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et us begin with a problem we cannot solve. If q is a
prime power, we write Fq to denote the field with q

elements, so if p is prime, Fp is the field of integers

modulo p. A simple random walk (drunkard’s walk) on Fp

goes from j to j þ 1 or j � 1 with probability 1/2. As time
goes on, this converges to the uniform distribution on Fp.

This means that after a long time, the probability that the
random walk will be at some a 2 Fp is about 1/p. It takes

about p2 steps for this convergence to kick in. This is slow:

if p ¼ 101, then p2 ¼ 10 201. These informal statements are
explained more carefully after Theorem 1 below.

One attempt to speed things up intersperses determi-
nistic doubling with the random �1 steps. If Xn denotes the
position of the walk after n steps (say starting from X0 ¼ 0),
then this new walk is

Xn ¼ 2Xn�1 þ en ðmod pÞ;

with en ¼ �1 with probability 1/2, independently from step
to step.

In [3], it is shown that order-logðpÞ steps are necessary
and sufficient for convergence (log will always refer to the
natural logarithm). See [8] for amazing refinements and [2]
for other applications to deterministic speedup.

Seeking to understand such speedups, we consider the
random walk

Xn ¼ X2
n�1 þ en ðmod pÞ:

This is the problem we cannot solve! We do not understand
the stationary distribution—numerical evidence at the end
of this paper shows that it is wildly nonuniform. We do not
even know its support, much less rates of convergence to
stationarity.

Squaring defines an automorphism of a finite field of 2-
power order, so we decided to study the corresponding

problem over the field Fq, where q ¼ 2d . To be specific, we

choose a basis B for Fq over its prime subfield F2, so

jBj ¼ d, and we consider the random walk on the elements
of Fq defined by setting X0 ¼ 0 and

Xn ¼ X2
n�1 þ �n ð1Þ

for n[ 0. Here �n is randomly chosen from the set f0g [ B,
where the probability that �n ¼ 0 is 1/2, and for each ele-

ment a 2 B, the probability that �n ¼ a is 1
2d. The unique

stationary distribution for this walk is the uniform distri-

bution pðaÞ ¼ 1=2d . (Random walks, or in more formal
language, Markov chains, are discussed in greater detail
below.)

If we were to omit the squaring and simply take
Xn ¼ Xn�1 þ �n, it is not hard to see that the behavior of the
resulting walk would be independent of the choice of the
basis B that defines it. Surprisingly, however, the walk we
defined above (which includes squaring) does depend on
the choice of the basis. To illustrate this, we compute the
transition matrices for the square-and-add Markov chains
on F8 defined using two different bases. As we shall see,
these matrices have different eigenvalues.

First, we explain what we mean by the transition matrix
for a Markov chain on a finite set X. This is a square matrix
M, with rows and columns indexed by the members of X,
where for x; y 2 X , the entry M(x, y) in row x and column y
is the probability of arriving at y in one step, starting at x.

To see the relevance of the transition matrix, let vn
denote the row vector having entries indexed by the ele-
ments of X, where the entry at position x in vn is the
probability that the random walk has arrived at x at time n.
It is easy to see that vnþ1 ¼ vnM , so vn ¼ v0M

n, and thus the
convergence of the Markov chain is controlled by the
powers of the transition matrix M.

To compute transition matrices for our walks on F8, we
need to name the elements of this field, and to do this, we
take advantage of the fact that in general, the multiplicative
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group of the finite field Fq is cyclic of order q � 1. If we fix

a generator r for this group (so r is a primitive element), we

see that the elements of the field are 0 and ri for
0 � i � q � 2.

Once we have named the field elements in this way, it is
trivial to see how to compute the product of two field
elements, but it is not clear how to determine their sum. In
fact, more information is needed before this is possible: it
suffices, for example, to know the minimal polynomial f(x)

of r over the prime subfield of Fq. Taking q ¼ 2d , we see

that f is an irreducible polynomial of degree d over F2, so if

q ¼ 8, we can assume that f ðxÞ ¼ x3 þ x þ 1, and with this
information, the arithmetic in F8 is completely determined.

The transition matrix M for a Markov chain on F8 is an
8� 8 matrix whose rows and columns are indexed by the
field elements, and we choose to write these elements in

the order 0, 1, r, r2, r3, r4, r5, r6, and we recall that the
entry Mða; bÞ is the probability that one step of the chain
goes from a to b.

If we take the basis B ¼ f1; r ; r2g, it is not hard to
compute that the matrix is

The eigenvalues of this matrix are 0, 0, 0, 2/3, 1, and the
three cube roots of 4/27.

If instead we take B ¼ fr3; r5; r6g, the transition matrix
is

and the eigenvalues of this matrix are 0, 1, the three cube
roots of 1/27, and the three cube roots of 8/27.

Since these two Markov chains on F8 have transition
matrices with different sets of eigenvalues, we see that
random walks determined by different bases for F8 can
have different long-term behaviors. We do not know,
however, the extent to which the choice of a basis for Fq

can affect the rate of convergence of the corresponding
Markov chain.

The second of our two bases for F8, namely fr3; r5; r6g,
consists of an orbit under the automorphism group of F8,

which is the group generated by the squaring map. In fact,
for every prime power q, there always exists a basis for Fq

that forms an orbit under the automorphism group of the
field. Such a basis is said to be a normal basis, and it

happens that our basis fr3; r5; r6g is the unique normal

basis for F8. (The set fr ; r2; r4g is also an orbit under the
automorphism group, but it is not a basis, because

r þ r2 þ r4 ¼ 0, since r is a root of the polynomial

x3 þ x þ 1.)
Although the properties of a Markov chain on Fq

defined by choosing a basis can depend on the chosen
basis, it can be proved that the transition matrices for chains
defined by normal bases are identical up to an appropriate
renaming of the field elements. It follows that the corre-
sponding random walks are essentially the same. In fact, if

q ¼ 2d , it is not hard to show that after a multiple of d steps,
the probability distribution of a square-and-add walk
defined on Fq using a normal basis is exactly the same as

the distribution for the walk on Fq without squaring. Also,

this is the same as a simple random walk on the binary
hypercube, and it is well known that this walk takes
1
2dðlogðdÞ þ cÞ steps to converge [5].

A Conway Digression
Once we realized that the way the field is represented
matters, our thoughts turned to one of the hundreds of
magical mathematical gems that John Conway left to us:
Conway polynomials. (These are unrelated to the Conway–
Alexander polynomials in knot theory.)

Fix a prime p, and let f ðxÞ 2 Fp½x� be an irreducible

polynomial of degree n. Then the quotient ring Fp½x�=ðf Þ is
a field of order pn, and all choices of f yield the same (up to
isomorphism) field Fpn . The pn elements of this field can be

represented as polynomials h(x) of degree at most n� 1,
and adding field elements in this representation is easy, but
multiplication is more tedious. Alternatively, we can take
advantage of the fact that the multiplicative group of a finite
field is cyclic, so there is a generator r of the multiplicative

group ðFpnÞ� of order pn � 1. (Any such generator is

referred to as a primitive element of Fpn .) Given a primitive

element r, therefore, the distinct nonzero elements of Fpn

are ri for 0 � i � pn � 2, and thus

Fpn ¼ f0; 1; r ; r2; . . .; rpn�2g ;

and we see that with this representation of the field ele-
ments, multiplication is a triviality, but unfortunately,
addition can be quite difficult.

An irreducible polynomial f 2 Fp½x� of degree n is said

to be a primitive polynomial if one of its roots—and hence
all of them—is a primitive element of the field Fpn , and in

this case, the element of Fp½x�=ðf Þ represented by the

polynomial hðxÞ ¼ x is a primitive element. If we had
constructed the field Fpn using an imprimitive irreducible

polynomial f, it would not be so clear which elements h(x)
were primitive.

If m is a divisor of n, then Fpn contains a unique subfield

Fpm of order pm, and the multiplicative group ðFpmÞ� is the
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unique subgroup of index ðpn � 1Þ=ðpm � 1Þ in the cyclic

group ðFpnÞ�. Thus if r is a primitive element of Fpn , then

r ðp
n�1Þ=ðpm�1Þ is one of the primitive elements of Fpm .

Suppose we construct the fields Fpn and Fpm using

primitive polynomials f and g in Fp½x�, having degrees n

and m respectively. If r 2 Fpn is a root of f and s 2 Fpm is a

root of g, then r and s are primitive elements of Fpn and Fpm ,

so they generate the multiplicative groups ðFpnÞ� and

ðFpmÞ�. Viewing Fpm as a subfield of Fpn , we know that

r ðp
n�1Þ=ðpm�1Þ is a primitive element of Fpm , but there is no

reason to believe that it is equal to s, or to any other root of
g. Wouldn’t it be nice if we could choose the primitive
polynomials f and g with degrees n and m in such a way

that if r is a root of f, then r ðp
n�1Þ=ðpm�1Þ is a root of g? That

would make it much easier to see how Fpm is embedded as

a subfield of Fpn .

Given primitive polynomials f and g in Fp½x�, where f has

degreen, ghas degreem, andmdividesn, we say that f and g
are compatible if for every root r of f in Fpn , the element

r pn�1ð Þ= pm�1ð Þ is a root of g. Equivalently, f and g are compat-

ible if the polynomial g x pn�1ð Þ= pm�1ð Þ� �
is divisible by f. (Note

that this latter formulation of the compatibility condition can
be checked using nothing more sophisticated than polyno-
mial long division, and in particular, it does not require
finding roots of polynomials.) Conway has given us a way to
construct compatible primitive polynomials. Even better,
Conway showed how to construct, for each prime p, a family
of primitive polynomials ffng, one for each positive integer
n, such that fn has degree n, and wheneverm divides n, the
polynomials fm and fn are compatible.

It does not seem obvious that such families of compat-
ible polynomials exist, but in fact, they do, and there is an
abundance of riches: there is more than one compatible
family for each prime p, even if we require that all of the
polynomials fn be monic.

Conway described a somewhat arbitrary procedure that
would uniquely determine a specific compatible family of
monic primitive polynomials. Conway’s procedure stuck,
and the resulting polynomials, now referred to as the
Conway polynomials, are the default, and they are used in
such computer algebra systems as Magma and GAP. We
can give a taste of Conway’s procedure by considering the
linear (degree-1) case. Every polynomial of the form x � a,
where a is a primitive root modulo p, is a primitive poly-
nomial. Among these, Conway chose the one for which a is
minimal in the ordering 1 \ 2 \ � � � \ p� 1. For exam-
ple, the smallest primitive root modulo 7 is 3, so the
Conway polynomial of degree 1 for p ¼ 7 is x � 3. On
consulting tables of Conway polynomials, we see that the

degree-2 Conway polynomial for p ¼ 7 is x2 þ 6x þ 3.
Taking m ¼ 1 and n ¼ 2, we have

72 � 1ð Þ=ð7� 1Þ ¼ 48=6 ¼ 8, so we can verify the com-

patibility condition by checking that x8 � 1 is divisible by

x2 þ 6x þ 3 in F7ðxÞ.
A rough description of a recursive algorithm to compute

the Conway polynomial fn for a prime p is as follows. If
n ¼ 1, then as we have already mentioned, fnðxÞ ¼ x � a,
where a is the ‘‘smallest’’ primitive root modulo p. Assume

now that n[ 1 and that we have already found all of the
Conway polynomials fm for m a proper divisor of n. Con-
sider the set Sn of all degree-nmonic primitive polynomials
f such that f is compatible with all of the polynomials fm for
proper divisors m of n. It is not obvious, but it is true, that
the set Sn is nonempty, so we can define fn to be the
smallest member of Sn with respect to a specific linear
ordering of polynomials defined by Conway. We mention
that to determine whether a polynomial f lies in Sn, it is not
necessary to check whether f is compatible with fm for all
the proper divisors m of n; it suffices to consider only those
divisors of the form m ¼ n=q, where q is prime. The reason
for this is that if l divides m, and m divides n, and we have
established that f is compatible with fm, then f is guaranteed
to be compatible with fl . This follows easily from the fact
that fm is compatible with fl .

For more on Conway polynomials, see [11, 16]. A
detailed listing of available Conway polynomials can also
be found on Frank Lübeck’s website [16]. Let us end this
digression by admitting that we have not (yet) found that
Conway polynomials mesh with our study of ‘‘square-and-
add’’ random walks. Our problem gave us the excuse,
however, to marvel at Conway’s magic, and that is almost
as good as finding a new theorem.

What We Can Prove
There is one situation in which a sharp analysis of the
square-and-add Markov chain on a field of 2-power order is
possible. Following a suggestion of Amol Aggarwal, we let
p be a prime such that 2 is a primitive root modulo p, which
means that 2 generates the multiplicative group of Fp.

(According to the Artin primitive root conjecture, which
was proved conditionally on the generalized Riemann
hypothesis [12], these have positive density among all
primes.)

Then for d ¼ p� 1, the cyclotomic polynomial

f ðxÞ ¼ xd þ xd�1 þ � � � þ x þ 1 ð2Þ
is irreducible over F2. (These polynomials are discussed
below in the subsection on cyclotomic polynomials.) With

these assumptions, the field F2½x�=ðf Þ has order 2d , and a
basis is

f1; x; x2; . . . ; xd�1g: ð3Þ

(Note that because xd ¼ 1, x is not a primitive element of

this field, and so x does not have order 2d .) The following

result says roughly that about 1
2d logðdÞ steps are necessary

and sufficient for convergence of the Markov chain deter-
mined by this basis on the field F2½x�=ðf Þ.

If K denotes the transition matrix for a Markov chain, let
Knða; bÞ denote the probability of moving from a to b in n
steps. Let

kP � QkTV ¼ 1

2

X

a2Fq

jPðaÞ � QðaÞj

denote the total variation distance of probability measures.
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THEOREM 1. Let p be a prime with 2 a primitive root in Fp

and let d ¼ p� 1. In Fq , with q ¼ 2d , the Markov chain (1),

defined by the basis (3), satisfies, for n ¼ 1
2dðlogðdÞ þ cÞ

with c[ 0,

kKnð0; �Þ � pkTV � ae�bc;

and for n ¼ 1
2dðlogðdÞ � cÞ with c[ 0, it satisfies

kKnð0; �Þ � pkTV 	 1� a0e�bc

for universal constants a0, a, and b, where p denotes the
uniform measure.

Informally, the precise upper and lower bounds in

Theorem 1 can be phrased thus: about 1
2 d logðdÞ steps are

necessary and sufficient for convergence.
The heart of the proof is some magical combinatorics for

the Frobenius map of repeated squaring. It is the kind of
magic John Conway enjoyed.

REMARK 2: Theorem 1 holds in more generality. As long

as d is even, f defined by (2) has no repeated factors, and so

the random walk can be defined on the quotient F2½x�=ðf Þ,
which will be a direct sum of fields (with componentwise

addition and multiplication). Squaring is still an isomor-

phism in this case. This is proved in Lemma 5. The same

bounds hold in this case. Theorem 1 can also be extended

(although with weaker estimates) to general primes p, with

the random walk being Xnþ1 ¼ Xp
n þ enþ1.

The combinatorics of combining addition and multiplica-
tion in finite fields is currently a hot topic in additive
combinatorics; see [9]. The problems studied here seem
different.

Background
This section contains some needed background on Markov

chains, finite fields, and Fourier analysis over F2ð Þd . It
presents these topics in a form needed to prove Theorem 1,
which will be proved in the section following. A final
section returns to the square-and-add walk over Fp and has

some computed examples and open questions.

Markov Chains

A Markov chain is a sequence of random variables Xn

taking values in some finite set X, so that Xnþ1 depends on
X1; . . .;Xn solely through Xn. We will assume that our
Markov chains are homogeneous, which means that the
chance of moving from one state to another at step n
doesn’t depend on n. Such a process can be represented
using a matrix P indexed by X, whose entries P(x, y)
encode the chance of moving from x to y. Here, by con-
vention, probability distributions are written as row vectors,
and P acts on the right, so if lnðxÞ is the chance of being at
x after n steps of the Markov chain, then ln ¼ ln�1P.

A stationary distribution for the Markov chain defined by
P is some probability measure p on X such that pP ¼ p. A
Markov chain is said to be irreducible if for any two states

x; y 2 X , there is some positive integer t such that
Ptðx; yÞ[ 0. This means that it is possible to reach any state
from any other in the chain. A Markov chain is said to be
aperiodic if Ptðx; xÞ[ 0 for all sufficiently large t. Note that
a sufficient condition for P to be aperiodic is Psðx; xÞ[ 0
and Ptðx; xÞ[ 0 for some s; t 	 1 with ðs; tÞ ¼ 1. By the
Perron–Frobenius theorem, an aperiodic irreducible Mar-
kov chain has a unique stationary distribution.

Finite Fields

The classical subject of finite fields is exhaustively devel-

oped in [15]. Throughout, we take q ¼ pd , where p is
prime, and we write Fq to denote the unique field with q

elements. If f is an arbitrary irreducible degree-d polyno-
mial with coefficients in Fp, then

Fq ffi Fp½x�=ðf Þ;

and if we represent Fq in this way, we see that the set

f1; x; x2; . . . ; xd�1g is a basis for Fq over its prime subfield

Fp.

Even if f(x) is not irreducible, Fp½x�=ðf Þ is still an algebra

over Fp, and 1; x; . . .; xd�1 is still a basis. This algebra is

readily identified, provided that f has no repeated factors.

LEMMA 3. Let f ðxÞ 2 Fp½x� have no repeated factors. Sup-

pose that f ¼
Q

fi, where the degree of fi is di. Then:

1. Fp½x�=ðf Þ is isomorphic to the direct sum of the fields

Fp½x�=ðfiÞ ffi Fpdi .

2. The map y 7!yp is an automorphism on Fp½x�=ðf Þ.

PROOF The first claim is a restatement of the Chinese

remainder theorem, and the second claim follows from the

first, since the map y 7!yp is an automorphism for each

factor. (

The random walk (1) can be defined on the algebra

Fp½x�=ðf Þ using the basis B ¼ f1; x; x2; . . .; xd�1g, even if

the polynomial f is not irreducible. And provided that f has
no repeated factors, this walk has a uniform stationary
distribution. In the following lemma, we take p ¼ 2.

LEMMA 4. Let f 2 F2½x�, where f has no repeated factors.

Then the Markov chain on F2½x�=ðf Þ defined as in (1) with

respect to the basis B ¼ f1; x; x2; . . . ; xd�1g is irreducible,

aperiodic, and has a unique stationary distribution, which

is uniform.

PROOF Factor the transition matrix for the random walk as

K ¼ PT , where T is the transition matrix for the walk

defined by Xn ¼ Xn�1 þ en and P is the permutation matrix

encoding the bijection y 7!y2 on F2½x�=ðf Þ.
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Since P is a permutation matrix, it has some finite order,

so Pn ¼ I for some n[ 0. First, we show that Knða; bÞ[ 0

if T ða; bÞ[ 0. It will be useful to view a step from K as

applying P followed by a step from T. Since T is lazy, we

can always apply P and then remain stationary for the step

from T; so do this n� 1 times. At the very last step, instead

of remaining stationary, take a step from T. The result is

moving according to P exactly n times, returning to the

initial state, and then a step from T, and so Knða; bÞ[ 0 if

T ða; bÞ[ 0.

To see that K is irreducible, observe first that T is

irreducible, so there exists a path using steps from T that

goes from a to b. Since each step of T can be mimicked by a

block of n steps from K, it follows that there is a path from a
to b using steps from K.

To see that the Markov chain is aperiodic, start by

taking a single step from K, say going from a to b, and then

take steps in blocks of size n, going from b back to a, which

is possible because T is irreducible and Knða; bÞ[ 0 if

T ða; bÞ[ 0. This means that Kknþ1ða; aÞ[ 0 for some k.

Also, since T is lazy, Knða; aÞ[ 0. Because knþ 1 and n are

coprime, the Markov chain is aperiodic.

Finally, since T and P both preserve the uniform

distribution, so does K. Irreducibility and aperiodicity imply

uniqueness of the stationary distribution. (

Cyclotomic Polynomials

Fix n 2 N and let the cyclotomic polynomials UnðxÞ 2 Z½x�
be defined by

UnðxÞ ¼
Y

1 � k � n

gcdðk;nÞ ¼ 1

x � e2pik=n
� �

:

The following facts are well known (see [15, Section 2.4],
for example):

• UnðxÞ has degree /ðnÞ (/ denotes the Euler totient
function).

• The coefficients of UnðxÞ lie in Z.
• UnðxÞ is irreducible over Q.

• If p is prime, then UpðxÞ ¼ 1þ x þ � � � þ xp�1.

• UpnðxÞ ¼ Upðxpn�1Þ.

A primitive element, or primitive root, of Z=nZ is an

element that generates the group of units ðZ=nZÞ�. A
primitive polynomial over Fp is the minimal polynomial of

some primitive element a 2 Fq. The following result (see

[15, Theorem 2.47], for example) is useful.

LEMMA 5. Let n be a positive integer relatively prime to a

prime power q, and let d be the order of q modulo n. Since

the cyclotomic polynomial Un has coefficients in Z, it can

be viewed as a polynomial in Fq½x�, and as such, it has

/ðnÞ=d distinct irreducible factors, each of which has

degree d.

From now on, we work over F2, and we observe that if n is
an odd integer and 2 is a primitive root modulo n, then
Lemma 5 guarantees that the cyclotomic polynomial Un is

irreducible. For example, 1þ x þ x2 þ x3 þ x4 ¼ U5ðxÞ
and 1þ x3 þ x6 ¼ U9ðxÞ are both irreducible over F2.

Trinomials

A huge collection of explicit trinomials xn þ xm þ 1 that are
primitive and irreducible over F2 is available; see [1] and
[15, Section 3.5]. Consider xn þ x þ 1. Some computations
suggest that it is often irreducible (but certainly not for
every value of n). It has the following useful property,
however.

LEMMA 6. For all n 	 2, the polynomial xn þ x þ 1 has no

repeated factors over F2.

PROOF A polynomial has repeated factors if and only if it

shares a common factor with its formal derivative. If n is

even and f ðxÞ ¼ xn þ x þ 1, then f 0ðxÞ ¼ 1, and so f 0 has

no common factor with f. If n is odd, then f 0ðxÞ ¼ xn�1 þ 1.

If r denotes a root of f 0ðxÞ (in some splitting field), we have

rn�1 ¼ 1, so rn ¼ r , and thus f ðrÞ ¼ rn þ r þ 1 ¼ 1. It fol-

lows that r is not a root of f, so f and f 0 cannot share any

common factors. (

Fourier Analysis over (F2)d

Let F2ð Þd be the abelian group of length-d binary vectors

under coordinatewise addition. The characters of F2ð Þd are

indexed by b 2 F2ð Þd :

vbðaÞ ¼ ð�1Þa�b;

where a � b denotes the number of coordinates i for which
ai ¼ bi ¼ 1 (alternatively, it can be thought of as a dot
product over F2).

If QðaÞ is a probability distribution on F2ð Þd (or more

generally, any function F2ð Þd! C), its Fourier transform at

b 2 F2ð Þd is

bQðbÞ ¼
X

a2 F2ð Þd
QðaÞð�1Þa�b:

It is easy to see that bQð0Þ ¼ 1. The uniform distribution

U ðaÞ ¼ 1=2d for all a 2 F2ð Þd has the Fourier transform

bU ð0Þ ¼ 1; bU ðaÞ ¼ 0; a 6¼ 0:
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The convolution of two probabilities Q1, Q2 is

ðQ1 � Q2ÞðaÞ ¼
X

c

Q1ðcÞQ2ðaþ cÞ:

Note that if X1 and X2 are independent random variables in

F2ð Þd with distributions Q1 and Q2 respectively, then X1 þ
X2 has Q1 � Q2 as its distribution. The Fourier transform
turns convolution into product, with

dQ1 � Q2ðbÞ ¼ bQ1ðbÞ bQ2ðbÞ:
The measure Q can be recovered from its Fourier transform
via the inversion formula

QðaÞ ¼ 1

2d

X

b

ð�1Þa�b bQðbÞ:

Finally, Plancherel’s theorem relates the L2 norm of Q with
bQ and states that

2d
X

a2 F2ð Þd
jQðaÞj2 ¼

X

b2ðF2Þd

�� bQðbÞ
��2 :

The following upper bound lemma is the key to estab-
lishing the upper bound in Theorem 1. It is a direct
consequence of Plancherel’s theorem.

LEMMA 7. Let QðaÞ be a probability on F2ð Þd and let U ðaÞ
be the uniform distribution. Then

4kQ� Uk2TV � 2d
X

a

ðQðaÞ � U ðaÞÞ2 ¼
X

b6¼0

j bQðbÞj2:

PROOF The inequality follows by Cauchy–Schwarz, and

the equality follows from Plancherel’s theorem and the fact

that bU ð0Þ ¼ bQð0Þ ¼ 1 and bU ðaÞ ¼ 0 for a 6¼ 0.

To set up the application of Lemma 7 to the proof of

Theorem 1, let e1; . . .; ed be the standard basis for F2ð Þd . Let

QðaÞ ¼

1
2 ; a ¼ 0;
1
2d ; a ¼ ei;

0 otherwise.

8
><

>:

Then

bQðbÞ ¼
X

a

QðaÞð�1Þa�b ¼ 1

2
þ 1

2d

Xd

i¼1

ð�1Þbi ¼ 1� jbj
d

;

where jbj denotes the number of nonzero entries in b (with
respect to the standard basis).

Let A : F2ð Þd! F2ð Þd be a linear map, and consider the
Markov chain starting from X0 ¼ 0, and

Xn ¼ AXn�1 þ en; ð4Þ

with P ðen ¼ aÞ ¼ QðaÞ for all a 2 F2ð Þd and the en inde-
pendent. Iterating yields X0 ¼ 0, X1 ¼ e1, X2 ¼ Ae1 þ e2,
and so on, and so

Xn ¼ An�1e1 þ An�2e2 þ � � � þ en: ð5Þ

Since this is a sum of independent random variables, if
QnðaÞ ¼ P ðXn ¼ aÞ, then

bQnðbÞ ¼
Yn�1

j¼0

1� jðAtÞjbj
d

� �
: ð6Þ

In our application, A will be the matrix of squaring (which

is linear in characteristic 2), Ad ¼ I , and the product
becomes tractable.

In [6, 7], this technique was used on F2ð Þd with

A ¼

1

1 1

. .
. . .

.

1 1

0

BBBB@

1

CCCCA

(1’s along the diagonal and lower subdiagonal and 0
otherwise) to get sharp results. See [5] for applications to
nonabelian groups.

The following proposition shows that adding deter-
ministic mixing in this situation cannot slow things down. It
gives one way of proving the upper bound in Theorem 1.

PROPOSITION 8. Let A : F2ð Þd! F2ð Þd be an invertible

linear map, and consider the walk (4). Let Pn be the walk

Xn ¼ Xn�1 þ en without applying A. Then

kQn � Uk22 � kPn � Uk22;

where the L2 norm is defined by

kP � Qk22 ¼ 2d
X

a2 F2ð Þd
jPðaÞ � QðaÞj2:

PROOF Note that

kQn � Uk22 ¼
X

b6¼0

Yn�1

j¼0

1� jðAtÞjbj
d

� �

�
X

b6¼0

Yn�1

j¼0

1� jbj
d

� �
¼ kPn � Uk22;

where the middle inequality is an application of the rear-
rangement inequality [17], noting that an invertible linear
map acts as a permutation on the nonzero elements of

F2ð Þd and all factors are nonnegative. (

REMARK 9. Proposition 8 says that applying a determin-

istic bijection between steps of the random walk on the

hypercube cannot slow the mixing of the Markov chain

(at least in an L2 sense). While this is not very helpful if

the resulting chain is supposed to mix faster, squaring fails

to speed up the mixing (see Remark 13), and so Proposi-

tion 8 gives one way of proving the upper bound in

Theorem 1.
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Proof of Theorem 1
Throughout this section, p is a prime such that 2 is a
primitive root in Fp, and d ¼ p� 1. By Lemma 5, the

cyclotomic polynomial UpðxÞ ¼ 1þ x þ � � � þ xd is irre-

ducible over F2. Represent F2d ffi F2½x�=ðUpÞ. The random

walk defined by (1) with basis (3) can be represented as (4)

with the basis ei ¼ xi�1, with A the matrix of squaring with
respect to this basis. We will index the rows and columns of
matrices starting from 0 rather than 1, to match the expo-
nents in the powers of x.

EXAMPLE 10. Consider the case p ¼ 5. The matrix A rep-

resenting the linear map x 7!x2 on F16 (viewed as an F2-

vector space) with respect to the standard basis 1, x, x2, x3

is

and A4 ¼ I . Note that Aj is a permutation matrix with one

column replaced by a column of all ones. If this column is

j�, then j� ¼ ðp� 1Þ=2j . The following result shows that this

holds for all primes p such that 2 is a primitive root in Fp.

PROPOSITION 11. Suppose that UpðxÞ ¼ 1þ x þ � � � þ xd

is irreducible over F2. Then the matrix Aj , 1 � j � d � 1, of

squaring j times, with respect to the basis 1; x; . . .; xd�1, is a

permutation matrix in which the column j� ¼ ðp� 1Þ=2j
(starting the indexing from 0) is replaced by all ones.

PROOF Note that since xp � 1 ¼ ðx � 1Þðxp�1 þ � � � þ 1Þ ¼
0 in F2d , it follows that xi ¼ xj if i ¼ j ðmod pÞ. The matrix

Aj of squaring j times sends xi to x2j i for all i.

Since 2 is a primitive root modulo p, we have that as j

goes from 1 to p� 2, 2j runs over all elements of F�
p except

1. If 2j i ¼ p� 1 ðmod pÞ, then x2j i ¼ xp�1 þ � � � þ 1, and

otherwise, it is equal to some xk with 1 � k � p� 2. This

means that each column except j� has exactly one nonzero

entry, which is 1. Moreover, since 2j is invertible modulo p,

all rows can have at most one nonzero entry off the column

j�. (
Next, consider (5) with n ¼ dm for some positive inte-

ger m. From (6), we have

bQnðbÞ ¼
Yd�1

j¼0

1� jðAtÞjbj
d

� �m

: ð7Þ

The next result determines these values.

PROPOSITION 12. Let bi denote the coefficient of xi in b.
The Fourier transform of the square-and-add Markov

chain, (7), after n ¼ dm steps satisfies bQnðbÞ ¼ bQdðbÞ
m

and

bQdðbÞ ¼

1� jbj
d

� �d�jbj
1� jbj�1

d

� �jbj
; jbj is even, b0 ¼ 0;

1� jbj
d

� �jbjþ1

1� jbjþ1
d

� �d�jbj�1

; jbj is odd, b0 ¼ 0;

1� jbj
d

� �d�jbjþ1

1� jbj�1
d

� �jbj�1

; jbj is even, b0 ¼ 1;

1� jbj
d

� �jbj
1� jbjþ1

d

� �d�jbj
; jbj is odd, b0 ¼ 1:

8
>>>>>>>>>><

>>>>>>>>>>:

PROOF The key point is that the matrix Aj is a permutation

matrix except for one column of all ones. The all-ones

column j� occurs exactly once in the positions 1; 2; . . .;d � 1

as j varies in f1; 2; . . .;d � 1g. The argument then follows by

considering the four separate cases.

For example, when jbj is even and b0 ¼ 0, there are

exactly jbj nonzero entries in the vector b among the

coefficients of x; . . .; xd�1. When j� is among the indices

where b is nonzero, ðAtÞjb has one fewer nonzero entry

(since one of the 1’s was replaced by b � ð1; . . .; 1Þ ¼ 0).

This occurs exactly jbj times. Otherwise, the number of

nonzero entries remains the same. This gives the desired

expression.

The other cases are similar. (

PROOF OF THEOREM 1 From the upper bound lemma

(Lemma 7), for n ¼ dm, we have

2d
X

a2F
2d

jQnðaÞ � U ðaÞj2 ¼
X

b6¼0

bQdðbÞ
2m: ð8Þ

For the four cases in Proposition 12, the sum in (8) breaks
into four sums:
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RI ¼
X

jeven

1� j

d

� �2mðd�jÞ
1� j � 1

d

� �2mj d � 1

j

� �
;

RII ¼
X

jodd

1� j

d

� �2mðjþ1Þ
1� j þ 1

d

� �2mðd�j�1Þ d � 1

j

� �
;

RIII ¼
X

jeven

1� j

d

� �2mðd�jþ1Þ
1� j � 1

d

� �2mðj�1Þ d � 1

j � 1

� �
;

RIV ¼
X

jodd

1� j

d

� �2mj

1� j þ 1

d

� �2mðd�jÞ d � 1

j � 1

� �
: ð9Þ

Let us use the expressions in (9) to prove an L2 lower

bound. Because of the equality (8), the L2 norm is bounded

below by any single term. Choose j ¼ 2 in RI . This is

1� 2

d

� �2mðd�2Þ
1� 1

d

� �4m d � 1

2

� �

¼ 1þ 1

d � 2

� �4m

1� 2

d

� �2md d � 1

2

� �
:

ð10Þ

Choose m ¼ 1
2 ðlogðdÞ � cÞ. For d large, we have

1þ 1

d � 2

� �4m

¼ 1þ oð1Þ;

1� 2

d

� �2md

� e�4m ¼ d�2e2c;

d � 1

2

� �
� d2

2
:

Thus, the right-hand side of (10) is asymptotic to e2c=2. It
follows that Qn is exponentially far from uniform if
n ¼ dðlogðdÞ � cÞ=2. A similar argument shows, for this n,
that the total variation distance to uniform is exponentially
close to 1; this uses the (available) second moment method;
see [14, Proposition 7.14].

We now proceed to the upper bound. By the upper

bound lemma and Proposition 8,

4kQn � Uk2TV � kPn � Uk22;
where Pn is the distribution of the random walk Xn ¼
Xn�1 þ en on F2ð Þd after n steps. It is known (see [5], for

example) that if n ¼ 1
2dðlogðdÞ þ cÞ, then

kPn � Uk22 � ee
�c � 1;

and ee
�c � 1 goes to zero like e�c when c is large, which

gives the desired upper bound. (

REMARK 13. Note that the random walk Xn ¼ Xn�1 þ en
on F2ð Þd without squaring also takes 1

2dðlogðdÞ þ cÞ steps
to equilibrate. Thus in this case, squaring does not intro-

duce a dramatic speedup.

REMARK 14. The upper bound can also be proved directly

from Proposition 12. These more detailed calculations yield

essentially the same answers as the rearrangement bounds.

REMARK 15. All the arguments given when p ¼ 2 extend

to the case of a general prime p, with squaring replaced by

taking the pth power. An upper bound on the L2 distance

needed to apply Proposition 8 can be found in [4], which

would show that the Markov chain mixes after order-

p2d logðdÞ steps.

Back to Squaring and Adding on Fp

We return to our motivating problem

Xn ¼ X2
n�1 þ en ðmod pÞ; ð11Þ

where p is a prime and en is 1 or �1, independently, with
probability 1/2. To showcase the difference, consider the
following problem: what is the stationary distribution of
this Markov chain? Call this stationary distribution pp.

A look at the data shows that for p 	 7, there are many j
with ppðjÞ ¼ 0 such that for some p, the nonzero ppðjÞ vary
wildly in magnitude, while for other p, ppðjÞ is roughly

uniform.
The data below are normalized so that epp is the left

eigenvector for the eigenvalue 1, scaled so all entries are
integers.

EXAMPLE 16 (p ¼ 29)

ep29 ¼ ð4; 2; 2; 2; 0; 8; 2; 6; 7; 0; 5; 0; 4; 0; 4; 0; 0; 0; 0;
3; 0; 5; 0; 2; 8; 0; 8; 2; 2Þ:

EXAMPLE 17 (p ¼ 31)

ep31 ¼ ð2; 3; 2; 4; 2; 2; 4; 2; 4; 4; 2; 2; 0; 2; 0; 4; 0; 4; 2;
4; 2; 2; 0; 0; 2; 0; 2; 2; 0; 2; 1Þ:

Here (and in fact, for all p ¼ 3 ðmod 4Þ; see Theorem 20),
the smallest nonzero entry is 1, the largest is 4, and 1 and 3
appear only once.
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EXAMPLE 18 (p ¼ 101)

ep101 ¼ ð66056; 33028; 33028; 33028; 0; 33028; 0; 0; 48868;
0; 48868; 0; 7376; 48200; 7376; 62952; 21038;

14752; 21038; 0; 32951; 0; 68115; 0; 85876; 0;

50712; 0; 0; 16514; 0; 16514; 34236; 0; 34236;

14752; 0; 14752; 0; 0; 0; 0; 3688; 0; 34700; 0;

32856; 0; 3688; 0; 1844; 34236; 0; 53012; 0; 26152;

0; 7376; 0; 0; 0; 0; 0; 33028; 0; 33028; 0; 27788;

0; 62164; 51958; 34376; 51958; 0; 0; 18040; 0; 18040;

0; 68115; 0; 96465; 0; 44864; 0; 16514; 7376; 0; 7376;

0; 0; 17188; 0; 17188; 3688; 29504; 68396;

29504; 64708; 33028; 33028Þ:

Here, the ratio of the largest to smallest nonzero entries is
large (max =min � 52). There appears to be unbounded
fluctuation for larger p with p ¼ 1 ðmod 4Þ.

EXAMPLE 19 (p ¼ 103)

ep103 ¼ ð2; 3; 2; 4; 0; 2; 2; 2; 4; 2; 2; 0; 2; 2; 4; 4; 4; 4; 4;
2; 2; 0; 2; 0; 4; 2; 2; 4; 2; 4; 2; 4; 2; 4; 2; 4; 0;

4; 0; 2; 2; 0; 2; 0; 0; 2; 0; 2; 2; 2; 2; 4; 0; 2; 2; 2;

2; 4; 2; 4; 4; 2; 4; 2; 2; 4; 0; 4; 0; 2; 0; 2; 0; 2; 0;

2; 0; 2; 2; 0; 4; 2; 4; 2; 2; 0; 0; 0; 0; 0; 2; 2; 4; 2;

2; 0; 2; 2; 2; 4; 0; 2; 1Þ:

In all cases we looked at, the Markov chain was ergodic
(had a unique eigenvector with eigenvalue 1). We are
unable to prove this in general.

There is some sense to be made. Observe that if j has
both j � 1 and j þ 1 nonsquares modulo p, then ppðjÞ ¼ 0.

Classical number theory (see [13, Chapter 5, Exercise 8], for
example) shows that asymptotically, this accounts for a
quarter of all j. This matches the data when p ¼ 3 ðmod 4Þ.
For example, when p ¼ 103, then p103ðjÞ ¼ 0 for 25 values
of j. However, when p ¼ 1 ðmod 4Þ, there are further
forced zeros, with p101ðjÞ ¼ 0 for 44 values of j.

Ron Graham and Steve Butler observed the following:

• When p ¼ 3 ðmod 4Þ, these j � 1 nonresidues exactly
match the zeros (for all p � 10 000).

• When p ¼ 1 ðmod 4Þ, the proportion of zeros appears to
be converging to approximately 42%.

We record one further piece of mathematical progress,
which explains the first point.

THEOREM 20 (He, [10]) If p ¼ 3 ðmod 4Þ, then the square-

and-add Markov chain (11) is irreducible, aperiodic, and

has a unique stationary distribution given by

ppðjÞ ¼
��	k 2 Fp j k2 � 1 ¼ j


��

2p
:
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