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a b s t r a c t

Rogue wave patterns in the nonlinear Schrödinger equation are analytically studied. It is shown
that when an internal parameter in the rogue waves (which controls the shape and phase of
initial weak perturbations to the uniform background) is large, these waves would exhibit clear
geometric structures, which are formed by Peregrine waves in shapes such as triangle, pentagon,
heptagon and nonagon, with a possible lower-order rogue wave at its center. These rogue patterns
are analytically determined by the root structures of the Yablonskii–Vorob’ev polynomial hierarchy,
and their orientations are controlled by the phase of the large parameter. It is also shown that when
multiple internal parameters in the rogue waves are large but satisfy certain constraints, similar rogue
patterns would still hold. Comparison between true rogue patterns and our analytical predictions
shows excellent agreement.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The name of rogue waves first appeared in oceanography,
here it referred to large spontaneous and unexpected water
ave excitations that are a threat even to big ships [1,2]. Later,
heir counterparts in optics were also reported [3,4]. Due to
heir physical importance, rogue waves have received intensive
heoretical and experimental studies in the past decade. On the
heoretical front, analytical expressions of rogue waves have been
erived in a wide variety of integrable physical models, such as
he nonlinear Schrödinger (NLS) equation for wave-packet prop-
gation in the ocean and optical systems [5–11], the derivative
LS equations for circularly polarized nonlinear Alfvén waves
n plasmas and short-pulse propagation in a frequency-doubling
rystal [12–17], the Manakov equations for light transmission in
andomly birefringent fibers [18–23], the three-wave resonant
nteraction equations [24–29], and even the coupled Higgs equa-
ion in particle physics [30]. On the experimental front, various
ogue waves governed by the NLS equation and defocusing Man-
kov equations have been observed in water tanks, plasma and
ptical fibers [31–36]. In these experiments, intimate knowledge
f theoretical rogue wave solutions in the underlying nonlinear
ave equations was utilized, which highlights the importance
f theoretical developments on rogue waves for practical rogue
ave verifications and predictions.
The study of rogue wave patterns is important as this in-

ormation allows for the prediction of later rogue wave events
rom earlier wave forms. Although graphs of low-order rogue
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ttps://doi.org/10.1016/j.physd.2021.132850
167-2789/© 2021 Elsevier B.V. All rights reserved.
waves have been plotted for many integrable equations, and
simple patterns such as triangles and rings have been reported,
richer patterns arising from high-order rogue wave solutions have
received little attention. For the NLS equation, preliminary inves-
tigations on rogue wave patterns were made in [9,37,38] through
Darboux transformation and numerical simulations (see also [39]
for a brief review). It was observed in [9] that if a Nth order
rogue wave exhibits a single-shell ring structure, then the center
of the ring is a (N − 2)th order rogue wave. This observation was
explained analytically in [37]. In [38], it was observed that NLS
rogue patterns could be classified according to the order of the
rogue waves and the parameter shifts applied to the Akhmediev
breathers in the rogue-wave limit. This latter observation allowed
the authors to extrapolate the shapes of rogue waves beyond or-
der six, where numerical plotting of rogue waves became difficult.
However, an analytical and quantitative prediction of NLS rogue
patterns at arbitrary orders is still nonexistent.

In this article, we analytically investigate rogue wave patterns
in the NLS equation at arbitrary rogue-wave orders. We show
that if any internal parameter in the rogue waves (which con-
trols the shape and phase of initial small perturbations to the
uniform background) is large, then these waves would exhibit
clear geometric structures, which comprise Peregrine (funda-
mental) rogue waves forming shapes such as triangle, pentagon,
heptagon and nonagon, with a possible lower-order rogue wave
at the center. These rogue patterns are analytically predicted
by the root structures of the Yablonskii–Vorob’ev polynomial
hierarchy, and their orientations are controlled by the phase
of the large internal parameter. We also show that if multiple
internal parameters in the rogue waves are large but satisfy

certain constraints, then the same rogue patterns would still hold.

https://doi.org/10.1016/j.physd.2021.132850
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hese results reveal a deep connection between rogue patterns
nd the Yablonskii–Vorob’ev polynomials, and drastically im-
rove our analytical understanding and quantitative description
f rogue events. As small applications of our analytical results, the
umerical observation in [9] on single-shell ring structures is ex-
lained. In addition, all the rogue patterns numerically observed
n [38] are shown to be special cases of our general analytical
heory. Comparison between true rogue patterns and our ana-
ytical predictions is also presented, and excellent agreement is
bserved.
This paper is structured as follows. In Section 2, we present
simplified bilinear expression of general rogue waves in the
LS equation, as well as the Yablonskii–Vorob’ev polynomial
ierarchy and its root structure, which we will utilize in later
exts. In Section 3, we present our main theorems on rogue wave
atterns when a single internal parameter in the rogue waves is
arge. In Section 4, we graphically illustrate rogue patterns under
large parameter and compare these patterns to our theoreti-
al predictions. In Section 5, we prove the theorems stated in
ection 3. In Section 6, we generalize our analytical results to
ases where multiple internal parameters in the rogue waves are
arge but meet certain constraints. Section 7 concludes the paper.
he three appendices contain proofs for the minor results of this
rticle, such as Theorems 1 and 2 in Section 2 and a generalization
f Theorem 4 in Section 6.

. Preliminaries

The nonlinear Schrödinger (NLS) equation

ut +
1
2
uxx + |u|2u = 0 (1)

arises in numerous physical situations such as water waves and
optics [5,24,40]. In this article, we consider its rogue wave solu-
tions, which are rational solutions which approach a constant-
amplitude continuous-wave background as x, t → ±∞. Since
this equation admits Galilean and scaling invariances, we can set
the boundary conditions of these rogue waves as

u(x, t) → eit , x, t → ∞, (2)

without any loss of generality.

2.1. Improved bilinear expressions of general rogue waves

Analytical expressions for general rogue waves in the NLS
equation have been derived in [8,10,11] by various methods.
However, those expressions are not the best for our solution
analysis. Here, we present a simpler expression for these solu-
tions, which can be derived by incorporating a new parameteri-
zation [17] into bilinear rogue waves of Ref. [11]. These simpler
expressions of rogue waves are given by the following theorem.

Theorem 1. The general NLS rogue waves under boundary condi-
tions (2) are

uN (x, t) =
σ1

σ0
eit , (3)

where the positive integer N represents the order of the rogue wave,
σn is a N × N Gram determinant

σn = det
1≤i,j≤N

(
φ

(n)
2i−1,2j−1

)
, (4)

the matrix elements in σn are defined by

φ
(n)
i,j =

min(i,j)∑ 1
4ν

Si−ν(x+(n) + νs) Sj−ν(x−(n) + νs), (5)

ν=0

2

vectors x±(n) =
(
x±

1 , x±

2 , . . .
)
are defined by

x±

1 = x ± it ± n, x±

2k = 0, x+

2k+1 =
x + 22k(it)
(2k + 1)!

+ a2k+1,

x−

2k+1 =
x − 22k(it)
(2k + 1)!

+ a∗

2k+1,

(6)

with k ≥ 1 and the asterisk * representing complex conjugation,
s = (0, s2, 0, s4, . . .) are coefficients from the expansion

∞∑
j=1

sjλj
= ln

[
2
λ
tanh

(
λ

2

)]
, (7)

the Schur polynomials Sk(x), with x = (x1, x2, . . .), are defined by
∞∑
k=0

Sk(x)ϵk
= exp

(
∞∑
k=1

xkϵk

)
, (8)

or more explicitly,

Sk(x) =

∑
l1+2l2+···+mlm=k

⎛⎝ m∏
j=1

x
lj
j

lj!

⎞⎠ , (9)

and a2k+1 (k = 1, 2, . . . ,N − 1) are free irreducible complex
constants.

This theorem will be proved in Appendix A. Since these rogue
waves approach a uniform background as t → −∞, the internal
parameters {a2k+1} in these waves physically control the shape
and phase of initial small perturbations to this uniform back-
ground, which in turn decide the subsequent time evolution and
the resulting pattern of rogue waves.

As we will show, these rogue wave solutions will exhibit clear
and recognizable patterns when some of these N − 1 internal
parameters (a3, a5, . . . , a2N−1) get large. It turns out that the
resulting rogue patterns are determined by the root structures
of the Yablonskii–Vorob’ev polynomial hierarchy, and this poly-
nomial hierarchy and their root structures will be introduced
next.

2.2. The Yablonskii–Vorob’ev polynomial hierarchy and their root
structures

Yablonskii–Vorob’ev polynomials arose in rational solutions of
the second Painlevé equation (PII) [41,42]

w′′
= 2w3

+ zw + α, (10)

where α is an arbitrary constant. It has been shown that this PII
equation admits rational solutions if and only if α = N is an
integer. In this case, the rational solution is unique and is given
by

w(z;N) =
d
dz

ln
QN−1(z)
QN (z)

, N ≥ 1, (11)

w(z; 0) = 0, w(z; −N) = −w(z;N), (12)

and the polynomials QN (z), now called the Yablonskii–Vorob’ev
polynomials, are constructed by the following recurrence relation

QN+1QN−1 = zQ 2
N − 4

[
QNQ ′′

N − (Q ′

N )
2] , (13)

with Q0(z) = 1, Q1(z) = z, and the prime denoting the derivative.
Later, a determinant expression for these polynomials was found
in [43]. Let pk(z) be the special Schur polynomial defined by
∞∑

pk(z)ϵk
= exp

(
zϵ −

4
3
ϵ3
)

. (14)

k=0
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hen, Yablonskii–Vorob’ev polynomials QN (z) are given by the
N × N determinant [43]

QN (z) = cN

⏐⏐⏐⏐⏐⏐⏐⏐
p1(z) p0(z) · · · p2−N (z)
p3(z) p2(z) · · · p4−N (z)

...
...

...
...

p2N−1(z) p2N−2(z) · · · pN (z)

⏐⏐⏐⏐⏐⏐⏐⏐ , (15)

here cN =
∏N

j=1(2j − 1)!!, and pk(z) = 0 if k < 0. These
olynomials are monic polynomials with integer coefficients [44].
he first few Yablonskii–Vorob’ev polynomials are

2(z) = z3 + 4,

3(z) = z6 + 20z3 − 80,

4(z) = z(z9 + 60z6 + 11200).

To define the Yablonskii–Vorob’ev polynomial hierarchy, we
let p[m]

k (z) be the generalized Schur polynomial defined by
∞∑
k=0

p[m]

k (z)ϵk
= exp

(
zϵ −

22m

2m + 1
ϵ2m+1

)
, (16)

here m is a positive integer. Then, the Yablonskii–Vorob’ev
ierarchy Q [m]

N (z) is given by the N × N determinant [44]

[m]

N (z) = cN

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
p[m]

1 (z) p[m]

0 (z) · · · p[m]

2−N (z)

p[m]

3 (z) p[m]

2 (z) · · · p[m]

4−N (z)
...

...
...

...

p[m]

2N−1(z) p[m]

2N−2(z) · · · p[m]

N (z)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
, (17)

here p[m]

k (z) = 0 if k < 0. When m = 1, Q [1]
N (z) are the

riginal Yablonskii–Vorob’ev polynomials QN (z). When m > 1,
Q [m]

N (z) give higher members of this polynomial hierarchy. All
these Q [m]

N (z) polynomials were conjectured to be monic polyno-
mials with integer coefficients as well [44]. The first few Q [2]

N (z)
polynomials are

Q [2]
2 (z) = z3,

Q [2]
3 (z) = z(z5 − 144),

Q [2]
4 (z) = z10 − 1008z5 − 48384.

hese Q [m]

N (z) polynomials, through relations similar to (11)–(12),
rovide the unique rational solution for the PII hierarchy [44,45].
t is noted that the determinant (17) for Q [m]

N (z) is a Wronskian,
ecause it is easy to see from Eq. (16) that
[m]

k (z) = [p[m]

k+1]
′(z). (18)

Root structures of the Yablonskii–Vorob’ev polynomial hierar-
hy have been studied before [44–48]. Regarding the zero root, its
ultiplicity in QN (z), Q

[2]
N (z) and Q [3]

N (z) was presented in [44,47].
eneralizing those results, we have the following theorem.

heorem 2. The general Yablonskii–Vorob’ev polynomial Q [m]

N (z) is
onic with degree N(N + 1)/2, and is of the form
[m]

N (z) = zN0(N0+1)/2q[m]

N (ζ ), ζ = z2m+1, (19)

here q[m]

N (ζ ) is a monic polynomial with all-real coefficients and a
nonzero constant term, and the integer N0 is determined uniquely
rom (N,m) by one of the following two equations

N ≡ N0 mod (2m + 1), (20)
≡ −N0 − 1 mod (2m + 1), (21)

nder the restriction of 0 ≤ N0 ≤ m. This N0 value is unique
ince these two equations under that restriction are either mutually-
xclusive or yielding the same N value.
0

3

Note 1. On the determination of the unique N0 value in the above
theorem, let us give an example. When N = 5 and m = 4, the N0
value under the restriction of 0 ≤ N0 ≤ 4 can only be found from
Eq. (21) as N0 = 3.

The proof of this theorem will be provided in Appendix B. This
theorem gives the multiplicity of the root zero in any Q [m]

N (z)
polynomial. It also shows that the root structure of Q [m]

N (z) is
invariant under 2π/(2m + 1)-angle rotation in the complex z
plane. In the particular case of the original Yablonskii–Vorob’ev
polynomials QN (z) where m = 1, the above theorem shows that
0 ≤ N0 ≤ 1. This means that zero is either not a root or a simple
root for QN (z), in agreement with previous results in [46,47].

Regarding nonzero roots, it was shown in [46] that for the
original Yablonskii–Vorob’ev polynomials QN (z), all nonzero roots
are simple. For the higher Yablonskii–Vorob’ev polynomial hier-
archy Q [m]

N (z), it was conjectured in [44] that all nonzero roots
are also simple. We have checked this conjecture for a myriad
of (N,m) values and found it to hold in all our examples. Thus,
we will assume it true in this article. In view of Theorem 2, this
implies that the polynomial Q [m]

N (z) has

Np =
1
2
[N(N + 1) − N0(N0 + 1)] (22)

nonzero simple roots — a conclusion which we will utilize in later
analysis [see the sentence below Eq. (54) in Section 5].

Roots of many Yablonskii–Vorob’ev polynomials Q [m]

N (z) were
plotted in [44], and highly regular and symmetric patterns were
observed. Due to the importance of these root structures to our
work, we reproduce some of those root plots in Fig. 1 for N = 6
and 1 ≤ m ≤ 5. Boundaries of the roots in Q [m]

N (z) in the large-N
limit have been determined in [45,48].

3. Analytical predictions of rogue wave patterns for a single
large internal parameter

Rogue wave solutions in Theorem 1 contain N − 1 free in-
ternal complex parameters a3, a5, . . . , a2N−1. In this section, we
consider asymptotics of these rogue solutions when one of these
internal parameters is large, while the other parameters remain
O(1). Generalizations to cases where multiple internal parameters
are large but satisfy certain constraints will be made in Section 6.

Suppose a2m+1 is large, where 1 ≤ m ≤ N − 1, and the
value of m is defined by the choice of a2m+1 in the parame-
ter set (a3, a5, . . . , a2N−1) of rogue waves uN (x, t). Suppose also
that the other parameters (a3, a5, . . . , a2m−1, a2m+3, . . . , a2N−1)
are all O(1). Then our results on the large-a2m+1 asymptotics of
rogue waves in Theorem 1 are summarized by the following two
theorems.

Theorem 3. Far away from the origin, with
√
x2 + t2 = O(

|a2m+1|
1/(2m+1)), the Nth order rogue wave uN (x, t) in Eq. (3)

separates into Np fundamental (Peregrine) rogue waves, where Np
is given in Eq. (22). These Peregrine waves are û1(x − x̂0, t − t̂0) eit ,
where

û1(x, t) = 1 −
4(1 + 2it)

1 + 4x2 + 4t2
, (23)

and their positions (x̂0, t̂0) are given by

x̂0 + i t̂0 = z0

(
−

2m + 1
22m a2m+1

) 1
2m+1

, (24)

with z0 being any one of the Np simple nonzero roots of Q [m]

N (z). The
error of this Peregrine wave approximation is O(|a |

−1/(2m+1)).
2m+1
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Fig. 1. Plots of the roots of the Yablonskii–Vorob’ev polynomial hierarchy Q [m](z) for N = 6 and 1 ≤ m ≤ 5.
N
Expressed mathematically, when
[
(x − x̂0)2 + (t − t̂0)2

]1/2
= O(1),

we have the following solution asymptotics

uN (x, t; a3, a5, . . . , a2N−1) = û1(x − x̂0, t − t̂0) eit

+ O
(
|a2m+1|

−1/(2m+1)) , |a2m+1| ≫ 1. (25)

When (x, t) is not in the neighborhood of any of these Np Pere-
grine waves, or

√
x2 + t2 is larger than O

(
|a2m+1|

1/(2m+1)), uN (x, t)
symptotically approaches the constant background eit as |a2m+1|

→ ∞.

Theorem 4. In the neighborhood of the origin, where
√
x2 + t2 =

(1), uN (x, t) is approximately a lower N0th order rogue wave
N0 (x, t), where N0 is given in Theorem 2 with 0 ≤ N0 ≤ N −

, and uN0 (x, t) is given by Eq. (3) with its internal parameters
3, a5, . . . , a2N0−1 being the first N0 − 1 values in the parame-
er set (a3, a5, . . . , a2N−1) of the original rogue wave uN (x, t). The
error of this lower-order rogue wave approximation uN0 (x, t) is
O(|a2m+1|

−1). Expressed mathematically, when
√
x2 + t2 = O(1),

uN (x, t; a3, a5, . . . , a2N−1) = uN0 (x, t; a3, a5, . . . , a2N0−1)

+ O
(
|a2m+1|

−1) , |a2m+1| ≫ 1.
(26)

If N0 = 0, then there will not be such a lower-order rogue wave
in the neighborhood of the origin, and uN (x, t) asymptotically ap-
proaches the constant background eit there as |a2m+1| → ∞.

These two theorems will be proved in Section 5.

Remark 1. Theorem 3 predicts that when a2m+1 is large, the Nth
order rogue wave (3) far away from the origin comprises Np
Peregrine waves. The rogue pattern formed by these Peregrine
waves has the same geometric shape as the root structure of the
polynomial Q [m]

N (z), and thus this rogue pattern has 2π/(2m +

1)-angle rotational symmetry. The only difference between the
predicted rogue pattern and the root structure of Q [m]

N (z) is a
dilation and rotation between them due to the multiplication
factor on the right side of Eq. (24). The angle of rotation is equal
to the angle of the complex number −a2m+1 divided by 2m + 1,
and the dilation factor is equal to [(2m + 1)2−2m

|a2m+1|]
1/(2m+1).

Remark 2. On the right side of Eq. (24), we can pick any one of
the (2m+1)th root of −(2m+1)2−2ma2m+1, because roots z0 of the
polynomial Q [m]

N (z) have 2π/(2m+1)-angle rotational symmetry,
see the comment in the paragraph below Theorem 2.

As a small application of the above two theorems, we explain
the numerical observations in Ref. [9]. Under our bilinear rogue
solution (3), a Nth order rogue wave exhibits a ring structure
when a2N−1 is large (see Fig. 2 in the next section). In this case,
m = N−1, and N0 = N−2 from Eq. (21). Then, our theory predicts
that the center of this Nth order rogue wave is a (N − 2)th order
4

Table 1
Value of the large parameter for rogue waves in Fig. 2.
N a3 a5 a7 a9 a11 a13
2 −100i
3 −60i −1000i
4 −30i −300i −3000i
5 −20i −100i −2000i −12000i
6 −20i −200i −2000i −20000i −80000i
7 −20i −200i −2000i −30000i −100000i −300000i

rogue wave, surrounded by Np = 2N−1 Peregrine waves that are
evenly spaced on a ring due to the 2π/(2m+1)-, i.e., 2π/(2N−1)-
angle rotational symmetry (see Remark 1). This is precisely what
was observed in [9].

As another small application of the above two theorems, we
explain a result in Ref. [49], which says that the total number of
elementary (Peregrine) rogue waves (ERWs) in a Nth order rogue
wave solution is N(N + 1)/2. This statement is heuristic, as some
of these ERWs are allowed to collide and become indistinguish-
able from each other. To explain this statement, we notice from
Theorems 3 and 4 that when a2m+1 is large, the Nth order rogue
wave splits into a lower N0th order rogue wave at the center, plus
Np = N(N + 1)/2−N0(N0 + 1)/2 Peregrine waves away from the
center. Using this fact and the method of induction, we see that
this N0th order rogue wave at the center contains N0(N0 + 1)/2
ERWs. Then, together with the above Np Peregrine waves away
from the center, the total number of ERWs is N(N + 1)/2.

4. Comparison between true rogue patterns and our analytical
predictions

In this section, we compare true rogue patterns with our
analytical predictions. For this purpose, we first show in Fig. 2
true rogue wave solutions (3) from the 2rd to 7th order, with
large a3, a5, a7, a9, a11 and a13 in the first to sixth columns
respectively. The specific value of the large parameter in each
panel of this figure is listed in Table 1, and the other parameters
in each solution are chosen as zero.

It is seen that these rogue waves comprise a number of Pere-
grine waves forming triangular patterns for large a3, pentagon
patterns for large a5, heptagon patterns for large a7, nonagon
patterns for large a9, hendecagon (eleven-sided polygon) patterns
for large a11, and tridecagon (thirteen-sided polygon) patterns for
large a13. In the literature, patterns on the diagonal of Fig. 2 are
sometimes called single-shell ring structures [9]. In addition to
these Peregrine waves away from the origin, some of the rogue
waves also contain a lower-order rogue wave at their centers.
For instance, for the 7th order rogue waves in the bottom row
of Fig. 2, the first and fourth panels (with large a3 and a9 respec-
tively) exhibit a Peregrine wave in their centers; the second panel
(with large a ) exhibits a second-order rogue wave in the center;
5
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Fig. 2. True NLS rogue wave patterns |uN (x, t; a3, a5, . . . , a2N−1)| from solutions (3) when N ranges from 2 to 7 and one of the solution parameters is large (the
other parameters are set as zero). The large parameter is labeled on top of each column, and its value for each panel is listed in Table 1. The center of each panel is
always the origin x = t = 0, but the (x, t) intervals differ slightly from panel to panel. For instance, in the bottom row, the left-most panel has −18.5 ≤ x, t ≤ 18.5,

nd the right-most panel has −16 ≤ x, t ≤ 16.
he fifth panel (with large a11) exhibits a third-order rogue wave
n the center; and the last panel (with large a13) exhibits a fifth-
rder rogue wave in the center. For our choices of parameters
n rogue waves of Fig. 2, these lower-order rogue waves in the
enter are all super-rogue waves, i.e., rogue waves with the high-
st peak amplitude of their orders. We note by passing that the
irst five rows of rogue patterns in Fig. 2 resemble those plotted
n Ref. [38] from Akhmediev breathers in the rogue-wave limit,
lthough orientations between the two sets of patterns are very
ifferent.
Now, we compare these true rogue patterns in Fig. 2 with our

nalytical predictions. Our prediction |u(p)
N (x, t)| from Theorems 3

nd 4 can be assembled into a simple formula,⏐⏐⏐u(p)
N (x, t)

⏐⏐⏐ =
⏐⏐uN0 (x, t)

⏐⏐+ Np∑(⏐⏐⏐û1(x − x̂(j)0 , t − t̂ (j)0 )
⏐⏐⏐− 1

)
, (27)
j=1

5

where û1(x, t) is the Peregrine wave given in (23), their positions
(x̂(j)0 , t̂ (j)0 ) given by (24) with z0 being every one of the Np simple
nonzero roots of Q [m]

N (z), and uN0 (x, t) is the lower-order rogue
wave in Eq. (26) whose internal parameters (a3, a5, . . . , a2N0−1)
are the first N0 −1 values in the parameter set (a3, a5, . . . , a2N−1)
of the original rogue wave uN (x, t). For true rogue waves in Fig. 2,
all internal parameters except for a2m+1 were chosen as zero, and
N0 ≤ m (see Theorem 2). Then, all internal parameters in the
predicted lower-order rogue wave uN0 (x, t) at the origin are also
zero.

Our predicted (Np,N0) values for rogue waves of Fig. 2 are
displayed in Table 2, where m = 1, 2, . . . , 6 correspond to
large a3, a5, . . . , a13 respectively. These (Np,N0) values provide
our predictions for the number of Peregrine waves away from
the origin (x, t) = (0, 0), as well as the order of the reduced
rogue wave in the neighborhood of the origin. Visual comparison
between Table 2 and Fig. 2 shows complete agreement.
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Fig. 3. Analytical predictions (27) for true rogue waves in Fig. 2. The x and t intervals here are identical to those in Fig. 2.
able 2
redicted (Np,N0) values for true rogue waves of Fig. 2.

N m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

2 (3, 0)
3 (6, 0) (5, 1)
4 (9, 1) (10, 0) (7, 2)
5 (15, 0) (15, 0) (14, 1) (9, 3)
6 (21, 0) (20, 1) (21, 0) (18, 2) (11, 4)
7 (27, 1) (25, 2) (28, 0) (27, 1) (22, 3) (13, 5)

We further compare our predicted whole solutions (27) with
he true solutions of Fig. 2 for the same sets of (a3, a5, . . .) param-
ter values. These predicted whole solutions (27) are displayed in
ig. 3, with identical (x, t) intervals as in Fig. 2’s true solutions.
t is seen that the predicted patterns are strikingly similar to
he true ones. In particular, since our predicted Peregrine loca-
ions (24) in the (x, t) plane are given by all the non-zero roots
f the Yablonskii–Vorob’ev polynomials Q [m](z), multiplied by
N

6

a fixed complex constant, predicted patterns formed by these
Peregrine waves then are simply the root structures of these
Yablonskii–Vorob’ev polynomials under certain rotation and di-
lation, as is evident by comparing predicted rogue waves in Fig. 3
to the Yablonskii–Vorob’ev root structures in Fig. 1 for N = 6.
These predicted Peregrine patterns clearly match the true ones
in Fig. 2 very well. This visual agreement shows the deep con-
nection between NLS rogue patterns and root structures of the
Yablonskii–Vorob’ev hierarchy, as our Theorem 3 predicts.

Regarding our predictions uN0 (x, t) for centers of the rogue
waves uN (x, t) in Fig. 2, we can show that our bilinear rogue
wave solution (3) in Theorem 1 with all internal parameters set as
zero gives the super-rogue wave. This means that our predictions
uN0 (x, t) for the centers of true rogue waves are all lower-order
super-rogue waves, which agree with centers of true solutions
shown in Fig. 2.

Theorem 3 reveals that the orientation of the rogue pattern
formed by Peregrine waves is controlled by the phase of the
large parameter a . Specifically, the rogue-pattern orientation
2m+1
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Fig. 4. Orientations of 4th order pentagon-shaped rogue waves with a5 = 500e−iπ/3 (left column), 500eiπ/3 (middle column) and 500e4iπ/3 (right column) respectively;
the other parameters in the rogue solutions are zero. Upper row: true rogue patterns from solutions (3); lower row: predicted locations of Peregrine waves from
Eq. (24).
Fig. 5. Decay of errors in our prediction (24) for the Peregrine location as |a3| or |a5| increases. (a) A triangle pattern of 3rd-order rogue waves when |a3| is large
nd arg(a3) = −π/4. (b) Error versus |a3| for the Peregrine location marked by an arrow in (a). (c) A pentagon pattern of 3rd-order rogue waves when |a5| is large
ith arg(a5) = −π/4. (b) Error versus |a5| for the Peregrine location marked by an arrow in (c).
s the one of the root pattern of Q [m]

N (z) rotated by an angle
of arg(−a2m+1)/(2m + 1), where ‘‘arg" represents the argument
(angle) of a complex number. To check this prediction, we choose
the 4th order pentagon-shaped rogue waves, where a5 is large
and the other parameters are set as zero. For three choices of
the a5 value with the same modulus but different arguments,
namely, 500e−iπ/3, 500eiπ/3 and 500e4iπ/3, true rogue patterns
from solutions (3) are displayed in the upper row of Fig. 4. As
expected, orientations of these pentagon patterns indeed change
as the argument of a5 varies. Using our formula (24), predicted
locations of Peregrine waves in the rogue pattern are shown in
the lower row of Fig. 4. Comparison of the upper and lower rows
of Fig. 4 shows that the predicted orientations are in perfect
agreement with the true ones. It is noted that although the
dependence of rogue-pattern orientation on its internal param-
eters has been studied for second-order rogue waves (triplets) in
Ref. [50], such dependence has not been analytically determined
for higher-order rogue waves until now.

Next, we make quantitative comparisons between true rogue
waves and our predictions for large a2m+1, and verify the error
decay rate of O(|a2m+1|

−1/(2m+1)) for the prediction of Peregrine-
wave locations far away from the origin in Theorem 3, and
the error decay rate of O(|a2m+1|

−1) for the prediction of the
lower-order rogue wave at the center in Theorem 4.
7

For the quantitative comparison on Peregrine-wave locations
away from the origin, we choose two patterns of 3rd-order
rogue waves. One is a triangle pattern from large a3, and we set
arg(a3) = −π/4; and the other is a pentagon pattern from large
a5, and we set a5 to be real positive. In each pattern, we choose
all other parameters of the rogue wave solutions to be zero.
These triangular and pentagon patterns are shown schematically
in Fig. 5(a, c) respectively. In each of these two patterns, we
pick one of its Peregrine waves, which is marked by an arrow,
and quantitatively compare its true (x0, t0) location with our
analytical prediction (24) as |a3| or |a5| increases. Here, the true
location of the Peregrine wave is defined as the (x0, t0) location
where this Peregrine wave attains its maximum amplitude, and
the error of our asymptotic prediction (x̂0, t̂0) in Eq. (24) is
defined as

error of Peregrine location =

√(
x̂0 − x0

)2
+
(
t̂0 − t0

)2
.

These errors of Peregrine locations versus |a3| or |a5| are plotted
as solid lines in panels (b) and (d) of Fig. 5 for the triangular
and pentagon patterns respectively. For comparison, the decay
rates of |a3|−1/3 and |a5|−1/5 are also displayed in these panels
as dashed lines. We see that these errors of Peregrine locations
indeed decay at the rate of |a2m+1|

−1/(2m+1), thus confirming the
analytical error estimates (25) in Theorem 3.
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Fig. 6. Decay of errors in our prediction u3(x, t) for the center region of the rogue wave u5(x, t) with large a9 . (a) A true 5th order rogue wave |u5(x, t)| with
9 = −5000i and the other parameters being zero; the (x, t) intervals here are −12 ≤ x, t ≤ 12. (b) Zoomed-in plot of the center region of the true solution marked
y a dashed-line box in panel (a). (c) Our prediction |u3(x, t)| for the center region with the same (x, t) intervals as in (b). (d) Error decay of our predicted solution
t the (x, t) location of (0.5, 0.5) as a9 increases in size with arg(a9) = −π/2.
To quantitatively compare our prediction in Theorem 4 on the
ower-order rogue wave at the center with the true solution, we
hoose a fifth-order rogue wave u5(x, t) with large a9 and the
other internal parameters set as zero. This |u5(x, t)| solution with
a9 = −5000i is displayed in Fig. 6(a). The center region of this
wave marked by a dashed-line box in panel (a) is amplified and
replotted in panel (b). In the present case, N = 5 andm = 4. Since
5 ≡ −4 mod 9, we get N0 = 3 from Eq. (21). Thus, according
to Theorem 4, this u5(x, t) solution contains a 3rd-order rogue
wave u3(x, t) in its center region, where all internal parameters
(a3, a5) in this u3(x, t) solution are zero. Such a u3(x, t) solution is
a third-order super rogue wave. This predicted |u3(x, t)| solution
is displayed in Fig. 6(c), with the same (x, t) internals as in the
true center-region solution displayed in panel (b). Visually, this
predicted center solution in (c) is identical to the true center
solution in (b). Quantitatively, we have also obtained the errors in
our predicted solution u3(x, t) at x = t = 0.5 of the center region
as a9 increases in magnitude with arg(a9) = −π/2. Our error is
defined as

error of center region prediction = |u5(x, t) − u3(x, t)|x=t=0.5 .

The dependence of this error on |a9| is plotted in Fig. 6(d).
Comparison of this error decay with the |a9|−1 decay [shown as
a dashed line in panel (d)] indicates that this error is indeed of
O(|a9|−1), confirming the error prediction (26) in Theorem 4.

5. Proofs for the analytical results in Section 3

In this section, we prove the analytical predictions on NLS
rogue patterns in Theorems 3 and 4 of Section 3. Our proof is
based on an asymptotic analysis of the rogue wave solution (3),
or equivalently, the determinant σn in Eq. (4), in the large a2m+1
limit.

Proof of Theorem 3. When a2m+1 is large and the other pa-
rameters O(1) in the rogue wave solution (3), at (x, t) where√
x2 + t2 = O

(
|a2m+1|

1/(2m+1)), by denoting

λ = a−1/(2m+1)
2m+1 (28)

nd recalling the expression of Schur polynomials in Eq. (9), we
ave

k(x+(n) + νs) = Sk
(
x+

1 , νs2, x+

3 , νs4, . . .
)

λ−kSk
(
x+

1 λ, νs2λ2, x+

3 λ3, νs4λ4, . . .
)

λ−kSk [(x + it)λ, 0, . . . , 0, 1, 0, . . .]
Sk (x + it, 0, . . . , 0, a2m+1, 0, . . .) . (29)

hus,

(x+(n) + νs) ∼ S (v), |a | ≫ 1, (30)
k k 2m+1

8

where

v = (x + it, 0, . . . , 0, a2m+1, 0, . . .). (31)

From the definition of Schur polynomials (8), Sk(v) is given by
∞∑
k=0

Sk(v)ϵk
= exp

[
(x + it)ϵ + a2m+1ϵ

2m+1] . (32)

Thus, it is related to the polynomial p[m]

k (z) in (16) as

Sk(v) = Ak/(2m+1)p[m]

k (z), (33)

where

A = −
2m + 1
22m a2m+1, z = A−1/(2m+1)(x + it). (34)

Using these formulae, we find that

det
1≤i,j≤N

[
S2i−j(x+(n) + js)

]
∼ c−1

N A
N(N+1)
2(2m+1) Q [m]

N (z),

|a2m+1| ≫ 1. (35)

Similarly,

det
1≤i,j≤N

[
S2i−j(x−(n) + js)

]
∼ c−1

N

(
A∗
) N(N+1)

2(2m+1) Q [m]

N (z∗),

|a2m+1| ≫ 1. (36)

Hereafter, Sk = 0 when k < 0.
To proceed further, we use determinant identities and the

Laplace expansion to rewrite σn in Eq. (4) as [11]

σn =

∑
0≤ν1<ν2<···<νN≤2N−1

det
1≤i,j≤N

[
1
2νj

S2i−1−νj (x
+(n) + νjs)

]
× det

1≤i,j≤N

[
1
2νj

S2i−1−νj (x
−(n) + νjs)

]
. (37)

Since the highest order term of a2m+1 in this σn comes from the
index choices of νj = j − 1, then

σn ∼ |α|
2
|a2m+1|

N(N+1)
2m+1

⏐⏐⏐Q [m]

N (z)
⏐⏐⏐2 , |a2m+1| ≫ 1, (38)

where

α = 2−N(N−1)/2c−1
N

(
−

2m + 1
22m

) N(N+1)
2(2m+1)

. (39)

Since α is independent of n, the above equation shows that for
large a2m+1, σ1/σ0 ∼ 1, i.e., the solution u(x, t) is on the unit
background, except at or near (x, t) locations

(
x̂0, t̂0

)
where

z = A−1/(2m+1)(x̂ + it̂ ) (40)
0 0 0
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s a root of the polynomial Q [m]

N (z), and such
(
x̂0, t̂0

)
locations are

given by Eq. (24) in view of Eq. (34).
Next, we show that when (x, t) is in the neighborhood of each

of the
(
x̂0, t̂0

)
locations given by Eq. (24), i.e., when

[
(x − x̂0)2

+(t − t̂0)2
]1/2

= O(1), the rogue wave uN (x, t) in Eq. (3) ap-
proaches a Peregrine wave û1(x − x̂0, t − t̂0) eit for large a2m+1.
The asymptotic analysis above indicates that when (x, t) is in the
neighborhood of

(
x̂0, t̂0

)
, the highest power term |a2m+1|

N(N+1)
2m+1 in

(x, t) vanishes. Thus, in order to determine the asymptotics of
N (x, t) in that (x, t) region, we need to derive the leading order
erm of a2m+1 in Eq. (37) whose order is lower than |a2m+1|

N(N+1)
2m+1 .

or this purpose, we notice from Eq. (29) that when (x, t) is in the
eighborhood of

(
x̂0, t̂0

)
, we have a more refined asymptotics for

k(x+(n) + νs) as

k(x+(n) + νs) = λ−kSk
(
x+

1 λ, 0, . . . , 0, 1, 0, . . .
) [

1 + O(λ2)
]

= Sk
(
x+

1 , 0, . . . , 0, a2m+1, 0, . . .
) [

1 + O(λ2)
]
, (41)

.e.,

k(x+(n) + νs) = Sk(v̂)
[
1 + O

(
a−2/(2m+1)
2m+1

)]
, (42)

here

ˆ = (x + it + n, 0, . . . , 0, a2m+1, 0, . . .). (43)

he polynomials Sk(v̂) are related to p[m]

k (z) in (16) as

k(v̂) = Ak/(2m+1)p[m]

k (ẑ), (44)

here A is as given in Eq. (34), and ẑ = A−1/(2m+1)(x + it + n).
Now, we derive the leading order term of a2m+1 in Eq. (37).

his leading order term comes from two index choices, one being
= (0, 1, . . . ,N−1), and the other being ν = (0, 1, . . . ,N−2,N).
With the first index choice, in view of Eqs. (42) and (44), the

eterminant involving x+(n) in Eq. (37) is

a
N(N+1)
2(2m+1)
2m+1 Q [m]

N (ẑ)
[
1 + O

(
a−2/(2m+1)
2m+1

)]
, (45)

here α is given in Eq. (39). Expanding Q [m]

N (ẑ) around ẑ = z0,
where z0 is given in Eq. (40), and recalling Q [m]

N (z0) = 0, we have

Q [m]

N (ẑ) = A−1/(2m+1) [(x − x̂0) + i(t − t̂0) + n
] [

Q [m]

N

]′

(z0)

×
[
1 + O

(
A−1/(2m+1))] . (46)

nserting this equation into (45) and recalling the definition of A
in (34), the determinant involving x+(n) in Eq. (37) becomes[
(x − x̂0) + i(t − t̂0) + n

]
α̂ a

N(N+1)−2
2(2m+1)

2m+1

[
Q [m]

N

]′

(z0)

×

[
1 + O

(
a−1/(2m+1)
2m+1

)]
, (47)

here α̂ = α [−(2m + 1)2−2m
]
−1/(2m+1). Similarly, the determi-

ant involving x−(n) in Eq. (37) becomes[
(x − x̂0) − i(t − t̂0) − n

]
α̂∗ (a∗

2m+1)
N(N+1)−2
2(2m+1)

[
Q [m]

N

]′

(z∗

0 )

×

[
1 + O

(
a−1/(2m+1)
2m+1

)]
. (48)

Next, we consider the contribution in Eq. (37) from the second
ndex choice of ν = (0, 1, . . . ,N−2,N). For this index choice, the
eterminant involving x+(n) in Eq. (37) is

det
1≤i≤N

[
S2i−1(x+),

1
2
S2i−2(x+

+ s), . . . ,
1

2N−2 S2i−(N−1)

× [x+
+ (N − 2) s],

1
2N S2i−(N+1)(x+

+ N s)
]

. (49)
9

Utilizing Eqs. (42)–(44), this determinant is

2−N(N−1)/2−1A
N(N+1)−2
2(2m+1) det

1≤i≤N

[
p[m]

2i−1(ẑ), p
[m]

2i−2(ẑ), . . . ,

p[m]

2i−(N−1)(ẑ), p
[m]

2i−(N+1)(ẑ)
] [

1 + O
(
a−2/(2m+1)
2m+1

)]
. (50)

Recalling Eq. (18), we see that p[m]

2i−(N+1)(ẑ) = [p[m]

2i−N ]
′(ẑ). Thus, the

determinant in the above expression is equal to c−1
N

[
Q [m]

N

]′

(ẑ),
so that the determinant (49) becomes

1
2
α̂ a

N(N+1)−2
2(2m+1)

2m+1

[
Q [m]

N

]′

(ẑ)
[
1 + O

(
a−2/(2m+1)
2m+1

)]
. (51)

When (x, t) is in the neighborhood of (x̂0, t̂0), we expand
[
Q [m]

N

]′

(ẑ) around ẑ = z0 to reduce this expression further to

1
2
α̂ a

N(N+1)−2
2(2m+1)

2m+1

[
Q [m]

N

]′

(z0)
[
1 + O

(
a−1/(2m+1)
2m+1

)]
. (52)

Similarly, the determinant involving x−(n) in Eq. (37) becomes

1
2
α̂∗ (a∗

2m+1)
N(N+1)−2
2(2m+1)

[
Q [m]

N

]′

(z∗

0 )
[
1 + O

(
a−1/(2m+1)
2m+1

)]
. (53)

Summarizing the above two contributions, we find that

σn(x, t) = |α̂|
2
⏐⏐⏐⏐[Q [m]

N

]′

(z0)
⏐⏐⏐⏐2 |a2m+1|

N(N+1)−2
(2m+1)

×

[(
x − x̂0

)2
+
(
t − t̂0

)2
− (2i)n

(
t − t̂0

)
− n2

+
1
4

]
×

[
1 + O

(
a−1/(2m+1)
2m+1

)]
. (54)

Finally, we recall that nonzero roots are simple in Yablonskii–
Vorob’ev polynomials QN (z) [46]. In addition, nonzero roots have
also been conjectured to be simple in all the Yablonskii–Vorob’ev
hierarchy Q [m]

N (z) [44]. Assuming this conjecture is true, then[
Q [m]

N

]′

(z0) ̸= 0. This indicates that the above leading-order
asymptotics for σn(x, t) never vanishes. Therefore, when a2m+1 is
large and (x, t) in the neighborhood of

(
x̂0, t̂0

)
, we get from (54)

that

uN (x, t) =
σ1

σ0
eit = eit

(
1 −

4[1 + 2i(t − t̂0)]
1 + 4(x − x̂0)2 + 4(t − t̂0)2

)
+ O

(
a−1/(2m+1)
2m+1

)
, (55)

which is a Peregrine wave û1(x−x̂0, t− t̂0) eit , and the error of this
Peregrine prediction is O

(
a−1/(2m+1)
2m+1

)
. Theorem 3 is then proved.

Proof of Theorem 4. To analyze the large-a2m+1 behavior of
the rogue wave uN (x, t) in the neighborhood of the origin, where√
x2 + t2 = O(1), we first rewrite the σn determinant (4) into a

3N × 3N determinant [11]

σn =

⏐⏐⏐⏐ ON×N ΦN×2N
−Ψ2N×N I2N×2N

⏐⏐⏐⏐ , (56)

where Φi,j = 2−(j−1)S2i−j
[
x+(n) + (j − 1)s

]
, and Ψi,j = 2−(i−1)S2j−i[

x−(n) + (i − 1)s
]
. Defining y± to be the vector x± without the

a2m+1 term, i.e., let

x+
= y+

+ (0, . . . , 0, a2m+1, 0, . . .),

x−
= y−

+ (0, . . . , 0, a∗

2m+1, 0, . . .),
(57)
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e find that the Schur polynomials of x± are related to those of
± as

Sj(x+
+ νs) =

[
j

2m+1

]∑
i=0

ai2m+1

i!
Sj−(2m+1)i(y+

+ νs),

Sj(x−
+ νs) =

[
j

2m+1

]∑
i=0

(a∗

2m+1)
i

i!
Sj−(2m+1)i(y−

+ νs),

(58)

where [a] represents the largest integer less than or equal to a.
Using this relation, we express matrix elements of Φ and Ψ in
Eq. (56) through Schur polynomials Sk(y±

+ νs) and powers of
a2m+1 and a∗

2m+1.
We need to determine the highest power term of a2m+1 in the

determinant (56). For that purpose, it may be tempting to retain
only the highest power term of a2m+1 and a∗

2m+1 in each element
of this determinant. That does not work though because it would
result in multiple rows (and columns) which are proportional to
each other, making the reduced determinant zero. The correct
way is to first judiciously remove certain leading power terms
of a2m+1 and a∗

2m+1 from elements of the determinant through
row and column manipulations, so that the remaining determi-
nant, after retaining only the highest power term of a2m+1 and

∗

2m+1 in each element, would be nonzero. These row and column
anipulations are described below.
Suppose N ≡ N0 mod (2m + 1), i.e., N = k(2m + 1) + N0

for some positive integer k, with 0 ≤ N0 ≤ m. We perform the
following series of row operations to the matrix Φ so that certain
high-power terms of a2m+1 in its lower rows are eliminated. In
the first round, we use the 1st to mth rows of Φ to eliminate
the highest-power term a2ν2m+1 from the [ν(2m + 1) + 1]th up to
the [ν(2m + 1) + m]th rows for each 1 ≤ ν ≤ k, so that the
remaining terms in those rows have the highest power a2ν−1

2m+1. We
also use the (m + 1)th to (2m + 1)th rows of Φ to eliminate the
highest-power term a2ν+1

2m+1 from the [ν(2m+ 1)+m+ 1]th to the
[ν(2m + 1) + 2m + 1]th rows for each 1 ≤ ν ≤ k − 1, with the
remaining terms in those rows having the highest power a2ν2m+1.
In each step, the highest power terms a2ν2m+1 or a2ν+1

2m+1 of each row
are eliminated simultaneously, because the coefficient vector of
those highest power terms in each row below the (2m + 1)th is
proportional to the coefficient vector of the highest power terms
in the corresponding upper row between the 1st and (2m + 1)th
due to the relation (58).

In the second round, we use the (2m+1+1)th to (2m+1+m)th
rows of the remaining matrix Φ to eliminate the highest-power
term a2ν+1

2m+1 from the [(ν+1)(2m+1)+1]th up to the [(ν+1)(2m+

1) + m]th rows for each 1 ≤ ν ≤ k − 1, so that the remaining
terms in those rows have the highest power a2ν2m+1. We also use
the (2m+1+m+1)th to (2m+1+2m+1)th rows of Φ to eliminate
the highest-power term a2ν+2

2m+1 from the [(ν+1)(2m+1)+m+1]th
up to the [(ν+1)(2m+1)+2m+1]th rows for each 1 ≤ ν ≤ k−2,
with the remaining terms in those rows having the highest power
a2ν+1
2m+1. This process is repeated k rounds.
At the end of this process, the ith row of the remaining

matrix Φ has the highest power a[(i+m)/(2m+1)]
2m+1 . Then, we keep

only the highest power terms of a2m+1 in each row. Similar
column operations are also performed on the matrix Ψ . With
these manipulations, we find that σn is asymptotically reduced
to

σn = β |a2m+1|
k2(2m+1)+k(2N0+1)

⏐⏐⏐⏐ ON×N Φ̃N×2N
−Ψ̃2N×N I2N×2N

⏐⏐⏐⏐
×
[
1 + O

(
a−1
2m+1

)]
, (59)
10
where β is a (m,N)-dependent nonzero constant, matrices Φ̃N×2N
and Ψ̃2N×N have the structures

Φ̃N×2N =

(
L(N−N0)×(N−N0) O(N−N0)×2N0 O(N−N0)×(N−N0)

MN0×(N−N0) Φ̂N0×2N0 ON0×(N−N0)

)
, (60)

Ψ̃2N×N =

⎛⎜⎝U(N−N0)×(N−N0) M̂(N−N0)×N0

O2N0×(N−N0) Ψ̂2N0×N0

O(N−N0)×(N−N0) O(N−N0)×N0

⎞⎟⎠ , (61)

Li,j = Si−j
[
y+

+ (j − 1)s
]
, Ui,j = Sj−i

[
y−

+ (i − 1)s
]
, (62)

Φ̂i,j = 2−(j−1)S2i−j
[
y+(n) + (j − 1 + ν0)s

]
,

Ψ̂i,j = 2−(i−1)S2j−i
[
y−(n) + (i − 1 + ν0)s

]
,

(63)

ν0 = k(2m + 1), and M, M̂ are matrices of elements Sj(y+
+ νs)

and Sj(y−
+νs) respectively. Since L and U are respectively lower

triangular and upper triangular matrices with unit elements on
the diagonal in view that S0 = 1 and Sj = 0 for j < 0, σn in
Eq. (59) then is

σn = β |a2m+1|
k2(2m+1)+k(2N0+1)

⏐⏐⏐⏐ ON0×N0 Φ̂N0×2N0
−Ψ̂2N0×N0 I2N0×2N0

⏐⏐⏐⏐
×
[
1 + O

(
a−1
2m+1

)]
. (64)

Finally, we notice that Sj
[
y±

+ (ν + ν0)s
]

is related to Sj(
y±

+ νs
)
through

Sj
[
y±

+ (ν + ν0)s
]

=

[j/2]∑
i=0

S2i(ν0s)Sj−2i(y±
+ νs). (65)

Using this relation, the determinant in (64) can be reduced to one
where ν0 is set to zero in the above Φ̂ and Ψ̂ matrices given in
Eq. (63). Such a determinant for σn gives a N0th order rogue wave,
whose internal parameters (a3, a5, . . . , a2N0−1) are the first N0−1
values in the original parameter set (a3, a5, . . . , a2N−1). Thus, in
the neighborhood of the origin ,

uN (x, t; a3, a5, . . . , a2N−1) =
σ1

σ0
eit = uN0 (x, t; a3, a5, . . . , a2N0−1)

×
[
1 + O

(
a−1
2m+1

)]
, |a2m+1| ≫ 1,

(66)

which means that the original Nth order rogue wave uN (x, t) is
approximated by a lower N0th order rogue wave uN0 (x, t), with
the approximation error O

(
a−1
2m+1

)
.

If N ≡ −N0 − 1 mod (2m + 1) with 0 ≤ N0 ≤ m, Eq. (66) can
also be derived by similar analysis, and thus the same conclusion
holds.

Lastly, we recall that 1 ≤ m ≤ N − 1. In addition, 0 ≤ N0 ≤ m
in view of Theorem 2. Furthermore, when m = N − 1, we find
from Eq. (21) of Theorem 2 that N0 = N − 2. As a consequence,
0 ≤ N0 ≤ N − 2. Theorem 4 is then proved.

6. Rogue wave patterns when multiple internal parameters
are large

The rogue patterns in Theorems 3 and 4 were derived un-
der the assumption that only one of the internal parameters in
the rogue wave solutions (3) was large, and the other param-
eters were O(1). It turns out that those results can be gener-
alized to more general parameter conditions. We discuss these
generalizations in this section.
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Fig. 7. A 7th order rogue wave |u7(x, t)| for generalized parameters (71) with a5 = −200i, and its comparison with the analytical prediction. (a) True solution, with
20.5 ≤ x, t ≤ 20.5; (b) zoomed-in plot of the center region of the true solution marked by a dashed-line box in panel (a); (c) predicted solution with the same

x, t) internals as in (a); (d) zoomed-in plot of the center region of the predicted solution.
Regarding the generalization of Theorem 3, we can show that
f a2m+1 is large, and the other parameters a3, . . . , a2m−1, a2m+3,
. . , a2N−1 are also large but satisfy the conditions

2j+1 = o
(
a

2j
2m+1
2m+1

)
, j ̸= m, (67)

hen, far away from the origin, with
√
x2 + t2 = O(

|a2m+1|
1/(2m+1)), the rogue wave uN (x, t) still separates into Np

Peregrine waves, whose positions (x̂0, t̂0) are given by Eq. (24).
Expressed mathematically, when

[
(x − x̂0)2 + (t − t̂0)2

]1/2
=

O(1), we have

uN (x, t; a3, a5, . . . , a2N−1) −→ û1(x − x̂0, t − t̂0) eit

as |a2m+1| → ∞. (68)

The reason is that, when
√
x2 + t2 = O

(
|a2m+1|

1/(2m+1)), under
the same notation λ = a−1/(2m+1)

2m+1 as in Eq. (28), the condition (67)
means that a2j+1 = o(λ−2j) for j ̸= m. Thus, x+

2j+1λ
2j+1

= o(λ) for
j ̸= m. Then, in view of Eq. (9), we have

Sk(x+(n) + νs)
= Sk

(
x+

1 , νs2, x+

3 , νs4, . . .
)

= λ−kSk
(
x+

1 λ, νs2λ2, x+

3 λ3, νs4λ4, . . .
)

= λ−kSk
(
x+

1 λ, 0, . . . , 0, 1, 0, . . .
)
[1 + o(λ)]

= Sk
(
x+

1 , 0, . . . , 0, a2m+1, 0, . . .
)
[1 + o(λ)] . (69)

This relation is the counterpart of Eq. (41) in the proof of
Theorem 3. Due to this relation and a similar one on Sk(x−(n)+νs),
the calculations in the proof of Theorem 3 can still go through.
The only difference is that the error of the present Peregrine
approximation may be different. Indeed, the previous analysis,
combined with the above equation (69), indicates that the error
of the current Peregrine approximation (68) is the largest order
among O

(
a2j+1/a

2j/(2m+1)
2m+1

)
, where 1 ≤ j ≤ N −1 and j ̸= m. So, if

a2j+1 = O
(
a(2j−1)/(2m+1)
2m+1

)
or smaller for all j ̸= m, then the error of

the current Peregrine approximation (68) would remain the same
as that given in Eq. (25) of Theorem 3, i.e., O

(
|a2m+1|

−1/(2m+1)).
therwise, this error would be larger than O

(
|a2m+1|

−1/(2m+1)),
which means that the error would decay to zero slower than the
rate |a2m+1|

−1/(2m+1) when a2m+1 gets large.
Regarding the generalization of Theorem 4, we can show that

if a2m+1 is large, and

a3, . . . , a2m−1 = O(1), a2m+3, . . . , a2N−1 = O(a2m+1), (70)

then Theorem 4 remains valid. Specifically, the asymptotics (26),
including its error estimates, still holds. The proof for this is an
extension of the proof for Theorem 4, and will be presented in

Appendix C.

11
To demonstrate these generalized results on rogue patterns,
we consider an example of a 7th order rogue wave u7(x, t) with
parameter choices of
a3 = 1, a5 is large, a7 = a5, a9 = 2a5,

a11 = 3a5, a13 = 4a5.
(71)

This set of parameters satisfy both conditions (67) and (70).
Thus, according to the above discussions, both Theorems 3 and 4
remain valid, including their error estimates, since a2j+1 = O(
a(2j−1)/(2m+1)
2m+1

)
or smaller for all j ̸= m here. These theorems

predict that far away from the origin, this u7(x, t) would split
into 25 Peregrine waves, whose (x, t) locations are given by
Eq. (24). Near the origin, this u7(x, t) would reduce to a 2nd-order
rogue wave u2(x, t) with a3 = 1. To verify these predictions, we
choose a5 = −200i. The corresponding true rogue wave solution
|u7(x, t)| is plotted in Fig. 7(a), and its center region is amplified
and shown in panel (b). Our asymptotic predictions (27) from
Theorems 3 and 4 for the same (x, t) intervals as in panels (a)
and (b) are displayed in panels (c) and (d) respectively. One can
clearly see that our predictions are almost indistinguishable from
the true solutions.

7. Conclusions and discussions

In this paper, we have analytically studied rogue wave pat-
terns in the NLS equation. We have shown that when one of
the internal parameters in the bilinear rogue wave solutions
is large, these waves would exhibit clear geometric structures,
which comprise Peregrine rogue waves organized in shapes such
as triangle, pentagon, heptagon and nonagon, with a possible
lower-order rogue wave at its center. These rogue patterns are
analytically determined by the root structures of the Yablonskii–
Vorob’ev polynomial hierarchy, and their orientations are con-
trolled by the phase of the large parameter. We have also
generalized these results and shown that, when multiple inter-
nal parameters in the rogue waves are large but satisfy certain
constraints [such as (67) and (70)], then the same rogue patterns
would persist. Comparison between true rogue patterns and our
analytical predictions has shown excellent agreement. As a small
application of our analytical results, the numerical observation
in [9] on single-shell ring structures has been explained. Our
results reveal the deep connection between NLS rogue wave
patterns and the Yablonskii–Vorob’ev polynomial hierarchy, and
make prediction of sophisticated patterns in higher-order NLS
rogue waves possible.

It turns out that this connection between rogue wave pat-
terns and the Yablonskii–Vorob’ev polynomial hierarchy is not
restricted to the NLS equation. We have found that such con-

nections persist in many other integrable equations, such as the
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erivative NLS equation, the Boussinesq equation, the Manakov
quations, the three-wave resonant interaction equations, and
thers. This general connection then gives rise to universal rogue
ave patterns in integrable systems. The details of these uni-
ersality results are beyond the scope of this paper and will be
ursued in future publications.
In this article, NLS rogue wave patterns are determined by the

omplex roots of the Yablonskii–Vorob’ev polynomial hierarchy,
nd these roots are the pole locations of rational solutions to
he PII hierarchy (see Section 2.2 and [44,45]). Interestingly, in
very different contexts, somewhat similar results have also been
reported. For instance, in the semiclassical NLS equation after
wave breaking, a sequence of Peregrine waves appear, and their
locations are determined by the poles of the tritronquée solu-
tion to the first Painlevé (PI) equation [51]. In the semiclassical
sine–Gordon equation with initial conditions near the separa-
trix of a simple pendulum, superluminal (infinite velocity) kinks
that appear in the solution are linked to the real roots of the
Yablonskii–Vorob’ev polynomials associated with rational solu-
tions of the PII equation [52]. This connection of wave phenomena
to rational solutions of the Painlevé equations may arise again in
other wave systems in the future.
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Appendix A

In this appendix, we briefly derive the bilinear rogue waves
presented in Theorem 1. These new rogue wave expressions can
be obtained by applying a new parameterization developed in
Ref. [17] to the bilinear derivation of rogue waves in Ref. [11].
Specifically, instead of the previous choice (3.11) for the matrix
element m(n)

ij in Ref. [11], which we denote as φ
(n)
ij in this paper,

we now choose

φ
(n)
ij =

1
i!
(p∂p)i

1
j!
(q∂q)jφ(n)

⏐⏐⏐⏐
p=q=1

, (72)

where

φ(n)
=

(p + 1)(q + 1)
2(p + q)

(
−

p
q

)n

× exp

(
ξ + η +

∞∑
k=1

ak(ln p)k +

∞∑
k=1

bk(ln q)k
)

, (73)

ξ = px1 + p2x2, η = qx1 − q2x2. (74)

and ak, bk are arbitrary complex constants. Obviously, the func-
tion τ = det

(
φ

(n)
)

with the above choice of φ
(n)
n 1≤i,j≤N 2i−1,2j−1 ij

12
also satisfies the bilinear equations (3.14) in [11]. Then, when
we set bk = a∗

k , x1 = x and x2 = it/2, this τn function would
satisfy the bilinear equations (3.1) of the NLS equation in [11]
[with t switched to −t/2 since the NLS equation (1) in this paper
differs from that in [11] by this t rescaling]. Applying the same
reduction technique of [11] to the above new τn solution, we
can remove the differential operators in the expression (72) of its
matrix element φ

(n)
ij and reduce it to σn = det1≤i,j≤N

(
φ

(n)
2i−1,2j−1

)
,

where

φ
(n)
i,j =

min(i,j)∑
ν=0

1
4ν

Si−ν(x̂+(n) + νs) Sj−ν(x̂−(n) + νs), (75)

vectors x̂±(n) =
(
x±

1 , x±

2 , . . .
)
are defined by

x+

1 = x + it + n + a1, x−

1 = x − it − n + a∗

1,

x+

k =
x + 2k−1(it)

k!
+ ak,

x−

k =
x − 2k−1(it)

k!
+ a∗

k, k ≥ 2,

(76)

and s = (s1, s2, . . .) are coefficients from the expansion (7).
Through a shift of the x and t axes, we normalize a1 = 0
without loss of generality. Finally, we split the vectors x̂±(n) into
x±(n) + w±, where x±(n) is as given in Eq. (6), and w±

=

(0, x±

2 , 0, x±

4 , . . .). Since x̂±(n) + νs = x±(n) + νs + w±, it is easy
to show from the definition of Schur polynomials (8) that

Sk(x̂±(n) + νs) =

[k/2]∑
j=0

Sj(ŵ±)Sk−2j(x±(n) + νs), (77)

where ŵ±
= (x±

2 , x±

4 , . . .). Rewriting the σn solution det1≤i,j≤N(
φ

(n)
2i−1,2j−1

)
as a 3N × 3N determinant (56) and utilizing the

above relation, we can apply row and column manipulations
to eliminate all terms involving ŵ± in this 3N × 3N deter-
minant. The remaining 3N × 3N determinant then becomes
det1≤i,j≤N

(
φ

(n)
2i−1,2j−1

)
, whose matrix element φ

(n)
ij is as given in

Theorem 1.

Appendix B

In this appendix, we prove Theorem 2. First, we derive the
multiplicity of root zero in Q [m]

N (z). For this purpose, we define
the Schur polynomial S[m]

k (z; a) as
∞∑
k=0

S[m]

k (z; a)ϵk
= exp

[
zϵ + aϵ2m+1] , (78)

where a is a constant. Through these Schur polynomials S[m]

k (z; a),
we define polynomials

P [m]

N (z; a) = cN

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
S[m]

1 (z; a) S[m]

0 (z; a) · · · S[m]

2−N (z; a)

S[m]

3 (z; a) S[m]

2 (z; a) · · · S[m]

4−N (z; a)
...

...
...

...

S[m]

2N−1(z; a) S[m]

2N−2(z; a) · · · S[m]

N (z; a)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
, (79)

where S[m]

k (z; a) ≡ 0 when k < 0. It is easy to see that S[m]

k (z; a)
is related to the polynomial p[m]

k (z) in Eq. (16) as

S[m]

k (z; a) = âk/(2m+1)p[m]

k (ẑ), ẑ ≡ â−1/(2m+1)z,

â ≡ − (2m + 1)2−2m a.
(80)
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hus, the polynomial P [m]

N (z; a) is related to the Yablonskii-
Vorob’ev polynomial hierarchy Q [m]

N (z) in Eq. (17) as

[m]

N (z; a) = â
N(N+1)
2(2m+1) Q [m]

N (ẑ). (81)

his equation tells us that every term in the polynomial P [m]

N (z; a)
is a constant multiple of z iaj, where i + (2m + 1)j = N(N + 1)/2.
Thus, to determine the multiplicity of the zero root z = 0 in

[m]

N (z), we need to determine the highest power term of a in
[m]

N (z; a). To do so, we utilize the relation

[m]

j (z; a) =

[
j

2m+1

]∑
i=0

ai

i![j − i(2m + 1)]!
z j−i(2m+1), (82)

hich can be derived by splitting the right side of Eq. (78) into
product of two exponentials and then expanding both expo-
entials into Taylor series of ϵ. Using this relation, we express
he matrix elements in the determinant (79) through powers of
and a. Then, we need to obtain the highest power term of a in
he resulting determinant. This problem resembles the derivation
f the highest power term of a2m+1 in the σn determinant (56)
uring the proof of Theorem 4, where a polynomial relation (58)
imilar to the above (82) was used. In this resemblance, the
atrix P [m]

N (z; a) here is the counterpart of the ΦN×N matrix in
q. (56), a here is the counterpart of a2m+1 in Eq. (58), and z j in the

above equation (82) is the counterpart of Sj(y+
+ νs) in Eq. (58).

erforming the same row operations as described in Theorem 4
o remove certain leading a-power terms in the lower rows of the
eterminant (79), we can show that the highest-power term of a
n P [m]

N (z; a) is

0 a
N2

+N−N2
0−N0

2(2m+1)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
z 1 · · · 0
z3
3!

z2
2! · · · 0

...
...

...
...

z2N0−1

(2N0−1)!
z2N0−2

(2N0−2)! . . . zN0
N0!

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
= ρ̂0 a

(N−N0)(N+N0+1)
2(2m+1) zN0(N0+1)/2, (83)

here N0 is as given in Theorem 2, and ρ0, ρ̂0 are (m,N)-depen-
ent nonzero constants. This shows that the lowest power of
in all terms of P [m]

N (z; a) is N0(N0 + 1)/2. Then, setting a =

22m/(2m+1) where P [m]

N (z; a) becomes Q [m]

N (z), the multiplicity
of the zero root in Q [m]

N (z) is N0(N0 + 1)/2.
To prove the form (19) of the polynomial Q [m]

N (z), we no-
tice from the definition (16) of the polynomial p[m]

k (z) that this
polynomial admits the symmetry

p[m]

k (z) = ω−kp[m]

k (ωz), (84)

where ω is any one of the (2m + 1)th root of 1, i.e., ω2m+1
= 1.

This symmetry of p[m]

k (z) leads to the symmetry of Q [m]

N (z) as

Q [m]

N (z) = ω−N(N+1)/2Q [m]

N (ωz). (85)

Since the multiplicity of the zero root in Q [m]

N (z) is N0(N0 + 1)/2,
let us write

Q [m]

N (z) = zN0(N0+1)/2q[m]

N (z), (86)

here q[m]

N (z) is a polynomial of z with a nonzero constant term.
he symmetry (85) of the polynomial Q [m]

N (z) induces a symmetry
or q[m]

N (z) as

[m]

N (z) = ω(N2
0+N0−N2

−N)/2q[m]

N (ωz). (87)

ince N2
0 +N0−N2

−N = (N0−N)(N0+N+1), and in view of the
value given in Theorem 2, we see that (N2

+ N − N2
− N)/2
0 0 0

13
is divisible by 2m + 1, which means ω(N2
0+N0−N2

−N)/2
= 1. Thus,

the above equation reduces to

q[m]

N (z) = q[m]

N (ωz). (88)

This symmetry of q[m]

N (z) dictates that q[m]

N (z) can only be a poly-
nomial of ζ ≡ z2m+1. Hence the form (19) of the polynomial
Q [m]

N (z) is proved. Since the p[m]

k (z) polynomials have all-real
coefficients, from the definition (17), all coefficients of Q [m]

N (z) are
real as well, which leads to q[m]

N (ζ ) having all-real coefficients too.
Lastly, we derive the highest-degree term of the polyno-

mial Q [m]

N (z) from its definition (17). Notice from Eq. (16) that
the highest-degree term of p[m]

k (z) is zk/k!. Retaining only this
highest-degree term of p[m]

k (z) in the determinant (17) for Q [m]

N (z)
and evaluating the simplified determinant by the same technique
as that used in Ref. [11], we can readily show that this highest-
degree term of Q [m]

N (z) is zN(N+1)/2. Thus, Q [m]

N (z) is monic with
degree N(N + 1)/2. Theorem 2 is then proved.

Appendix C

In this appendix, we prove the generalization of Theorem 4
presented in Section 6 when a2m+1 is large and the other param-
eters satisfy the conditions (70). In this parameter regime, let us
denote

a2m+3 = β1 a2m+1, a2m+5 = β2 a2m+1, . . . ,

a2N−1 = βN−m−1 a2m+1, (89)

where β1, β2, . . . , βN−m−1 are O(1) constants. We first split the
vectors x± as

x+
= y+

+ a, x−
= y−

+ a∗, (90)

where a = (0, . . . , 0, a2m+1, 0, a2m+3, 0, . . . , 0, a2N−1). Then, the
Schur polynomials of x± are related to those of y± as

Sj(x+
+ νs) =

j∑
i=0

Si(a)Sj−i(y+
+ νs),

Sj(x−
+ νs) =

j∑
i=0

S∗

i (a)Sj−i(y−
+ νs).

(91)

In view of the definition of a and the notations in (89), we
readily see from the definition of Schur polynomials that Si(a) is a
polynomial of a2m+1 with coefficients dependent on (β1, β2, . . .),
and its highest degree in a2m+1 is [i/(2m + 1)], i.e., the largest
integer less than or equal to i/(2m + 1). Then, after a little
manipulation and rearranging terms in the above equations, we
get

Sj(x+
+ νs) =

[
j

2m+1

]∑
i=0

ai2m+1

[
j−(2m+1)i

2

]∑
k=0

c+

i,k(m, β) Sj−(2m+1)i−2k

× (y+
+ νs) (92)

and

Sj(x−
+ νs) =

[
j

2m+1

]∑
i=0

(a∗

2m+1)
i

[
j−(2m+1)i

2

]∑
k=0

c−

i,k(m, β) Sj−(2m+1)i−2k

× (y−
+ νs), (93)

where the coefficients c±

i,k are dependent on m and the vector
β = (β1, β2, . . .), and c±

i,0(m, β) = 1/i!.
These two Schur polynomial relations (92)–(93) are the coun-

terparts of those in Eq. (58) during the proof of Theorem 4.
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sing these relations, we can perform similar row and column
perations to the 3N × 3N determinant in Eq. (56) to elimi-
ate certain high order powers of a2m+1 and a∗

2m+1. The main
ifference is that, a little more such eliminations are required
ere, because to eliminate a certain power of a2m+1 or a∗

2m+1 in
j(x±

+ νs), one needs to eliminate a linear combination of poly-
omials Sj−(2m+1)i−2k(y±

+νs) now in view of the above two Schur
olynomial relations. However, these eliminations follow a clear
nd regular pattern, so that they can always be achieved. Another
mall difference is that here, the row and column operations will
roduce some additional lower power terms of a2m+1 and a∗

2m+1.
ut those lower-power terms will eventually be discarded since
e will retain only the highest a2m+1 and a∗

2m+1 power terms in
ach row and column respectively. Therefore, these similar row
nd column operations will still asymptotically reduce σn to the
ame determinant (59) as before, and hence the generalization of
heorem 4 stated in Section 6 can be proved.
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