Vu. Random
matrices: tail bounds for gaps between eigenvalues.
Probability Theory and Related Fields, 167(3-4):777—
816, 2017.

[Pan84] Victor Y. Pan. How to Multiply Matrices Faster,
volume 179 of Lecture Notes in Computer Science.
Springer, 1984.

[PS85] Franco P Preparata and Michael Ian Shamos. Com-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

https://hal.archives-ouvertes.fr/hal-02070816/document
https://hal.archives-ouvertes.fr/hal-02070816/document
http://rasmuskyng.com/rjkyng-dissertation.pdf

Downloaded 06/27/21 to 143.215.38.55. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

putational geometry. an introduction. Springer-Verlag
New York, 1985.

[PV20] Richard Peng and Santosh S. Vempala. Solving
sparse linear systems faster than matrix multiplication.
CoRR, abs/2007.10254, 2020.

[RV07] Mark Rudelson and Roman Vershynin. Sampling
from large matrices: An approach through geometric
functional analysis. J. ACM, 54(4):21, 2007.

[RV10] Mark Rudelson and Roman Vershynin. Non-
asymptotic theory of random matrices: extreme singu-
lar values. In Proceedings of the International Congress
of Mathematicians 2010 (ICM 2010) (In 4 Volumes)
Vol. I: Plenary Lectures and Ceremonies Vols. 1I-1V:
Invited Lectures, pages 1576-1602. World Scientific,
2010.

[Saa03] Y. Saad. [terative Methods for Sparse Linear Sys-
tems. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2nd edition, 2003. Available
at http://www-users.cs.umn.edu/ "saad/toc.pdf.

[SST06] Arvind Sankar, Daniel A Spielman, and Shang-Hua
Teng. Smoothed analysis of the condition numbers and
growth factors of matrices. SIAM Journal on Matrix
Analysis and Applications, 28(2):446-476, 2006.

[ST11] D. Spielman and S. Teng. Spectral sparsification of
graphs. SIAM Journal on Computing, 40(4):981-1025,
2011. Available at http://arxiv.org/abs/0808.4134.

[ST14] D. Spielman and S. Teng. Nearly linear time al-
gorithms for preconditioning and solving symmetric,
diagonally dominant linear systems. SIAM Journal on
Matriz Analysis and Applications, 35(3):835-885, 2014.
Available at http://arxiv.org/abs/cs/0607105.

[Sto05] Arne Storjohann. The shifted number system
for fast linear algebra on integer matrices. Jour-
nal of Complezity, 21(4):609-650, 2005. Available at:
https://cs.uwaterloo.ca/~astorjoh /shifted.pdf.

[Str69] Volker Strassen. Gaussian elimination is not opti-
mal. Numerische mathematik, 13(4):354-356, 1969.

[SV13] Sushant Sachdeva and Nisheeth K Vishnoi. Faster
algorithms via approximation theory. Theoretical
Computer Science, 9(2):125-210, 2013.

[Trol5] Joel A. Tropp. An introduction to matrix concen-
tration inequalities. Found. Trends Mach. Learn., 8(1-
2):1-230, 2015.

[Tur48] Alan M Turing. Rounding-off errors in matrix
processes. The Quarterly Journal of Mechanics and
Applied Mathematics, 1(1):287-308, 1948.

[TV10] Terence Tao and Van H. Vu. Smooth analysis of
the condition number and the least singular value.
Math. Comput., 79(272):2333-2352, 2010. Available
at: https://arxiv.org/abs/0805.3167.

[Vai89] P. M. Vaidya. Speeding-up linear programming us-
ing fast matrix multiplication. In 80th Annual Sympo-
sium on Foundations of Computer Science, pages 332—
337, Oct 1989.

[Will2] Virginia Vassilevska Williams. Multiplying matri-
ces faster than coppersmith-winograd. In Proceedings
of the forty-fourth annual ACM symposium on Theory
of computing, pages 887-898. ACM, 2012.

521

[Woo14] David P. Woodruff. Sketching as a tool for numeri-
cal linear algebra. Foundations and Trends in Theoret-
ical Computer Science, 10(1-2):1-157, 2014. Available
at: lhttps://arxiv.org/abs/1411.4357]

[XB90] Guo-liang Xu and Adhemar Bultheel. Matrix padé
approximation: definitions and properties. Linear
algebra and its applications, 137:67-136, 1990.

[XCGL10] Jianlin Xia, Shivkumar Chandrasekaran, Ming
Gu, and Xiaoye S Li. Fast algorithms for hierarchically
semiseparable matrices. Numerical Linear Algebra with
Applications, 17(6):953-976, 2010.

[XXCB14] Yuanzhe Xi, Jianlin Xia, Stephen Cauley, and
Venkataramanan Balakrishnan. Superfast and stable
structured solvers for toeplitz least squares via ran-
domized sampling. SIAM Journal on Matriz Analysis
and Applications, 35(1):44-72, 2014.

[XXG12] Jianlin Xia, Yuanzhe Xi, and Ming Gu. A su-
perfast structured solver for toeplitz linear systems via
randomized sampling. SIAM Journal on Matriz Anal-
ysis and Applications, 33(3):837-858, 2012.

[Yell] Yinyu Ye. Interior point algorithms: theory and
analysis, volume 44. John Wiley & Sons, 2011.

[Zhal8] Peng Zhang. Hardness and Tractability For
Structured Numerical Problems. PhD thesis,
Georgia Institute of Technology, 2018. Avail-
able at: https://drive.google.com/file/d/|

[{KEZNzna-Y7y6rDERKuBFvFuU-hfHUMR3/view}

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/1411.4357
https://drive.google.com/file/d/1KEZNzna-Y7y6rDERKuBFvFuU-hfHUMR3/view
https://drive.google.com/file/d/1KEZNzna-Y7y6rDERKuBFvFuU-hfHUMR3/view

	Introduction
	Idea
	Our Contributions
	History and Related Work

	Algorithm
	Outline of Analysis
	Preliminaries
	Main Technical Ingredients
	Proof of Main Theorem

	Discussion

