EDITORS: Lorena A. Barba, labarba@gwu.edu
George K. Thiruvathukal, gkt@cs.luc.edu

SPECIAL TRACK: REPRODUCIBLE RESEARCH

Reproducing GW150914: The First

Observation of Gravitational Waves From a
Binary Black Hole Merger

Duncan A. Brown ®, Syracuse University, Syracuse, NY, 13244, USA
Karan Vahi ., University of Southern California, Los Angeles, CA, 90007, USA

Michela Taufer, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
Von Welch, Indiana University, Bloomington, IN, 47405, USA
Ewa Deelman ®, University of Southern California, Los Angeles, CA, 90007, USA

In 2016, LIGO and Virgo announced the first observation of gravitational waves
from a binary black hole merger, known as GW150914. To establish the confidence
of this detection, large-scale scientific workflows were used to measure the event’s
statistical significance. They used code written by the LIGO/Virgo and were
executed on the LIGO Data Grid. The codes are publicly available, but there has not
yet been an attempt to directly reproduce the results, although several analyses
have replicated the analysis, confirming the detection. We attempt to reproduce the
result presented in the GW150914 discovery paper using publicly available code on
the Open Science Grid. We show that we can reproduce the main result but we
cannot exactly reproduce the LIGO analysis as the original dataset used is not
public. We discuss the challenges we encountered and make recommendations for
scientists who wish to make their work reproducible.

results, it must trust that these results are not

accidental or transient, but rather that they can
be reproduced to an acceptably high degree of similar-
ity by subsequent analyses. This notion of reproduc-
ibility is magnified both in importance and challenges
in the context of computational science workflows.'
An increasingly large fraction of scientific results
depend on computational elements, which in turn cre-
ates reproducibility challenges associated with the
implementation of these computational elements.
Being able to reason about the validity of published
scientific results and reuse them in derivative works

For the scientific community to build on previous

1521-9615 © 2021 IEEE

Digital Object Identifier 10.1109/MCSE.2021.3059232

Date of publication 12 February 2021; date of current version
25 March 2021.

March/April 2021

Published by the IEEE Computer Society

becomes an extremely challenging task. Publishers have
made great strides in including relevant artifacts along
with the manuscripts. However, data, methods, and
results are still hard to find and harder still to reproduce
(recreating the results from the original author's data
and code), to replicate (arriving at the same conclusion
from a study using new data or different methods), and
to reuse in derivative works (using code or data from a
previous study in a new analysis).2

Our work focuses on reproducing the computa-
tional analysis used to establish the significance of
the first detection of gravitational waves created col-
liding binary black holes and observed by the
Advanced Laser Interferometer Gravitational-wave
Observatory (LIGO).2 As part of its commitment to
Open Data, LIGO made the data and scientific codes
from its first observing run available to the scientific
community. Previous analyses have replicated the
results of the GW150914 discovery.*® In these

Computing in Science & Engineering

73

Authorized licensed use limited to: University of Southern California. Downloaded on March 29,2021 at 16:48:28 UTC from IEEE Xplore. Restrictions apply.

mailto:Reproducing%20GW150914:%20The%20First%20Observation%20of%20Gravitational%20Waves%20From%20a%20Binary%20Black%20Hole%20Merger
mailto:Reproducing%20GW150914:%20The%20First%20Observation%20of%20Gravitational%20Waves%20From%20a%20Binary%20Black%20Hole%20Merger
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0002-9180-5765
https://orcid.org/0000-0001-8622-2082
https://orcid.org/0000-0001-8622-2082
https://orcid.org/0000-0001-8622-2082
https://orcid.org/0000-0001-8622-2082
https://orcid.org/0000-0001-8622-2082
https://orcid.org/0000-0001-5106-503X
https://orcid.org/0000-0001-5106-503X
https://orcid.org/0000-0001-5106-503X
https://orcid.org/0000-0001-5106-503X
https://orcid.org/0000-0001-5106-503X

REPRODUCIBLE RESEARCH

Binary coalescence search

[2030 46080 >5.10
) 20_30 4!.10 >5.10
10 mmm Search Result 1
10! — Search Background
" 100 ‘qi.: - — Background excluding GW150914 -
E‘ 10-1 T
% 1072 LLI]
S 10-3 -LL. GW150914 |
_E 10—4 LL"L
g 10-5 Tq}-EI:L_Lr--u:—H n N
= 1076 | MM Hﬂ “
o7 R
Al |

10-8L | | | | I I
8 10 12 14 16 18 20 22 24
Detection statistic O¢

Binary coalescence search

20 30 4-00 >5.00
Lo2—223¢ 405.00 __ >5.00
1011 .: 2:::2: ::ill:ground

" 100 hqq. - — Background excluding GW150914 -
E 10~1 T
% 1072 L|1
5 103 'll GW150914
o M
§10—5 h‘:::l'.:1.n_|_l.—.u|“-1 non
2 os LA DL
o RN T RAR
oo L TUTLT UL
8 10 12 14 16 18 20 22 24

Detection statistic O

FIGURE 1. Results from the binary coalescence search presented in the GW150914 discovery paper from the paper by Abbott

et al.® with permission (left) and our attempt to reproduce these results (right). These histograms show the number of candidate

events (orange markers) and the mean number of background events (black lines) as a function of the search detection statistic

and with a bin width of 0.2. The scales on the top give the significance of an event in Gaussian standard deviations based on the

corresponding noise background. We were able to reproduce the search result for GW150914, but we were unable to exactly

reproduce the search background. The differences between the two figures is likely due to differences in the gravitational-wave

stain data used, as described in the text.

analyses, the data from LIGO's first observing run was
reanalyzed either by independent teams of scientists
with different codes, with different data, or by using
different workflows to those used in the original
GW150914 discovery.

In a previous work, we have performed a posthoc
comparison of these results using the published
papers and the PRIMAD reproducibility formalism.®
Here, we attempt to reproduce ab-initio the original
LIGO analysis used in the GW150914 discovery paper
using public information. Specifically, we attempt to
reproduce the results of the PyCBC search for gravita-
tional waves’® shown in Figure 4 of Abbott et al.?

Our effort is not completely separate from the orig-
inal analysis, as one coauthor of this article was a
member of the team involved in running the original
LIGO analysis. However, our aim was to automate the
production of the result in a way that other coauthors
of this article who were not members of the LIGO or
Virgo collaborations, as well as other scientists, could
reproduce the result.

The original analysis workflows were executed on
the LIGO Data Grid, a collection of computational
resources that are not available to the wider commu-
nity. Since non-LIGO scientists do not have access to
these systems, we execute the analysis on the Open
Science Grid (0SG)® and rely on a cyberinfrastructure
software stack that has latest stable releases of key
software packages such as HTCondor,” Pegasus,™
and the CERN Virtual Machine Filesystem (CYMFS)."

Computing in Science & Engineering

We have created a script that automates the setup
and deployment of the LIGO workflows on a typical
local compute cluster and from there Pegasus man-
ages their execution on OSG.

Our main goal was to reproduce the results of the
PyCBC search shown in Figure 4 of Abbott et al..® shown
on the left-hand side of our Figure 1, since this is the
result used to make the statement that the signal is
detected with a “significance greater than 5.1 " in the
“Abstract” section of this article. Our reproduction of this
plot, shown on the right-hand side of Figure 1 shows that
we can reproduce the search result, but there are small,
noticeable differences in the search background
(explained later in this article). Based on the LIGO docu-
mentation, we believe that these differences are
because the data used in the original analysis were differ-
ent from that released by the Gravitational Wave Open
Science Center (GWOSC)'? and used in our analysis.
Unfortunately, the original dataset is not public and so
we are unable to confirm this hypothesis. However, we
consider our ability to rerun a scientific workflow last
executed in 2015 and largely reproduce the results to be
a successful demonstration of reproducibility.

This article is structured as follows. First, we pro-
vide background on the first gravitational-wave dis-
covery. We then describe our recent efforts on ab-
inito analysis to reproduce the GW150914 result, fol-
lowed by challenges we encountered. In the results
section, we explain any difference observed in our
reproduction of the result published by LIGO. We

March/April 2021

Authorized licensed use limited to: University of Southern California. Downloaded on March 29,2021 at 16:48:28 UTC from IEEE Xplore. Restrictions apply.

perform an analysis of the workflow run-time prove-
nance data and the compute resources required to
execute the workflow. We conclude with recommen-
dations for others who wish to reproduce the
GW150914 result.

Gravitational-wave astronomy is an interesting case
study for robust science because it has three main sci-
ence phases: low-latency data analysis, offline analy-
sis, and public and educational dissemination of
results. The low-latency analysis processes instrumen-
tal data in near real time to identify astrophysical sig-
nals. Alerts are disseminated to the community to
identify electromagnetic or neutrino counterparts to
the gravitational-wave signal. Offline analyses validate
the low-latency detections, identify signals missed in
low-latency, and provide determination of source
properties. When a detection is published, the data
are released to the scientific community and the pub-
lic. Since the analysis codes are also released, it
should be possible for people outside the LIGO Scien-
tific Collaboration and Virgo to reproduce the pub-
lished results.

Our attempt to reproduce the first detection of
gravitational waves from binary black holes, known as
GW150914, starts from the data released by the
GWOSC."”” GW150914 was first detected by a low-
latency search for gravitational-wave bursts that iden-
tifies interesting candidates but does not provide the
final statistical significance of detected events. To
establish the significance of events, data from the
LIGO detectors are subsequently analyzed by scien-
tific workflows that use longer stretches of data to
provide a measure of the noise background in the
detectors and use this to measure the significance of
candidate events. Results from two offline analyses
were presented in the GW150914 discovery paper: one
that used a search technique that did not make
assumptions about the shape of the gravitational
waveform® and one using matched filtering (compar-
ing the data to a known waveform) to search for the
signals from merging black holes,” known as PyCBC.
Here, we focus on reproducing the results of the
PyCBC binary black hole search.

The PyCBC search uses matched filtering to com-
pare the LIGO data with a bank of template binary
black hole waveforms that model the target sources. If
the noise in the LIGO detectors was stationary and
Gaussian, the estimation of the statistical significance
of candidate events that crossed a signal-to-noise ratio
threshold would be straightforward. However, the LIGO

March/April 2021

REPRODUCIBLE RESEARCH

detector data contain non-Gaussian noise transients
and periods of nonstationary noise. As a result, addi-
tional signal-processing techniques are applied to the
data that suppress non-Gaussian noise events. The
search algorithms require that the same signal is seen
in the detectors; the same waveform must be present
both detectors and the signal’s time of arrival must be
consistent with the gravitational-wave travel time
between the observatories. The map between the
detection statistic (weighted signal-to-noise ratio) and
the statistical significance of an event must be empiri-
cally measured by the workflow. This is done by time-
shifting the data between the detectors and repeating
the coincidence analysis many times. The most compu-
tationally intensive part of the PyCBC workflow are the
matched filtering and the calculation of the detection
statistics. Performing the coincidence and the time-
shift analysis can require a large amount of memory to
process the candidate events. Once these steps are
complete, the workflow produces a measurement of
the statistical significance of candidates. A separate
script run after the workflow completes produces a his-
togram that compares candidate events to the noise
background.

Our work is the first attempt to reproduce the original
LIGO analysis. Previous analyses, for example, 1-OGC
result,® provide an example of replication in gravita-
tional-wave science. In the 1-OGC analysis, a different
team with different experimental setup recovered the
discovery of GW150914. Here, “different experimental
setup” means a modified data-analysis pipeline with a
different configuration to that used in the original
analysis. The 1-OGC result independently confirmed
that GW150914 was a high significance discovery, but
the event was recovered with slightly different param-
eters to the original discovery; these parameter differ-
ences can be explained by differences between the
different algorithms used.

OUR WORK IS THE FIRST ATTEMPT TO
REPRODUCE THE ORIGINAL LIGO
ANALYSIS.

Here, we provide an example of reproducibility of
the measurement of the statistical significance of
GW150914 shown in Figure 4 of Abbott et al.® The paper
by Abbott et al.? by its nature as a brief letter does not
provide sufficient information to reproduce the result.

Computing in Science & Engineering

75

Authorized licensed use limited to: University of Southern California. Downloaded on March 29,2021 at 16:48:28 UTC from IEEE Xplore. Restrictions apply.

REPRODUCIBLE RESEARCH

The paper by Abbott et al.® provides additional descrip-
tion of the analysis and the codes® and configuration
files® are publicly released on GitHub. Although the
codes and configuration are public, the LIGO/Virgo col-
laboration does not provide full instructions for running
the workflow and reproducing the analysis. Our work
provides a fully reproducible process.

Not all of the information needed to reproduce the
GW150914 workflow was available in the public release
accompanying the publications. The lack of a single,
public repository of this knowledge is the most signifi-
cant challenge for a group outside the LIGO and Virgo
collaborations to reproducing the GW150914 result.
However, one of the coauthors of our work was a mem-
ber of the team who performed the original analysis.
They were able to review their unpublished notes, which
allowed us to successfully reproduce the LIGO analysis.
To ensure that scientists who were not involved in the
original analysis could reproduce the results, we created
scripts that were run independently by another author
of this article not involved in the original analysis. These
scripts were created in a peer-programming style, which
started from the original scripts used to run the LIGO
workflow and created the result plot. We iteratively fixed
problems encountered when trying to run the analysis
using information entirely in the public domain, filling in
missing public information with the original analysis
notes where necessary.

PyCBC is a gravitational-wave data-analysis toolkit
written primarily in Python with C extensions for
numerically intensive computations. Rerunning old
versions of interpreted Python code can be challeng-
ing if the underlying software stack has changed since
the code was originally executed. Fortunately, LIGO
packaged the PyCBC codes used in the original analy-
sis as Pylnstaller bundles. These bundles package the
Python code with a Python interpreter and the Python
library dependencies allowing us to run the original
codes without needing to recreate the entire software
stack. Our final version of the workflow execution
script is provided in a data release that accompanies
this article® and the GitHub commit history docu-
ments the iterative process of addressing the issues
encountered, which we describe below.

Software Versions
Software provenance is critical to the reproducibility
of scientific workflows. However, neither the discovery

2https://github.com/gwastro/pycbc
bhttps://github.com/gwastro/pycbc-config
https://doi.org/10.5281/zenodo.4085984
dhttps://github.com/gwastro/gw150914-figdb/commits/1.1

Computing in Science & Engineering

paper published in Physical Review Letters, nor the
technical paper published in Physical Review D
documented the exact version of the PyCBC code
used to produce the analysis. The notes from the
original run recorded that PyCBC v1.3.2 was used,
and recorded the git commit hash of the configura-
tion files used (which are stored in a separate
GitHub repository).

Open Data

The original analysis used data and metadata that are
proprietary to the LIGO Scientific Collaboration and
the workflow used tools that queried proprietary serv-
ers to locate and access these data. Our script modi-
fies the workflow to use the public data and services
provided by GWOSC. For the metadata, we created
wrapper codes that have the same command-line API
as the proprietary codes and translate these to
queries against the public data repositories. The for-
mat of the data-quality metdadata provided by
GWOSC is different to that used in the original analy-
sis. Information from the public LIGO technical note
T1600011-v3 was used to determine how to use the
public metadata in way that is as close as possible to
the original metadata. LIGO publishes its public data
using CVMFS under the gwosc.osgstorage.org organi-
zation. Our script configures the workflow to use data
from CVMFS, allowing us to rely on its distribution and
caching capabilities when running jobs on the OSG. To
allow the workflow generation script to find these
data, we installed the LIGO Diskcache API to index
the CVMFS files and the LIGO Datafind Server to
resolve the workflow's metdatadata queries to file
URLs for the CVMFS data. Configuration files for these
tools are provided in our data release.

OUR SCRIPT CONFIGURES THE
WORKFLOW TO USE DATA FROM
CVMFS, ALLOWING US TO RELY ON ITS
DISTRIBUTION AND CACHING
CAPABILITIES WHEN RUNNING JOBS
ON THE OSCG.

Workflow Format

To provide sufficient resources to run the workflow, we
executed the computationally intensive jobs on the
OSG. This required a newer version of Pegasus work-
flow management system'® than the version originally
used to plan and execute the analysis. Our workflow

March/April 2021

Authorized licensed use limited to: University of Southern California. Downloaded on March 29,2021 at 16:48:28 UTC from IEEE Xplore. Restrictions apply.

https://github.com/gwastro/pycbc-config
https://doi.org/10.5281/zenodo.4085984
https://github.com/gwastro/gw150914-fig4b/commits/1.1

REPRODUCIBLE RESEARCH

65536 -

41534 bl

generation script modifies the workflow written by
PyCBC v1.3.2 to be compatible with Pegasus 4.9.3.

16384
4096

1024

Access to Codes

Although all of the codes used to generate and run
the analysis workflow were public, the script used
to make the figure shown in Abbott et al® was
never released in the PyCBC software repository.
Since one of the authors of this article helped cre-
ate this script, we were able to obtain the original
code used.

Count (Number of jobs)

N}
193
=N

1 2 4 8 16 32 64 128 256
MAXRSS (Physical memory used) in GB

FIGURE 2. Frequency histogram showing maximum physical mem-

After modifying the original workflow generation
script to address the challenges described in the
previous section, we attempted to reproduce the
analysis. LIGO did not provide estimates of the run-
times or the resource requirements of the analysis
tasks, so we executed the workflow on a combina-
tion of local and OSG resources. We used USC-ISI
computers to manage the workflow and run the post-
processing jobs and OSG resources to run the compu-
tationally intensive jobs. Several challenges were
encountered during our attempt to execute the work-
flow, as described below.

Operating System and Hardware
Mismatches

The PyCBC Pyinstaller bundles are not true static
executables nor are they packaged in a robust con-
tainerized environment like Singularity. The bundles
require the appropriate C standard-library shared
objects to be installed on the target machine and per-
form just-in-time compilation of bundled C code using
the now-deprecated scipy.weave module. A standard set
of OS libraries, the GNU C Compiler, and processor
instructions was guaranteed for the original analysis
as it was run on a single homogeneous LIGO Data
Grid cluster. However, not all the OSG compute
notes had the correct versions of C standard-library
installed and some nodes lacked processor instruc-
tions (specifically, we encountered QEMU-emulated
virtual machines that lacked the FMA4 instruction)
that the PyCBC bundles required on the execute
nodes. To address this, we used Pegasus and HTCon-
dor matchmaking and fault tolerance functionalities
and the ability to express requirements of the desired
node characteristics to steer the PyCBC executables
to compatible OSG compute nodes.

Nondeterministic Memory Use
The amount of memory that the matched-filtering jobs
required is determined by the data that they analyze. If

March/April 2021

ory used by LIGO jobs as reported by pegasus-kickstart in range
of 1-256 GB, with both X/Y axis on log scale.

LIGO data contains more non-Gaussian noise than
average, more memory is required to compute signal-
based vetoes and to store the resulting triggers. Since
the noise is random, it is not possible to determine in
advance how much memory is required for a given job.
To address this, we configured HTCondor to automati-
cally request more memory on each retried filtering
job that failed.

Postprocessing Memory Requirements
Several of the workflow's postprocessing jobs require
very large memory footprints (greater than 128 Gb). It
was challenging to find machines with sufficient
capacity for these jobs on OSG and so these jobs were
executed on the local cluster at USC-ISI. This cluster
is managed using HTCondor partitionable slots allow-
ing a single job to request sufficient memory in our
multicore machines. Coordination with the cluster
administrators was required to ensure that these
resources were available.

Long-Term Code Archival

During the preparation of this article, the LIGO Scien-
tific Collaboration deleted the repository at git.ligo.org
that stored the compiled Pylnstaller PyCBC execut-
ables used in the original analysis. We had preserved a
copy of the PyCBC v1.3.2 Pylnstaller bundles prior to
their deletion in an archive file on the IEEE DataPort
server.® We have hosted an uncompressed version of
this archive on a USC/ISI web server and configured
our workflow generation script to download the

°http://dx.doi.org/10.21227/c634-qh33
‘https://pegasus.isi.edu/ligo/eager/pycbc-software/v1.3.2/

Computing in Science & Engineering

77

Authorized licensed use limited to: University of Southern California. Downloaded on March 29,2021 at 16:48:28 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.21227/c634-qh33
https://pegasus.isi.edu/ligo/eager/pycbc-software/v1.3.2/

REPRODUCIBLE RESEARCH

" 37075
32768 |

3171

1024 -

Count (Number of jobs)

I
o q

qf_)a "’qr_ %{—//00 2> ’Jqf_ %%
0 0 0, 0 0 0 0 0 , / /) .
% T e g
Runtime in thousands of seconds

O 000
qﬁfff

FIGURE 3. Frequency histogram showing runtime of LIGO jobs as

reported by pegasus-kickstart in range of 0-380 000 s.

bundles from the USC/ISI server. Preserving these exe-
cutables will allow others to run using the bundles
rather than having to recreate the complex PyCBC
software stack from the public source code available
on GitHub.

Once the various issues described above had been
addressed in our workflow-generation script genera-
te_workflow.sh® and LIGO's PyCBC v1.3.2 Pyinstaller
bundles, we were able to reproduce the LIGO analy-
sis workflow. The workflow contained almost 42 000
tasks). We observed 28 676 task failures as the
workflow ran approximately 155 days of badput
(amount of computation time used on failed jobs).
The majority of job failures were caused by PylInstal-
ler bundles landing on incompatible nodes and the
majority of badput was due to compute-intensive
jobs being evicted due to using too much memory.
Failing jobs were rerun using the retry on failure
semantics in Pegasus and HTCondor that then
steered these jobs to compatible nodes. Listing 1
shows results retrieved from mining the Pegasus
runtime provenance database. To execute the
GW150914 workflow requires approximately 22 years
of computing time (sum of duration of all jobs in the
workflow with each job running on a single core).
The workflow generates a web page with a number
of diagnostic plots that are used by LIGO scientists to
understand the detector state, the properties of the
noise, and the results of the search. For the purpose
of reproducing Figure 4 of Abbott et al.® the primary
data product is a 2.5 Gb HDF5 file that contains the

triggers found in coincidence between the LIGO
detectors, and the search background estimated
using the time-slide method.”® We have archived
a compressed version of this HDF5 file on the
IEEE DataPort server."

To allow future researchers to reproduce our
work on their own resources, we show the distri-
bution of physical memory used by LIGO jobs
and their run-times as frequency histograms in
Figures 2 and 3, respectively. In PyCBC work-
flows, each job type is associated with a trans-
formation (executable). In Table 1, we describe
the top 10 transformations ordered by the maxi-
mum physical memory used. Table 2 describes
the top 10 transformations ordered by maximum
runtime in seconds.

The workflow generates the data required
to make Figure 4 of Abbott et al.® however, it does
not generate the actual plot; a separate Python plot-
ting script was used to create the histogram. As
noted earlier, this script was not made public. Even
though we had an internal version of the script, no
Pylnstaller bundle was created that captured the
software stack used by that script. Running the plot-
ting script against current versions of the libraries
resulted in failures, so we needed to reproduce the
original software stack. This was a considerable
challenge and illustrates the importance of releasing
containerized executables in addition to the source
code for reproducibility in scientific analyses.

We obtained the version of PyCBC and LALsuite
used by this code from notes made at the time of the
original analysis (v1.3.4 and v6.36, respectively). We
then determined the necessary and sufficient set of
lower-level libraries required by these high-level librar-
ies by examining the setup.py and requirements.txt in
PyCBC v1.3.4. Using the PyCBC v1.3.4 install instruc-
tions, we create a Python virtual environment with the
same version of pip and virualenv used in the original
analysis. An iterative process of running the LALSuite
configure script was performed until all the required
dependencies of LALSuite were installed. The specific
versions of 14 libraries (and their dependencies) were
either installed using pip or compiled from source into
the Python virtual environment. The iterative process
of determining the required dependencies was compli-
cated by the fact that pip caches previous software
builds and so the install process is not necessarily
idempotent.

Ehttps://doi.org/10.5281/zenodo.4085984

78 Computing in Science & Engineering

Phttp://dx.doi.org/10.21227/c634-gh33

March/April 2021

Authorized licensed use limited to: University of Southern California. Downloaded on March 29,2021 at 16:48:28 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.5281/zenodo.4085984
http://dx.doi.org/10.21227/c634-qh33

REPRODUCIBLE RESEARCH

TABLE 1. Top 10 LIGO job types by maximum physical memory (maxrss) used in MB, where (FDFCC) expands to
FULL_data_full_cumulative_cat and (FD_fb) to FULL_data_full_bin.

LIGO Job Transformation Count Mean (runtime) Min(mem)in Max (mem)in Mean (mem)in
seconds MB MB MB

distribute_background_bins-(FDFCC)_ 1 9673.17 194898.65 194898.65 194898.65

12H-H1L1_ID15

statmap-(FDFCC)_12H-H1L1_ID16 3 9698.37 16218.66 189332.06 103789.45

plot_snrifar-(FDFCC)_12H_(FD_FB)_2- 1 20459.47 150602.64 150602.64 150602.64

H1L1_ID32

plot_snrifar-(FDFCC)_12H_(FD_FB)_2_IFAR- 1 2177.91 62365.84 62365.84 62365.84

H1L1_ID34

plot_snrifar-(FDFCC)_12H_(FD_FB)_2_ 1 1654.36 54009.43 54009.43 54009.43

CLOSED-H1L1_ID21

plot_snrifar-(FDFCC)_12H_(FD_FB)_0_IFAR- 1 1473.62 40302.30 40302.30 40302.30

H1L1_ID24

plot_snrifar-(FDFCC)_12H_(FD_FB)_0-H1L1_ 1 1484.56 40302.11 40302.11 40302.11

1D22

plot_snrifar-(FDFCC)_12H_(FD_FB)_0_ 1 1167.86 34923.08 34923.08 34923.08

CLOSED-H1L1_ID19

plot_singles-MTOTAL_EFFSPIN_NEWSNR_ 1 1302.16 32334.82 32334.82 32334.82

FULL_DATA-H1_ID47

plot_singles-ENDTIME_DURATION_ 1 1168.63 32334.81 32334.81 32334.81

NEWSNR_FULL_DATA-H1_ID45

Listing 1. Output of the pegasus-statistics tool
showing runtime statistics from the OSG run

Type Succeeded Failed Incomplete Total Retries
Tasks 41856 0 0 41856 28676
Jobs 46631 0 0 46631 28676
Sub-Workflows 8 0 0 8 104

Workflow wall time
Cumulative job wall time
Cumulative job badput wall time

: 29 days, 0 hrs

: 22 years, 54 days

: 155 days, 13 hrs

Integrity Metrics

Number of files for which checksums were compared/computed
along

#with total time spent doing it.

94713 files checksums compared with total duration of 7 hrs, 55

mins

46200 files checksums generated with total duration of 4 hrs, 9

mins

Integrity Errors

Total:

Total number of integrity errors encountered across all

job

executions(including retries) of a workflow.

Failures:

Number of failed jobs where the last job instance had

integrity errors.

Total: Atotal of 54 integrity errors encountered in the workflow

Failures: 0 job failures had integrity errors

March/April 2021

After these libraries were installed, LALSuite and
PyCBC were installed and the Python plotting script
was executed. Our data release includes a script make_-
pycbc_hist.sh' that automates the installation and exe-
cution of the plotting code. Our reproduction of the
LIGO result is shown in Figure 1, which includes the
original LIGO/Virgo result for comparison.

We find that we were able to reproduce the
search result. However, there are some small but
noticeable differences in the search background
(continuous black line) and the lower bound on the
significance that the workflow reports for GW150914;
We find the significance is greater than 50, rather
than greater than 5.10 (original plot). We attribute
both of these differences to changes in the input
data used by the workflow. The usage instructions
for the GWOSC data state that the LIGO strain data
in the public data set are based on the 02 calibra-
tion of the LIGO detectors, whereas the original
PyCBC configuration files state that co1 data were
used for the analysis of Abbott et al.> We hypothe-
size that the GWOSC ce2-based data contains
slightly less analysis time than the o1 data originally
used. This would result in a lower bound for the sig-
nificance of the event and produce slight changes in
the search background. However, we are not able to

thttps://doi.org/10.5281/zenodo.4085984

Computing in Science & Engineering

79

Authorized licensed use limited to: University of Southern California. Downloaded on March 29,2021 at 16:48:28 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.5281/zenodo.4085984

REPRODUCIBLE RESEARCH

80

TABLE 2. Top 10 LIGO job types by max runtime in seconds.

LIGO Job Transformation Count Mean (runtime) Min (mem) in Max (mem) in Mean (mem) in
seconds MB MB MB
hdf_trigger_merge-FULL_DATA- 1 376478.99 1026.20 1026.20 1026.20
L1_1D12
calculate_psd-PART5-H1_ID75 1 205419.13 1027.13 1027.13 1027.13
calculate_psd-PART3-H1_ID73 1 204379.13 1024.27 1024.27 1024.27
calculate_psd-PART4-H1_ID74 1 202814.55 1024.95 1024.95 1024.95
calculate_psd-PART1-H1_ID71 1 202169.56 1024.81 1024.81 1024.81
calculate_psd-PART9-H1_ID79 1 167258.14 1356.44 1356.44 1356.44
calculate_psd-PART9-L1_ID68 1 116403.74 1408.61 1408.61 1408.61
calculate_psd-PART1-L1_ID60 1 115357.57 1386.77 1386.77 1386.77
calculate_psd-PARTO0-L1_ID59 1 110270.45 1025.48 1025.48 1025.48
calculate_psd-PART7-L1_ID66 1 109125.78 1398.72 1398.72 1398.72
calculate_psd-PART8-H1_ID78 1 71150.19 1344.01 1344.01 1344.01

verify this as we were unable to obtain access to the
proprietary Ce1 data.

We have described the process and challenges
encountered in reproducing the measured statistical
significance of GW150914. Our script is configured to
execute compute-intensive jobs on the OSG. To allow
scientists to run on other resources, our data release
provides instructions for running all jobs on local
resources. The memory and runtime profiling of the
workflow tasks provided in this article will enable
appropriate resource selection.

Our execution of the workflow used HTCondor as
the job scheduler; this scheduler is also used by the
LIGO Data Grid. Although one could modify our work-
flow generation script to use alternative job schedu-
lers, we recommend against this because of the wide
variance in the memory requirements of the jobs and
need for a relatively homogeneous environment. We
rely on HTCondor for job resubmission in case of fail-
ure and its mechanisms of custom-created HTCondor
classAds to increase memory requested for a job in
case of failures. When using a scheduler like SLURM,
we recommend that one uses the upper memory
bounds we provide in this article. A better practice
would be to overlay HTCondor on the native scheduler
using resource provisioning techniques such as
HTCondor glideins. We also recommend the use of
CVMFS to access GWOSC data. Although Pegasus
can be configured to transfer the data at runtime, e.g.,
from the submit host, where the workflow system is
located (USC/ISI in our case) or via http from the
GWOSC web site, this requires movement of tens of
thousands of input data files. It is more efficient to
rely on the CVMFS storage and caching mechanism
and to configure Pegasus to create symbolic links to

Computing in Science & Engineering

the CVMFS locations, rather than performing true
copies.

We have demonstrated that, although LIGO did
not provide complete instructions for reproducing
the GW150914 result, sufficient information exists
either in the public domain or recorded as notes
describing the original analysis to reproduce the
PyCBC GW150914 workflow. Although we made sub-
stantial progress in reproducing the PyCBC result
shown in Figure 4 of the paper by Abbott et al.®* we
were unable to reproduce it exactly as we did not
have access to the original input data and metadata.
The LIGO data need to be calibrated based on the
understanding of the characteristics of the instru-
ment and its state. These calibrations may change
over time as the knowledge about the detectors
improves. Data providers often want to publish “best
quality” data and not provide earlier outdated ver-
sions. This is the case with the data from LIGO's first
observing run where only the final calibrated data
are public. If the original data used in the GW150914
discovery paper are made public, it is straightforward
to modify our workflow generation script to use
these data. As part of this work, we have released
scripts that allows other scientists to reproduce the
LIGO analysis using publicly available data using
their own compute resources or the OSG using the
latest stable versions of Pegasus and HTCondor.

Our results show that, in principle, it is possible to
release instructions and code that allow other scien-
tists to reproduce a major scientific result. We encour-
age scientists who wish to do so to ensure that
instructions include: access to the original data and
codes used; documentation of software and configu-
ration file versions; containerized executables that
capture the complete software stack used in the
original analysis; long-term archival of code and data

March/April 2021

Authorized licensed use limited to: University of Southern California. Downloaded on March 29,2021 at 16:48:28 UTC from IEEE Xplore. Restrictions apply.

products used; and documentation about the compu-
tational resources needed to execute the analysis.
Understanding how reproducibility is incorporated in
astrophysics workflows in general and scientific work-
flows in particular through the sharing of practices in
reproducible scientific software will help enable open
science across disciplines. Codes, data, and workflows
generated by this and similar efforts can ultimately
enable researchers and students at various levels of
education to regenerate the same findings, learn
about the scientific methods, and engage in new sci-
ence, technology, engineering, and mathematics
(STEM) research.

The scripts and supporting codes used to run the
PyCBC workflow generation code using the GWOSC
data and to make the result plot described in this arti-
cle are available from GitHub at https://github.com/
gwastro/gw150914-figdb. The specific version used in
this work was https://doi.org/10.5281/zenodo.4085984.
The PyCBC v1.3.2 Pylnstaller bundles used by the
workflow and the HDF5 file created by the PyCBC
workflow are available from http://dx.doi.org/10.21227/
c634- gh33.

The authors would like to thank M. Rynge for pro-
viding input on configuring the pipeline to run on
OSG, A. Nitz and M. Alessandra Papa for providing
the script used to make the PyCBC result histogram,
and S. Anderson for helpful discussions. This work
was supported by the U.S. National Science Founda-
tion under Grant OAC-1823378, Grant OAC-1823405,
Grant OAC-1841399, and Grant OAC-1823385. Pega-
sus is supported by the U.S. National Science Foun-
dation under Grant OAC-1664162. The Open Science
Grid is supported in part by the U.S. National Sci-
ence Foundation under Grant PHY-1148698, and the
U.S. Department of Energy's Office of Science. This
research has made use of data, software, and/or
web tools obtained from the Gravitational Wave
Open Science Center, a service of LIGO Laboratory,
the LIGO Scientific Collaboration, and the Virgo Col-
laboration. LIGO is funded by the U.S. National Sci-
ence Foundation. Virgo is funded, through the
European Gravitational Observatory (EGO), by the
French Centre National de Recherche Scientifique
(CNRS), the Italian Istituto Nazionale della Fisica
Nucleare (INFN), and the Dutch Nikhef, with contri-
butions by institutions from Belgium, Germany,
Greece, Hungary, Ireland, Japan, Monaco, Poland,
Portugal, and Spain.

March/April 2021

10.

.

12.

REPRODUCIBLE RESEARCH

. V.Stodden et al., “Enhancing reproducibility for

computational methods,” Science, vol. 354, no. 6317,
pp. 1240-1241, 2016, doi: 10.1126/science.aah6168.

M. A. Heroux, L. Barba, M. Parashar, V. Stodden, and

M. Taufer, “Toward a compatible reproducibility
taxonomy for computational and computing sciences,”
Sandia Nat. Lab., Albuquerque, NM, USA, Tech. Rep.
SAND2018-11186 669580, 2018, doi: 10.2172/1481626.

. B.P. Abbott et al., “Observation of gravitational waves

from a binary black hole merger,” Phys. Rev. Lett.,

vol. 116, Feb. 2016, Art. no. 061102, doi: 10.1103/
PhysRevLett.116.061102.

T.Venumadhav, B. Zackay, J. Roulet, L. Dai, and

M. Zaldarriaga, “New search pipeline for compact
binary mergers: Results for binary black holes in the
first observing run of advanced LIGO,"” Phys. Rev. D,
vol. 100, no. 2, 2019, Art. no. 023011, doi: 10.1103/
PhysRevD.100.023011.

A. H. Nitz et al., "1-OGC: The first open gravitational-
wave catalog of binary mergers from analysis of public
advanced LIGO data,” Astrophys. J., vol. 872, no. 2, 2019,
Art. no. 195, doi: 10.3847/1538-4357/ab0108.

D. Chapp et al., “Applicability study of the PRIMAD model
to LIGO gravitational wave search workflows,” in Proc.
2nd Int. Workshop Practical Reproducible Eval. Comput.
Syst., 2019, pp. 1-6, doi: 10.1145/3322790.3330591.

S. A. Usman et al., “The PyCBC search for gravitational
waves from compact binary coalescence,” Classical
Quantum Gravity, vol. 33, no. 21, 2016, Art. no. 215004,
doi: 10.1088/0264-9381/33/21/215004.

B. P. Abbott et al. “"GW150914: First results from the
search for binary black hole coalescence with
advanced LIGO,” Phys. Rev. D, vol. 93, no. 12, 2016,

Art. no. 122003, doi: 10.1103/PhysRevD.93.122003.

B. Bockelman et al., “Commissioning the HTCondor-CE
for the open science grid,” J. Phys., Conf. Ser., vol. 664,
no. 6, 2015, Art. no. 062003, doi: 10.1088/1742-6596/664/
6/062003.

E. Deelman et al., “The evolution of the pegasus
workflow management software,” Comput. Sci. Eng.,
vol. 21, no. 4, pp. 22-36, 2019, doi: 10.1109/
MCSE.2019.2919690.

D. Weitzel, B. Bockelman, D. A. Brown, P. Couvares,
F. Wirthwein, and E. F. Hernandez, “Data access for
LIGO on the OSG,” in Proc. Pract. Experience Adv.
Res. Comput. Sustainability, Success Impact , 2017,
pp. 1-6, doi: 10.1145/3093338.3093363.

M. Vallisneri, J. Kanner, R. Williams, A. Weinstein, and
B. Stephens, “The LIGO open science center,” J. Phys.
Conf. Ser., vol. 610, no. 1, 2015, Art. no. 012021, doi:
10.1088/1742-6596/610/1/012021.

Computing in Science & Engineering 81

Authorized licensed use limited to: University of Southern California. Downloaded on March 29,2021 at 16:48:28 UTC from IEEE Xplore. Restrictions apply.

https://github.com/gwastro/gw150914-fig4b
https://github.com/gwastro/gw150914-fig4b
https://doi.org/10.5281/zenodo.4085984
http://dx.doi.org/10.21227/c634-%20qh33
http://dx.doi.org/10.21227/c634-%20qh33
http://dx.doi.org/10.1126/science.aah6168
http://dx.doi.org/10.2172/1481626
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevD.100.023011
http://dx.doi.org/10.1103/PhysRevD.100.023011
http://dx.doi.org/10.3847/1538-4357/ab0108
http://dx.doi.org/10.1145/3322790.3330591
http://dx.doi.org/10.1088/0264-9381/33/21/215004
http://dx.doi.org/10.1103/PhysRevD.93.122003
http://dx.doi.org/10.1088/1742-6596/664/6/062003
http://dx.doi.org/10.1088/1742-6596/664/6/062003
http://dx.doi.org/10.1109/MCSE.2019.2919690
http://dx.doi.org/10.1109/MCSE.2019.2919690
http://dx.doi.org/10.1145/3093338.3093363
http://dx.doi.org/10.1088/1742-6596/610/1/012021

REPRODUCIBLE RESEARCH

82

DUNCAN A. BROWN is currently the Charles Brightman Pro-
fessor of Physics with Syracuse University, Syracuse, NY,
USA. He was a member of the LIGO Scientific Collaboration
from 1999 to 2018 and is a Fellow of the American Physical
Society. He is a coauthor of the paper “Data access for LIGO
on the OSG,” which won Best Software and Data Paper at
PEARC17. His research includes gravitational-wave astron-
omy and astrophysics, and the use of large-scale scientific
workflows. He received the Ph.D. degree in physics from the
University of Wisconsin-Milwaukee, Milwaukee, WI, USA, in
2004. Contact him at dabrown@syr.edu.

KARAN VAHI is currently a senior computer scientist with
the USC Information Sciences Institute, Marina Del Ray, CA,
USA. He is a co-author of the paper “Integrity Protection for
Scientific Workflow Data: Motivation and Initial Experiences,”
which won Best Paper in the Advanced Research Computing
Software and Applications Track and also the “The Phil
Andrews Most Transformative Contribution Award” at
PEARC19. His research interests include scientific workflows
and distributed computing systems. He received the M.S
degree in computer science from the University of Southern
California, Los Angeles, CA, USA, in 2003. Contact him at
vahi@isi.edu.

MICHELA TAUFER holds the Jack Dongarra Professorship in
high performance computing within the Department of Elec-
trical Engineering and Computer Science, University of Ten-
nessee, Knoxville, TN, USA. She is an ACM Distinguished
Scientist. Her interdisciplinary research is at the intersection

Computing in Science & Engineering

of computational sciences, high permanence computing, and
data analytics. She received the Ph.D. degree in computer
science from the Swiss Federal Institute of Technology (ETH),
Zirich, Switzerland, in 2002. She is a Senior Member of IEEE.
Contact her at taufer@acm.org.

VON WELCH
dent for Information Security, Executive Director for the

is currently the Acting Associate Vice Presi-

OmniSOC, Executive Director for Cybersecurity Innovation
with Indiana University, Bloomington, IN, USA, and the Direc-
tor of the IU's Center for Applied Cybersecurity Research
(CACR). He specializes in cybersecurity for distributed sys-
tems, particularly scientific collaborations, and federated
identity. Contact him at vwelch@iu.edu.

EWA DEELMAN s a research director with USC/ISI, Marina
del Rey, CA, USA and a research professor with the USC Com-
puter Science Department. Her research explores the inter-
play between automation and the management of scientific
workflows that include resource provisioning and data man-
agement. Her group has lead the design and development of
the Pegasus Workflow Management software (http://
pegasus.isi.edu) and conducts research in job scheduling and
resource provisioning in distributed systems, workflow per-
formance modeling, provenance capture, and the use of
cloud platforms for science. She is an AAAS and IEEE Fellow.
She received the Ph.D. degree in computer science from the
Rensselaer Polytechnic Institute, Troy, NY, USA. Contact her
at deelman@isi.edu.

March/April 2021

Authorized licensed use limited to: University of Southern California. Downloaded on March 29,2021 at 16:48:28 UTC from IEEE Xplore. Restrictions apply.

http://pegasus.isi.edu
http://pegasus.isi.edu

