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Abstract—The need for Artificial Intelligence algorithms for
future Cognitive Radio (CR) systems is unavoidable. For a CR
to operate as best as possible it must identify who is present in
spectrum of interest, and what they are doing (jamming, commu-
nicating, rogue transmission, etc.). Using this information, a CR
can accordingly decide what to do next. Furthermore, being able
to determine which wireless protocols are occupying spectrum is
an important ability in heterogeneous wireless networks. In this
work, we investigate the robustness of various Neural Network
(NN) algorithms for classification of wireless protocols when
looking at base-band In-phase/Quadrature (IQ) data without
needing to decode. We propose a spectrum sensing algorithm
based on NNs or other similarly behaved classification algorithms
for identifying wireless technologies occupying spectrum. In pre-
vious literature, using base-band IQ data, researchers have shown
that NN models can classify different modulation formats with
promising accuracy. This work explores the potentials, usage, and
limitations of using base-band IQ data for classifying various
wireless network protocols that employ the same modulation
format.

Index Terms—Cognitive Radio, Neural Networks, Signal Clas-
sification, Wireless Protocols

I. INTRODUCTION

Signal classification is an essential addition for more ef-
fective cognitive radio (CR) technology as spectrum becomes
increasingly scarce. It is common practice in modern CRs to
use spectrum sensing as means to avoid occupied spectrum
[1]. Modern wireless protocols operate on unlicensed shared
spectrum, and being able to identify other existing tech-
nologies on the spectrum can improve friendly coexistence.
To further improve the performance of a CR, it must be
able to identify what is present in spectrum of interest, and
act accordingly. When identifying what’s in the spectrum, it
can be complex and often infeasible to decode what’s being
observed, so a CR will have to settle for simply identifying the
signal. A significant number of wireless protocols employ a
form of orthogonal frequency division multiplexing (OFDM)
which makes it difficult for existing modulation classification
algorithms to differentiate between protocols.

This work explores the use of various neural network
(NN) architectures for classifying wireless protocols of similar
modulation formats. We analyse two main categories of NN:
feed forward NN (FNN), and convolutional NN (CNN). We
found that a specific kind of CNN known as a residual NN

Sheet1

Page 1

Protocol Parameter Possible Values

LTE

RC

CellRefP 1

PDSCH # Layers 1
CFI 1, 2, 3
Ng Sixth, Half, One, Two

PHICHDuration Normal, Extended
SSC 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

5G

Cell ID 0, 1, 2, …, 99, 100
# of Subframes 1

Case A, Case B

SSB Transmitted Random Binary Vector of Length 4 

SSB Periodicity 5, 10, 16, 40, 80
Cyclic Prefix Normal, Extended

BWP Size 25, 50

BWP Separation 10, 50

QPSK, 16QAM, 64QAM, 256QAM

Random Ternary Vector of Length 4 

A, B

2, 3

1,2

0, 1, 2, 3

0, 1, 2, …, 65535

0, 1

Wi-Fi

MCS 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
APEP Length 2^9, 2^10, 2^11
Guard Interval Short, Long

Group ID 0, 63
Partial AID 0, 1, 2, …, 511

CBW20, CBW40, CBW80, CBW160

R.0, R.1, R.2, R.3, R.4, R.5, R.6, R.7, R.8, R.9, R.10, R.11,
R.12, R.13, R.14, R.25, R.26, R.27, R.28, R.31-3A, R.31-4,

R.43, R.44, R.45, R.45-1, R.48, R.50, R.51, R.6-27RB, R.12-
9RB, R.11-45RB

SSB Block 
Pattern

PDSCH 
Modulation
PDSCH RV 

Sequence
PDSCH Mapping 

Type
DM-RS First 

Symbol Position
# Front Loaded 

DM-RS Symbols

Other DMRS 
Symbol Positions

PDSCH 
Scrambling 

Identity
PDSCH 

Scrambling 
Initialization

Channel 
Bandwidth

TABLE I
PROTOCOL PARAMETER RANDOMIZATION OPTIONS

(ResNet) [2] was overall the most effective in classifying
wireless protocols.

There are two main approaches of signal classification:
likelihood based, and feature based. Many likelihood based
methods make optimal decisions, however they are often
too computationally complex for real time implementation.
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Fig. 1. FNN outputs as the sliding window shifts across a couple of frames. From left to right, LTE, Wi-Fi, ang 5G are analyzed shown respectively.
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Fig. 2. Receive chain with indication of where to place a wireless protocol
classifier.

Feature based classification usually involves extraction of
features from a signal (power, bandwidth, carrier frequency,
high order statistics, etc.), and use those features as inputs to
some kind of classification algorithm which could be machine
learning or something else. This is known as expert feature
based classification.

We and others speculate that it may be better for a machine
learning model to formulate its own features to use in the
classification process. There exist some works [3], [4], [5],
[6] that explore this possibility, and they achieve competitive
results with other traditional feature based approaches. How-
ever, we have not seen any prior work analyzing the potential
or usage of machine learning in classification and identification
of wireless protocols being present or not. In section V, we
present a technique for applying NNs in real-time systems to
identify when wireless protocols are present in the spectrum.

When multiple protocols are utilized in the same portion
of spectrum being able to identify who else is out there can
be crucial to friendly co-existence . There have been multiple
works that describe the challenges in coexistence of multiple
wireless technologies in the same bands [7] [8], and it is
difficult for devices designed for one protocol to identify
signals from another protocol.

Initially, in an effort to explore the robustness of NNs
in this task we tested classification accuracy when passing
randomly place windows of 1024 samples within frames or
between frames to the NNs, as well as testing the performance
when only looking at the beginning of packets. Furthermore,
we passed the IQ data from MATLAB waveform generations
through various channel models such as Rician, Rayleigh, and
COST2100 [9]. NNs have been shown to not perform well

under such multi-path channel models [4], and our simulations
repeat that result. As a result, we only analyze additive white
Gaussian noise (AWGN) channels in the rest of this paper.

This paper presents a threshold based method of identifying
when wireless protocols are present in spectrum using deep
learning, and benchmarks the method with LTE, Wi-Fi, and
5G protocols as example. Although some protocols have useful
features such as beacons or private frequency bands that would
make identification easy, we are demonstrating this algorithms
ability in conditions when such features are not available as
would be the case in adversarial situations.

The proposed method is as follows. A user will gather
data and train neural networks on the beginning of frames of
the different targeted wireless protocols offline, and the target
outputs are one-hot vectors. During training artificial AWGN
noise is applied to every training sample with SNR ranging
from -40dB to +40dB. When deployed, the NN will observe
a window of received baseband IQ samples and provide new
outputs with every shift of the window. Based on these outputs
the user will select a threshold close to, but less than 1 for
each output neuron. When an output neuron exceeds the user
selected threshold this is indication that the protocol of the
corresponding output neuron is present in the spectrum.

The organization of this paper is as follows. In section II
we discuss related signal classification algorithms and works
that could benefit by employing the algorithm we present.
Section III provides an overview of NN algorithms we analyze.
The algorithm we present in this paper is described in V.
Performance analysis of the algorithm and other discussion is
found in section VI. Section VIII concludes with a brief recap
of the algorithm, and other key takeaways from our results.

II. RELATED WORK

There has been extensive literature in recent years regarding
classification of modulation formats using machine learning.
[4] analysed the performance of various NN architectures and
their hyper-parameters in modulation classification with base-
band IQ samples. The authors of [3] show that classification
accuracy of modulations can be improved with a specialized
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Fig. 3. Probability of detecting protocols when only one protocol is present in the spectrum at varying SNR. From left to right the only protocol present is
LTE, Wi-Fi, and 5G

training strategy, where they train a single NN in stages to
differentiate modulation formats in a hierarchical manner. [6]
also explored a hierarchical manner of modulation classifica-
tion, but these authors used multiple NNs each specializing
in narrowing down the modulation class which ultimately
performed better than [3].

Few existing works have explored protocol classifications as
well. [10] explores classifying between slotted ALOHA and
Time Division Multiple Access (TDMA) by using power mean
and power variance over time as features to be classified with
a Support Vector Machine (SVM). Some works such as [5]
have explored using IQ data with deep learning algorithms.
to classify different applications being used under the same
communication protocol.

III. NEURAL NETWORK ARCHITECTURES

In this section, we will briefly describe the various NN
architectures explored in this work. This section only gives
a very brief discussion of what NN techniques are explored in
this paper, and we encourage the reader to look in reference
[11] if they desire more explanation of these techniques.

A NN is nothing more than a large deterministic functions
with a set of changeable parameters denoted as θ, and training
a NN is the process of changing θ to increase classification
accuracy. NNs act upon an input x to produce a prediction
h(θ, x) = ŷ where h is the structure of the NN. A loss function
`(ŷ, y) is a measure of how different the prediction ŷ is from
the correct output y, and NNs seek to minimize this loss during
training.

Most NNs are trained using the back-propagation algorithm.
Back-propagation is an efficient algorithms to calculate the
gradient of multiple variables in a large complex equation. For
NNs, it is used to calculate the gradient of θ with respect to
the loss `(ŷ, y). A common optimization algorithm for training
neural networks in stochastic gradient decent which modifies
theta in steps as

θn = θn−1 − η∇θ`(ŷ, y) (1)

where η is known as the learning rate, θn is the new set of
changeable parameters in the network, and θn−1 are the old
ones.

Depending on the problem, a user must decide what form
the output of their NN model will take on. For a problem
where a user wants to classify between two classes, it is
common to use a single neuron as the output, with a sigmoid
activation function. The sigmoid neuron outputs ŷ ∈ [0, 1],
and the user can select a threshold for class selection between
the two classes. With sigmoid output neurons, binary cross
entropy is typically used as the loss.

`(y, ŷ) = −loge(1− y − ŷ(−1)1+y) (2)

In the case of more than two classes in a classification
problem, the softmax layer is often used. With softmax layers,
each neuron is assigned a corresponding class, each neuron
outputs a value between 0 and 1, their sum is 1, and each
output can be interpreted as the probability the input belongs
to the corresponding class. Categorical cross entropy is the
most common loss with softmax output layers.

For our problem, we want to identify when particular
wireless protocols are present or not. This calls for a bank of
sigmoids for the output layer. Each protocol gets a sigmoid
output neuron, and if any neuron exceeds a threshold the
protocol will be deemed detected. The loss typically used with
sigmoid bank output layers is binary cross entropy.

A deep FNN consists of many dense layers. A dense layer is
multiplying the input to the layer by a matrix of weights, then
adding that result to a vector of biases, then passing the results
into an element-wise nonlinear activation function (such as
ReLU, sigmoid, tanh, etc.). That result is then passed into
other layers depending on the network architecture.

A CNN consists of convolutional layers. A convolutional
layer is a simple convolution operation where we convolve the
input to the layer with one or more filters of trainable weights,
and the weights are modified according to their respective
gradients with respect to the loss during training.
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Fig. 4. Probability of detection/misdetection when two protocols are interfering at various SIR.
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Fig. 5. Variable sizes of FNN for 1024 IQ samples under AWGN

IV. DATA COLLECTION

In this paper, to demonstrate the ability of NNs to identify
wireless protocols we identify LTE, WiFi, and 5G frames.
We collect baseband IQ samples of the waveforms for these
frames using MATLAB toolboxes. MATLAB has toolboxes
that contain waveform generation for all these protocols.
Within these toolboxes, we randomize various parameters for
the signals. The idea behind doing this is that if we get as
much variation within the different classes as possible, we
can prove just how effective NNs are in finding differences
despite the variability. Additionally, in practice a user will not
have control over signals that belong to different protocols, so
being able to identify a large variety within those protocols
is important. Table I displays all of the parameters that were
changed and/or randomized within the protocols. All of the
protocols were constrained to work for single-input-single-
output (SISO) only. In this paper, all training and test data are
created according to Table I, and they are split by 80%/20%
for training/testing data respectively.

V. SYSTEM DESIGN

FNNs and CNNs are constricted to a finite view of signals.
As a result, it is best if they focus on the beginning of frames as
they are the most unique and consistent part of the waveform
for most protocols. Fig 2 shows where a user would implement
the proposed algorithm. After a signal is sampled a window
(we used rectangular) will shift with every received sample.

The user will design a NN that uses a sigmoid bank output
layer with each neuron pertaining to a wireless protocol of
interest for detection. Users should collect IQ data at their
target sample rates offline, and window the beginning of
frames. For training the NN, each window is treated as an input
vector, and one-hot encoded labels are used as the desired
output. During training we propose that the user should add
artificial noise to each training sample with a random SNR
of -40dB to +40dB at each training step. If the same training
sample is used again, a new random SNR must be selected
and newly generated accompanying noise. The input to the
NN is always normalized to have a power of 0dB.

We propose that to indicate detection with a sigmoid bank
NN for this application, the threshold for each of the output
neuron should be close to 1. When an output neuron exceeds
it’s threshold, the corresponding protocol is deemed detected.
As the threshold ti for the ith output neuron is increased, the
probability of detecting the ith class P (i) approaches 0. In
other words,

limti→1

(
P (i)

)
= 0 (3)

and conversely,

limti→0

(
P (i)

)
= 1 (4)

However, decreasing ti also increases probability of false
alarm, and increasing ti increases the probability of misdetec-
tion. The user must tune ti for each output neuron depending
on the false alarm and misdetection probability constraints of
their system.
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Fig. 6. Comparing classification accuracy under AWGN for different window
sizes using a FNN of depth 1 and width 20. The label ”1024” indicates that
the input to the network is 1024 IQ samples concatenated and windowed.

There is significant drop in performance if the windows the
NN is trained on are not at the beginning of frames. When
training and testing CNNs and FNNs on random locations of
frame, we only saw a 40% classification accuracy under the
best conditions. With 3 classes, 33% accuracy is as good as
random guessing. In Fig 1, we see the outputs of a FNN when
a window slides across a couple of frames. Incorrect output
neurons tend to get very close to 1, however they rarely surpass
the maximum output we observe for the correct class.

VI. PERFORMANCE ANALYSIS

In this section we analyze the testing accuracy of the
NNs, and probability of detection with the proposed approach.
Training time for even our most complex NNs never exceeded
1 hour on a computer without a GPU, and a dual core Intel
i5 processor. All NN implementation, training, and testing
was programmed in Python using the Keras library within
Tensorflow.

In Fig 5 we simulate probability of correct classification
on the beginning of frames as SNR increases in an AWGN
channel model. We see that there isn’t very much gain in
performance when increasing the depth or the width of the
FNN. It is worth noting that classification accuracy with a FNN
with one hidden layer and a width of 5 neurons performed
slightly worse than a width of 20 neurons. The accuracy
between width 40 and 60 are the same. We also see that
increasing the depth of the network did not have any effects
on performance improvement.

NNs can be extremely computationally complex, and reduc-
ing the size of a NN reduces the computational complexity.
In Fig 6 we show probability of correct classification vs
SNR on the beginning of frames, as the input window size
decreases. A different FNN of depth 1 and width 20 was
trained and tested on their respective window sizes to generate
the results in Fig 6. As one would expect there is a decrease
in performance as the window size decreases, because there is
less information for the NN to understand. The convergence
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Fig. 7. Comparing varying CNN architectures with and without pooling on
1024 IQ samples under AWGN. Blue curves denote pooling is present in the
NN. ”3x10” denotes a convolutional layer with 3 filters of size 10, and ”20”
denotes a dense layer of 20 neurons. Multiple of such phrases on a label
indicate that the layers are connected for that network.

to 100% classification accuracy with respect to SNR only
changes by a few dB.

It is common in CNNs to use max pooling. A max pooling
layer takes a sliding window across it’s input, and throws away
all inputs from each window that are not the maximum in their
respective windows. For the case of IQ samples, we choose
the max based on magnitudes of the samples. In Fig 7 we
show the effects of using max pooling windows of size 2 and
3 after convolutional layers when AWGN is the only channel
impairment. As an example to explain the notation in Fig 7,
3x10 conv means that 3 parallel convolutional filters of 10 taps
are used in that layer. Max pooling clearly does not perform as
well at low SNR, but CNNs with max pooling do converge to
100% classification at around the same SNR regions as CNNs
without max pooling. Though performance is not quite as good
at low SNR with pooling, it is important to note that max
pooling significantly reduces computational complexity in a
NN. We recommend users employ max pooling, because they
still converge to 100% classification accuracy at the same SNR
as those without, and they significantly reduce computational
complexity.

ResNets were first presented in [2] for image classification,
and were shown to be quite effective for modulation classi-
fication in [4]. They have been one of the most popular NN
architectures, because of their great performance across many
tasks. The intuition behind why ResNets are so effective is
because they keep residual information of early layers all the
way throughout a deep NN through addition. This allows the
back-propagation algorithm to easily calculate the gradients
for early layers, while still getting the benefits of having a deep
NN. We show the performance of a few ResNet architecture in
Fig 8. Since there is virtually no gain in increasing the depth
of the network, we do not recommend doing so.

Fig 3 shows the probability of a CR employing the presented
algorithm detecting various protocols, when only one protocol
is present. Each data point is generated by having a width 20,
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Fig. 8. Comparing classification accuracy under AWGN for different ResNet
architectures.

depth 1 FNN with 512 IQ inputs look at a sliding window
across a couple of frames, and if the output from the FNN
at any window exceeds a threshold of 0.9999 it is counted
as detected. We generate each data point by doing this 900
times, each time with different signals. The middle plot from
Fig 3 shows probability of detection when Wi-Fi is the only
protocol present in the spectrum. This plot indicates that there
is very low probability past 0dB SNR that LTE or 5G are
incorrectly detected, and Wi-Fi is always properly detected.
Unfortunately the left plot in Fig 3 indicates that 5G is rarely,
but sometimes detected when LTE is the only signal present.
This is likely because Wi-Fi has a very unique and consistent
preamble, where as LTE and 5G frame beginnings are similar
under certain protocol parameters.

Assuming one protocol will be the only thing present in
the spectrum is impractical. LTE, Wi-Fi, and soon 5G will
all be occupying the same spectrum in certain bands. To
explore the effects of interference, we have superposed signals
of two different protocols over each other at varying Signal
to Interference Ratio (SIR). In Fig 4 we present probability
of detection when there is interference between two different
protocols. To generate a data point in Fig 4, we look at 900
instances of two protocols interfering, and observe a couple of
frames. Each simulated interference has the first frames from
each class beginning at the same time which is rare in practice.

VII. COMPARATIVE ANALYSIS

In this section we present simulation analysis of other
approaches to detection of wireless protocols.

Another approach to signal detection with NNs would be
to introduce an output neuron that indicates no protocol of
interest is present in the spectrum: a noise output neuron.
With this approach a protocol is deemed detected whenever
its protocol output neuron surpasses the noise output neuron,
and softmax is used as the output layer. It would not make
sense to include an output neuron for noise under the proposed
training regime, because we train with SNRs as low as -40dB.
To analyze performance of this approach, we alter the lower

bound on AWGN to 0dB, as that is well past the point of
100% classification as shown in section VI. This approach
falls short when it comes to false alarm. When a NN with the
noise output neuron sees a couple of frames from any class at
any SNR in our simulations, every class is deemed detected.
This is a false alarm rate of 100%.

In purely classification problems it would make sense to use
the softmax output layer, so another approach to protocol iden-
tification is to just use a softmax output. There are instances
when no protocols are present, so thresholding is still needed
with a softmax output layer as opposed to a sigmoid bank. Fig
9 shows the misdetection and false alarm probabilities when a
softmax output layer is emplyed with our proposed approach
as opposed to a sigmoid bank. The threshold that performed
best for a softmax output in our dataset was 0.99. Softmax
appears to struggle with false alarms between 5G and LTE
much more than a sigmoid bank shown in figure 3.

VIII. CONCLUSION

This paper proposes and analyzes a deep learning based
algorithm for identifying if certain protocols are present in
spectrum. Users train a softmax NN to classify the beginning
of frames belonging to certain protocols offline. The beginning
of frame windows are given artificial AWGN noise ranging
from -40dB to +40dB SNR, and the input is always normalized
to 0dB power. When applied in practice, a sliding window of
baseband IQ samples from an ADC is passed into the NN.
When an output neuron passes a user defined threshold, this is
indication the the protocol associated with that sigmoid neuron
is present in the spectrum. We showed that depth does not
provide any performance improvement. Using max pooling
in a CNN is a good idea, because it reduces computational
complexity, and converges to 100% classification accuracy at
around the same SNR as NNs that don’t use max pooling. We
showed that reducing window size does not strongly affect the
SNR ranges of good classification accuracy. When multiple
protocols are present in the spectrum the algorithms is still
able to identify which protocols are present. The proposed
threshold based approach performs better significantly better
than to have a designated noise output neuron in a softmax
output layer.

ACKNOWLEDGMENT

The authors of this paper would like to thank Broadband
Wireless Access Center (BWAC) for funding this research.
BWAC is an industry sponsored subset of the National Science
Foundation (NSF).

REFERENCES

[1] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mo-
hanty, “Next generation/dynamic spectrum access/cognitive radio
wireless networks: A survey,” Computer Networks, vol. 50,
no. 13, pp. 2127 – 2159, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128606001009

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 770–778.

2020 Workshop on Computing, Networking and Communications (CNC)

292Authorized licensed use limited to: The University of Arizona. Downloaded on June 27,2021 at 15:25:09 UTC from IEEE Xplore.  Restrictions apply. 



40 20 0 20 40
SNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

oa
ba

bi
lit

y 
of

 D
et

ec
tio

n

5G
LTE
Wi-Fi

40 20 0 20 40
SNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
oa

ba
bi

lit
y 

of
 D

et
ec

tio
n

5G
LTE
Wi-Fi

40 20 0 20 40
SNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
oa

ba
bi

lit
y 

of
 D

et
ec

tio
n

5G
LTE
Wi-Fi

Fig. 9. Probability of detection/misdetection when only one signal is present, and a FNN uses a softmax output layer. From left to right the only protocol
present is LTE, Wi-Fi, and 5G

[3] G. Vanhoy, N. Thurston, A. Burger, J. Breckenridge, and T. Bose, “Hi-
erarchical modulation classification using deep learning,” in MILCOM
2018 - 2018 IEEE Military Communications Conference (MILCOM),
Oct 2018, pp. 20–25.

[4] N. E. West and T. O’Shea, “Deep architectures for modulation recog-
nition,” in 2017 IEEE International Symposium on Dynamic Spectrum
Access Networks (DySPAN), March 2017, pp. 1–6.

[5] T. J. O’Shea, S. Hitefield, and J. Corgan, “End-to-end radio traffic
sequence recognition with recurrent neural networks,” in 2016 IEEE
Global Conference on Signal and Information Processing (GlobalSIP),
Dec 2016, pp. 277–281.

[6] K. Karra, S. Kuzdeba, and J. Petersen, “Modulation recognition using
hierarchical deep neural networks,” in 2017 IEEE International Sympo-
sium on Dynamic Spectrum Access Networks (DySPAN), March 2017,
pp. 1–3.

[7] C. Cano, D. Lopez-Perez, H. Claussen, and D. J. Leith, “Using lte
in unlicensed bands: Potential benefits and coexistence issues,” IEEE
Communications Magazine, vol. 54, no. 12, pp. 116–123, December
2016.

[8] M. Hirzallah, W. Afifi, and M. Krunz, “Full-duplex-based rate/mode
adaptation strategies for wi-fi/lte-u coexistence: A pomdp approach,”
IEEE Journal on Selected Areas in Communications, vol. 35, no. 1, pp.
20–29, Jan 2017.

[9] L. Liu, C. Oestges, J. Poutanen, K. Haneda, P. Vainikainen, F. Quitin,
F. Tufvesson, and P. D. Doncker, “The cost 2100 mimo channel model,”
IEEE Wireless Communications, vol. 19, no. 6, pp. 92–99, December
2012.

[10] Zhuo Yang, Yu-Dong Yao, Sheng Chen, Haibo He, and Di Zheng, “Mac
protocol classification in a cognitive radio network,” in The 19th Annual
Wireless and Optical Communications Conference (WOCC 2010), May
2010, pp. 1–5.

[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

2020 Workshop on Computing, Networking and Communications (CNC)

293Authorized licensed use limited to: The University of Arizona. Downloaded on June 27,2021 at 15:25:09 UTC from IEEE Xplore.  Restrictions apply. 


