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prime power, we write F, to denote the field with g

elements, so if p is prime, F,, is the field of integers
modulo p. A simple random walk (drunkard’s walk) on F,
goes from jto j+ 1 or j — 1 with probability 1/2. As time
goes on, this converges to the uniform distribution on Fy,.
This means that after a long time, the probability that the
random walk will be at some o € F,, is about 1/p. It takes
about p? steps for this convergence to kick in. This is slow:
if p = 101, then p* = 10 201. These informal statements are
explained more carefully after Theorem 1 below.

One attempt to speed things up intersperses determi-
nistic doubling with the random =+1 steps. If X,, denotes the
position of the walk after » steps (say starting from X, = 0),
then this new walk is

| et us begin with a problem we cannot solve. If g is a

XH = Zanl + &, (mOd p):

with ¢, = +1 with probability 1/2, independently from step
to step.

In (3], it is shown that order-log(p) steps are necessary
and sufficient for convergence (log will always refer to the
natural logarithm). See [8] for amazing refinements and [2]
for other applications to deterministic speedup.

Seeking to understand such speedups, we consider the
random walk

X, = kal + &, (mod p).

This is the problem we cannot solve! We do not understand
the stationary distribution—numerical evidence at the end
of this paper shows that it is wildly nonuniform. We do not
even know its support, much less rates of convergence to
stationarity.

Squaring defines an automorphism of a finite field of 2-
power order, so we decided to study the corresponding

problem over the field F,,, where g = 2¢. To be specific, we

q»

In memory of Jobn Conway

choose a basis B for F; over its prime subfield F;, so
|B| = d, and we consider the random walk on the elements
of F,; defined by setting X, = 0 and

Xy = X},Zl_l + €, (1)

for n > 0. Here ¢, is randomly chosen from the set {0} U B,
where the probability that €, = 0 is 1/2, and for each ele-
ment « € B, the probability that €, = o is 3;. The unique
stationary distribution for this walk is the uniform distri-
bution n(x) =1/2¢. (Random walks, or in more formal
language, Markov chains, are discussed in greater detail
below.)

If we were to omit the squaring and simply take
X,, = X,,_1 + €,, it is not hard to see that the behavior of the
resulting walk would be independent of the choice of the
basis B that defines it. Surprisingly, however, the walk we
defined above (which includes squaring) does depend on
the choice of the basis. To illustrate this, we compute the
transition matrices for the square-and-add Markov chains
on Fg defined using two different bases. As we shall see,
these matrices have different eigenvalues.

First, we explain what we mean by the transition matrix
for a Markov chain on a finite set X. This is a square matrix
M, with rows and columns indexed by the members of X,
where for x,y € X, the entry M(x, y) in row x and column y
is the probability of arriving at y in one step, starting at x.

To see the relevance of the transition matrix, let v,
denote the row vector having entries indexed by the ele-
ments of X, where the entry at position x in v, is the
probability that the random walk has arrived at x at time 7.
It is easy to see that v,11 = v,M, s0 v, = vyM", and thus the
convergence of the Markov chain is controlled by the
powers of the transition matrix M.

To compute transition matrices for our walks on Fg, we
need to name the elements of this field, and to do this, we
take advantage of the fact that in general, the multiplicative
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group of the finite field F, is cyclic of order g — 1. If we fix
a generator 7 for this group (so #is a primitive element), we
see that the elements of the field are 0 and #' for
0<i<qg-2.

Once we have named the field elements in this way, it is
trivial to see how to compute the product of two field
elements, but it is not clear how to determine their sum. In
fact, more information is needed before this is possible: it
suffices, for example, to know the minimal polynomial fx)
of r over the prime subfield of F,. Taking g = 27, we see
that fis an irreducible polynomial of degree d over F;, so if
q = 8, we can assume that f(x) = x> + x + 1, and with this
information, the arithmetic in Fg is completely determined.

The transition matrix M for a Markov chain on Fg is an
8 x 8 matrix whose rows and columns are indexed by the
field elements, and we choose to write these elements in

2 3 4 5, 79 and we recall that the

)

the order 0, 1, 7, r
entry M(a, f§) is the probability that one step of the chain
goes from o to f.

If we take the basis B = {1,r,7%}, it is not hard to
compute that the matrix is

0 1 7 72 72 ¢t 95 4F

1 1 1 1
RN I
Llg 2 00 ¢ 0 0
rlg 00 5 0O % 0
2 1 1 1
1o 0§ ¢ 0 5 ¢ 0
Plo o5 0 00
4 1 1 1 1
e (1) s 0 ¢ 6 0 0
Pl 0 g 5 0 5 0 0
5 1 1 1 1
N0 0 0 0 & 5o, g

The eigenvalues of this matrix are 0, 0, 0, 2/3, 1, and the
three cube roots of 4/27.

If instead we take B = {r3,7,7°}, the transition matrix
is

0 1 r r2 ¢33 gyt 95 46
0/y 00 0 L 0 ¢ ¢
1[0 5 & & 0 4 0 0
rl0 o 0 5 ¢ 0 & 0
P10 s 0 0 2 0
311 1 1 1
Ple 0 0 0 & 0
1o s, 00 0 b

1 1 1 1
e\ 0 g2 s 00
M\g 0§ 4 0 0 5 0

and the eigenvalues of this matrix are 0, 1, the three cube
roots of 1/27, and the three cube roots of 8/27.

Since these two Markov chains on Fg have transition
matrices with different sets of eigenvalues, we see that
random walks determined by different bases for Fg can
have different long-term behaviors. We do not know,
however, the extent to which the choice of a basis for F,
can affect the rate of convergence of the corresponding
Markov chain.

The second of our two bases for Fg, namely {73, 7%, 7°},
consists of an orbit under the automorphism group of Fg,
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which is the group generated by the squaring map. In fact,
for every prime power g, there always exists a basis for F,
that forms an orbit under the automorphism group of the
field. Such a basis is said to be a normal basis, and it
happens that our basis {r3,7°, #°} is the unique normal
basis for Fs. (The set {r,#?,7*} is also an orbit under the
automorphism group, but it is not a basis, because
r4+1r2+r* =0, since r is a root of the polynomial
X +x+1)

Although the properties of a Markov chain on F,
defined by choosing a basis can depend on the chosen
basis, it can be proved that the transition matrices for chains
defined by normal bases are identical up to an appropriate
renaming of the field elements. It follows that the corre-
sponding random walks are essentially the same. In fact, if
q = 29, it is not hard to show that after a multiple of d steps,
the probability distribution of a square-and-add walk
defined on F, using a normal basis is exactly the same as
the distribution for the walk on F, without squaring. Also,
this is the same as a simple random walk on the binary
hypercube, and it is well known that this walk takes
1d(log(d) + c) steps to converge [5].

A Conway Digression

Once we realized that the way the field is represented
matters, our thoughts turned to one of the hundreds of
magical mathematical gems that John Conway left to us:
Conway polynomials. (These are unrelated to the Conway—
Alexander polynomials in knot theory.)

Fix a prime p, and let f(x) € F,[x] be an irreducible
polynomial of degree 7. Then the quotient ring F,[x]/(f) is
a field of order p”, and all choices of fyield the same (up to
isomorphism) field F,:. The p” elements of this field can be
represented as polynomials h(x) of degree at most 7 — 1,
and adding field elements in this representation is easy, but
multiplication is more tedious. Alternatively, we can take
advantage of the fact that the multiplicative group of a finite
field is cyclic, so there is a generator r of the multiplicative
group (Fy)" of order p” —1. (Any such generator is
referred to as a primitive element of Fy.) Given a primitive
element 7, therefore, the distinct nonzero elements of F
are 7' for 0 < i < p" — 2, and thus

Ep = {0,1,7,7%, .., "%},

and we see that with this representation of the field ele-
ments, multiplication is a triviality, but unfortunately,
addition can be quite difficult.

An irreducible polynomial f € F,[x] of degree n is said
to be a primitive polynomial if one of its roots—and hence
all of them—is a primitive element of the field Fy:, and in
this case, the element of F,[x]/(f) represented by the
polynomial h(x) =x is a primitive element. If we had
constructed the field Fy: using an imprimitive irreducible
polynomial f; it would not be so clear which elements h(x)
were primitive.

If m is a divisor of #, then F;» contains a unique subfield
F,» of order p™, and the multiplicative group (F,»)" is the



unique subgroup of index (p” —1)/(p™ — 1) in the cyclic
group (F,»)". Thus if 7 is a primitive element of F,, then
70" =D/"=1) is one of the primitive elements of Fu.

Suppose we construct the fields F,» and F,» using
primitive polynomials f and g in F,[x], having degrees n
and m respectively. If r € Fys is a root of fand s € Fyn is a
root of g, then rand s are primitive elements of F,» and Fyn,
so they generate the multiplicative groups (Fp:)" and
(Fpn)*. Viewing Fp» as a subfield of Fyi, we know that
p@"=0/0"=1 is a primitive element of F,», but there is no
reason to believe that it is equal to s, or to any other root of
g. Wouldn't it be nice if we could choose the primitive
polynomials fand g with degrees n and m in such a way
that if 7 is a root of £, then &"~1/?"=1) js a root of g? That
would make it much easier to see how F;» is embedded as
a subfield of F.

Given primitive polynomials fand g in F,[x], where fhas
degree n, ghas degree m, and m divides n, we say that fand g
are compatible if for every root r of fin Fy», the element
r"=0/"=1) js a root of g. Equivalently, fand g are compat-
ible if the polynomial g (x®"~1/¢"=1) is divisible by /. (Note
that this latter formulation of the compatibility condition can
be checked using nothing more sophisticated than polyno-
mial long division, and in particular, it does not require
finding roots of polynomials.) Conway has given us a way to
construct compatible primitive polynomials. Even better,
Conway showed how to construct, for each prime p, a family
of primitive polynomials {f,,}, one for each positive integer
n, such that f;, has degree 7, and whenever m divides 7, the
polynomials f;, and f;, are compatible.

It does not seem obvious that such families of compat-
ible polynomials exist, but in fact, they do, and there is an
abundance of riches: there is more than one compatible
family for each prime p, even if we require that all of the
polynomials f,, be monic.

Conway described a somewhat arbitrary procedure that
would uniquely determine a specific compatible family of
monic primitive polynomials. Conway’s procedure stuck,
and the resulting polynomials, now referred to as the
Conway polynomials, are the default, and they are used in
such computer algebra systems as Magma and GAP. We
can give a taste of Conway’s procedure by considering the
linear (degree-1) case. Every polynomial of the form x — a,
where a is a primitive root modulo p, is a primitive poly-
nomial. Among these, Conway chose the one for which a is
minimal in the ordering 1 < 2 < --- < p — 1. For exam-
ple, the smallest primitive root modulo 7 is 3, so the
Conway polynomial of degree 1 for p=7 is x —3. On
consulting tables of Conway polynomials, we see that the
degree-2 Conway polynomial for p=7 is x*+ 6x+ 3.
Taking m=1 and n=2, we have
(72-1)/(7—1) =48/6 =8, so we can verify the com-
patibility condition by checking that x® — 1 is divisible by
x% + 6x + 3 in F7(x).

A rough description of a recursive algorithm to compute
the Conway polynomial f,, for a prime p is as follows. If
n =1, then as we have already mentioned, f,,(x) = x — a,
where a is the “smallest” primitive root modulo p. Assume

now that 7 > 1 and that we have already found all of the
Conway polynomials f;, for m a proper divisor of 7. Con-
sider the set S,, of all degree-n monic primitive polynomials

[such that fis compatible with all of the polynomials f;,, for

proper divisors m of 5. It is not obvious, but it is true, that
the set S, is nonempty, so we can define f, to be the
smallest member of S, with respect to a specific linear
ordering of polynomials defined by Conway. We mention
that to determine whether a polynomial flies in S,,, it is not
necessary to check whether fis compatible with f,, for all
the proper divisors m of n; it suffices to consider only those
divisors of the form m = n/q, where g is prime. The reason
for this is that if / divides m, and m divides 7, and we have
established that fis compatible with f,,, then fis guaranteed
to be compatible with f;. This follows easily from the fact
that f,,, is compatible with f;.

For more on Conway polynomials, see [11, 16]. A
detailed listing of available Conway polynomials can also
be found on Frank Liibeck’s website [16]. Let us end this
digression by admitting that we have not (yet) found that
Conway polynomials mesh with our study of “square-and-
add” random walks. Our problem gave us the excuse,
however, to marvel at Conway’s magic, and that is almost
as good as finding a new theorem.

What We Can Prove

There is one situation in which a sharp analysis of the
square-and-add Markov chain on a field of 2-power order is
possible. Following a suggestion of Amol Aggarwal, we let
p be a prime such that 2 is a primitive root modulo p, which
means that 2 generates the multiplicative group of Fy.
(According to the Artin primitive root conjecture, which
was proved conditionally on the generalized Riemann
hypothesis [12], these have positive density among all
primes.)

Then for d = p — 1, the cyclotomic polynomial

SE)=x?+ x4 a1 (2)
is irreducible over F,. (These polynomials are discussed
below in the subsection on cyclotomic polynomials.) With

these assumptions, the field F,[x]/(f) has order 2¢, and a
basis is

{102, a0 1), 3)

(Note that because x¥ = 1, x is not a primitive element of
this field, and so x does not have order 2¢.) The following
result says roughly that about id log(d) steps are necessary
and sufficient for convergence of the Markov chain deter-
mined by this basis on the field F,[x]/(f).

If K denotes the transition matrix for a Markov chain, let
K"(a, ff) denote the probability of moving from o to ff in n
steps. Let

12— Ol =3 3 1P(2) — 0(@)]

o€F,

denote the total variation distance of probability measures.

© 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature, Volume 43, Number 2, 2021 29



THEOREM 1. Let p be a prime with 2 a primitive root in F,,
and letd = p — 1. In B, with q = 29, the Markov chain (1),
defined by the basis (3), satisfies, for n =3d(log(d) + c)
with ¢ > 0,

1K (0, ) = 7l < @™,
and for n = 1d(log(d) — ¢) with ¢ > 0, it satisfies

>1— a/efbc

Kﬂ O V-1
) J !Tc‘l/, and b, where T denotes the

Sfor um‘vers&t&J constants a
uniform measure.

Informally, the precise upper and lower bounds in
Theorem 1 can be phrased thus: about §d log(d) steps are
necessary and sufficient for convergence.

The heart of the proof is some magical combinatorics for
the Frobenius map of repeated squaring. It is the kind of
magic John Conway enjoyed.

REMARK 2: Theorem 1 holds in more generality. As long
as d is even, fdefined by (2) has no repeated factors, and so
the random walk can be defined on the quotient F,[x]/(f),
which will be a direct sum of fields (with componentwise
addition and multiplication). Squaring is still an isomor-
phism in this case. This is proved in Lemma 5. The same
bounds hold in this case. Theorem 1 can also be extended
(although with weaker estimates) to general primes p, with
the random walk being X1 = X2 + &,,11.

The combinatorics of combining addition and multiplica-
tion in finite fields is currently a hot topic in additive
combinatorics; see [9]. The problems studied here seem
different.

Background

This section contains some needed background on Markov

chains, finite fields, and Fourier analysis over (Fz)d. It
presents these topics in a form needed to prove Theorem 1,
which will be proved in the section following. A final
section returns to the square-and-add walk over F, and has
some computed examples and open questions.

Markov Chains
A Markov chain is a sequence of random variables X,
taking values in some finite set X, so that X,,.; depends on
X1, ..., X, solely through X,. We will assume that our
Markov chains are homogeneous, which means that the
chance of moving from one state to another at step n
doesn’t depend on #n. Such a process can be represented
using a matrix P indexed by X, whose entries P(x, ))
encode the chance of moving from x to y. Here, by con-
vention, probability distributions are written as row vectors,
and P acts on the right, so if u,(x) is the chance of being at
x after n steps of the Markov chain, then u,, = u,,_,P.

A stationary distribution for the Markov chain defined by
P is some probability measure © on X such that nP = n. A
Markov chain is said to be irreducible if for any two states
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x,y € X, there is some positive integer ¢ such that
P'(x,p) > 0. This means that it is possible to reach any state
from any other in the chain. A Markov chain is said to be
aperiodic if P'(x,x) > 0 for all sufficiently large . Note that
a sufficient condition for P to be aperiodic is P*(x,x) > 0
and P'(x,x) > 0 for some s, > 1 with (s,7) = 1. By the
Perron-Frobenius theorem, an aperiodic irreducible Mar-
kov chain has a unique stationary distribution.

Finite Fields

The classical subject of finite fields is exhaustively devel-
oped in [15]. Throughout, we take g = p?, where p is
prime, and we write F, to denote the unique field with g
elements. If fis an arbitrary irreducible degree-d polyno-
mial with coefficients in F, then

Fy = Fplx]/(f),

and if we represent F, in this way, we see that the set
{1,x,x%,...,x7 "1} is a basis for F, over its prime subfield
E,.

Even if fx) is not irreducible, Fy[x]/(f) is still an algebra
over F,, and 1,%,...,x9 " is still a basis. This algebra is
readily identified, provided that f has no repeated factors.

LemMa 3. Let f(x) € Fylx] bave no repeated factors. Sup-
pose that [ =[] fi, where the degree of f; is d;. Then:

1. B,[x]/(f) is isomorphic to the direct sum of the fields

Fplx]/(fi) = Fpa.
2. The map y—)? is an automorphism on F,lx]/(f).

PROOF The first claim is a restatement of the Chinese
remainder theorem, and the second claim follows from the
first, since the map y—)¥ is an automorphism for each
factor. O

The random walk (1) can be defined on the algebra
F,[x]/(f) using the basis B = {1,x,x%...,x971}, even if
the polynomial fis not irreducible. And provided that f has
no repeated factors, this walk has a uniform stationary
distribution. In the following lemma, we take p = 2.

LeMMA 4. Let [ € Fy[x], where [ bas no repeated factors.
Then the Markov chain on Fy[x]/(f) defined as in (1) with
respect to the basis B ={1,x,x%,...,x77 '} is irreducible,
aperiodic, and has a unique stationary distribution, which
is uniform.

PROOF Factor the transition matrix for the random walk as
K = PT, where T is the transition matrix for the walk
defined by X,, = X,,_1 + ¢, and P is the permutation matrix
encoding the bijection y—)? on Fa[x]/(f).



Since P is a permutation matrix, it has some finite order,
so P" = [ for some n > 0. First, we show that K" (e, f) > 0
if T(a, ) > 0. It will be useful to view a step from K as
applying P followed by a step from 7. Since T is lazy, we
can always apply P and then remain stationary for the step
from T7; so do this 7 — 1 times. At the very last step, instead
of remaining stationary, take a step from 7. The result is
moving according to P exactly n times, returning to the
initial state, and then a step from 7, and so K"(«, §) > 0 if
T(a, ) > 0.

To see that K is irreducible, observe first that 7' is
irreducible, so there exists a path using steps from 7 that
goes from o to . Since each step of 7T'can be mimicked by a
block of 7 steps from K, it follows that there is a path from o
to f§ using steps from K.

To see that the Markov chain is aperiodic, start by
taking a single step from K, say going from o to f§, and then
take steps in blocks of size 7, going from f back to o, which
is possible because T is irreducible and K"(a, ) > 0 if
T(a, B) > 0. This means that K*"*!(a, o) > 0 for some &.
Also, since T'is lazy, K" (a, o) > 0. Because kn + 1 and 7 are
coprime, the Markov chain is aperiodic.

Finally, since 7" and P both preserve the uniform
distribution, so does K. Irreducibility and aperiodicity imply
uniqueness of the stationary distribution. O

Cyclotomic Polynomials
Fix 7 € N and let the cyclotomic polynomials @,,(x) € Z|[x]
be defined by

(x _ eZm’/e/n) )

The following facts are well known (see [15, Section 2.4],
for example):

e @,(x) has degree ¢(n) (¢ denotes the Euler totient
function).

The coefficients of @,,(x) lie in Z.

®,,(x) is irreducible over Q.

e If p is prime, then @p(x) =1+ x4 - + a7

o Dpi(x) = Dp(x" ).

A primitive element, or primitive root, of Z/nZ is an
element that generates the group of units (Z/nZ)". A
primitive polynomial over F,, is the minimal polynomial of
some primitive element o € F,. The following result (see
[15, Theorem 2.47], for example) is useful.

LeEMMA 5. Let n be a positive integer relatively prime to a
prime power q, and let d be the order of g modulo n. Since
the cyclotomic polynomial ®, bas coefficients in 7, it can

be viewed as a polynomial in ¥,[x|, and as such, it bas
¢(n)/d distinct irreducible factors, each of which bas
degree d.

From now on, we work over F,, and we observe that if 7 is
an odd integer and 2 is a primitive root modulo 7, then
Lemma 5 guarantees that the cyclotomic polynomial @,, is
irreducible. For example, 1+ x+ x% 4+ x° +x% = d5(x)
and 1+ x% 4+ x% = @y(x) are both irreducible over F,.

Trinomials

A huge collection of explicit trinomials x” + x” + 1 that are
primitive and irreducible over F, is available; see [1] and
[15, Section 3.5]. Consider x” + x + 1. Some computations
suggest that it is often irreducible (but certainly not for
every value of n). It has the following useful property,
however.

LEMMA 6. Forall n > 2, the polynomial x" + x + 1 has no
repeated factors over F;.

PROOF A polynomial has repeated factors if and only if it
shares a common factor with its formal derivative. If 7 is
even and f(x) = x" +x + 1, then f'(x) = 1, and so f” has
no common factor with /. If 72 is odd, then f”(x) = "1 + 1.
If  denotes a root of f’(x) (in some splitting field), we have
"1 =1,s0 7" =r, and thus f(r) = r" + r+ 1 = 1. It fol-
lows that 7 is not a root of f, so fand f’ cannot share any
common factors. O

Fourier Analysis over (F»)?

Let (Fz)d be the abelian group of length-d binary vectors
under coordinatewise addition. The characters of (Fz)‘l are
indexed by f € (F,)*:

xp(e) = (-1)"",

where o - § denotes the number of coordinates i for which
o; = f; = 1 (alternatively, it can be thought of as a dot
product over Fy).

If O(a) is a probability distribution on (F,)? (or more
generally, any function (Fz)d—> O), its Fourier transform at
B e (Fy) is

OB = > o=
ae(F,)!
It is easy to see that Q(O) = 1. The uniform distribution
U(e) = 1/24 for all « € (F,)? has the Fourier transform

U0)=1, U() =0, a0.
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The convolution of two probabilities Q;, Q; is

(Q1 % Q:)( Zgl )Qa (2 + 7).

Note that if X; and X; are independent random variables in

(Fz)d with distributions Q; and Q, respectively, then X; +
X, has Oy * Q, as its distribution. The Fourier transform
turns convolution into product, with

Ql/*\QZ (ﬁ) = Ql(ﬁ)QZ(ﬁ)

The measure Q can be recovered from its Fourier transform
via the inversion formula

dZ "0
2

Finally, Plancherel’s theorem relates the I? norm of Q with
O and states that

ZdZIQ

o€ (F,)"

ZIQ

The following upper bound lemma is the key to estab-
lishing the upper bound in Theorem 1. It is a direct
consequence of Plancherel’s theorem.

LEMMA 7. Let Q(x) be a probability on (F,)" and let U(x)
be the uniform distribution. Then
U(@)* =Y 10(B)I*

410 - Ulzy < 2"ZQ(a
B#0

PRrROOF The inequality follows by Cauchy-Schwarz, and
the equality follows from Plancherel’s theorem and the fact
that T7(0) = 0(0) = 1 and T () = 0 for a # 0.

To set up the application of Lemma 7 to the proof of

Theorem 1, let ey, . . ., ez be the standard basis for (F,)”. Let

3, a=0,
o) =1 35, a=e;,
0 otherwise.
Then
6 = S 01 =14 LSy =g -
2 2d d’

where || denotes the number of nonzero entries in § (with
respect to the standard basis).

Let 4 : (F,)?— (F,)? be a linear map, and consider the
Markov chain starting from X, = 0, and

X, = AX—1 + &, (4)
O(x) for all o € (F,)*

with P (e, =a) = and the ¢, inde-

pendent. Iterating yields Xy =0, X; =&, Xo = Ag + &,
and so on, and so
Xy = An_lgl +An_2£2 + ot e (5)
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Since this is a sum of independent random variables, if
Qn(a) = P (X, = ), then

v}
ey, »

n—1
o, =1 (1-
7=0
In our application, A4 will be the matrix of squaring (which
is linear in characteristic 2), A =1, and the product
becomes tractable.
In [6, 7], this technique was used on (F,)? with

1

(I's along the diagonal and lower subdiagonal and 0
otherwise) to get sharp results. See [5] for applications to
nonabelian groups.

The following proposition shows that adding deter-
ministic mixing in this situation cannot slow things down. It
gives one way of proving the upper bound in Theorem 1.

PROPOSITION 8. let A: (Fy)'— (F,)? be an invertible
linear map, and consider the walk (4). Let P, be the walk
X, = X1 + &, without applying A. Then

190 = Ull3 < 1P = Ull3,
where the I? norm is defined by

IP—0lz=2" Y IP(e) - 0()I"

a€(Fy)

PRrROOF Note that

1o~ vE=S"T ( A’yﬁ')

B#0 j=

n—1
<TI0 =1 - o

70 j=0

where the middle inequality is an application of the rear-
rangement inequality [17], noting that an invertible linear
map acts as a permutation on the nonzero elements of

(F,)? and all factors are nonnegative. O

REMARK 9. Proposition 8 says that applying a determin-
istic bijection between steps of the random walk on the
hypercube cannot slow the mixing of the Markov chain
(at least in an I? sense). While this is not very helpful if
the resulting chain is supposed to mix faster, squaring fails
to speed up the mixing (see Remark 13), and so Proposi-
tion 8 gives one way of proving the upper bound in
Theorem 1.



Proof of Theorem 1

Throughout this section, p is a prime such that 2 is a
primitive root in F,, and d =p—1. By Lemma 5, the
cyclotomic polynomial @,(x) =1+x+---+x? is irre-
ducible over F,. Represent Fys = F;[x]/(®,). The random
walk defined by (1) with basis (3) can be represented as (4)
with the basis ¢; = x'~!, with A the matrix of squaring with
respect to this basis. We will index the rows and columns of
matrices starting from 0 rather than 1, to match the expo-
nents in the powers of x.

ExampLE 10. Consider the case p = 5. The matrix 4 rep-

resenting the linear map x—x? on Fy¢ (viewed as an F,-

vector space) with respect to the standard basis 1, x, x%, x3

is

1 z 22 28
1,1 0 1 0
A= T 0 0 1 1 7
2210 1 1 0
22\0 0 1 0
1 z 22 28
1,11 0 O
z (0 1 0 O
A? = ; ,
{0 1 0 1
22\0 1 1 0
1 z 22 28
1,1 0 0 1
z (0 0 1 1
A3 = )
z{0 1 0 1
2\0 0 0 1

and A* = I. Note that 4/ is a permutation matrix with one
column replaced by a column of all ones. If this column is
j*, then j* = (p — 1)/2/. The following result shows that this
holds for all primes p such that 2 is a primitive root in Fy,.

PropoSITION 11. Suppose that ®,(x) =1+ x+ -+ x?
is irreducible over ¥,. Then the matrix A/, 1 <j<d—1, of
squaring j times, with respect to the basis 1,x,...,x77! isa
permutation matrix in which the column j* = (p —1)/2
(starting the indexing from 0) is replaced by all ones.

PROOF Note that since &’ — 1= (x —1)(x* ' +---+1) =
0 in F,e, it follows that x' = &/ if i = j (mod p). The matrix
A of squaring j times sends x' to x%7 for all i.

Since 2 is a primitive root modulo p, we have that as j
goes from 1 to p — 2, 2/ runs over all elements of F, except
1. If 2i=p—1(mod p), then x¥ =x""'+...4+1, and
otherwise, it is equal to some x* with 1 < k2 < p — 2. This
means that each column except j* has exactly one nonzero
entry, which is 1. Moreover, since 2/ is invertible modulo p,
all rows can have at most one nonzero entry off the column
' O

Next, consider (5) with n = dm for some positive inte-
ger m. From (6), we have

o, =TI (1-1401y" @)

J=0

The next result determines these values.

PROPOSITION 12. Iet B; denote the coefficient of x' in .
The Fourier transform of the square-and-add Markov
chain, (7), after n=dm steps satisfies O, () = Q,(B)"
and

—_
[
=

A/:/_\
I
= =
N—— N S

8

d—|p| Il
(-5

ES! d—|p|-1
(1-12) . |Blis odd, B, =0,

d-p+1 NI .
(1—W—ll) , |p| is even, B, =1,

a

1 a~|p|
B Bl+1

PROOF The key point is that the matrix 4/ is a permutation
matrix except for one column of all ones. The all-ones
column j* occurs exactly once in the positions 1,2,...,d — 1
as jvaries in {1,2,...,d — 1}. The argument then follows by
considering the four separate cases.

|B] is even, f, =0,

= =

|| is odd, B, = 1.

For example, when |f| is even and f§, = 0, there are
exactly |f| nonzero entries in the vector ff among the
coefficients of x,...,x9"'. When j* is among the indices
where B is nonzero, (A'Yf has one fewer nonzero entry
(since one of the 1's was replaced by f-(1,...,1) =0).
This occurs exactly |f] times. Otherwise, the number of
nonzero entries remains the same. This gives the desired
expression.

The other cases are similar. OJ

ProOF OoF THEOREM 1 From the upper bound lemma
(Lemma 7), for n = dm, we have

2% Q@) — U@ =Y 0u(B)™ (8)

o€F,q p#0

For the four cases in Proposition 12, the sum in (8) breaks
into four sums:

© 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature, Volume 43, Number 2, 2021 33



i\ 2m(d—j) ; 2myj
j j—1 d—1
w08 ) ()
Jjeven d J

d
.\ 2m(j+1) . 2m(d—j—1)
J J+1 d—1
=S (1-1 1-17=
Y G R G S R Y]

jodd
.\ 2m(d—j+1) ; 2m(j—1)
] ] -1 d -1
pyr— 1—= 1 ——
m Z d> ( d > (j -1)’
Jjeven
.\ 2mj . 2m(d—j)
Jj j+1 d—1
P 1—= 1 —— .
v ;‘gdd( d) ( d > ( j—1 )

Let us use the expressions in (9) to prove an I? lower
bound. Because of the equality (8), the I norm is bounded
below by any single term. Choose j = 2 in 2;. This is

) 2 2m(d—2) . 1 4m d—1
d d 2
(1 1 4m - E 2md d—1
B d—2 d 2 )

Choose m = 1 (log(d) — ¢). For d large, we have

1 4m
14+ — =1 1
(14555) =1+o.

(10)

Thus, the right-hand side of (10) is asymptotic to e*/2. Tt
follows that Q, is exponentially far from uniform if
n = d(log(d) — ¢)/2. A similar argument shows, for this 7,
that the total variation distance to uniform is exponentially
close to 1; this uses the (available) second moment method,;
see [14, Proposition 7.14].

We now proceed to the upper bound. By the upper
bound lemma and Proposition 8,

2 2
4On = Ullyy < |1Pn = U3,
where P, is the distribution of the random walk X, =

X,—1 + &, on (Fz)d after n steps. It is known (see [5], for
example) that if 7 = 1d(log(d) + ¢), then

1P — UH% <et - 1,

and e — 1 goes to zero like e~¢ when c is large, which

gives the desired upper bound. O
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REMARK 13. Note that the random walk X,, = X,,_; + ¢,
on (F,)? without squaring also takes 3d(log(d) + c) steps
to equilibrate. Thus in this case, squaring does not intro-
duce a dramatic speedup.

REMARK 14. The upper bound can also be proved directly
from Proposition 12. These more detailed calculations yield
essentially the same answers as the rearrangement bounds.

REMARK 15. All the arguments given when p = 2 extend
to the case of a general prime p, with squaring replaced by
taking the pth power. An upper bound on the Z? distance
needed to apply Proposition 8 can be found in [4], which
would show that the Markov chain mixes after order-
pdlog(d) steps.

Back to Squaring and Adding on F,

We return to our motivating problem

X, =X, + &, (mod p), (11)

where p is a prime and ¢, is 1 or —1, independently, with
probability 1/2. To showcase the difference, consider the
following problem: what is the stationary distribution of
this Markov chain? Call this stationary distribution 7.

A look at the data shows that for p > 7, there are many j
with 7, (7) = 0 such that for some p, the nonzero m,(j) vary
wildly in magnitude, while for other p, m,(j) is roughly
uniform.

The data below are normalized so that 7, is the left
eigenvector for the eigenvalue 1, scaled so all entries are
integers.

ExamPLE 16 (p = 29)
%29 = (4’ 27 27 27 OJ 87 27 67 77 O? 57 O? 47 07 47 O? 07 O? 07
3,0,5,0,2,8,0,8,2,2).
ExamrLE 17 (p = 31)

%51 == (275727472727472747 47 27 27 07 27 07 4’ 07 47 2,
4,2,2,0,0,2,0,2,2,0,2,1).

Here (and in fact, for all p = 3 (mod 4); see Theorem 20),
the smallest nonzero entry is 1, the largest is 4, and 1 and 3
appear only once.



ExamrLE 18 (p =101

T101 = (66056,33028, 33028, 33028, 0, 33028, 0, 0, 48868,
0, 48868, 0, 7376, 48200, 7376, 62952, 21038,
14752,21038,0, 32951, 0, 68115, 0, 85876, 0,
50712,0,0, 16514, 0, 16514, 34236, 0, 34236,
14752,0,14752,0,0,0,0, 3688, 0, 34700, 0,

32856, 0, 3688, 0, 1844, 34236, 0, 53012, 0, 26152,
0,7376,0,0,0,0,0,33028,0, 33028, 0, 27788,
0,62164,51958, 34376, 51958, 0,0, 18040, 0, 18040,
0,68115,0,96465, 0, 44864, 0, 16514, 7376, 0, 7376,
0,0, 17188, 0, 17188, 3688, 29504, 63396,

29504, 64708, 33028, 33028).

Here, the ratio of the largest to smallest nonzero entries is
large (max / min = 52). There appears to be unbounded
fluctuation for larger p with p =1 (mod 4).

ExamPLE 19 (p = 103)

Tz = (2,3,2,4,0,2,2,2,4,2,2,0,2,2,4,4,4,4, 4,
2,2,0,2,0,4,2,2,4,2,4,2,4,2,4,2,4,0,
4,0,2,2,0,2,0,0,2,0,2,2,2,2,4,0,2,2,2,
2,4,2,4,4,2,4,2,2,4,0,4,0,2,0,2,0,2,0,
2,0,2,2,0,4,2,4,2,2,0,0,0,0,0,2,2,4,2,
2,0,2,2,2,4,0,2,1).

In all cases we looked at, the Markov chain was ergodic
(had a unique eigenvector with eigenvalue 1). We are
unable to prove this in general.

There is some sense to be made. Observe that if j has
both j — 1 and j + 1 nonsquares modulo p, then m,(j) = 0.
Classical number theory (see [13, Chapter 5, Exercise 8], for
example) shows that asymptotically, this accounts for a
quarter of all j. This matches the data when p = 3 (mod 4).
For example, when p = 103, then my03(j) = 0 for 25 values
of j. However, when p =1 (mod 4), there are further
forced zeros, with m101(f) = 0 for 44 values of J.

Ron Graham and Steve Butler observed the following:

e When p =3 (mod 4), these j+ 1 nonresidues exactly
match the zeros (for all p < 10000).

e When p =1 (mod 4), the proportion of zeros appears to
be converging to approximately 42%.

We record one further piece of mathematical progress,
which explains the first point.

THEOREM 20 (He, [10D If p = 3 (mod 4), then the square-
and-add Markov chain (11) is irreducible, aperiodic, and
has a unique stationary distribution given by

[{eecF | 1=/}

m(j) = 2
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