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Abstract

Graph compression or sparsification is a basic information-
theoretic and computational question. A major open prob-
lem in this research area is whether (1+ ε)-approximate cut-
preserving vertex sparsifiers with size close to the number
of terminals exist. As a step towards this goal, we study a
thresholded version of the problem: for a given parameter c,
find a smaller graph, which we call connectivity-c mimicking
network, which preserves connectivity among k terminals ex-
actly up to the value of c. We show that connectivity-c mim-
icking networks with O(kc4) edges exist and can be found
in time m(c logn)O(c). We also give a separate algorithm
that constructs such graphs with k · O(c)2c edges in time
mcO(c) logO(1) n.

These results lead to the first data structures for answering

fully dynamic offline c-edge-connectivity queries for c ≥ 4 in

polylogarithmic time per query, as well as more efficient algo-

rithms for survivable network design on bounded treewidth

graphs.

1 Introduction

Graph compression or sparsification is a basic
information-theoretic and computational question of the
following nature: can we compute a “compact” rep-
resentation of a graph, with fewer vertices or edges,
that preserves important information? Important ex-
amples include spanners, which preserve distances ap-
proximately up to a multiplicative factor, and cut and
spectral sparsifiers [7, 65], which preserve cuts and the
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Laplacian spectrum up to an approximation factor of
(1 + ε). Such edge sparsifiers allow us to reduce sev-
eral algorithmic problems on dense graphs to those on
sparse graphs, at the cost of a (1 + ε) approximation
factor. On the other hand, some computational tasks,
such as routing or graph partitioning, require reducing
the number of vertices (instead of edges), that is, vertex
sparsification.

The notion of vertex sparsification we consider here is
that of cut sparsification, introduced by [34, 54, 48]. In
this setting, we are given an edge-capacitated graph G
and a subset T ⊆ V (G) of k vertices called terminals,
and we want to construct a smaller graph H that
maintains all the minimum cuts between every pair of
subsets of T up to a multiplicative factor q, called the
quality of the sparsifier. More formally, we want to
find a graph H which contains T as well as possibly
additional vertices, such that for any S ⊆ T , the
minimum cut between S and T \ S in G and H agree
up to the multiplicative factor of q. Ideally, the size of
the sparsifier (i.e., |V (H)|) should only depend on |T |
and not the size of G.

There have been several results regarding tradeoffs
between the quality q and the size of cut sparsifiers.
One line of work considers the case where the sparsifier
H has no additional vertices beyond the terminals.
Here, an upper bound of O(log k/ log log k) [54, 48,
10, 52, 21] and lower bound of Ω(

√
log k/ log log k)

[52] are known. In a different direction, quality 1-

sparsifiers (known as mimicking networks) with 22k

vertices were shown to exist [34, 42], and a lower bound
of 2Ω(k) is also known [44]. Also, Chuzhoy [13] studied
the problem of obtaining the best possible trade-offs
between quality and size of sparsifiers, and showed that
quality-3 sparsifiers with O(Z3) vertices exist, where Z
is the total capacity of all terminals. A major open
problem is whether a quality-(1+ε) cut sparsifier of size

Õ(k/poly(ε)) exists; so far, this is only known for special
graph classes, such as quasi-bipartite graphs [5, 4].

This paper aims to study a related graph sparsifier that
is suitable for applications in designing fast algorithms
for connectivity problems. In particular, we consider the
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following problem: given an edge-capacitated graph G
with k terminals T and a constant c, construct a graph
H with T ⊆ V (H) that maintains all minimum cuts
up to size c among terminals. Precisely, we want, for
all subsets S ⊆ T , that min (c,mincutG(S, T \S)) =
min (c,mincutH(S, T \S)), where, for disjoint subsets
A,B ⊆ V (G), we define mincutG(A,B) as the value
of a minimum cut between A and B in graph G. In this
case, we call H a connectivity-c mimicking network of
G (See Definition 2.1).

Our main result (Theorem 1.1) shows that every graph
G with integer edge capacities admits a connectivity-c
mimicking network with O(kc4) edges (so O(kc4) ver-
tices as well), and we show a near-linear time algorithm
to compute it.

Theorem 1.1. Given any edge-capacitated graph G
with n vertices, m edges, along with a set T of k termi-
nals and a value c, there are algorithms that construct
a connectivity-c mimicking network H of G with

1. O(kc4) edges in time O(m · (c log n)O(c)),

2. k ·O(c)2c edges in time O(m · cO(c) logO(1) n).

In fact, the algorithm for Part 1 constructs the optimal
contraction-based mimicking network, so any existential
improvement to the size bound of such mimicking
networks would immediately translate to an efficient
algorithm.1 Our second algorithm is more efficient,
while blowing up the size of the mimicking network
obtained. We believe that our dependence on c is
suboptimal – we were only able to construct instances
that require at least 2kc edges in the connectivity-c
mimicking network, and are inclined to believe that an
upper bound of O(kc) is likely.

Theorem 1.1 has direct applications in fixed-parameter
tractability and dynamic graph data structures (see Sec-
tions 1.1 and 6). In fact, our results and techniques
have already been used to give a deterministic no(1) up-
date time fully dynamic algorithm for c-connectivity for
all c = o(log n) [38]. Additionally, our results are mo-
tivated in part by elimination-based graph algorithms
[46, 47], which we discuss in Section 1.2. In this way,
we believe that achieving (1 + ε)-quality cut sparsifiers

of size Õ(k/poly(ε)), an analogue of approximate Schur
complements for cuts, may have broad applications in
graph algorithms and data structures.

1.1 Our Results Our proof of existence of
connectivity-c mimicking networks with O(kc4)

1Formally, if there exists a connectivity-c mimicking network
with kf(c) edges that can be obtained by only contracting edges
in G, for some function f , then our algorithm finds a mimicking
network with at most O(kf(c)) edges.

edges (and thus O(kc4) vertices) involves extending
the recursive approach of [13] using well-linked sets
to a thresholded setting. The construction of [13] for
cut sparsifiers maintains a partition of the vertices of
the graph G. For each partition piece, the algorithm
either finds a sparse cut to recurse on, or contracts the
piece. [13] then bounds the deterioration in quality
from these contractions. The main differences between
our approach and [13] are:

• We introduce an extension of well-linkedness to a
thresholded c-connectivity setting.

• We do not run the recursion all the way down.
Instead, we use a kernelization result on mimicking
networks via gammoid representative sets [43] to
bottom out the recursion.

Additionally, in order to obtain near-linear running
times for our constructions, we combine the expander
decomposition technique [62] with several other com-
binatorial results that allow us to build the desired
connectivity-c mimicking network.

We would like to note that the result in [43] already gives
connectivity-c mimicking networks of size poly(k, c).
However, the dependence on k is at least quadratic,
and the algorithms for computing them run in at least
quadratic time, as these results use linear algebra on
matroids. Therefore, their results do not give more
efficient algorithms for the applications of dynamic
connectivity and subset c-EC below.

Theorem 1.1 has applications in data structures for dy-
namic edge connectivity. The problem of dynamic c-
edge-connectivity is to design an algorithm which sup-
ports edge additions, deletions, and c-edge-connectivity
queries between pairs of vertices as efficiently as possi-
ble, preferably in nearly constant Õ(1)2 amortized up-
date time. For online fully dynamic algorithms, such
results are only known for c ≤ 3 [36, 37]. Even in
the simpler offline model introduced by Eppstein [22],
where the algorithm sees all queries at the beginning,
the only result for c ≥ 4 is, to our knowledge, an un-
published offline fully dynamic algorithm for c = 4, 5 by
[55], which requires about

√
n time per query. The fact

that even offline algorithms are not known for dynamic
c-connectivity when c > 5 shows a serious gap in under-
standing of dynamic flow algorithms. We make signif-
icant progress towards shrinking this gap, and show in
Section 6.1 that, by combining Theorem 1.1 Part 2 with
a divide and conquer algorithm for processing queries,
we achieve nearly constant amortized time for offline

2Throughout, we use Õ(·) to hide poly log(n) factors. In
particular, Õ(1) = poly log(n).

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited1207

D
ow

nl
oa

de
d 

06
/2

7/
21

 to
 1

43
.2

15
.3

8.
55

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



fully dynamic c-edge-connectivity.

Theorem 1.2. There is an offline algorithm that on
an initially empty graph G answers q edge insertion,
deletion, and c-connectivity queries between arbitrary
pairs of vertices in amortized Õ(cO(c)) time per query.

Finally, connectivity-c mimicking networks are perhaps
the most natural object that can be used to “pass along”
connectivity information between sub-problems in the
dynamic programming framework. We illustrate this
concept by presenting an additional application. The
Subset c-Edge-Connectivity (or Subset c-EC) problem is
the following: given a graph G = (V,E) with costs on
edges, and terminals, find the cheapest subgraph H in
which every pair of terminals is c-connected. We show
in Section 6.2 that Theorem 1.1 speeds up the running
time for solving this problem in low treewidth graphs.

Theorem 1.3. There is an algorithm that exactly
solves Subset c-EC on an input graph G with n vertices
in time n exp

(
O(c4 tw(G) log(tw(G)c)

)
, where tw(G)

denotes the treewidth of G.

This is an improvement over [9] in which the running
time was doubly-exponential in both c and tw(G). Fur-
thermore, the existence of a conditional lower bound of
(3 − ε)tw(G) even when c = 1, under the assumption of
the strong exponential time hypothesis, implies that the
dependence of our running time on tw(G) is almost op-
timal. Also, our dynamic programming based algorithm
shows that any improvement to the edge bound O(kc4)
in Theorem 1.1 gives an improvement for Theorem 1.3.

1.2 Related Work We believe that our work has
potential connections to dynamic data structures,
elimination-based graph algorithms, and approximation
algorithms and sparsification.

Static and Dynamic c-Edge-Connectivity Algo-
rithms. The study of efficient algorithms for comput-
ing graph connectivity has a long history, including the
study of max-flow algorithms [27], near-linear time al-
gorithms for computing global min-cut [39], and most
recently, progress in exact [50, 51, 14] and approximate
max-flow algorithms [64, 58, 41, 63]. The c-limited edge
connectivity case can be solved in O(mc) time statically,
and is also implied by ε-approximate routines by setting
ε < 1/c. As a result, it is a natural starting point for de-
veloping routines that can answer multiple flow queries
on the same graph.

The question of computing max-flow between multiple
pairs of terminal vertices dates back to the Gomory-
Hu tree [28], which gives a tree representation of all
s-t min-cuts. However, such tree structures do not
extend to arbitrary subsets of vertices, and to date, have

proven difficult to maintain dynamically. As a result,
previous works on computing cuts between a subset
of vertices have gone through the use of tree-packing
based certificates. These include results on computing
the min-cut separating terminals [15], as well as the
construction of c-limited Gomory-Hu trees [35, 8].

Such results are in turn used to compute max-flow be-
tween multiple pairs of vertices [1]. These problems have
received much attention in fine grained complexity, since
their directed versions are difficult [3, 2], and it is not
known whether computing (1 + ε)-approximate versions
of these is possible. From this perspective, the c-limited
version is a natural starting point towards understand-
ing the difficulty of computing (1 + ε)-approximate all-
pairs max-flows in both static and dynamic graphs.

For the problem of finding a connectivity-c mimicking
network, its construction time is critical for their use in
data structures [59]. For a moderate number of termi-
nals (e.g., k = n0.1), nearly-linear time constructions of
vertex sparsifiers with poly(k) vertices were previously
known only when c ≤ 5 [59, 55]. To our knowledge,
the only results for maintaining exact c connectivity for
c ≥ 4 are incremental algorithms [16, 17, 18, 32], in
addition to the aforementioned fully dynamic algorithm
for c = 4, 5 by [55], which took about

√
n time per query.

Furthermore, since this work was originally released,
the concept of connectivity-c mimicking networks along
with the techniques of this work has been used to design
deterministic no(1) time fully dynamic algorithms for
exact c-connectivity for all c = o(log n) [38].

Elimination-based graph algorithms: The study
of connectivity-c mimicking networks in this paper can
also be viewed in the context of vertex reduction / elim-
ination based graph algorithms. Such algorithms are
closely related to the widely used and highly practi-
cally effective multigrid methods, which until very re-
cently have been viewed as heuristics with unproven
bounds. Even in the static setting, the only worst-
case bounds for multi-grid and elimination based algo-
rithms have been in the setting of linear systems [46, 47],
by utilizing a combination of vertex and edge sparsifi-
cations. Compared to the tree-like Laplacian solvers,
sparse vertex elimination has a multitude of advantages:
they are readily parallelizable [46], and can be more
easily adapted to data structures that handle dynamic
graphs [20, 19].

Important properties of such routines are that the size
of sparsifier is linear in the number of terminals, the
construction can be computed in nearly linear time, and
they are (1 + ε)-quality approximations. Particularly,
guaranteeing (1+ε)-quality is essential as there are often
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multiples stages in elimination algorithms, so losing
ω(1)-quality at each stage would be detrimental. Our
vertex-elimination routine combines all these properties
and thus meets all criteria of previous elimination based
routines [46, 47]. In contrast, most of the work on
vertex sparsification to date has been on shortest path
metrics [66, 12], and/or utilizes algebraic techniques [43,
23]. As a result, these routines, when interpreted as
vertex elimination routines, either incur errors, or have
size super-linear in the number of terminals.

Other notions of approximate sparsification.
Without using any additional vertices, the best known
upper and lower bounds on the quality of ver-
tex cut sparsifiers are O(log k/ log log k) [10, 52] and
Ω(
√

log k/ log log k) [52] respectively. [13] presents a
quality-O(1), size-O(C3) sparsifier, computable in time
poly(n) · 2C , where C denotes the total capacity of the
edges incident on the terminals. It is open whether there
are quality-(1 + ε) and size poly(k/ε) vertex sparsifiers
for edge connectivity, and we see Theorem 1.1 as a first
step towards achieving this goal.

Additionally, there has been significant work on vertex
sparsification in approximation algorithms [52, 10, 21,
45, 6, 23, 33, 29]. Recently, vertex sparsifiers were also
shown to be closely connected with dynamic graph data
structures [30, 59, 31, 19].

There has also been work on mimicking networks on spe-
cial graph classes. [44] presented a mimicking network of
size O(k222k) for planar graphs with k terminals, nearly
matching the lower bound [40]. When all terminals lie
on the same face, mimicking networks of size O(k2) are
known [29, 45]. Graphs with bounded-treewidth have

an upper bound O(k · 22tw(G)

) [11].

1.3 Structure of the Paper In Section 2, we give
preliminaries for our algorithms. In Section 3, we
sketch our approach to the main results, the existence
of a connectivity-c mimicking network with O(kc4)
edges and an algorithm to construct connectivity-c
mimicking networks of the optimal size, which we
elaborate in detail in Section 4. In Section 5, we take a
different approach to make an algorithm more efficient.
We finalize our paper with detailed explanation on
applications in Section 6.

2 Preliminaries

Our focus will be on cuts with at most c edges. Our algo-
rithms involve contractions, naturally leading to multi-
graphs. Thus, we view capacitated graphs (G,w) as
multigraphs with min(we, c) copies of an edge e. Hence,
we only deal with undirected, unweighted multigraphs.

Furthermore, we assume that each terminal vertex t ∈ T
has degree at most c through the following operation:
for t ∈ T add a new vertex t′ and c edges between t and
t′. As any cut separating t and t′ has size at least c, this
operation preserves all cuts of size at most c.

2.1 Cuts, Minimum Cuts, and (T , c)-equivalency
For a graph G = (V,E) and disjoint subsets A,B ⊆ V ,
let EG(A,B) denote the edges with one endpoint in
A and the other in B. The set of cuts in G consists
of EG(X,V \X) for X ⊆ V . For a subset X ⊆ V the
boundary of X, denoted by ∂X, is EG(X,V \X). For
subsets A,B ⊆ V , let mincutG(A,B) be the size of the
minimum cut separating A,B in G. If A ∩B 6= ∅, then
mincutG(A,B) =∞. Formally, we have

mincutG(A,B) = min
S⊆V

A⊆S,B⊆V \S

|EG(S, V \S)|.

If multiple minimum cuts exist, the choice is arbitrary,
and does not affect our results. For disjoint A,B ⊆ V ,

we sometimes write their disjoint union as A ·∪ B def
=

A ∪ B to emphasize that A,B are disjoint. We define

the thresholded minimum cut as mincutcG(A,B)
def
=

min(c,mincutG(A,B)). This definition then allows us
to formally define (T , c)-equivalence.

Definition 2.1. Let G and H be graphs both contain-
ing terminals T . We say that G and H are (T , c)-
equivalent if for any subset T1 of T , we have

mincutcH (T1, T \T1) = mincutcG (T1, T \T1) .

If G and H are (T , c)-equivalent, then we also say that
H is a connectivity-c mimicking network for G.

A terminal cut is any cut that has at least one terminal
from T on both sides of the cut. The minimum terminal
cut is the terminal cut with the smallest number of
edges. We denote by (T , c)-cuts the terminal cuts with
at most c edges.

We present useful observations about (T , c)-equivalency.

Lemma 2.1. If G and H are (T , c)-equivalent, then for

any subset of terminals T̂ ⊆ T and any ĉ ≤ c, G and
H are also (T̂ , ĉ)-equivalent.

Lemma 2.2. If G and H are (T , c)-equivalent, then for

any additional set of edges Ê with endpoints in T , G∪Ê
and H ∪ Ê are also (T , c)-equivalent.

When used in the reverse direction, this lemma says
that we can remove edges, as long as we include
their endpoints as terminal vertices (Corollary 2.1).
We complement this partitioning process by showing
that sparsifiers on disconnected graphs can be built
separately (Lemma 2.3).
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Corollary 2.1. Let Ê be a set of edges in G with
endpoints V (Ê), and T be terminals in G. If H is

(T ∪ V (Ê), c)-equivalent to G\Ê, then H ∪ Ê is (T , c)-
equivalent to G.

Lemma 2.3. If G1 is (T1, c)-equivalent to H1, and G2 is
(T2, c)-equivalent to H2, then the vertex-disjoint union
of G1 and G2, is (T1 ∪ T2, c)-equivalent to the vertex-
disjoint union of H1 and H2.

When considering connectivity-c mimicking networks,
we can restrict our attention to sparse graphs [56]. For
completeness, we prove the following lemma in the full
version of the paper3.

Lemma 2.4. Given any graph G = (V,E) on n vertices
and any c ≥ 0, we can find in O(cm) time a graph H
on the same n vertices, but with at most c(n− 1) edges,
such that G and H are (V, c)-equivalent.

2.2 Contractions For a graph G and an edge e ∈
E(G), we let G/e denote the graph obtained from G by
identifying the endpoints of e as a single vertex; we say
that we have contracted the edge e. The new vertex
is marked as a terminal if at least one of its endpoints
was a terminal. For a subset of edges Ê ⊆ E, we let
G/Ê denote the graph obtained from G by contracting

all edges in Ê. For any vertex set X ⊆ V , we denote by
G/X the graph obtained from G by contracting every
edge in G[X].

For multigraphs, minimum cuts are monotonically in-
creasing under contractions.

Lemma 2.5. For any subset of vertices V1 and V2 in V ,
and any set of edges Ê, it holds that

mincutG (V1, V2) ≤ mincutG/Ê (V1, V2) .

All our mimicking networks in Theorem 1.1 are pro-
duced by contracting edges of G.

3 Overview of our Approach

In this section, we give an overview for our proof of
Theorem 1.1 Part 1. We first present our contraction-
based approach to construct connectivity-c mimicking
networks with O(kc4) edges, and then show how to
generically convert contraction-based approaches into
efficient algorithms.

Existence of connectivity-c mimicking networks
with O(kc4) edges. Recall that, in our setup, we have
a graphG with k terminals T ⊆ V and wish to construct
a graph H with O(kc4) edges which is (T , c)-equivalent

3https://arxiv.org/abs/2007.07862

to G. Our algorithm constructs H by contracting edges
of G whose contraction does not affect the terminal cuts
of size at most c. To find these non-essential edges,
we intuitively perform a recursive procedure to identify
essential edges, i.e., edges that are involved in terminal
cuts of size at most c). After finding this set of essential
edges in G, we contract all remaining edges.

At a high level, this recursive procedure finds a “small
cut” in G, marks these edges as essential, and recurses
on both halves. We formalize this notion of small cut
through the definition of well-linkedness, variations of
which have seen use throughout flow approximation
algorithms [13, 60]. Here, we introduce a thresholded
version of well-linkedness.4

Definition 3.1. For a graph G, we call a sub-
set X ⊆ V connectivity-c well-linked if for ev-
ery bipartition (A,B) of X, we have |EG(A,B)| ≥
min(|∂A ∩ ∂X|, |∂B ∩ ∂X|, c).

If a bipartition (A,B) of X satisfies |EG(A,B)| <
min(|∂A∩∂X|, |∂B∩∂X|, c), we say that EG(A,B) is a
violating cut, as it certifies that X is not connectivity-c
well-linked. In this way, a violating cut corresponds to
the “small cut” in G whose edges we mark as essential.
Conversely, we show in Lemma 4.1 that all edges inside
a connectivity-c well-linked set are non-essential, i.e.,
may be freely contracted.

Our full recursive algorithm is as follows. We maintain
a partition of V \T = X1 ·∪ X2 ·∪ · · · ·∪ Xp, where p
denotes the number of pieces, and track the potential
function

∑p
i=1 |∂(Xi)|. Initially, we let there be a single

piece X = V \T , so that the potential value is |∂X| =
|∂(V \T )| ≤ kc, by our assumption in Section 2 that all
terminals have degree at most c. We recursively refine
the partition until each Xi is either connectivity-c well-
linked or |∂(Xi)| ≤ 2c−1. More precisely, if |∂(Xi)| ≥ 2c
but Xi is not connectivity-c well-linked, let EG(A,B)
be a violating cut of Xi for a bipartition (A,B) of
Xi; we then remove Xi and add A,B to our partition.
After this partitioning process terminates, the well-
linked pieces among X1, X2, · · · , Xp may be contracted
as discussed. For the pieces with |∂(Xi)| ≤ 2c − 1 we
make tricky manipulation on the boundary edges ∂(Xi)
as in Lemma 4.9 and then work on the line graph of Xi.
Applying a kernelization result (see Lemma 4.8), which
develops from matroid theory (gammoid in particular)
and the representative sets lemma (see Theorem 4.3), to
the line graph gives rise to a fruitful result (see Lemma

4There are two notions of well-linkedness in the literature: edge
linkedness and vertex linkedness. Here, our work focuses on edge
linkedness. For discussions and definitions of vertex linkedness,
we refer the readers to [61]
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4.3) which is more tailored to our edge-cut problem. It
allows us to contract those pieces down to O(c3) edges
and maintain (T , c)-equivalence.

It suffices to argue that the number of pieces in the
partition is at most kc at the end, so that our total
edge count is O(kc · c3) = O(kc4). To show this, note
that by Definition 3.1, for a violating cut EG(A,B)
of X, we have that max(|∂A|, |∂B|) ≤ |∂X| − 1 and
|∂A| + |∂B| ≤ 2(c − 1) + |∂X|. The former shows that
this recursion terminates, and combining the latter with
our potential function bounds the number of pieces at
the end. A more formal analysis is given in Section 4.1.

Note that the only non-constructive part of the above
proof is the assumption that we can find a violating cut.
However, we believe that an algorithm with efficient
running time is unlikely to exist, as this seems like a non-
trivial instance of the non-uniform sparsest cut problem
(in the full version, we present an algorithm with

running time 2O(c2)k2m, which could be of independent
interest). Hence, we present another procedure that
does not rely on computing a violating cut.

Efficient algorithm for constructing contrac-
tion-based connectivity-c mimicking networks.
Our above analysis, in fact, shows that all but O(kc4)
edges of G may be contracted while still giving a graph
which is (T , c)-equivalent to G (see Theorem 4.1).

A natural high level approach for an algorithm would be
to go through the edges e of G sequentially and check
whether contracting e preserves (T , c)-equivalency. If
so, we contract e, and otherwise, we do not. Our
analysis shows that at most O(kc4) edges will remain
at the end, and in fact that proving a better existential
bound improves the guarantees of such an algorithm.

Unfortunately, we do not know how to decide whether
contracting an edge e maintains all (T , c)-cuts even
in polynomial time. To get around this, we enforce
particular structure on our graph by performing an
expander decomposition. Expanders, defined formally
in Definition 4.1, are governed by their conductance
ϕ, and satisfy that any cut of size at most c has at
most cϕ−1 vertices on the smaller side. For a fixed
parameter ϕ, [62] have given an efficient algorithm
to remove O(mϕ log3 n) edges from G such that all
remaining components are expanders with conductance
at least ϕ (see Lemma 4.4). We now mark all the
removed edges as essential, delete them, and mark their
endpoints as additional terminals. Corollary 2.1 and
Lemma 2.3 show that it suffices to work separately with
each remaining component, which are guaranteed to be
expanders with conductance at least ϕ. Note that the

total number of terminals is now k +O(mϕ log3 n).

In order to check each edge e and decide whether it can
be safely contracted, we first enumerate all cuts in the
graph with at most c edges, of which there are at most
n(cϕ−1)2c, using the fact that the small side of any cut
of size at most c has at most cϕ−1 vertices in a graph of
conductance ϕ (see Lemma 4.5). For each cut, we find
the induced terminal partition, and all involved edges.
This allows us to find the minimum cut value for any
terminal partition, as long as it is at most c. Now, for an
edge e we check for all minimum cuts of size at most c
that it is involved in, whether there is another minimum
cut separating terminals that does not involve e. If so,
e may be contracted, and otherwise, it cannot. In case
we contract e, we delete the minimum cuts containing
e in the enumeration. Since cuts are monotone under
contraction (see Lemma 2.5) and a cut in G/e is also
a cut in G (see Lemma 4.6), the remaining minimum
cuts in the enumeration correspond to the minimum
cuts of G/e. Hence, we do not have to rebuild the
set of all small cuts during the algorithm. As there
are at most n(cϕ−1)2c total cuts of size at most c, this

algorithm may be executed in time Õ(nc(cϕ−1)2c) using
some standard data structures.

Finally, we discuss how to make our algorithm efficient,
even though the total number of terminals increased
to k + O(mϕ log3 n) after the expander decomposition.
We set ϕ−1 = O(c4 log3 n), and note that the number of
edges in our connectivity-c mimicking network for G is
O(kc4 +mc4ϕ log3 n) ≤ m/2 as long as m is a constant
factor larger than kc4. Now we repeat this procedure
until our connectivity-c mimicking network has O(kc4)
edges, which requires O(logm) iterations. Details are
given in Section 4.2.

4 Existence and Algorithm for Sparsifiers with
O(kc4) edges

We first show the existence of a connectivity-c mimick-
ing network with O(kc4) edges in Section 4.1, based on
contractions of connectivity-c well-linked sets and re-
placement of sets with sparse boundary. Then, in Sec-
tion 4.2, we design a O(m(c log n)O(c)) time algorithm
to find a connectivity-c mimicking network whose size
matches the best guarantee achievable via contractions.

4.1 Existence of Sparsifiers with O(kc4) edges
via Contractions Given a graph G and k terminals T ,
our construction of a connectivity-c mimicking network
with O(kc4) edges leverages a recursion scheme, where
we maintain a partition of the vertices X = V \T , and
track the total number of boundary edges of the parti-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited1211

D
ow

nl
oa

de
d 

06
/2

7/
21

 to
 1

43
.2

15
.3

8.
55

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



tion via a potential function. This approach introduces
the notion of well-linkedness, a standard tool for study-
ing flows and cuts, in order to refine the partition. Addi-
tionally, we must stop recursion at sets with sufficiently
sparse boundary to guarantee that the recursion termi-
nates without branching exponential times. The recur-
sion partitions X into at most kc pieces, each of which
is either a connectivity-c well-linked set or a set with
sparse boundary. Then we contract the connectivity-c
well-linked sets and change the sets with sparse bound-
ary into a smaller equivalent graph with O(c3) edges.
This procedure results in the following theorem.

Theorem 4.1. For a graph G with k terminals, there
is a subset E′ of E(G) such that the size of E′ is O(kc4)
and the graph with all edges except E′ contracted,
G/(E\E′), is (T , c)-equivalent to G.

To this end, we elaborate the procedure with details
in Section 4.1.1. To handle sets with sparse bound-
ary, we use a known kernelization result based on ma-
troid theory and the representative sets lemma. Un-
fortunately, these results mostly discuss vertex cuts, so
in Section 4.3 we build a gadget to transform a given
graph, from which we wish to obtain a connectivity-c
mimicking network, into a new graph whose minimum
vertex cut of any partition of terminals corresponds to
a minimum edge cut of the corresponding partition of
terminals in the original graph.

4.1.1 Existence Proof: PolySizedcNetwork As
discussed in Section 3, it is desirable to find
connectivity-c well-linked sets, because they can be con-
tracted without changing connectivity. The proof of this
claim is available in the appendix of our full version.

Lemma 4.1. Let X be a connectivity-c well-linked set in
G, and T be terminals disjoint with X (i.e. X∩T = ∅).
Then G/X is (T , c)-equivalent to G.

The recursive procedure PolySizedcNetwork takes
a subset X of V \ T and bisects it if there exists a
violating cut. Since finding a violating cut EG(A,B)
of X guarantees that |∂A|, |∂B| < |∂X|, the recursion
ends up reaching the base case in which the number
of boundary edges is at most 2c − 1. If there are no
violating cuts, contracting X also halts the recursion.

Hence, PolySizedcNetwork(V \ T ) just partitions
V \ T into pieces being either connectivity-c well-
linked sets or sets whose number of boundary edges
is at most 2c − 1. The contraction of a connectivity-
c well-linked set for (T , c)-equivalence is justified by
Lemma 4.1. Also, Corollary 2.1 and Lemma 2.3 justify
the replacement of a set X with no terminals by a
(T ′, c)-equivalent graph, where we introduce boundary
vertices in X as the tentative terminals T ′.

Algorithm 1: PolySizedcNetwork(G)

Input: undirected unweighted multi-graph G
Output: connectivity-c mimicking network H
if |∂G| ≤ 2c− 1 then

return (T ′, c)-equivalent sparsifier with terminals
T ′, where T ′ is the set of vertices incident to
boundary edges ∂G (based on Lemma 4.3).

else
if violating cut (V1, V2) exists then

return PolySizedcNetwork(G[V1]) &
PolySizedcNetwork(G[V2]).

else
Contract G to a single vertex.

return connectivity-c mimicking network H

The number of edges in a connectivity-c mimicking net-
work returned by the procedure depends on (i) the num-
ber of pieces, and (ii) how small equivalent sparsifiers a
subgraph with O(c) boundary edges has.

For (i), the number of smaller pieces being either
connectivity-c well-linked or |∂X| ≤ 2c − 1 simply
matches with the number of branching during the
recursion induced by the existence of a violating cut. It
is bounded by the following decreasing invariant, which
decreases by at least 1 for each branching.

Lemma 4.2. When PolySizedcNetwork splits a
given X into {Xi}li=1,

∑
i≤l max(|∂(Xi)|−2c+1, 0) is a

decreasing invariant with respect to separation induced
by a violating cut for some Xi.

Thus, branching takes place at most |∂X| times, as
the decreasing invariant begins with |∂X|. By the
assumption that terminals have degree at most c, we
have |∂(V \ T )| pieces, which is upper bounded by kc.

For (ii), by Lemma 4.9, we may assume that a set
with O(c) boundary edges can be viewed as a set with
O(c) tentative terminals, each of which has degree 1.
This gives rise to the following lemma with its proof
presented in Section 4.3.

Lemma 4.3. Let G = (V,E) be a graph with a set T of
O(c) terminals and each terminal has degree 1. There
is a subset E′ of E with |E′| = O(c3) and G/(E\E′) is
a connectivity-c mimicking network for G.

We can combine series of lemmas to show Theorem 4.1.

Proof of Theorem 4.1. We show that PolySizedc-
Network returns a connectivity-c mimicking network
with O(kc4) edges for a graph G. First, applying
Lemma 4.2 shows that the total number p of pieces in
the partition V \ T = X1 ∪X2 ∪ · · · ∪Xp is at most kc,
as |∂(V \ T )| ≤ kc by our assumption that all terminals
have degree at most c.
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To bound the number of edges in the final sparsifier, we
must analyze two contributions. First, the total number
of boundary edges over all partition pieces is at most
|
⋃p

i=1(∂Xi)| ≤ O(kc2), as the total number of boundary
edges may increase by c each time we split a partition
piece into two pieces, and there are at most kc pieces.
Another contribution is from the partition pieces Xi

with |∂(Xi)| ≤ 2c− 1. Thus, the total number of edges
is at most kc ·O(c3) = O(kc4) by applying Lemma 4.3.

To verify that the returned graph is indeed a
connectivity-c mimicking network, it suffices to apply
Lemma 4.1 to argue that we can contract well-linked
pieces. Then we can use Corollary 2.1 to delete all
boundary edges in

⋃p
i=1 ∂Xi, and then use Lemma 2.3

and build a connectivity-c mimicking network on each
Xi separately. �

4.2 Algorithm for the Optimal Sparsifiers:
Contracting Non-Essential Edges We use many
forms of graph partitioning and operations, such
as adding and deleting edges among terminals
(Lemma 2.1, 2.2, and Corollary 2.1), and connected
components may be handled separately (Lemma 2.3).
These observations form the basis of our divide-and-
conquer scheme, which repeatedly deletes edges, adds
terminals, and works on connected components of dis-
connected graphs. Our approach in fact utilizes ex-
pander decomposition elaborated in Section 4.2.1 to split
a graph into several expanders. Removing the inter-
cluster edges, it sparsifies each expander by contract-
ing non-essential edges in the expander, the contrac-
tion of each still preserves the value of a minimum cut
up to c between any partition of terminals. Then it
glues together all the sparsified expanders via the inter-
cluster edges to obtain a connectivity-c mimicking net-
work. This one pass reduces the number of edges by
half. Repeating several passes leaves essential edges in
the end, leading to the connectivity-c mimicking net-
work of the optimal size, which is currently O(kc4).

Theorem 4.2. For a graph G with n vertices, m edges,
and k terminals, there exists an algorithm which suc-
cessfully finds a connectivity-c mimicking network with
O(kc4) edges in O(m(c log n)O(c)).

In fact, our algorithm guarantees a stronger property:
If there exists a connectivity-c mimicking network with
kf(c) edges that can be obtained by only contracting
edges in G, for some function f , then our algorithm
finds a connectivity-c mimicking network with O(kf(c))
edges. We present the proof in three parts. In
Section 4.2.1 and 4.2.2, we explain two sub-routines
that are used in our algorithm. The description of the
algorithm is in Section 4.2.3.

4.2.1 Enumeration of Small Cuts via Expander
Decomposition To achieve Theorem 4.2, we utilize
insights from recent results on finding c-vertex cuts [57,
25, 26], namely that in a well connected graph, any cut
of size at most c must have a very small side. This
notion of connectivity is formalized through the notion
of graph conductance.

Definition 4.1. In an undirected unweighted graph
G = (V,E), denote the volume of a subset of vertices,
vol(S), as the total degrees of its vertices. The conduc-
tance of a cut S is then

ΦG (S) =
|∂ (S)|

min {vol (S) , vol (V \S)}
,

and the conductance of a graph G = (V,E) is the
minimum conductance of a subset of vertices:

Φ (G) = min
S⊆V

ΦG (S) .

We use expander decomposition to reduce to the case
where the graph has high conductance.

Lemma 4.4. (Theorem 1.2 of [62]) There exists an al-
gorithm ExpanderDecompose that for any undirected
unweighted graph G and any parameter ϕ, decomposes
in O(mϕ−1 log4 n) time G into pieces {Gi} of conduc-
tance at least ϕ so that at most O(mϕ log3 n) edges are
between the pieces.

Note that if a graph has conductance ϕ, any cut
(S, V \S) of size at most c must have

(4.1) min {vol (S) , vol (V \S)} ≤ cϕ−1.

In a graph with expansion ϕ, we can enumerate all
cuts of size at most c in time exponential in c and
ϕ. As a side note, the time complexity of both the
results in Theorem 1.1 are dominated by the cO(c) term,
essentially coming from this enumeration. Hence, a
more efficient algorithm on enumeration may open up
the possibility toward a faster algorithm for finding a
connectivity-c mimicking network.

Lemma 4.5. In a graph G with n vertices and conduc-
tance ϕ, there exists an algorithm that enumerates all
cuts of size at most c with connected smaller side in time
O(n(cϕ−1)2c).

It suffices to enumerate all such cuts once at the start,
and reuse them as we perform contractions.

Lemma 4.6. If F is a cut in G/Ê, then F is also a cut
in G.

Note that this lemma also implies that an expander
stays so under contractions. So, we do not even need to
re-partition the graph as we recurse.
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4.2.2 Sparsifying Procedure (ϕ-Sparsify) We
need a subroutine used to sparsify a graph with con-
ductance ϕ and terminals T . This subroutine named as
ϕ-Sparsify takes such a graph and enumerates all cuts
of size at most c by a smaller side through Lemma 4.5.
Then it sparsifies the expander by checking if the con-
traction of each edge still preserves (T , c)-equivalency.
Formally, we can contract an edge e while preserving
(T , c)-equivalency if and only if for any partition (T1, T2)
of terminals T , there exists a (T1, T2)-mincut not con-
taining the edge e. For convenience, we call such an
edge e ∈ E(G) as contractible in G. Sequentially check-
ing all edges in G and contracting some if possible, we
show that ϕ-Sparsify only leaves at most O(|T |c4) “es-
sential edges” which appear in a minimum cut of any
partition of the terminals.

Through the enumeration of all cuts of size at most c
by a smaller side of the cut (Lemma 4.5), ϕ-Sparsify
forms an auxiliary graph H for efficient tracking of
minimum cuts of partitions of terminals as follows:
V (H) is the disjoint union of P , C, and E0, where

1. P is the set of partitions of the terminals T induced
by the enumerated cuts,

2. C is the set of a minimum cut separating a partition
of terminals in P ,

3. E0 is the set of edges in a minimum cut in C,

and for p ∈ P, c ∈ C, and e ∈ E0, add an edge pc to
E(H) if c is a minimum cut of p, and an edge ce to
E(H) if e ∈ c.

For a given query edge e ∈ E(G), the algorithm deletes
all nodes (minimum cuts) N(e) ⊆ C, also removing the
incident edges to N(e). Then it checks if there is a node
(partition p) in P whose degree becomes 0 after the
deletion. If so, it means that the edge e appears in all
minimum cuts of the partition p, leading the algorithm
to undo the deletion. Otherwise, it means that the
algorithm may contract e and actually obtains a (T , c)-
equivalent graph G/e.

In the case that it contracts a contractible edge e,
we should make sure that the auxiliary graph from
G/e is equal to H with N(e) deleted. First of all, a
minimum cut F of size at most c inducing a partition
of terminals in G/e is also a cut of the partition in G
(see Lemma 4.6). As G/e and G are (T , c)-equivalent,
F must be a minimum cut of the partition in G as
well. For the opposite direction, a minimum cut of a
partition of terminals in G, which does not contain e, is
also a minimum cut of the partition in G/e, since the
value of minimum cuts non-decreases under contraction
(see Lemma 2.5). Therefore, we only need to enumerate
all cuts of size at most c O(1) times and to create an

Algorithm 2: EfficientPolySized(G, T )

Input: undirected unweighted multi-graph G, terminals T
Output: connectivity-c mimicking network G′

Set ϕ−1 = 4C′c4 log3 n for some C′

do
{Gi} = ExpanderDecompose(G,ϕ).
Remove the inter-cluster edges among {Gi} and
add the endpoints of the edges as new terminals
to each piece with conductance ϕ.
G′i = ϕ-Sparsify(Gi, Ti ∪ (T ∩ V (Gi))), where Ti
is the set of new terminals in Gi.
G′ =

⋃
iG
′
i together with inter-cluster edges.

while |E(G′)| < |E(G)|
return G′

auxiliary graph at the very beginning of ϕ-Sparsify,
and simply update the auxiliary graph in response to
contraction of edges without re-enumerating all cuts of
size at most c in contracted graphs.

In this way, scanning through each edge in sequence, ϕ-
Sparsify checks if each edge is contractible in G with
contractible edges (in their turns) already contracted.
In the end, it returns a (T , c)-equivalent graph G/X,
where X is the set of contractible edges in each turn.

Lemma 4.7. For a graph G with conductance ϕ, n
vertices, m edges, and k terminals, the algorithm ϕ-
Sparsify returns a connectivity-c mimicking network
with O(kc4) edges in O(m+ nc(cϕ−1)2c) time.

4.2.3 Putting things together Now we join all the
sparsified graphs via the removed inter-cluster edges and
reduce the total number of edges by half. Repeating
this procedure until no more edges are contractible,
we can build a (T , c)-equivalent graph with at most
O(kc4) essential edges. We present the algorithm
EfficientPolySized with details in Algorithm 2 and
with analysis as follows, where C ′ is a constant such that
in Lemma 4.4 the number of edges between the pieces
are at most C ′mϕ log3 n. Theorem 1.1 Part 1 follows
from the analysis of EfficientPolySized.

Proof of Theorem 1.1 Part 1. By Corollary 2.1 and
Lemma 4.7, EfficientPolySized successfully finds a
connectivity-c mimicking network of G. For the size,
we prove a more general statement that if the optimal
number of edges in a connectivity-c mimicking network
of a graph with k terminals is k · p(c) for a polynomial
p, then EfficientPolySized returns a sparsifier with
O(kp(c)) edges.

We show by induction that after ith iteration, the num-
ber of remaining edges is at most kp(c)

∑i−1
r=0

1
2r + m

2i ,
which is bounded by 2kp(c) + m

2i . Hence, after O(logm)
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iterations, the algorithms yields a connectivity-c mim-
icking network with O(kp(c)) edges.

Observe that ϕ = 1/(4C ′p(c) log3 n) satisfies ϕ ·
(C ′p(c) log3 n + C ′ log3 n) ≤ 1

2 . In the first itera-
tion, the total number of terminals is bounded by
k + mC ′ϕ log3 n. Hence, the total number of edges in
G′ is bounded by

(k +mC ′ϕ log3 n)p(c) +mC ′ϕ log3 n

≤ kp(c) +mϕ · (C ′p(c) log3 n+ C ′ log3 n)

≤ kp(c) +
m

2

Using the similar argument for ith iteration and induc-
tion hypothesis, we have

(k + (kp(c)
i−2∑
r=0

1

2r
+

m

2i−1
)C ′ϕ log3 n)p(c)

+(kp(c)
i−2∑
r=0

1

2r
+

m

2i−1
)C ′ϕ log3 n

≤ kp(c) + (kp(c)

i−2∑
r=0

1

2r
+

m

2i−1
)/2 ≤ kp(c)

i−1∑
r=0

1

2r
+
m

2i
.

The running time is dominated by ϕ-Sparsify which
takes time O(m·cO(c) log6c n·logm) = O(m(c log n)O(c))
as desired. �

4.3 Proof of Lemma 4.3: Transforming Edge
Cuts to Vertex Cuts As seen above, PolySizedc-
Network replaces a set with sparse boundary by a
connectivity-c mimicking network. Here we present a
key lemma used for this subroutine, which reduces our
problem to the problem of identifying essential vertices
in preserving the value of minimum vertex cuts. The no-
tion of vertex cuts is closely related with the notion of
vertex-disjoint paths, which takes advantages of a well-
developed theory from gammoid and representative sets.
We will make use of the following result in essence.

Lemma 4.8. ([43]) Let G = (V,E) be a directed graph,
and X ⊆ V a set of terminals. We can identify a set
Z of O(|X|3) vertices such that for any A,B ⊆ X, a
minimum (A,B)-vertex cut in G is contained in Z.

Note that this lemma addresses a vertex cut, not an
edge cut, and it holds under digraphs setting. However,
we can still replace digraphs with undirected graphs;
for given an undirected graph G = (V,E), simply orient
each edge in the both directions to obtain a directed
graph Ĝ and then apply the above result to Ĝ.

The last key notion is a q-representative set. For a given
matroid (E, I), a family S of subsets of size p and any

given Y ⊆ E with |Y | ≤ q, a q-representative set Ŝ ⊆ S
contains a set X̂ ⊆ E with X̂ ∩ Y = ∅ and X̂ ∪ Y being
independent whenever S has such a set satisfying the
same condition. The previous studies [49, 53, 24] have
been eager to find a representative set in polynomial
time, which is also of independent interest, for a given
representation matrix.

Theorem 4.3. ([24]) Let M = (E, I) be a linear
matroid of rank p + q = k given together with its
representation matrix AM over a field F. Let S =
{S1, ..., St} be a family of independent sets of size p.

Then a q-representative family Ŝ for S with at most(
p+q
p

)
sets can be found in O(

(
p+q
p

)
tpω + t

(
p+q
p

)ω−1
)

operations over F, where ω < 2.373 is the matrix
multiplication exponent.

The Subroutine We identify and contract nonessen-
tial edges via the result from vertex sparsification pre-
serving vertex connectivity. To exploit this fruitful
result, we leverage a natural correspondence between
edges and vertices via working on the line graph of a
graph. In this way, edges appearing in a minimum edge
cut of a partition of terminals in the original graph are
given by identifying their corresponding vertices in the
line graph through Lemma 4.8, which contains a mini-
mum vertex cut of any partition of terminals.

Before making this connection clear, we can make
a further assumption by preprocessing the boundary
edges of an induced subgraph. This preprocessing relies
on the following, which readily follows from Lemma 4.1.

Observation 4.1. Let G be a graph with terminals T
and v ∈ V (G). A subdivision of an edge uv, which is
to replace an edge uv with a path uwv through a new
vertex w, results in a (T , c)-equivalent graph.

Recall in PolySizedcNetwork that when H has at
most 2c− 1 boundary edges, we mark the endpoints in
V (H) of the boundary edges ∂H (i.e., V (H)∩V (∂H)) as

tentative terminals T̂ and then replace H with a smaller
equivalent one. In this case, despite |T̂ | ≤ 2c− 1, we do

not know how many incident edges T̂ would have. By
Observations 4.1, we can assume not only |T̂ | = O(c),
but also each terminal has degree 1.

Lemma 4.9. When working on an induced subgraph H
of a graph G with its tentative terminals T̂ coming
from the endpoints of the boundary edges in ∂H (i.e.,
V (H) ∩ V (∂H)), we may assume that each terminal in

T̂ has degree 1.
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Note that this manipulation on boundary of a piece
has no impact on boundary of other pieces. When
sparsifying a set withO(c) boundary edges, we can make
the stronger assumption as in Lemma 4.9; the piece has
O(c) tentative terminals with degree 1.

Proof of Lemma 4.3. Let v(e) be the corresponding
vertex in the line graph L(G) for edges e in E and vt
the unique neighbor in G of each terminal t in T . We
enlarge the line graph L(G) by adding a copy t′ of t with
its unique edge t′v(tvt). Also let T ′ be the set of such
terminal copies and L(G)′ the enlarged one.

Viewing T ′ as X in Lemma 4.8, we have a subset
Z of V (L(G)′) with O(c3) vertices, which contains a
minimum (A′, B′)-vertex cut of any bipartition (A′, B′)
of T ′. We slightly change Z as follows: replace terminals
t′ in Z (if any) by the unique neighbor v(tvt) of the
terminal t′. Note that this perturbed set, denoted by
Z ′, still has O(c3) vertices but no intersection with T ′.

We show Z ′ also contains a minimum vertex cut between
any bipartition of terminals. Suppose that a partition
(A′, B′) of T ′ has a minimum vertex cut C overlapping
with T ′. For any t′ ∈ C ∩ T ′, the minimum vertex
cut C does not include the unique neighbor v(tvt) of t′;
otherwise C − t′ is a smaller minimum (A′, B′)-vertex
cut. Thus we can replace C by another minimum cut
C−t′+v(tvt). Repeating this operation on all terminals
in C, we end up having a minimum (A′, B′)-vertex cut
disjoint from T ′ such that the modified minimum vertex
cut is contained in Z ′ in light of the construction of Z ′.

Lastly, we take E′ as {e ∈ E(G) : v(e) ∈ Z ′} and
claim G/(E\E′) is (T , c)-equivalent to G. For partition
(A,B) of T in G, a minimum edge cut C between A
and B corresponds to a vertex cut between A′ and
B′ that consists of the corresponding vertices of the
edges in C, thus mincutL(G)′(A

′, B′) ≤ mincutG(A,B).
By similar reasoning for the opposite direction, we
have mincutL(G)′(A

′, B′) ≥ mincutG(A,B) and thus
mincutL(G)′(A

′, B′) = mincutG(A,B). It implies that
even after contracting all edges in E\E′, we still retain
an edge cut of size mincutG(A,B). �

The last paragraph makes more sense by relying on
the max-flow and min-cut theorem and the Menger’s
theorem. For example, there are mincutG(A,B) edge-
disjoint paths between A and B, which can be ex-
actly transformed into mincutG(A,B) vertex-disjoint
paths between A′ and B′. It implies that a minimum
(A′, B′)-vertex cut has size at least mincutG(A,B) (i.e.,
mincutG(A,B) ≤ mincutL(G)′(A

′, B′)).

After sparsifying the enlarged piece H ′ with O(c)
boundary edges into a smaller equivalent graph with

O(c3) edges, the all edges wuvv for each v ∈ H still re-
main, since Z ′ contains the vertex v(wuvv) and so E′

also contains wuvv. As {wuv, v} is a connectivity-c well-
linked set, we may contract it as if there were no any
operations introducing additional vertices wuv at the
very beginning. Therefore, our sparsifier with O(kc4)
edges can still be found by only contracting edges, and
thus our algorithm in Section 4.2 gives sparsifiers with
O(kc4) edges as well.

5 More Efficient Algorithms for Connectivity-c
Mimicking Networks

In this section we present a faster algorithm at the ex-
pense of the size by using the notion of “important”
edges elaborated in Section 5.1. Equipped with these
notions, we prove the existence of connectivity-c mim-
icking networks constructed from important edges in
Section 5.2.1. Then we revisit it for speedup in Sec-
tion 5.2.2 and achieve a result implying Theorem 1.1
Part 2 by utilizing expander decomposition and local
cut algorithms in Section 5.2.3.

5.1 Equivalence, Cut Containment, and Cut
Intersection Our faster recursive algorithm works
more directly with the notion of equivalence defined in
Definition 2.1. This algorithm identifies a set of impor-
tant edges, Ê, and forms H by contracting all edges in
E \ Ê.

Observe that as long as Ê is small, contracting E \ Ê
still results in a graph with few vertices and edges.
Therefore, our goal is find a set Ê of important edges
to keep in H such that the size of Ê is not much larger
than |T |. We will show for the purpose of being (T , c)-
equivalent, a sufficient condition is that every (T , c)-cut

can be formed using edges from only Ê. This leads to
the definition of Ê containing all (T , c)-cuts, which was
also used in [55] for the c ≤ 5 setting.

Definition 5.1. (Cut containment) In a graph
G = (V,E) with terminals T , a subset of edges
Econtain ⊆ E is said to contain all (T , c)-cuts if for any
partition T = T1 ·∪ T2 with mincutG(T1, T2) ≤ c there is
a cut F ⊆ Econtain such that

1. F has size equal to mincutG(T1, T2),
2. F is also a cut between T1 and T2. That is, T1 and
T2 are disconnected in G \ F .

Note that this is different than containing all the
minimum cuts: on a length n path with two endpoints
as terminals, any intermediate edge contains a minimum
terminal cut, but there are up to n − 1 different such
minimum cuts.
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If Econtain contains all (T , c)-cuts, we may contract all
edges in E \Econtain to obtain a (T , c)-equivalent graph
H of G.

Lemma 5.1. If G = (V,E) is a connected graph with
terminals T , and Econtain is a subset of edges that
contain all (T , c)-cuts, then the graph

H = G/
(
E\Econtain

)
is (T , c)-equivalent to G, and has at most |Econtain|+ 1
vertices.

We can also state Corollary 2.1 and Lemma 2.3 in the
language of edge containment.

Lemma 5.2. Let Ê be a set of edges in G with endpoints
V (Ê), and T be terminals in G. If edges Econtain

contain all (T ∪V (Ê), c)-cuts in G\Ê, then Econtain∪Ê
contains all (T , c)-cuts in G.

Lemma 5.3. If the edges Econtain
1 ⊆ E(G1) contain all

(T1, c)-cuts in G1, and the edges Econtain
2 ⊆ E(G2)

contain all (T2, c)-cuts in G2, then Econtain
1 ∪ Econtain

2

contains all the (T1 ∪ T2, c)-cuts in the vertex disjoint
union of G1 and G2.

These motivate us to gradually build up Econtain

through a further intermediate definition.

Definition 5.2. In a graph G = (V,E) with terminals
T , a subset of edges Eintersect ⊆ E intersects all (T , c)-
cuts for some c > 0 if for any partition T = T1 ·∪T2 with
mincutG(T1, T2) ≤ c, there exists a cut F = E(V1, V2)
such that:

1. F has size mincutG(T1, T2),
2. F induces the same separation of T : V1 ∩ T = T1,

V2 ∩ T = T2.
3. F contains at most c− 1 edges from any connected

component of G\Eintersect.

Reduction to Cut Intersection Based on Defini-
tion 5.2, we can reduce the problem of finding a set
Econtain which contains all (T , c)-cuts to the problem
of finding a set Eintersect which intersects all small
cuts. Formally, the deletion of an intersecting edge set
Eintersect separates (T , c)-cuts of G into edge sets of size
c− 1. Each of these smaller cuts happens on one of the
connected components of G\Eintersect, and can thus be
considered independently when we construct the con-
taining sets of G \ Eintersect.

This is done by first finding an intersecting set Eintersect,
and then recursing on each component in the (discon-
nected) graph with Eintersect removed, but with the end-
points of Eintersect included as terminals as well. This
will increase the number of edges and terminals, but

Algorithm 3: GetContainingEdges(G, T , c) :
Find a set of edges containing all the (T , c)-cuts.

Input: undirected unweighted multi-graph G,
terminals T , and connectivity threshold c

Output: set of edges Econtain containing all (T , c)-cuts
Initialize Econtain ← ∅
For ĉ← c, . . . , 1 in decreasing order:

(1) Econtain ← Econtain∪GetIntersectingEdges(G, T , ĉ)
(2) G← G\Econtain

(3) T ← T ∪ V (Econtain), where V (Econtain) is the
endpoints of all edges in Econtain.

return Econtain

allow us to focus on (c − 1)-connectivity in the com-
ponents, leading to our recursive scheme. The overall
algorithm simply iterates this process until c reaches 1,
as shown in Algorithm 3. All arguments until now can
be summarized as the following stitching lemma.

Lemma 5.4. Let G = (V,E) be a graph with terminals
T , and Eintersect ⊆ E be a set of edges that intersects all
(T , c)-cuts. For T̂ = T ∪ V

(
Eintersect

)
, let Econtain ⊆

E \Eintersect be a set of edges that contains all (T̂ , c−1)
cuts in the graph (V,E\Eintersect). Then Econtain ∪
Eintersect contains all (T , c)-cuts in G.

The following theorem shows the bounds for generating
a set of edges Eintersect that intersects all (T , c)-cuts.
Its correctness follows from Lemma 5.4.

Theorem 5.1. For any parameter ϕ, value c, and
graph G with terminals T , there exists an algorithm
that generates a set of edges Eintersect that intersects
all (T , c)-cuts:

1. with size at most O((ϕm log4 n + |T |) · c) in

Õ(m(cϕ−1)2c) time.

2. with size at most O((ϕm log4 n + |T |) · c2) in

Õ(mϕ−2c7) time.

While Theorem 5.1 Part 1 developed in Section 5.2.1
provides a slow subroutine, we are able to modify the
argument in Section 5.2.2 and then take further steps,
expander decomposition and local cut algorithms, in
Section 5.2.3 to obtain Theorem 5.1 Part 2. In essence,
we use Theorem 5.1 Part 2 to prove Theorem 1.1
Part 2. As the size of Econtain multiplies by O(c2) every
iteration, the total size of Econtain at the end is O(c)2c,
as desired in Theorem 1.1 Part 2.

5.2 Efficient Algorithm: Recursive Construc-
tions In this section, we give recursive algorithms for
finding sets of edges that intersect all (T , c)-cuts (as
defined in Definition 5.2). In Section 5.2.1, we show
the existence of a small set of edges that intersects all
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(T , c)-cuts. In Section 5.2.2, we give a polynomial-time
construction that outputs a set of edges whose size is
slightly larger than those given in Section 5.2.1.

Our routines are based on recursive contractions. Sup-
pose we have found a terminal cut F = E(V1, V2). Then

any cut F̂ overlapping with both G[V1] and G[V2], or F ,
will have only at most c−1 edges in common with G[V1]
or G[V2]. Thus, it suffices for us to focus on cuts that
lie entire in one half, which we assume without loss of
generality is G[V1].

Since none of the edges in F and G[V2] are used, we
can work equivalently on the graph with all these edges
contracted. The progress made by this, on the other
hand, may be negligible: consider, for example, the
extreme case of F being a matching, and no edges
are present in G[V2]. On the other hand, if G[V2] is
connected, then it will become a single terminal vertex
in addition to V1, and the two halves that we recurse on
add up to a size that’s only slightly larger than G.

Thus, our critical starting point is to look for cuts
(V1, V2), where both G[V1] and G[V2] are connected, and
contain two or more terminals. We first look for such
cuts through exhaustive enumeration in Section 5.2.1,
and show that when none are found, we can simply
terminate by taking all minimum cuts with one terminal
on one side, and the other terminals on the other
side. Unfortunately, we do not have a polynomial time
algorithm for determining the existence of a cut (V1, V2)
with size at most c such that both G[V1] and G[V2] are
connected and have at least 2 terminals.

In Section 5.2.2, we take a less direct, but poly-time
computable approach based on computing the minimum
terminal cut among the terminals T . Both sides of this
cut are guaranteed to be connected by the minimality
of the cut. However, we cannot immediately recurse on
this cut due to it possibly containing only one terminal
on one side. We address this by defining maximal
terminal separating cuts: minimum cuts with only that
terminal on one side, but containing as many vertices
as possible. The fact that such cuts can only grow c
times until their sizes exceed c allows us to bound the
number of cuts recorded by the number of terminals,
times an extra factor of c, for a total of O(kc2) edges in
the sparsifier.

5.2.1 Existence Our divide-and-conquer scheme re-
lies on the following observation about when (T , c)-cuts
are able to interact completely with both sides of a cut.

Lemma 5.5. Let F be a cut given by the partition
V = V1 ·∪ V2 in G such that both G[V1] and G[V2] are
connected, and Ti = Vi ∩ T , i = 1, 2, be the partition

Algorithm 4: RecursiveNontrivialCuts(G, T , c):
Find a set of edges intersecting all terminal
cuts. (RNC for short)

Input: undirected unweighted multi-graph G,
terminals T , and connectivity threshold c > 0

Output: set of edges Eintersect that intersects all T
separating cuts of size at most c

1 If |T | ≤ 4, return the union of the min-cuts of all 8
partitions of the terminals.

2 Initialize Eintersect ← ∅.
3 if ∃ non-trivial T -separating cut (V1, V2) of size ≤ c

then
4 Eintersect ←

Eintersect ∪ E(V1, V2) ∪RNC(G/V2, (T ∩ V1) ∪
{v2}, c) ∪RNC(G/V1, (T ∩ V2) ∪ {v1}, c), where
v1 and v2 are the vertices formed upon
contracting of V1 and V2 respectively.

5 else
6 For all vertex v such that |mincut(G, v, T \v)| ≤ c,

do Eintersect ← Eintersect ∪mincut(G, v, T \v)
(i.e., add all local terminal cuts to Eintersect)

7 return Eintersect

of T induced by this cut. If Eintersect
1 intersects all

(T1 ∪ {v2}, c)-terminal cuts in G/V2, the graph formed
by contracting all of V2 into a single vertex v2, and
similarly Eintersect

2 intersects all (T2 ∪ {v1}, c)-terminal
cuts in G/V1, then Eintersect

1 ∪ Eintersect
2 ∪ F intersects

all (T , c)-cuts in G as well.

However, to make progress on such a partition, we need
to contract at least two terminals together with either
V1 or V2. This leads to our key definition of a non-trivial
T -separating cut:

Definition 5.3. A non-trivial (T , c)-cut is a separa-
tion of V into V1 ·∪ V2 such that G[V1] and G[V2] are
both connected, and |V1 ∩ T | ≥ 2 and |V2 ∩ T | ≥ 2.

Such cuts are critical for partitioning and recursing on
the two resulting pieces. The connectivity of G[V1]
and G[V2] is necessary for applying Lemma 5.5, and
|V1 ∩ T | ≥ 2, |V2 ∩ T | ≥ 2 are necessary to ensure that
making this cut and recursing makes progress.

We now study the set of graphs G and terminals T for
which a non-trivial cut exists. For example, consider the
case when G is a star graph (a single vertices with n−1
vertex connected to it) and all vertices are terminals. In
this graph, the side of the cut not containing the center
can only have a single vertex; hence, there are no non-
trivial cuts. In fact, we can prove the converse: if no
such interesting separations exist, we can terminate by
only considering the |T | separations of T formed with
one terminal on one of the sides. We define these cuts
to be the s-isolating cuts.
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Definition 5.4. For a graph G with terminal set T
and some s ∈ T , an s-isolating cut is a partition of the
vertices V = VA ·∪ VB such that s is the only terminal
in VA, i.e., s ∈ VA, (T \{u}) ⊆ VB.

Lemma 5.6. If T is a subset of at least 4 terminals
in an undirected graph G that has no non-trivial T -
separating cut of size at most c, then the union of all
s-isolating cuts of size at most c:

Eintersect ←
⋃
s∈T

mincutG({s},T \{s})≤c

mincut (G, {s} , T \ {s}) ,

contains all (T , c)-cuts of G.

Combining Lemma 5.5 and 5.6, we obtain the recursive
Algorithm 4, which demonstrates the existence ofO(|T |·
c) sized (T , c)-cut-intersecting subsets. If there is a
non-trivial T -separating cut, then Line 3 finds it and
recurses on both sides of the cut using Lemma 5.5.
Otherwise, by Lemma 5.6, the union of the s-isolating
cuts of size at most c contains all (T , c)-cuts, so the
algorithm keeps the edges of those cuts in Line 5.

Lemma 5.7. RecursiveNontrivialCuts correctly
returns a set of (T , c)-cut-intersecting edges of size at
most O(|T | · c).

We may modify Algorithm 4 to take extra steps for
marginal speedup by utilizing expander decomposition.

5.2.2 Polynomial-Time Construction It is not
clear to us how the previous algorithm in Section 5.2.1
could be implemented in polynomial time. This section
illustrates a more efficient algorithm that returns larger
sparsifiers, but ultimately leads to the faster running
time in Theorem 5.1 Part 2. It was derived by working
backwards from the termination condition of taking all
the cuts with one terminal on one side in Lemma 5.6.

The algorithm has the same high level recursive struc-
ture, but it instead only finds the minimum terminal
cut or certifies that its size is greater than c. It takes
O(m+ nc3 log n) time by using an algorithm in [15].

Theorem 5.2. ([15]) Given graph G with terminals
T and constant c, there is an O(m + nc3 log n) time
algorithm which computes the minimum terminal cut on
T or certifies that its size is greater than c.

It is direct to check that both sides of a minimum
terminal cut are connected. This is important towards
our goal of finding a non-trivial T -separating cut.

Lemma 5.8. If (VA, VB) is the global minimum T -
separating cut in a connected graph G, then both G[VA]
and G[VB ] must be connected.

Algorithm 5: RecursiveTerminalCuts(G, T , c):
Find a set of edges that intersect all terminal
cuts. (RTC for short)

Input: undirected unweighted multi-graph G,
terminals T , and connectivity threshold c > 0

Output: set of edges Eintersect that intersects all T
separating cuts of size at most c

1 Use Lemma 2.4 to reduce G to having at most nc edges

2 Initialize Eintersect ← ∅.
3 while |T | > 4 do
4 Compute a minimum terminal cut (V1 ·∪ V2) of G

5 If |E(V1, V2)| > c, return Eintersect

6 if each of V1 and V2 contains at least 2 terminals
then

7 return Eintersect ∪RTC(G/V2, (T ∩ V1) ∪
{v2}, c) ∪RTC(G/V1, (T ∩ V2) ∪ {v1}, c),
where v1 and v2 are the vertices formed
upon contracting of V1 and V2 respectively.

8 else
9 Assume V1 contains one terminal s.

10 Record x← |E(V1, V2)|
11 while the value of the minimum s-isolating

cut is x and s has not been contracted with
another terminal (this runs at least once, as
(V1, V2) is a minimum T -separating cut) do

12 Let (V̂1, V̂2) be such a cut and record

F ← E(V̂1, V̂2)

13 G← G/V̂1/F.

14 Eintersect ← Eintersect ∪ F .

15 For 8 partitions of the terminals, if the corresponding

mincut has size at most c, add it to Eintersect

16 return Eintersect

The only bad case that prevents us from recursing is
when the minimum terminal cut has a single terminal s
on some side. That is, one of the s-isolating cuts from
Definition 5.4 is also a minimum terminal cut. We can
cope with it via an extension of Lemma 5.5. Specifically,
we show that for a cut with both sides connected, we
can contract a side of the cut along with the cut edges
before recursing.

Lemma 5.9. Let F be a cut given by the partition
V = V1 ·∪ V2 in G such that both G[V1] and G[V2]
are connected, and Ti = Vi ∩ T , i = 1, 2, be the
partition of T induced by this cut. If Eintersect

1 intersects
all (T1 ∪ {v2}, c)-terminal cuts in G/V2/F , the graph
formed by contracting all of V2 and all edges in F into
a single vertex v2, and similarly Eintersect

2 intersects all
(T2∪{v1}, c)-terminal cuts in G/V1/F , then Eintersect

1 ∪
Eintersect

2 ∪ F intersects all (T , c)-cuts in G.

Now, a natural way to handle the case where a minimum
terminal cut has a single terminal s on some side is
to use Lemma 5.9 to contract across the cut to make
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progress. However, it may be the case that for some
s ∈ T , there are many minimum s-isolating cuts:
consider for example the length n path with only the
endpoints as terminals. If we always pick the edge
closest to s as the minimum s-isolating cut, we may
have to continue n rounds, and thus add all n edges to
our set of intersecting edges.

To remedy this, we instead pick a “maximal” s-isolating
minimum cut. One way to find a maximal s-isolating
cut is to repeatedly contract across an s-isolating min-
imum cut using Lemma 5.9 until its size increases. At
that point, we add the last set of edges found in the
cut to the set of intersecting edges. We have made
progress because the value of the minimum s-isolating
cut in the contracted graph must have increased by at
least 1. While there are many ways to find a maximal s-
isolating minimum cut, the way described here extends
to our analysis in Section 5.2.3.

Pseudocode of this algorithm is shown in Algorithm 5,
and the procedure for the repeated contractions to
find a maximal s-isolating cut described in the above
paragraph is in Line 9.

Discussion of Algorithm 5. We clarify some lines
in Algorithm 5. If the algorithm finds a non-trivial T -
separating cut as the minimum terminal cut, it returns
the result of the recursion in Line 7, and does not exe-
cute any of the later lines in the algorithm. In Line 11,
in addition to checking that the s-isolating minimum
cut size is still x, we also must check that s does not get
contracted with another terminal. Otherwise, contract-
ing across that cut makes global progress by reducing
the number of terminals by 1. In Line 13, note that
we can still view s as a terminal in G ← G/V̂1/F , as
we have assumed that this contraction does not merge
s with any other terminals.

Lemma 5.10. For any graph G, terminals T , and a
value c, the algorithm RecursiveTerminalCuts runs
in O(n2c4 log n) time and returns a set at most O(|T |c2)
edges that intersect all (T , c)-cuts.

Our further speedup of this routine in Section 5.2.3 also
uses a faster variant of RecursiveTerminalCuts as
base case, which happens when |T | is too small. Here
the main observation is that a single maxflow compu-
tation is sufficient to compute a “maximal” s-isolating
minimum cut, instead of the repeated contractions per-
formed in RecursiveTerminalCuts.

Lemma 5.11. For any graph G, terminals T , and a
value c, there is an algorithm that runs in O(mc +
n|T |c4 log n) time and returns a set at most O(|T |c2)
edges that intersect all (T , c)-cuts.

5.2.3 Using Local Cut Algorithms A local cut
algorithm is a tool that has recently been developed.
Given a vertex v, there exists a local cut algorithm that
determines whether there is a cut of size at most c such
that the side containing v has volume at most ν in time
linear in c and ν.

Theorem 5.3. (Theorem 3.1 of [25]) Let G be a
graph and let v ∈ V (G) be a vertex. For a connectivity
parameter c and volume parameter ν, there is an algo-
rithm running in time Õ(c2ν) that with high probability
either

1. Certifies that there is no cut of size at most c such
that the side with v has volume at most ν.

2. Returns a cut of size at most c such that the side
with v has volume at most 130cν.

We now formalize the notion of the smallest cut that is
local around a vertex v.

Definition 5.5. (Local cuts) For a vertex v ∈ G,
define LocalCut(v) to be

min
V =V1 ·∪V2

v∈V1

vol(V1)≤vol(V2)

|E(V1, V2)|.

We now combine Theorem 5.3 with the observation
from Equation 4.1 in order to control the volume of the
smaller side of the cut in an expander.

Lemma 5.12. Let G be a graph with conductance
at most ϕ, and let T be a set of terminals. If
|T | ≥ 500c2ϕ−1 then for any vertex s ∈ T we can

with high probability in Õ(c3ϕ−1) time either compute
LocalCut(s) or certify that LocalCut(s) > c.

We can substitute this faster cut-finding procedure into
RecursiveTerminalCuts to get the faster running
time stated in Theorem 5.1 Part 2.

Proof of Theorem 5.1 Part 2. First, we perform
expander decomposition, remove the inter-cluster edges,
and add their endpoints as terminals.

Now, we describe the modifications we need to make
to RecursiveTerminalCuts (Algorithm 5). Let T̂
be the set of terminals at the top level of recursion.
The recursion creates O(|T̂ |) distinct terminals. First,
we terminate if |T | ≤ 500c2ϕ−1 and use the result
of Lemma 5.11. Otherwise, instead of using Theorem
5.2 for line 3, we compute the terminal s ∈ T with
minimal value of LocalCut(s). This gives us a minimum
terminal cut. If the corresponding cut is a non-trivial T -
separating cut then we recurse as in Line 7. Otherwise,
we perform the loop in Line 11.

We now give implementation details for computing the
terminal s ∈ T with minimal value of LocalCut(s).

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited1220

D
ow

nl
oa

de
d 

06
/2

7/
21

 to
 1

43
.2

15
.3

8.
55

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



By Lemma 2.5 we can see that for a terminal s,
LocalCut(s) is monotone throughout the algorithm. For
each terminal s, our algorithm records the previous
value of LocalCut(s) computed. Because this value is
monotone, we need only check vertices s whose value
of LocalCut(s) could still possibly be minimal. Now,
either LocalCut(s) is certified to be minimal among
all s, or the value of LocalCut(s) is higher than the
previously recorded value. Note that this can only
occur O(c|T̂ |) times, as we stop processing a vertex s if
LocalCut(s) > c.

For the runtime, we first bound it from the cases |T | ≤
500c2ϕ−1. The total number of vertices and edges in
the leaves of the recursion tree is O(mc). Therefore, by
Lemma 5.11, the total runtime from these is at most

Õ(500c2ϕ−1 ·mc · c4) = Õ(mϕ−1c7).

Now, the loop of Line 11 can only execute cϕ−1 times
because the volume of any s-isolating cut has size at
most cϕ−1. Each iteration of the loop requires Õ(c3ϕ−1)
time by Lemma 5.12. Therefore, the total runtime of
executing the loop and calls to it is bounded by

Õ
(
c|T̂ | · cϕ−1 · c3ϕ−1

)
= Õ(|T̂ |ϕ−2c5).

Combining these shows Theorem 5.1 Part 2. �

6 Applications

We now discuss the applications of our connectivity-c
mimicking networks in dynamic graph data structures
and parameterized algorithms.

6.1 Dynamic Offline c-edge-connectivity Here
we formally show how to use connectivity-c mimicking
network to obtain offline dynamic connectivity routines.

Lemma 6.1. Suppose that an algorithm A(G′, S, c) re-
turns a connectivity-c mimicking network with f(c)|S|
edges for terminals S on a graph G′ in time
Õ(g(c)|E(G′)|). Then there is an offline algorithm that
on an initially empty graph G answers q edge inser-
tion, deletion, and c-connectivity queries in total time
Õ(f(c)(g(c) + c)q).

It directly implies an analogous result when graph G is
not initially empty, as we can make the first m queries
simply insert the edges of G.

We now state the algorithm OfflineConnectivity in
Algorithm 6 which shows Lemma 6.1. In Algorithm 6
graph Gi for 0 ≤ i ≤ q denotes the current graph after
queries Q1, · · · , Qi have been applied.

Algorithm 6: OfflineConnectivity(G, c,Q, `, r):
OC for short
Input: Undirected unweighted multi-graph G,

parameter c, queries Q1, · · · , Qq, and indices
1 ≤ ` ≤ r ≤ q

Output: Processes the queries Q`, Q`+1, · · · , Qr on
graph G. If ` = r and the query Q` is a
connectivity query between vertices a and
b, answers if a and b have connectivity c

1 if ` = r & Q`: c-connectivity query between a and b
then

2 Run a maxflow up to c units from a to b in G
and return the result

3 else
4 Define m =

⌊
`+r
2

⌋
5 E`,r

left ← the edges that are in all of G`, · · · , Gm

but not in all of G`, · · · , Gr.

6 T `,r
left ← all vertices involved in queries Q`, · · · , Qm

7 E`,r
right ← the edges that are in all of

Gm+1, · · · , Gr but not in all of G`, · · · , Gr.

8 T `,r
right ← all vertices involved in queries Qm+1, · · · , Qr

9 OC(A(G ∪ E`,r
left, T

`,r
left, c), c, Q, `,m)

10 OC(A(G ∪ E`,r
right, T

`,r
right, c), c, Q,m+ 1, r)

Description of algorithm OfflineConnectivity.
The algorithm does a divide and conquer procedure,
computing connectivity-c mimicking network on the
way down the recursion tree. As the algorithm moves
down the recursion tree, it adds edges to our graph that
will exist in all children of the recursion node. This is
done in line 5. The algorithm then computes all vertices
involved in queries in the children of a recursion node
in line 6, and computes a connectivity-c mimicking net-
work treating those vertices as terminals, and recurses.

Combining Lemma 6.1 and Theorem 1.1 Part 2 imme-
diately gives a proof of Theorem 1.2. Additionally, by
adding / deleting edges from source / sinks, we can
query for c-edge connectivity between multiple sets of
vertices efficiently on a static graph.

Corollary 6.1. Given a graph G with m edges, as
well as query subsets (A1, B1), (A2, B2) . . . (Ak, Bk), we
can compute the value of mincutcG(Ai, Bi) for all 1 ≤
i ≤ k in Õ

(
(m+

∑
i |Ai|+ |Bi|)cO(c)

)
time.

6.2 Parameterized Algorithms for Network De-
sign In this section, we consider the rooted surviv-
able network design problem (rSNDP), in which we are
given a graph G with edge-costs, as well as h demands
(vi, di) ∈ V × Z, i ∈ [h], and a root r ∈ V . The goal
is to find a minimum-cost subgraph that contains, for
every demand (vi, di), i ∈ [h], di edge-disjoint paths
connecting r to vi.
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We will show how to solve rSNDP optimally in the
running time of f(c, tw(G))n, where c = maxi di is
the maximum demand, and tw(G) is the treewidth of
G. Our algorithm uses the ideas of [9] together with
connectivity-c mimicking networks. Our running time
is n exp

(
O(c4 tw(G) log(tw(G)c)

)
which is only single-

exponential in c4 and tw(G) (whereas the result in [9]
is double-exponential in both c and tw(G)).

Let (T,X) be a tree decomposition of G (see Section
6.2.1). The main idea of our algorithm is to assign,
to each t ∈ T , a state representing the connectivity of
the solution restricted to Xt. By assigning these states
in a manner that they are consistent across T , we can
piece together the solutions by looking at the states for
each individual node. We will show that representing
connectivity by two connectivity-c mimicking networks
is sufficient for our purposes, and that we can achieve
consistency across T by using very simple local rules
between the state for a node t and the states for
its children t1, t2. These rules can be applied using
dynamic programming to compute the optimum.

Theorem 6.1. There is an exact algorithm for
rSNDP on a graph G with treewidth tw(G) and
maximum demand c with a running time of
n exp

(
O(c4 tw(G) log(tw(G)c)

)
.

We outline its proof in the rest of the section, intro-
ducing concepts and assumptions used in our result in
Section 6.2.1. Then in Section 6.2.2 we show how to
represent the solution locally using connectivity-c mim-
icking networks, and how to make sure that all these
local representations are consistent; finally, in Section
6.2.3 we show how to use these ideas to solve rSNDP.

6.2.1 Preliminaries

Tree Decomposition For an undirected graph G, a
tree decomposition is a pair (T,X) where T is a tree
and X = {Xt ⊆ V (G)}t∈V (T ) is a collection of bags
such that:

1. V (G) =
⋃

t∈V (T )Xt, that is, every v ∈ V (G) is
contained in some bag Xt;

2. For any edge uv ∈ E, there is a bag Xt that
contains both u and v, i.e., u, v ∈ Xt;

3. For each vertex v ∈ V (G), the collection of nodes
t whose bags Xt contain v induces a connected
subgraph of T , that is, T [{t ∈ V (T ) : v ∈ Xt}]
is a (connected) subtree.

We use the term node to refer to an element t ∈ V (T ),
and bag to refer to the corresponding subset Xt. The
treewidth of G, denoted tw(G), is the minimum width
of any tree decomposition (T,X) for G. The width of
(T,X) is given by max |Xt| − 1.

We say that each edge uv ∈ E(G) belongs to a unique
bag Xt, and write e ∈ Et if t ∈ T is the node
closest to the root such that u, v ∈ Xt. For a subset
S ⊆ V (T ), we define X (S) :=

⋃
t∈S Xt. Given a node

t ∈ V (T ), we denote by Tt the subtree of T rooted
at t and by p(t) the parent node of t in V (T ). We also
define Gt as the subgraph with vertices X(Tt) and edges
E(Gt) =

⋃
t′∈Tt

Et′ . For each v ∈ V , we denote by tv
the node closest to the root for which v ∈ Xtv .

Throughout this section, we will consider a tree decom-
position (T,X) of G satisfying the following properties
(see [9]): (i) T has height O(log n); (ii) |Xt| ≤ O(tw(G))
for all t ∈ T ; (iii) every leaf bag contains no edges
(Et = ∅ for all leaves t ∈ T ); (iv) every non-leaf has
exactly 2 children. Additionally, we add the root r to
every bag Xt, t ∈ T .

Vertex Sparsification In our application of
connectivity-c mimicking networks to rSNDP, we need
graphs that preserve the thresholded minimum cuts
for any disjoint sets T1, T2 ⊆ T (i.e. T1 ∪ T2 may not
include all terminals). Lemma 6.2 shows that this
formulation is equivalent to that of Definition 2.1.
We write G ≡c

T H if G and H are (T , c)-equivalent
according to the definition of Lemma 6.2.

Lemma 6.2. Let G, H be graphs both containing a set
of terminals T . G and H are (T , c)-equivalent if and
only if for any disjoint subsets of terminals T1, T2 ⊆ T ,
the thresholded minimum cuts are preserved in H, i.e.,

mincutcH (T1, T2) = mincutcG (T1, T2) .

6.2.2 Local Connectivity Rules We introduce the
local connectivity rules which allow us to assign states
in a consistent manner to the nodes of T . The states
we consider consist of two connectivity-c mimicking
networks roughly corresponding to the connectivity of
the solution in E(Gt) and E \ E(Gt). We then present
some rules that make these states consistent across T ,
while only being enforced for a node and its children.

We remark that this notation deviates from the one
used by [9], in which states represent connectivity in
E(Gt) and E. We do so because taking the union of
overlapping connectivity-c mimicking networks would
overcount the number of edge-disjoint paths.

The following local definition of connectivity introduces
the desired consistency rules that we can use to define
a dynamic program for the problem. Lemma 6.3 shows
that a collection of connectivity-c mimicking networks
satisfy the local definition if and only if they represent
the connectivity in G with terminals given by a bag.

Definition 6.1. (Local Connectivity) We say
that the pairs of connectivity-c mimicking networks
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{(H′t,Ht)}t∈V (T ) satisfy the local connectivity defini-
tion if

H′t ≡c
Xt

(Xt, ∅) for every leaf node t of T

Hroot(T ) ≡c
Xt

(Xt, ∅)

and for every internal node t ∈ V (T ) with children t1
and t2,

H′t ≡c
Xt

(Xt, Et) ∪H′t1 ∪H
′
t2

Ht1 ≡c
Xt

(Xt, Et) ∪H′t2 ∪Ht

where A ≡c
Xt

B means that mincutcA(S1, S2) =
mincutcB(S1, S2) for all disjoint sets S1, S2 ⊆ Xt.

Lemma 6.3. Let G be a graph, and (T , X) its tree de-
composition satisfying [the usual properties]. For every
t ∈ V (T ), let (H′t,Ht) be a pair as in Definition 6.1.
Then, the pairs {(H′t,Ht)}t∈T satisfy the local defini-
tions if and only if for every t ∈ V (T ),

H′t ≡c
Xt

Gt and Ht ≡c
Xt

G \ E(Gt).

6.2.3 Dynamic Program for rSNDP In this sec-
tion, we present an algorithm for rSNDP on bounded-
treewidth graphs, which uses dynamic programming to
compute a solution bottom-up. Our goal is to assign two
connectivity-c mimicking networks H′t, Ht to each node
t ∈ T , corresponding to the connectivity of the solution
in E(Gt) and E \E(Gt). We argue that any solution for
Gt, t ∈ T that is compatible with a state (H′t,Ht) can be
interchangeably used, which implies that the dynamic
program will obtain the minimum-cost solution.

We define a dynamic programming table D, with entries
D[t,H′,H], t ∈ T , H′, H a connectivity-c mimicking
networks with terminal set Xt. The entry D[t,H′,H]
represents the minimum cost of a solution F that is
consistent with H′ (i.e. F ≡c

Xt
H′), such that F ∪ Ht

satisfies all the demands contained in Gt.

We compute D[t,H′,H] as follows:

1. For any leaf t ∈ T , set D[t, ∅,H] = 0, and
D[t,H′,H] = +∞ for H′ 6= ∅;

2. For the root node root(T ), set D[root(T ),H′,H] =
+∞ if H 6= ∅;

3. For any demand (vi, di), and t ∈ T with vi ∈ Xt,
set D[t,H′,H] = +∞ if H′∪H contains fewer than
di edge-disjoint paths connecting r to vi.

For all other entries of T , compute it recursively as:

D[t,H′,H] = min
{
H′ ≡c

Xt
Y ∪H′1 ∪H′2,

H1 ≡c
Xt1

Y ∪H ∪H′2, H2 ≡c
Xt2

Y ∪H ∪H′1,

w(Y ) +D[t1,H′1,H1] +D[t2,H′2,H2] : Y ⊆ Et

}

Using these definitions, we can show the feasibility of
the dynamic program (i.e. the entries D[root(T ),H′, ∅]
correspond to feasible solutions) and its optimality (we
always obtain the optimum solution to the problem).
The full proof is available in the full version.
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