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Abstract
General rogue waves are derived for the generalized derivative nonlinear Schrödinger
(GDNLS) equations by a bilinear Kadomtsev–Petviashvili (KP) reduction method.
TheseGDNLS equations contain theKaup–Newell equation, theChen–Lee–Liu equa-
tion and the Gerdjikov–Ivanov equation as special cases. In this bilinear framework,
it is shown that rogue waves to all members of these equations are expressed by
the same bilinear solution. Compared to previous bilinear KP reduction methods for
rogue waves in other integrable equations, an important improvement in our current
KP reduction procedure is a new parameterization of internal parameters in rogue
waves. Under this new parameterization, the rogue wave expressions through elemen-
tary Schur polynomials are much simpler. In addition, the rogue wave with the highest
peak amplitude at each order can be obtained by setting all those internal parame-
ters to zero, and this maximum peak amplitude at order N turns out to be 2N + 1
times the background amplitude, independent of the individual GDNLS equation and
the background wavenumber. It is also reported that these GDNLS equations can be
decomposed into two different bilinear systems which require different KP reduc-
tions, but the resulting rogue waves remain the same. Dynamics of rogue waves in
the GDNLS equations is also analyzed. It is shown that the wavenumber of the con-
stant background strongly affects the orientation and duration of the rogue wave. In
addition, some new rogue patterns are presented.
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1 Introduction

Rogue waves are large and spontaneous local excitations of nonlinear wave equa-
tions that “appear from nowhere and disappear with no trace” (Akhmediev et al.
2009a). More specifically, these local excitations arise from a flat constant-amplitude
background, reach a transient high amplitude and then retreat back to the same flat
background. Such solutions were first reported for the nonlinear Schrödinger (NLS)
equation by Peregrine in 1983 (Peregrine 1983). In recent years, such waves were
linked to freak waves in the ocean (Dysthe et al. 2008; Kharif et al. 2009) and extreme
events in optics (Solli et al. 2007; Wabnitz 2017), and were observed in water-tank
and optical-fiber experiments (Chabchoub et al. 2011, 2012; Kibler et al. 2010; Fris-
quet et al. 2016; Baronio et al. 2018). Motivated by these physical applications, rogue
waves have been derived in a large number of physically relevant integrable nonlinear
wave equations, including the NLS equation (Akhmediev et al. 2009b; Ankiewicz
et al. 2010a; Dubard et al. 2010; Kedziora et al. 2011; Guo et al. 2012; Ohta and Yang
2012a; Dubard andMatveev 2013), the derivative NLS equations (Xu et al. 2011; Guo
et al. 2013; Chan et al. 2014; Zhang et al. 2017), the Manakov equations (Baronio
et al. 2012, 2014), the Davey–Stewartson equations (Ohta and Yang 2012b, 2013),
andmany others (Ohta and Yang 2014; Yang and Yang 2020; Chen et al. 2018a; Zhang
and Chen 2018; Ankiewicz et al. 2010b, c; Chow et al. 2013; Mu and Qin 2016; Ling
et al. 2016; Clarkson and Dowie 2017). Indeed, rogue waves are caused by baseband
modulation instability of the constant-amplitude background (Baronio et al. 2014).
Thus, any integrable equation with baseband modulation instability is expected to
admit rogue waves, which can be derived by integrable techniques. All known rogue
waves in integrable equations are rational solutions of the underlying systems. This
fact is related to baseband modulation instability, since rational rogue-wave solutions
are associated with long-wave instability of the background. We note by passing that
in non-integrable systems, large and spontaneous local excitations can also arise from
a constant-amplitude background if such background admits baseband modulation
instability (see Solli et al. 2007 for instance). But such excitations do not retreat back
to the same background, and are not expected to admit exact analytical expressions,
due to the lack of integrability of the underlying nonlinear wave equations (Ankiewicz
et al. 2018).

In this paper, we consider rogue waves in the generalized derivative nonlinear
Schrödinger (GDNLS) equations (Kundu 1984; Clarkson and Cosgrove 1987)

iφt + φξξ + ρ|φ|2φ + iaφφ∗φξ + ibφ2φ∗
ξ + 1

4
b(2b − a)|φ|4φ = 0, (1)

where ρ, a, b are the arbitrary real constants with a �= b, and the superscript ‘*’
represents complex conjugation (the a = b case will be treated in “Appendix”). In
fiber optics, these equations model the propagation of short light pulses where, in
addition to dispersion and Kerr (cubic) nonlinearity, self-steepening and fifth-order
nonlinearity are also accounted for (even though the Raman effect and third-order
dispersion are omitted) (Agrawal 2001; Kivshar and Agrawal 2003). When ρ = 0
and a = 2b, these equations reduce to the Kaup–Newell equation (Kaup and Newell
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1978), which governs the propagation of circularly polarized nonlinear Alfvén waves
in plasmas (Mio et al. 1976; Mjolhus 1976). When ρ = b = 0, these equations
reduce to the Chen-Lee-Liu equation (Chen et al. 1979), which models short-pulse
propagation in a frequency-doubling crystal through the interplay of quadratic and
cubic nonlinearities (Moses et al. 2007). Due to these physical applications, rogue
wave formation in these GDNLS equations is a physically significant issue.

There have been a number of studies on rogue waves in these GDNLS equations.
For instance, for the Kaup–Newell equation (with ρ = 0 and a = 2b), special types of
rogue waves were derived by Darboux transformation in Xu et al. (2011), Guo et al.
(2013). For theChen–Lee–Liu-type equation,with b = 0 in (1), the fundamental rogue
wave was derived by the bilinear Hirota method in Chan et al. (2014), and higher-order
rogue waves were derived by Darboux transformation in Zhang et al. (2017). For the
Gerdjikov–Ivanov equation (Gerdjikov and Ivanov 1983), with ρ = a = 0 in (1),
fundamental and higher-order rogue waves were derived by Darboux transformation
inXu andHe (2012), Guo et al. (2014). Even for theGDNLS equations (1) themselves,
general rogue waves were derived by Darboux transformation in Chen et al. (2019),
and their chirping phase structure was examined.

In this article, we derive general rogue waves in the GDNLS equations (1) by
the bilinear Kadomtsev–Petviashvili (KP) reduction method. The advantage of this
bilinear framework is that rogue waves in all GDNLS equations (1) can be expressed
explicitly by the same bilinear solution. Compared to previous bilinear KP reduction
methods for rogue waves in other integrable equations (Ohta and Yang 2012a, b, 2013,
2014; Yang and Yang 2020; Chen et al. 2018a; Zhang and Chen 2018), an important
improvement in our current KP reduction technique is a new parameterization of inter-
nal parameters in rogue waves. Under this parameterization, analytical expressions of
rogue waves through Schur polynomials are much simpler. More importantly, when
all internal parameters are set to zero, we would get a parity-time-symmetric rogue
wave which attains the maximum peak amplitude among rogue waves of that order.
This allows us to analytically derive this maximum peak amplitude, which turns out to
be 2N + 1 times the background amplitude at order N , independent of the individual
GDNLS equation and the background wavenumber. We also find that the GDNLS
equations (1) can be decomposed into two different bilinear systems which require
different KP reductions, but the resulting rogue waves are the same. After these rogue
waves are derived, their dynamics is also analyzed. It is shown that the wavenumber
of the background strongly affects the orientation and duration of the rogue wave. In
addition, some new rogue patterns are presented. In “Appendix”, general rogue waves
for the GDNLS equations (1) with a = b (the so-called Kundu–Eckhaus equation) are
also given in the bilinear framework. These results deepen our understanding of rogue
waves in the physically significant GDNLS equations (1). Meanwhile, they advance
the bilinear KP-reduction methodology for the derivation of rogue waves.

2 Preliminaries

Under a simple gauge transformation (Kakei et al. 1995)
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φ(ξ, t) =
√

2

a − b
u(x, t) exp

{
i

ρ

a − b
x + i

ρ2

(a − b)2
t

}
,

where x = ξ − 2ρt/(a − b), the GDNLS equations (1) with a �= b reduce to

iut + uxx + 2iγ |u|2ux + 2i(γ − 1)u2u∗
x + (γ − 1)(γ − 2)|u|4u = 0, (2)

where γ = a/(a − b). We will work with these normalized GDNLS equations (2)
in the remainder of this article. These equations become the Kaup–Newell equation
when γ = 2 (Kaup and Newell 1978), the Chen-Lee-Liu equation when γ = 1 (Chen
et al. 1979), and the Gerdjikov–Ivanov equation when γ = 0 (Gerdjikov and Ivanov
1983).

It is noted that with an additional gauge transformation

u(x, t) = v(x, t) ei(2−γ )
∫ |v(x,t)|2dx , (3)

the normalized GDNLS equations (2) further reduce to the Kaup–Newell equation

ivt + vxx + 2i(|v|2v)x = 0. (4)

Thus, from rogue waves of the Kaup–Newell equation, one can derive rogue waves in
the GDNLS equations (2) in principle. However, the gauge transformation (3) involves
a nontrivial integral, which makes it difficult to derive explicit solutions to the GDNLS
equations from those of the Kaup–Newell equation. For this reason, we will not utilize
this gauge transformation. Instead, we will use a bilinear method to directly obtain
explicit rogue wave solutions in the GDNLS equations (2) for arbitrary γ values.

Rogue waves in the GDNLS equations (2) approach a constant-amplitude contin-
uous wave background at large x and t . By simple variable scalings, this constant
amplitude can be normalized to be unity. Then, these rogue waves approach the unit-
amplitude continuous wave background eiκx−iωt , where κ is a free wavenumber, and
ω = κ2 + 2κ − (γ − 1)(γ − 2) is the frequency. In order for rogue waves to arise,
these backgrounds must be unstable to baseband modulations (Baronio et al. 2014).
Simple modulation instability calculations show that these backgrounds are base-band
unstable when κ < 1 − γ . Thus, rogue waves in the GDNLS equations (2) should
approach the following background as x, t → ±∞:

u(x, t) → ei(1−γ−α)x−i
[
α2+2(γ−2)α+1−γ

]
t , (5)

where α > 0 is a wavenumber parameter. Unlike the NLS equation, the GDNLS equa-
tions (2) do not admit Galilean-transformation invariance. Thus, α is a non-reducible
parameter in its rogue waves.

In view of the above boundary condition, we introduce the variable transformation

u = ei(1−γ−α)x−i
[
α2+2(γ−2)α+1−γ

]
t ( f ∗)γ−1g

f γ
, (6)
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where f and g are the complex functions. Under this transformation, the GDNLS Eq.
(2) can be decomposed into the following system of four bilinear equations:

(
iDt + D2

x + 2i(1 − α)Dx

)
g · f ∗ = 0, (7)(

iDt + D2
x + 2iDx

)
f · f ∗ = 0, (8)

(iDx − 1) f · f ∗ + |g|2 = 0, (9)

D2
x f · f ∗ − iDxg · g∗ + (2α + 1)(| f |2 − |g|2) = 0, (10)

where D is the Hirota’s bilinear differential operator. We will use these bilinear equa-
tions to derive rogue waves in the GDNLS Eq. (2). It is important to notice that these
bilinear equations are independent of the equation parameter γ . This means that rogue
waves in the whole family of GDNLS Eq.(2), for different values of γ , are given by
the same f and g solutions, and the γ -dependence of the rogue waves only appears
through the bilinear transformation (6). This is a big advantage of the bilinear method
for solving the GDNLS Eq. (2).

Interestingly, under the same transformation (6), the GDNLS Eq. (2) can also be
decomposed into a different bilinear system, where the first bilinear Eq. (7) is replaced
by a new equation

(
iDt + D2

x − 2iαDx

)
g · f = 0, (11)

while the other three bilinear Eqs. (8)–(10) remain the same. This replacement of the
first bilinear Eq. (7) is admitted because the left side of the above new bilinear Eq.
(11) can be written as a linear combination of the left sides of the former bilinear Eqs.
(7)–(10). Specifically, denoting the left side of each equation by its equation number,
we have the identity

f × (7) − g × (8) + 2(igx + αg) × (9) = f ∗ × (11) − g × (10)

+g(i∂x − 1) × (9). (12)

Thus, if f and g satisfy the former system of bilinear Eqs. (7)–(10), then they
would also satisfy the latter bilinear system (8)–(11). Although these two (1 + 1)-
dimensional bilinear systems are equivalent, they have to be reduced from different
higher-dimensional bilinear systemswhich admit different bilinear solutions.But these
two different KP reductions will lead to the same rogue wave solutions, which we will
show in later texts.

In this article, we will present rogue waves of the GDNLS Eq. (2) through elemen-
tary Schur polynomials. These Schur polynomials S j (x) are defined by

∞∑
j=0

S j (x)λ j = exp

⎛
⎝ ∞∑

j=1

x jλ
j

⎞
⎠ ,
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or more explicitly,

S0(x) = 1, S1(x) = x1, S2(x) = 1

2
x21 + x2, · · · ,

S j (x) =
∑

l1+2l2+···+mlm= j

⎛
⎝ m∏

j=1

x
l j
j

l j !

⎞
⎠ ,

where x = (x1, x2, · · · ).

3 General RogueWave Solutions

Our general rogue wave solutions to the GDNLS Eq. (2) are given by the following
theorem.

Theorem 1 TheGDNLSEq. (2) under the boundary condition (5) admit rational rogue
wave solutions

uN (x, t) = ei(1−γ−α)x−i
[
α2+2(γ−2)α+1−γ

]
t ( f ∗

N )γ−1gN
f γ

N

, (13)

where the positive integer N represents the order of the rogue wave,

fN (x, t) = σ0,0, gN (x, t) = σ−1,1,

σn,k = det
1≤i, j≤N

(
m(n,k)

2i−1,2 j−1

)
,

the matrix elements in σn,k are defined by

m(n,k)
i, j =

min(i, j)∑
ν=0

1

4ν
Si−ν(x+(n, k) + νs) S j−ν(x−(n, k) + νs), (14)

vectors x±(n, k) = (
x±
1 , x±

2 , · · · ) are defined by

x+
1 = k +

(
n + 1

2

)(
h1 + 1

2

)
+ √

αx + 2
√

α
[
(α − 1) + i

√
α
]
t + a1,

x−
1 = −k −

(
n + 1

2

)(
h∗
1 + 1

2

)
+ √

αx + 2
√

α
[
(α − 1) − i

√
α
]
t + a∗

1 ,

x+
r = (n + 1

2
)hr + 1

r !
{√

αx + [
2
√

α(α − 1) + 2r iα
]
t
}+ ar , r > 1,

x−
r = −(n + 1

2
)h∗

r + 1

r !
{√

αx + [
2
√

α(α − 1) − 2r iα
]
t
}+ a∗

r , r > 1,

123



Journal of Nonlinear Science (2020) 30:3027–3056 3033

hr (α), sr are coefficients from the expansions

∞∑
r=1

hrλ
r = ln

(
ieλ/2 + √

αe−λ/2

i + √
α

)
,

∞∑
r=1

srλ
r = ln

[
2

λ
tanh

(
λ

2

)]
, (15)

and ar (r = 1, 2, . . . ) are free complex constants.

Note 1 The first few coefficients hr (α) and sr in expansions (15) are

h1(α) = i − √
α

2
(
i + √

α
) , h2(α) = i

√
α

2
(
i + √

α
)2 , h3(α) =

√
α
(
1 + i

√
α
)

6
(
i + √

α
)3 ,

(16)

s1 = s3 = · · · = sodd = 0, s2 = − 1

12
, s4 = 7

1440
. (17)

Theorem 1 will be proved in Sect. 5.
Some remarks on rogue waves in this theorem are in order. First, one can notice

that the matrix-element expression in this theorem is significantly simpler than ear-
lier such expressions for other integrable equations (Ohta and Yang 2012a, b, 2013,
2014; Yang and Yang 2020). Indeed, the current expression in (14) involves a single
summation, while previous such expressions involved three summations. Second, our
current parameterization of rogue waves in Theorem 1 is very different from the pre-
vious ones. In our current rogue wave solution, all internal parameters a1, a2, a3, . . .
appear inside the x±(n, k) vectors, while previous internal parameters all appeared
outside such vectors as summation coefficients (Ohta and Yang 2012a, b, 2013, 2014;
Yang and Yang 2020). This different parameterization is the key reason for the sim-
plermatrix-element expression inTheorem1.More significantly, this parameterization
facilitates the analysis of rogue waves, especially regarding the maximum peak ampli-
tude for rogue waves of a given order. Indeed, under previous parameterizations for
the NLS equation, the rogue wave with maximum peak amplitude occurs at pecu-
liar internal parameter values (Ohta and Yang 2012a), which makes the derivation
of maximum peak amplitudes at arbitrary orders intractable. However, in our current
parameterization, rogue waves in Theorem 1 admit the following property.

Theorem 2 When ar = 0 for all r ≥ 1, the rogue wave in Theorem 1 is parity-time-
symmetric, i.e., u∗

N (−x,−t) = uN (x, t).

This property will also be proved in Sect. 5. The significance of this property is that this
parity-time-symmetric rogue wave happens to possess the maximum peak amplitude
among rogue waves of that order (see Chen et al. 2019). In addition, this maximum
peak amplitude is located at the center of this parity-time-symmetric rogue wave,
i.e., at x = t = 0. Thus, to derive the maximum peak amplitude of rogue waves in
Theorem 1, we only need to set all its internal parameters ar as well as (x, t) to zero,
which is much easier. Doing so, our explicit calculations for N = 1, 2, . . . , 6 show
that
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| fN (0, 0)|ar=0 = αN (N+1)/2

22N2
(α + 1)N (N+1)/2

,

|gN (0, 0)|ar=0 = (2N + 1)αN (N+1)/2

22N2
(α + 1)N (N+1)/2

, (18)

and thus, the maximum peak amplitude is

|uN (0, 0)|ar=0 = |gN (0, 0)|ar=0

| fN (0, 0)|ar=0
= 2N + 1. (19)

Remarkably, this maximum peak amplitude does not depend on the background
wavenumber α, although | fN | and |gN | in its numerator and denominator do. While
these formulae (18)–(19) were obtained for N ≤ 6, we believe they hold for all N > 6
as well.

In Zhang et al. 2017, Guo et al. (2014) and Chen et al. (2019) for the Chen–Lee–Liu
equation, the Gerdjikov–Ivanov equation and the GDNLS equations (1), examination
of some low-order rogue waves revealed that their maximum peak amplitude was
2N +1. Our result above is more general. Interestingly, this maximum peak amplitude
for rogue waves in the GDNLS Eq. (2) is exactly the same as that for the NLS equation
(Akhmediev et al. 2009b; Ankiewicz et al. 2010a; Ohta and Yang 2012a; Wang et al.
2017).

Another remark on rogue waves in Theorem 1 pertains to the number of their
irreducible free parameters. These rogue waves of order N contain 2N − 1 complex
parameters a1, a2, . . . , a2N−1. But we can show that all even-indexed parameters aeven
are dummy parameters which cancel out automatically from the solution. To prove
this, we first rewrite σn,k in Theorem 1 as (Ohta and Yang 2012a)

σn,k =
∑

0≤ν1<ν2<···<νN≤2N−1

det
1≤i, j≤N

(
1

2ν j
S2i−1−ν j (x

+(n, k) + ν j s)
)

det
1≤i, j≤N

(
1

2ν j
S2i−1−ν j (x

−(n, k) + ν j s)
)

. (20)

In addition, denoting ξr and ηr as the real and imaginary parts of ar , we can easily see
that

∂ξr Sn(x
± + νs) = Sn−r (x± + νs), ∂ηr Sn(x

± + νs) = ±iSn−r (x± + νs). (21)

Using these two equations, we can show that

∂ξ2r σn,k = ∂η2r σn,k = 0, (22)

which proves that rogue waves in Theorem 1 are independent of parameters aeven.
Thus, we will simply set a2 = a4 = · · · = aeven = 0 throughout this article. Of the
remaining parameters, we can normalize a1 = 0 through a shift of x and t . Then, the
N -th order rogue waves in the GDNLS equation (2) contain N − 1 free irreducible
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complex parameters, a3, a5, . . . , a2N−1. This number of irreducible free parameters
is the same as that in rogue waves of the NLS equation (Ohta and Yang 2012a).

4 Dynamical Patterns of RogueWaves

In this section, we analyze the dynamics of rogue waves in Theorem 1 for the GDNLS
equations (2).

First of all, we notice from Eq. (13) that the amplitude profile of the rogue wave is

|uN (x, t)| = |gN (x, t)|
| fN (x, t)| , (23)

which is independent of the equation parameter γ . This means that the intensity
patterns of rogue waves are the same for all GDNLS equations (2) regardless of
the γ value. But the phase structure of rogue waves is influenced by the γ value.
Indeed, the gauge transformation (3) tells us that on top of rogue waves v(x, t) of
the Kaup–Newell equation, different values of γ introduce an extra phase θ(x, t) =
(2 − γ )

∫ |v(x, t)|2dx , which can be calculated directly from the bilinear solution
(13). This phase induces a “chirp” to an optical rogue wave, which was examined in
detail in Chen et al. (2019).

Although the rogue wave intensity pattern in the GDNLS equations (2) is indepen-
dent of γ , it does depend on the wavenumber parameter α of the constant background.
We will focus on this α dependence of the rogue-wave intensity pattern next.

First, we consider fundamental rogue waves, where we set N = 1 in Theorem 1.
In addition, we normalize a1 = 0 (see the remark in the end of the last section). Then,
we get

|u1(x, t;α)| =
∣∣∣∣∣

α(x + 2αt)2 + (x − 2t)2 − i(x + 6αt) − 3
4

α(x + 2αt)2 + (x − 2t)2 + i(x + 2αt) − 4it + 1
4

∣∣∣∣∣ . (24)

At three values of α = 0.5, 1 and 2, this amplitude profile is shown in Fig. 1a–c,
respectively. It is seen that α strongly affects the orientation and duration of the rogue
wave. Specifically, as the α value increases, the orientation angle also increases, but
the duration of the rogue wave decreases. However, the peak amplitudes of these
rogue waves for different α values are all equal to 3, which are attained at the center
x = t = 0, i.e., |u1(0, 0;α)| = 3. Physically, the longer duration of rogue waves at
smaller α values can be understood, because in this case, the growth rates of baseband
modulation instability can be shown to be smaller, which causes the rogue wave to
take longer time to rise from the unit-amplitude background to its peak amplitude of
3. The dependence of the orientation angle on α can also be heuristically understood.
It is known that the phase gradient of a pulse generally causes the pulse to move at
a velocity which is proportional to this phase gradient. In the present case, the phase
gradient of the roguewave can be estimated fromEq. (13) as thewavenumber 1−γ −α.
Then, for a fixed equation parameter γ , larger α causes the velocity to be smaller or
negative, leading to a larger orientation angle. To put these results in perspective, we
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Fig. 1 Amplitude profiles (24) of first-order rogue waves. a α = 0.5; b α = 1; c α = 2

note that for the NLS equation, since the constant-background wavenumber of its
rogue waves can be normalized by a Galilean transformation (Ohta and Yang 2012a),
the background wavenumber only affects the orientation, but not duration, of its rogue
waves.

It is interesting to notice that in the limit of α → 0,

|u1(x, t;α)| →
∣∣∣∣∣

(x − 2t)2 − ix − 3
4

(x − 2t)2 + ix − 4it + 1
4

∣∣∣∣∣ , (25)

which becomes a quadratic algebraic soliton instead of a rogue wave. This comes
about because when α = 0, basebandmodulation instability disappears in the GDNLS
equation (2), and thus, rogue waves no longer exist.

Now we consider second-order rogue waves, where we set N = 2 and a1 = 0 in
Theorem 1. These solutions contain one complex free parameter a3. When a3 = 0,
the resulting rogue wave is parity-time-symmetric, and it reaches peak amplitude 5 at
the center x = t = 0 for all α values, i.e., |u2(0, 0;α)| = 5. This peak amplitude 5
is the maximum peak amplitude for all rogue waves of second order, and thus, this
parity-time-symmetric rogue wave was called the super rogue wave in Chen et al.
(2019). The amplitude profile of this super rogue wave depends on the wavenumber
parameter α though. At three α values of 0.5, 1 and 2, these super rogue waves are
displayed in Fig. 2. Again, α strongly affects the orientation and duration of these
rogue waves.

When a3 �= 0, the second-order rogue waves generally will split into three separate
first-order rogue waves, as has been reported in Guo et al. (2013, 2014), Zhang et al.
(2017) and Chen et al. (2019). This phenomenon is similar to second-order rogue
waves of the NLS equation (Akhmediev et al. 2009b; Ankiewicz et al. 2010a; Dubard
et al. 2010; Kedziora et al. 2011; Guo et al. 2012; Ohta and Yang 2012a; Dubard and
Matveev 2013). The orientations and durations of these three separate first-order rogue
waves are determined by the wavenumber parameter α.

Having clarified the effect of wavenumber parameter α on rogue waves, at third
order, we will fix α = 1 and explore new rogue wave patterns. For this purpose, we
set N = 3 and a1 = 0, and the remaining free complex parameters are a3 and a5.
When a3 = a5 = 0, we get a super rogue wave with peak amplitude 7 (see also
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Fig. 2 Amplitude profiles |u2(x, t)| of second-order super rogue waves (with a3 = 0). a α = 0.5; b α = 1;
c α = 2

Fig. 3 Third-order rogue waves with α = 1. Left: a pentagon pattern, where a3 = 0 and a5 = 80 + 80i.
Right: a mixed pattern, where a3 = 10i and a5 = 100i

Zhang et al. 2017; Guo et al. 2014; Chen et al. 2019). At other a3 and a5 values,
the third-order rogue wave generally splits into 6 separate first-order rogue waves
in various configurations. Two such solutions are displayed in Fig. 3. The left panel
shows a pentagon pattern, which has been seen before (Zhang et al. 2017; Guo et al.
2014). But the right panel shows a mix of a first-order rogue wave and a cluster of five
first-order rogue waves in square configuration, which is novel to our knowledge. Our
results suggest that when a third-order rogue wave splits into 6 separate first-order
rogue waves, these 6 first-order rogue waves can appear in arbitrary configurations in
the (x, t) plane. The same should hold for higher-order rogue waves too.

5 Derivation of RogueWaves from the First Bilinear System

As we mentioned in Sect. 2, the GDNLS Eq. (2) can be decomposed into two different
bilinear systems. In this section, we will derive rogue waves in Theorem 1 from the
first bilinear system (7)–(10). The basic idea of this derivation is similar to that in
Ohta and Yang (2012a) for the NLS equation. The main improvement is that we will
choose differential operators in the bilinear solutions in a different way, which leads
to a more convenient parameterization and simpler expression for rogue waves.

123



3038 Journal of Nonlinear Science (2020) 30:3027–3056

5.1 GramDeterminant Solutions for a Higher-Dimensional Bilinear System

First, we need to derive algebraic solutions to a higher-dimensional bilinear system,
which can reduce to the original lower-dimensional bilinear system (7)–(10) under
certain reductions.

From Lemma 2 of Chen et al. (2018b), section 3.2 of Feng et al. (2017) and our
own calculations, we learn that if functionsm(n,k)

i, j , ϕ(n,k)
i and ψ

(n,k)
j of variables (x−1,

x1, x2) satisfy the following differential and difference relations,

∂x1m
(n,k)
i, j = ϕ

(n,k)
i ψ

(n,k)
j ,

∂x1ϕ
(n,k)
i = ϕ

(n+1,k)
i , ∂x1ψ

(n,k)
j = −ψ

(n−1,k)
j ,

∂x1ϕ
(n,k)
i = cϕ(n,k)

i + ϕ
(n,k+1)
i , ∂x1ψ

(n,k)
j = −cψ(n,k)

j − ψ
(n,k−1)
j ,

∂x2ϕ
(n,k)
i = ∂2x1ϕ

(n,k)
i , ∂x2ψ

(n,k)
j = −∂2x1ψ

(n,k)
j ,

∂x−1ϕ
(n,k)
i = ϕ

(n,k−1)
i , ∂x−1ψ

(n,k)
j = −ψ

(n,k+1)
j ,

(26)

where c is an arbitrary complex constant, and then, theywould also satisfy the following
relations:

∂x2m
(n,k)
i, j = ϕ

(n+1,k)
i ψ

(n,k)
j + ϕ

(n,k)
i ψ

(n−1,k)
j ,

∂x2m
(n,k)
i, j = ϕ

(n,k+1)
i ψ

(n,k)
j + ϕ

(n,k)
i ψ

(n,k−1)
j + 2cϕ(n,k)

i ψ
(n,k)
j ,

∂x−1m
(n,k)
i, j = −ϕ

(n,k−1)
i ψ

(n,k+1)
j ,

m(n+1,k)
i, j = m(n,k)

i, j + ϕ
(n,k)
i ψ

(n+1,k)
j ,

m(n,k+1)
i, j = m(n,k)

i, j + ϕ
(n,k)
i ψ

(n,k+1)
j .

(27)

Using these relations, one can show that the determinant

τn,k = det
1≤i, j≤N

(
m(n,k)

i, j

)
(28)

would satisfy the following bilinear equations in the extended KP hierarchy

(
Dx2 − D2

x1 − 2cDx1

)
τn−1,k+1 · τn−1,k = 0, (29)(

Dx2 − D2
x1

)
τn,k · τn−1,k = 0, (30)(

cDx−1 − 1
)
τn,k · τn−1,k + τn−1,k+1τn,k−1 = 0, (31)

(cDx1Dx−1 − Dx1 − 2c)τn,k · τn−1,k + (Dx1 + 2c)τn−1,k+1 · τn,k−1 = 0. (32)

Now, we introduce functions m(n,k), ϕ(n,k) and ψ(n,k) as

m(n,k) = ip

p + q

(
− p

q

)n (
− p − c

q + c

)k

eξ+η, (33)
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ϕ(n,k) = (ip)pn(p − c)keξ , (34)

ψ(n,k) = (−q)−n [−(q + c)]−k eη, (35)

where

ξ = 1

p − c
x−1 + px1 + p2x2 + ξ0, (36)

η = 1

q + c
x−1 + qx1 − q2x2 + η0, (37)

and p, q, ξ0 and η0 are the arbitrary complex constants. It is easy to see that these
functions satisfy the differential and difference relations (26) with indices i and j
ignored. Then, by defining

m(n,k)
i j = AiB jm

(n,k), ϕ
(n,k)
i = Aiϕ

(n,k), ψ
(n,k)
j = B jψ

(n,k), (38)

where Ai and B j are the differential operators with respect to p and q, respectively,
as

Ai = 1

i !
[
(p − c)∂p

]i
, B j = 1

j !
[
(q + c)∂q

] j
, (39)

these functions would also satisfy the differential and difference relations (26) since
operators Ai and B j commute with differentials ∂xk . Consequently, for an arbitrary
sequence of indices (i1, i2, · · · , iN ; j1, j2, · · · , jN ), the determinant

τn,k = det
1≤ν,μ≤N

(
m(n,k)

iν , jμ

)
(40)

satisfies the higher-dimensional bilinear system (29)–(32).
It is important to notice that the differential operators Ai and B j defined here are

simpler than the ones in previous bilinear derivations of rogue waves (Ohta and Yang
2012a, b, 2013, 2014; Yang andYang 2020; Chen et al. 2018a; Zhang and Chen 2018).
Indeed, the current differential operators are single terms, while previous ones were
defined as summations. The reason for the previous summation definitions was to
introduce internal free parameters in rogue waves. In our current approach, we will
introduce free constants through ξ0 and η0 in Eqs. (36)–(37), which will be done later
in this section.

Next, we will reduce the higher-dimensional bilinear system (29)–(32) to the orig-
inal bilinear system (7)–(10), so that the higher-dimensional solutions (40) become
rogue wave solutions to the GDNLS equations (2). In this reduction, we will need to
set

c = −iα, (41)

where c is the parameter in the higher-dimensional system (29)–(32), and α is the
wavenumber parameter in the original bilinear system (7)–(10).
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5.2 Dimensional Reduction

First, we reduce the higher-dimensional bilinear system (29)–(32) to a lower-
dimensional one, a process called dimension reduction. This reduction will restrict
the indices in the determinant (40), and select the (p, q) values in its matrix element
m(n,k)

iν , jμ
.

The dimension reduction condition we impose is

(
∂x1 + ic∂x−1

)
τn,k = Cτn,k, (42)

where C is some constant. Denoting p̂ ≡ p − c and q̂ ≡ q + c, then Ai and B j in
Eq. (39) can be rewritten as

Ai = 1

i !
(
p̂∂ p̂

)i
, B j = 1

j !
(
q̂∂q̂

) j
. (43)

In addition,

(
∂x1 + ic∂x−1

)
m(n,k)

i, j = AiB j
(
∂x1 + ic∂x−1

)
m(n,k)

= AiB j

[
p̂ + ic

p̂
+ q̂ + ic

q̂

]
m(n,k).

Using the Leibnitz rule exactly as in Ohta and Yang (2012a), the above equation
reduces to

(
∂x1 + ic∂x−1

)
m(n,k)

i, j =
i∑

μ=0

1

μ!
(
p̂ + (−1)μ

ic

p̂

)
m(n,k)

i−μ, j

+
j∑

l=0

1

l!
(
q̂ + (−1)l

ic

q̂

)
m(n,k)

i, j−l .

Recalling c = −iα from (41), we see that when we set p = p0 and q = q0, where

p0 = √
α − iα, q0 = √

α + iα, (44)

the above equation would further simplify to

(
∂x1 + ic∂x−1

)
m(n,k)

i, j

∣∣∣
p=p0, q=q0

= 2
√

α
i∑

μ=0,
μ:even

1
μ! m

(n,k)
i−μ, j

∣∣∣
p=p0, q=q0

+ 2
√

α
j∑

l=0,
l:even

1
l! m

(n,k)
i, j−l

∣∣∣
p=p0, q=q0

. (45)
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Now, we restrict the general determinant (40) to

τn,k = det
1≤i, j≤N

(
m(n,k)

2i−1,2 j−1

∣∣∣
p=p0, q=q0

)
. (46)

Then, using the contiguity relation (45) as in Ohta and Yang (2012a), we get

(
∂x1 + ic∂x−1

)
τn,k = 4

√
αN τn,k,

which shows that the τn,k function (46) satisfies the dimension reduction condition
(42).

When this dimension reduction equation is used to eliminate x−1 from the higher-
dimensional bilinear system (29)–(32), and in view of the parameter connection (41),
we get

(
Dx2 − D2

x1 + 2iαDx1

)
τn−1,k+1 · τn−1,k = 0, (47)(

Dx2 − D2
x1

)
τn,k · τn−1,k = 0, (48)(

iDx1 − 1
)
τn,k · τn−1,k + τn−1,k+1τn,k−1 = 0, (49)

(D2
x1 + iDx1 + 2α)τn,k · τn−1,k − (iDx1 + 2α)τn−1,k+1 · τn,k−1 = 0. (50)

In addition, using Eq. (49), we can replace the last bilinear equation (50) by

D2
x1τn,k · τn−1,k − iDx1τn−1,k+1 · τn,k−1

+(2α + 1)(τn,k · τn−1,k − τn−1,k+1 · τn,k−1) = 0. (51)

In these reduced bilinear equations, the x−1 derivative disappears.
To further reduce the bilinear system (47)–(49) and (51) to the original system

(7)–(10), we set

x1 = x − 2t, x2 = it . (52)

Under this variable relation, we have

∂x1 = ∂x , ∂x2 = −i∂t − 2i∂x . (53)

Inserting these equations into the bilinear system (47)–(49) and (51), and setting
n = k = 0, we get

(
iDt + D2

x + 2i(1 − α)Dx

)
g · f̄ = 0, (54)(

iDt + D2
x + 2iDx

)
f · f̄ = 0, (55)

(iDx − 1) f · f̄ + gḡ = 0, (56)

D2
x f · f̄ − iDxg · ḡ + (2α + 1)(| f |2 − |g|2) = 0, (57)
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where f , f̄ , g and ḡ are defined as

f = τ0,0, f̄ = τ−1,0, g = τ−1,1, ḡ = τ0,−1. (58)

5.3 Complex Conjugacy Conditions

Next, we need to impose complex conjugacy conditions f̄ = f ∗ and ḡ = g∗, i.e.,

τ−1,0 = τ ∗
0,0, τ0,−1 = τ ∗−1,1, (59)

so that the bilinear system (54)–(57) would reduce to the original bilinear system (7)–
(10). These conditions can be satisfied by imposing the parameter constraint ξ0 = η∗

0.
Indeed, under this constraint, since x1 = x − 2t is real, x2 = it , c = −iα are pure
imaginary, and q0 = p∗

0 , we can easily show that

[
m(n,k)

i, j

]∗∣∣∣
p=p0, q=q0

= m(−n−1,−k)
j,i

∣∣∣
p=p0, q=q0

. (60)

Thus, τ ∗
n,k = τ−n−1,−k , i.e., the complex conjugacy conditions (59) hold.

5.4 RogueWave Solutions in Differential Operator Form

Finally, we need to introduce free parameters into rogue waves. Unlike all previous
bilinear approaches (Ohta and Yang 2012a, b, 2013, 2014; Yang and Yang 2020; Chen
et al. 2018a; Zhang and Chen 2018), we will introduce free parameters through the
arbitrary constant ξ0 in Eq. (36). Specifically, we choose ξ0 as

ξ0 =
∞∑
r=1

âr ln
r
(

p − c

p0 − c

)
=

∞∑
r=1

âr ln
r
(
p + iα√

α

)
, (61)

where âr are the free complex constants. We can show that rogue waves with this new
parameterization can be converted to those with the old parameterization through non-
trivial parameter connections. But the new parameterization will drastically simplify
rogue wave expressions.

Putting all the above results together and setting x−1 = 0, rational solutions to the
GDNLS equations (2) are given by the following theorem.

Theorem 3 The GDNLS equations (2) admit rational solutions

uN (x, t) = ei(1−γ−α)x−i
[
α2+2(γ−2)α+1−γ

]
t ( f ∗

N )γ−1gN
f γ

N

, (62)

where

fN (x, t) = τ0,0, gN (x, t) = τ−1,1, (63)
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τn,k = det
1≤i, j≤N

(
m(n,k)

2i−1,2 j−1

)
, (64)

the matrix elements in τn,k are defined by

m(n,k)
i, j =

[
(p + iα)∂p

]i
i !

[
(q − iα)∂q

] j
j ![

ip

p + q

(
− p

q

)n (
− p + iα

q − iα

)k

e�(x,t)

] ∣∣∣∣∣
p=p0, q=q0

, (65)

with

�(x, t) = (p + q)(x − 2t) + (p2 − q2)it +
∞∑
r=1

âr ln
r
(
p + iα√

α

)

+
∞∑
r=1

â∗
r ln

r
(
q − iα√

α

)
, (66)

p0, q0 are given in Eq. (44), α > 0, and âr (r = 1, 2, . . . ) are free complex constants.

5.5 Explicit RogueWave Solutions Through Schur Polynomials

The above rational solutions in Theorem 3 involve differential operators, which make
them less explicit. More seriously, such forms make analysis of those solutions diffi-
cult. For instance, under such forms, it is difficult to prove that they satisfy the boundary
conditions (5). In addition, it is difficult to determine the maximum peak amplitudes
for rogue waves of each order. Thus, in this subsection, we derive a more explicit form
for these solutions, which is the one given in Theorem 1 earlier in the paper.

The technique we use is similar to that in Ohta and Yang (2012a). The differential
operators in (65) can be rewritten as (43), where p̂ = p + iα and q̂ = q − iα, and the
m(n,k) term following the differential operators in (65) can be rewritten as

m(n,k) = i( p̂ − iα)

p̂ + q̂

(
− p̂ − iα

q̂ + iα

)n (
− p̂

q̂

)k

× exp
{(

p̂ + q̂
)
(x − 2t) +

[
p̂2 − q̂2 − 2iα( p̂ + q̂)

]
it

+
∞∑
r=1

âr ln
r
(

p̂

p̂0

)
+

∞∑
r=1

â∗
r ln

r
(
q̂

q̂0

)}
,
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where p̂0 = p0 + iα and q̂0 = q0 − iα, i.e., p̂0 = q̂0 = √
α. Then, introducing the

generator G of differential operators
(
p̂∂ p̂

)i (
q̂∂q̂

) j as

G =
∞∑
i=0

∞∑
j=0

ζ i

i !
λ j

j !
[
p̂∂ p̂

]i [
q̂∂q̂

] j
, (67)

and utilizing the formula (Ohta and Yang 2012a)

GF( p̂, q̂) = F
(
eζ p̂, eλq̂

)
, (68)

we get

Gm(n,k)
∣∣∣
p̂= p̂0, q̂=q̂0

= eζ/2(ieζ/2 + √
αe−ζ/2)

eζ + eλ
(−1)ke(k+ n

2 )(ζ−λ)

(
ieζ/2 + √

αe−ζ/2

−ieλ/2 + √
αe−λ/2

)n

× exp
{√

α
(
eζ + eλ

)
(x − 2t + 2αt) + α

(
e2ζ − e2λ

)
it

+
∞∑
r=1

(
arζ

r + a∗
r λ

r )
}

.

Since

m(n,k)
∣∣∣
p̂= p̂0, q̂=q̂0

= (−1)k
(i + √

α)

2

(
i + √

α

−i + √
α

)n

e2
√

α(x−2t+2αt),

we have

1

m(n,k)
Gm(n,k)

∣∣∣
p̂= p̂0, q̂=q̂0

= 2

eζ + eλ
eζ/2+(k+ n

2 )(ζ−λ)

(
ieζ/2 + √

αe−ζ/2

i + √
α

)n+1 ( −i + √
α

−ieλ/2 + √
αe−λ/2

)n

× exp
(√

α
(
eζ + eλ − 2

)
(x − 2t + 2αt) + α

(
e2ζ − e2λ

)
it

+
∞∑
r=1

(arζ
r + a∗

r λ
r )

)
. (69)

Now, we need to expand the right side of the above equation into power series of ζ

and λ. For this purpose, we denote

ieζ/2 + √
αe−ζ/2

i + √
α

= exp

[
ln

(
ieζ/2 + √

αe−ζ/2

i + √
α

)]
= exp

( ∞∑
r=1

hrζ
r

)
,
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where hr (α) is as defined in Eq. (15). The exponent in the most right-hand side of Eq.
(69) can be rewritten as

exp

( ∞∑
r=1

ζ r

r !
(√

α(x − 2t + 2αt) + 2r iαt
)

+
∞∑
r=1

λr

r !
(√

α(x − 2t + 2αt) − 2r iαt
)+

∞∑
r=1

(arζ
r + a∗

r λ
r )

)
,

and the 2/(eζ + eλ) term can be written as Ohta and Yang (2012a)

2

eζ + eλ
=

∞∑
ν=0

(
ζλ

4

)ν

exp

( ∞∑
r=1

(νsr − cr )
(
ζ r + λr

)− ζ

2
− λ

2

)
,

where cr are the Taylor coefficients of λr in the expansion of ln cosh(λ/2), and sr are
given in Eq. (15). Combining the above results, Eq. (69) becomes

1

m(n,k)
Gm(n,k)

∣∣∣
p̂= p̂0, q̂=q̂0

=
∞∑

ν=0

(
ζλ

4

)ν

exp

( ∞∑
r=1

(
x+
r + νsr

)
ζ r +

∞∑
r=1

(
x−
r + νsr

)
λr

)
, (70)

where x+
r (n, k) and x−

r (n, k) are defined as

x+
1 (n, k) = √

α(x − 2t + 2αt) + 2iαt + (n + 1)h1 + k + n

2
− c1 + â1,

x−
1 (n, k) = √

α(x − 2t + 2αt) − 2iαt − nh∗
1 − k − 1

2
(n + 1) − c1 + â∗

1 ,

x+
r (n, k) = 1

r !
[√

α(x − 2t + 2αt) + 2r iαt
]+ (n + 1)hr − cr + âr ,

x−
r (n, k) = 1

r !
[√

α(x − 2t + 2αt) − 2r iαt
]− nh∗

r − cr + â∗
r .

We further define shifted parameters

a1 = â1 − c1 + 1

2
h1 − 1

4
, ar = âr − cr + 1

2
hr .

Then, the above x+
r and x−

r reduce to those in Theorem 1. Taking the coefficients of
ζ iλ j on both sides of Eq. (70), we get

m(n,k)
i, j

m(n,k)
∣∣
p=p0,q=q0

=
min(i, j)∑

ν=0

1

4ν
Si−ν

(
x+ + νs

)
S j−ν

(
x− + νs

)
,

123



3046 Journal of Nonlinear Science (2020) 30:3027–3056

wherem(n,k)
i, j is thematrix element defined in Eq. (65) of Theorem 3. Finally, we define

σn,k = τn,k(
m(n,k)

∣∣
p=p0,q=q0

)N .

Then, the matrix element in σn,k is as given in Theorem 1. Since the bilinear equations
(7)–(10) are invariant when f and g are divided by an arbitrary complex constant
multiplying an exponential of a linear and real function in x and t , σn,k then is also a
solution to the GDNLS Eq. (2).

Regarding boundary conditions of these rational solutions, using the Schur polyno-
mial expressions in Theorem 1 and the same technique as in Ohta and Yang (2012a),
we can show that when x or t approaches infinity, fN (x, t) and gN (x, t) have the same
leading term, which is also real. Thus, the rational solution (13) satisfies the boundary
condition (5), and is thus a rogue wave. Theorem 1 is then proved.

5.6 The Parity-Time-Symmetric RogueWave

In this subsection, we derive the parity-time-symmetric rogue wave and prove Theo-
rem 2.

When we set all ar = 0 in Theorem 1, x+
r and x−

r satisfy the following relations

x̂±
r (x, t) = −x∓

r (x, t), r ≥ 1,

where we have defined f̂ (x, t) ≡ f ∗(−x,−t) for any function f (x, t). Thus,

x̂±(n, k) + ν s = y∓(n, k) + ν s + z∓(n),

where vectors y± and z± are defined as

y± = (−x±
1 , x±

2 ,−x±
3 , x±

4 , · · · ) , z± = (
0,−2x±

2 , 0,−2x±
4 , 0, · · · ) .

Notice that

∞∑
j=0

S j
(̂
x∓ + ν s

)
λ j =

∞∑
j=0

S j
(
y± + ν s + z±) λ j

= exp

⎛
⎝ ∞∑

j=1

(
y±
j + ν s j + z±j

)
λ j

⎞
⎠

= exp

⎛
⎝ ∞∑

j=1

(
y±
j + ν s j

)
λ j

⎞
⎠ exp

⎛
⎝ ∞∑

j=1

z±j λ j

⎞
⎠

=
∞∑
j=0

S j (y± + νs)λ j
∞∑
j=0

S j (z±)λ j
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=
∞∑
j=0

∑
μ1+μ2= j

Sμ1(y
± + νs)Sμ2(z

±)λ j .

Since s1 = s3 = · · · = sodd = 0 in view of Eq. (17), by comparing the coefficient of
λ j on the two sides of this equation and utilizing Lemmas 2 and 3 in Yang and Yang
(2020), we get the relation

S j
(̂
x∓ + ν s

) = (−1) j
[ j/2]∑
μ=0

Sμ(w±)S j−2μ(x± + νs), (71)

where w± = (−2x±
2 ,−2x±

4 , · · · ). Recall from Theorem 1 that

σn,k = det
1≤i, j≤N

⎛
⎝min(2i−1, 2 j−1)∑

ν=0

1

2ν
S2i−1−ν(x+(n, k) + νs)

1

2ν
S2 j−1−ν(x−(n, k) + νs)

⎞
⎠ ,

and σ̂n,k is equal to the right side of the above equation with x± replaced by x̂±. By
rewriting these two determinants into 3N × 3N determinants as in Ohta and Yang
(2012a), utilizing relations (71) and performing simple row manipulations, we can
quickly show that σ̂n,k = σn,k . Thus, the solution uN (x, t) in Theorem 1 with all ar
being zero satisfies the parity-time symmetry ûN = uN , i.e., u∗

N (−x,−t) = uN (x, t).
Theorem 2 is then proved.

It turns out that the converse is also true, i.e., if a rogue wave uN (x, t) in Theorem 1
is parity-time-symmetric, then a1 = a3 = · · · = aodd = 0 [there is no restriction on
the aeven values because the solution is independent of them, see Eq. (22)]. Our proof is
based on calculating the derivatives of the polynomial σn,k with respect to the real part
ξ2r−1 and imaginary part η2r−1 of the parameter a2r−1. Using Eqs. (20)–(21), we can
show that each of ∂ξ2r−1σn,k and i∂η2r−1σn,k contains power terms of (x, t) which are
not parity-time-symmetric. Thus, if any aodd is nonzero, the solution uN (x, t) would
not be parity-time-symmetric.

6 RogueWaves Through a Different KP-Reduction Procedure

As wementioned in Sect. 2, the GDNLS equations (2) admit two different bilineariza-
tions. The first bilinear system is Eqs. (7)–(10), while the second bilinear system is
Eqs. (8)–(10) and (11), i.e.,

(
iDt + D2

x − 2iαDx

)
g · f = 0, (72)(

iDt + D2
x + 2iDx

)
f · f ∗ = 0, (73)

(iDx − 1) f · f ∗ + |g|2 = 0 (74)

D2
x f · f ∗ − iDxg · g∗ + (2α + 1)(| f |2 − |g|2) = 0. (75)
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Rogue waves in the GDNLS equations (2), as given in Theorem 1, can also be derived
from this second bilinear system, but the corresponding KP-reduction procedure is
different. This will be shown below. This situation is analogous to multi-soliton solu-
tions in the Sasa–Satsuma equation, which also admit two different bilinearizations
and two different reduction procedures (Gilson et al. 2003)

6.1 Algebraic Solutions for a Higher-Dimensional Bilinear System

First, we consider the following higher-dimensional bilinear equations in the extended
KP hierarchy

(
Dx2 − D2

x1 − 2dDx1

)
τn,k,l+1 · τn,k,l = 0, (76)(

Dx2 − D2
x1

)
τn,k,l · τn−1,k,l = 0, (77)(

cDx−1 + 1
)
τn−1,k,l · τn,k,l = τn,k−1,lτn−1,k+1,l , (78)

(cDx1Dx−1 − Dx1 − 2c)τn,k,l · τn−1,k,l = (Dx1 − 2c)τn,k−1,l · τn−1,k+1,l , (79)

where c and d are the arbitrary complex constants. The main difference between these
bilinear equations and the previous ones (29)–(32) is the introduction of the third index
l in the τ function, which is necessary in order to reduce the first bilinear equation
(72) to (76). Indeed, the previous two-index τ function (28) is unable to satisfy a
higher-dimensional bilinear equation which can be reduced to (72).

We can show that if functions m(n,k,l)
i, j , ϕ

(n,k,l)
i and ψ

(n,k,l)
j of variables (x−1, x1,

x2) satisfy the following differential and difference relations

∂x1m
(n,k,l)
i, j = ϕ

(n,k,l)
i ψ

(n,k,l)
j ,

∂x1ϕ
(n,k,l)
i = ϕ

(n+1,k,l)
i , ∂x1ψ

(n,k,l)
j = −ψ

(n−1,k,l)
j ,

∂x1ϕ
(n,k,l)
i = cϕ(n,k,l)

i + ϕ
(n,k+1,l)
i , ∂x1ψ

(n,k,l)
j = −cψ(n,k,l)

j − ψ
(n,k−1,l)
j ,

∂x1ϕ
(n,k,l)
i = dϕ

(n,k,l)
i + ϕ

(n,k,l+1)
i , ∂x1ψ

(n,k,l)
j = −dψ

(n,k,l)
i − ψ

(n,k,l−1)
j ,

∂x2ϕ
(n,k,l)
i = ∂2x1ϕ

(n,k,l)
i , ∂x2ψ

(n,k,l)
j = −∂2x1ψ

(n,k,l)
j ,

∂x−1ϕ
(n,k,l)
i = ϕ

(n,k−1,l)
i , ∂x−1ψ

(n,k,l)
j = −ψ

(n,k+1,l)
j ,

(80)

then the determinant

τn,k,l = det
1≤i, j≤N

(
m(n,k,l)

i, j

)
(81)

would satisfy the new higher-dimensional bilinear system (76)–(79).
Now, we introduce the function m(n,k,l) as

m(n,k,l) = ip

p + q

(
− p

q

)n (
− p − c

q + c

)k (
− p − d

q + d

)l

eξ+η,
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where

ξ = 1

p − c
x−1 + px1 + p2x2 + ξ0,

η = 1

q + c
x−1 + qx1 − q2x2 + η0,

and ξ0 and η0 are the arbitrary complex constants. Then, by defining

m(n,k,l)
i, j = AiB jm

(n,k,l), (82)

whereAi andB j are the differential operators as defined in Eq. (39); then, thism
(n,k,l)
i, j ,

together with appropriately chosen ϕ
(n,k,l)
i and ψ

(n,k,l)
j , satisfies those differential-

difference equations (80), and thus, the determinant (81) satisfies the bilinear system
(76)–(79) for arbitrary sequences of indices (i1, i2, · · · , iN ; j1, j2, · · · , jN ).

To reduce the higher-dimensional bilinear system (76)–(79) to (72)–(75), we will
set

c = −iα, d = −i(1 + α). (83)

6.2 Dimension Reduction

Our dimension reduction is the same as before, i.e.,

[
∂x1 + ic∂x−1

]
τn,k,l = Cτn,k,l , (84)

where C is a certain constant. The same calculations as in Sect. 5.2 show that the
determinant

τn,k,l = det
1≤i, j≤N

(
m(n,k,l)

2i−1,2 j−1

∣∣∣
p=p0, q=q0

)
, (85)

with p0, q0 given by Eq. (44), would satisfy this dimension reduction condition. Under
this reduction, the bilinear equation (78) becomes

(
iDx1 − 1

)
τn,k,l · τn−1,k,l + τn,k−1,lτn−1,k+1,l = 0, (86)

and (79), combined with (86), reduces to

D2
x1τn,k,l · τn−1,k,l + iDx1τn,k−1,l · τn−1,k+1,l

= (2ic + 1)(τn,k−1,l · τn−1,k+1,l − τn,k,l · τn−1,k,l). (87)
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6.3 The Index Reduction

The key step to reduce the bilinear equation (72) to (76) is the observation that the
current three-index τ function (85) admits the following index relation,

τn,k−1,l = K N τn−1,k,l−1, K =
(√

α + i√
α − i

)2

. (88)

Its proof resembles that in Ohta and Yang (2014) for showing a similar index relation
but for a different integrable equation. From the definition of m(n,k,l)

i, j in Eq. (82), we
have

m(n,k−1,l)
i, j = AiB jm

(n,k−1,l) = AiB j

(
p

q

)(
− q + c

p − c

)(
p − d

q + d

)
m(n−1,k,l−1).

Defining

H( p̂) = p(p − d)

p − c
, H̃(q̂) = − q + c

q(q + d)
,

where p̂ = p − c and q̂ = q + c, then

m(n,k−1,l)
i, j = AiB j H( p̂)H̃(q̂)m(n−1,k,l−1).

From the Leibniz rule, we can rewrite the above equation as

m(n,k−1,l)
i, j =

i∑
ν=0

j∑
r=0

1

ν!
1

r !Hν( p̂)H̃r (q̂) m(n−1,k,l−1)
i−ν, j−r ,

where functions Hν( p̂) and H̃r (q̂) are defined as

Hν( p̂) = (
p̂∂ p̂

)ν
H( p̂), H̃r (q̂) = (

q̂∂q̂
)r

H̃(q̂).

Introducing two generators

G1 =
∞∑

ν=0

ζ ν

ν!
(
p̂∂ p̂

)ν
, G2 =

∞∑
r=0

λr

r !
(
q̂∂q̂

)r
,

and using the formula (68), we get

G1H( p̂) = H(eζ p̂) = eζ p̂ + c(c − d)

p̂
e−ζ + 2c − d,

G2 H̃(q̂) = H̃(eλq̂) = −1

eλq̂ + c(c−d)
q̂ e−λ − 2c + d

.
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For the chosen c, d values (83) and values p̂0 = q̂0 = √
α from (44), we see that

G1H( p̂0) andG2 H̃(q̂0) are even functions of ζ andλ, respectively. Thus, H2ν−1( p̂0) =
H̃2ν−1(q̂0) = 0 for all ν ≥ 1. Utilizing these results, we get the relation

m(n,k−1,l)
i, j

∣∣p=p0,q=q0 =
i∑

ν=0,
ν:even

j∑
r=0,
r :even

1

ν!
1

r !Hν( p̂)H̃r (q̂) m(n−1,k,l−1)
i−ν, j−r

∣∣p=p0,q=q0 .

Thus,

(
m(n,k−1,l)

2i−1,2 j−1

∣∣∣
p=p0, q=q0

)
1≤i, j≤N

= L

(
m(n−1,k,l−1)

2i−1,2 j−1

∣∣∣
p=p0, q=q0

)
1≤i, j≤N

U ,

where L is a certain lower triangular matrix with H0( p̂0) on the diagonal, and U is a
certain upper triangular matrix with H̃0(q̂0) on the diagonal. Taking determinants to
this equation, we get

τn,k−1,l = [
H0( p̂0)H̃0(q̂0)

]N
τn−1,k,l−1,

which is the same as (88) since H0( p̂0) H̃0(q̂0) = K .

6.4 RogueWave Solutions

Now, we set x1 = x − 2t , x2 = it , c, d as in (83), and n = k = l = 0 in the above
bilinear equations (76), (77), (86) and (87). Since τ0,0,1 = (K )N τ−1,1,0 due to the
index relation (88), we find that when we define

f = τ0,0,0, f̄ = τ−1,0,0, g = τ−1,1,0, ḡ = τ0,−1,0,

the above bilinear equations would become

(
iDt + D2

x − 2iαDx

)
g · f = 0,(

iDt + D2
x + 2iDx

)
f · f̄ = 0,

(iDx − 1) f · f̄ + gḡ = 0,

D2
x f · f̄ − iDxg · ḡ + (2α + 1)( f f̄ − gḡ) = 0.

(89)

Notice that these ( f , f̄ , g, ḡ) functions all have index l = 0. Thus, these functions
are exactly the same as those given in Eq. (58) of the earlier section. Then, following
the same complex conjugacy reductions f̄ = f ∗ and ḡ = g∗ as before, the bilinear
system (89) reduces to Eqs. (72)–(75), and its rogue wave solutions are exactly as
given in Theorems 1 and 3.
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7 Conclusions and Discussions

In this article, we have derived general rogue waves in the GDNLS equations (1) by
an improved bilinear KP reduction method. Since these GDNLS equations arise in
multiple physical situations and contain the Kaup–Newell equation, the Chen-Lee-
Liu equation and others as special cases, these results would be useful for rogue-wave
generation in such physical systems. A main benefit of this bilinear framework is that
rogue waves to all members of these GDNLS equations can be expressed by the same
bilinear solution.Compared to previous bilinearKP reductionmethods for roguewaves
in other integrable equations, an important improvement in our current KP reduction
technique is a new parameterization of internal parameters in rogue waves. Under this
new parameterization, the bilinear solution is much simpler than before. In addition,
the rogue wave with the highest peak amplitude at each order can be easily obtained by
setting all these internal parameters to zero. This way, the maximum peak amplitude
at order N is found to be 2N + 1 times the background amplitude, independent of the
individual GDNLS equation and the background wavenumber. We have also found
that these GDNLS equations can be decomposed into two different bilinear systems
which require different KP reductions, but the resulting rogue waves are the same.
Dynamics of rogue waves in the GDNLS equations is also analyzed. It is shown
that the wavenumber of the constant background strongly affects the orientation and
duration of the rogue wave. In addition, some new rogue patterns are presented.

TheGDNLS equations (1) considered in this article have the parameter requirement
of a �= b, in which case these equations are gauge equivalent to the derivative NLS
equation of Kaup–Newell type (4) (see Sect. 2). If a = b, Eq. (1) is called the Kundu–
Eckhaus equation in the literature (Kundu 1984). The Kundu–Eckhaus equation is
gauge equivalent to the NLS equation rather than the derivative NLS equation, and
thus, its rogue waves would be different from those for the GDNLS equations (1) with
a �= b. Rogue waves in the Kundu–Eckhaus equation have been studied by Darboux
transformation in Zhaqilao (2013),Wang et al. (2014), Qiu et al. (2015). In the bilinear
framework, we can derive general rogue waves in the Kundu–Eckhaus equation in a
similar way as we did for the GDNLS equations (1) with a �= b. This derivation will
be sketched in “Appendix”.
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is supported by the National Natural Science Foundation of China (No. 11705077). J.C. thanks J.Y. and the
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Appendix: Bilinear derivation of rogue waves in the Kundu–Eckhaus
equation

When a = b, Eq. (1) becomes the Kundu–Eckhaus equation (Kundu 1984)

iφt + φξξ + ρ|φ|2φ + ia(|φ|2)ξφ + 1

4
a2|φ|4φ = 0. (90)
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Under a gauge transformation

φ(ξ, t) = w(ξ, t)e− a
2 i
∫ |w(ξ,t)|2dξ ,

this Kundu–Eckhaus equation reduces to the NLS equation

iwt + wξξ + ρ|w|2w = 0, (91)

whose rogue waves have been derived before (Akhmediev et al. 2009b; Ankiewicz
et al. 2010a; Dubard et al. 2010; Kedziora et al. 2011; Guo et al. 2012; Ohta and Yang
2012a; Dubard and Matveev 2013). To directly obtain rogue waves in the Kundu–
Eckhaus equation (90) without the use of the above gauge transformation, we can
apply a similar bilinear approach as we did for the a �= b case in the main text
of this article. Specifically, through a scaling of (φ, ξ, t, a) together with a Galilean
transformation, we can normalize ρ = 2 in Eq. (90), and the boundary conditions of
its rogue waves can be normalized as

φ(ξ, t) → e
i
(
2t− 1

2 aξ
)
, (ξ, t) → ∞. (92)

Then, we employ a bilinear variable transformation

φ(ξ, t) = e
i
[
2t− 1

2 a[ξ+(ln f )ξ ]
]
g

f
, (93)

where f is a real function, and g a complex function. Under this transformation, the
Kundu–Eckhaus equation (90) can be split into the following three bilinear equations,

(
iDt + D2

ξ

)
g · f = 0, (94)

(D2
ξ + 2) f · f = 2|g|2, (95)

Dξ Dt f · f = 2iDξ g · g∗. (96)

One can recognize that the first twobilinear equations are the ones for theNLSequation
(91) with ρ = 2 (Ohta and Yang 2012a). It turns out that the ( f , g) solutions for rogue
waves of the NLS equation also satisfy the third bilinear equation above, and thus,
rogue waves for the Kundu–Eckhaus equation (90) are given by (93), where ( f , g) are
those for the NLS equation (91). The reason for this is that under the same differential
and difference relations of τ functions listed in Eq. (3.7) of Ohta and Yang (2012a),
the following three multi-dimensional bilinear equations are satisfied simultaneously,

(Dx1Dx−1 − 2)τn · τn = −2τn+1τn−1, (97)

(Dx2 − D2
x1)τn+1 · τn = 0, (98)

Dx−1Dx2τn · τn = 2Dx1τn−1 · τn+1. (99)

123



3054 Journal of Nonlinear Science (2020) 30:3027–3056

Thus, with the same dimension reduction and complex conjugacy conditions of the
NLS equation (Ohta and Yang 2012a), and setting x1 = ξ , x2 = it , these multi-
dimensional bilinear equations reduce to (94)–(96), and thus, the ( f , g) solutions for
rogue waves of the NLS equation (91) are also bilinear solutions for rogue waves of
the Kundu–Eckhaus Eq. (90) under the bilinear variable transformation (93).
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