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ABSTRACT: Staurosporine is among the most potent naturally
occurring kinase inhibitors isolated to date and has served as a lead
compound for numerous drug development efforts in several
therapeutic areas. Herein we report that C−H borylation chemistry
provides access to analogs of staurosporine that were previously
inaccessible to medicinal chemists who, in the past four decades,
have prepared over 1000 semisynthetic staurosporine analogs.
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Staurosporine (1), isolated by O mura and co-workers in
1977 from Streptomyces staurosporeus, exhibits potent

inhibitory properties against a vast majority of the human
kinome.1,2 Since its isolation, numerous drug discovery efforts
have attempted to capitalize on the potency of 1 and several
other naturally occurring indolocarbazole-containing natural
products (ICZs) through the preparation of semisynthetic
analogs. The ICZ moiety of 1 (highlighted in red) has been
demonstrated to play a key role in binding to the adenosine
triphosphate (ATP) pocket of kinases, and thus, modifications
to this core have been central to many structure−activity
relationship (SAR) studies hoping to improve both selectivity
and potency.3−6 Although the homologous nature of the ATP
binding sites in the human kinome has made the former quite
challenging,7−9 several compounds have moved into clinical
trials (e.g., CEP-1347 (3)) and at least one (e.g., Midostaurin
(2)) has been approved for use in cancer treatment (Figure
1).10−12

In previous SAR efforts (Scheme 1), the primary strategy
taken in the semisynthetic preparation of ICZ-analogs has
involved electrophilic aromatic substitution (EAS) chemistry,

which has led to the development of over 1000 derivatives of 1
and related ICZs.14−19

However, without exception the regiochemical outcome of
the EAS chemistry employed in these studies has been guided
by electronic effects, which provide access to only two
locations for substitution (Scheme 1a). As illustrated, this
reactivity profile has limited functionalization to the upper half
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Figure 1. Staurosporine (1) and indolocarbazole containing active
pharmaceuticals.13

Scheme 1. Functionalization on Staurosporine’s ICZ Moiety
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of the ICZ moiety; thus, there are no biological studies of
synthetic analogs possessing functionality at C2 and C10. In
fact, the natural product TAN-999, which possesses a methoxy
substituent at C10, is the only compound falling into this latter
category reported to date, and it has only been studied in the
context of immunomodulatory properties.20−22

As part of an effort to fill the void in SAR studies of
staurosporine’s ICZ core, we began investigating C−H
activation borylation as an orthogonal approach to EAS
chemistry (Scheme 1b). In contrast to EAS, which provides
regiochemical outcomes primarily dictated by the electronic
effects of an aromatic ring, the regioselectivity of C−H
activation borylation is primarily influenced by steric
congestion around the C−H bond.23−25,26−29 In addition to
potentially providing access to regions of staurosporine that
have yet to be investigated from an SAR standpoint (e.g., 5,
Scheme 1b), this chemistry also furnishes intermediate boronic
esters which are exceedingly malleable with regard to
subsequent transformations.
Our initial attempts to introduce a boronic ester employing

1 as substrate were unsuccessful, showing no signs of reaction
despite high catalyst loadings, high temperatures, and reaction
times spanning a few days (Scheme 2). Initially we attributed

the lack of borylation to the poor solubility of 1 in solvents
suitable for C−H activation borylation, such as THF or
dioxane. To improve the solubility we prepared known N-Boc-
carbamate 6 which was found to be readily soluble in THF.30

Disappointingly, 6 required the use of superstoichiometric
quantities of the active iridium complex, lengthy reaction
times, and high temperatures, to produce trace quantities of
borylation products as observed by LC-MS analysis.
Having ruled out issues with reaction heterogeneity, our next

aim was to address the Lewis basicity of the amine and lactam.
Coordination of strongly Lewis basic moieties to the iridium
catalyst has been demonstrated to be problematic due to
formation of an inactive 18e− iridium complex.23,31−33 To
circumvent this potential problem we protected both the
amine and the lactam with a Boc group to furnish 7. With 7 in
hand we were delighted to find that borylation of this substrate
proceeds to ca. 50% conversion (LC-MS monitoring) when
using 4,4′-di-tert-butyl-2,2′-bipyridine ligand (DtBpy).

Based on this initial success, we performed a ligand screen
that included Binap, TolBinap, DM-Segphos, 2,2′-bipyridine
(Bpy), 4,4′-dimethoxy-2,2′-bipyridine (MeO2Bpy), DtBpy,
2,2′-bipyridine (Bpy), neocuproine, 3,4,7,8-tetramethyl-1,10-
Phen (Me4Phen), and 1,10-Phen. This effort revealed that
employing the Phen ligand, THF as solvent, and heating to 100
°C in a sealed tube for 6 h gave the best conversion, producing
three monoborylated products, 8, 9, and 10, as well as two bis-
boronic esters, 11 and 12 (Scheme 3). Notably, reaction times

longer than 6 h led to decomposition of the products as
observed by LC-MS monitoring. After purification of the crude
reaction mixture, we were able to isolate mixtures of 8/9 and
11/12 in 31% and 33% yield, respectively, along with pure 10
in 4% yield. Attempts to make regiochemical assignments at
this stage were hampered by significant overlap and broad-
ening of the peaks in the 1H NMR due to the rotameric nature
of the protecting groups. Thus, we simply advanced the
respective mixtures in hopes of finding a method for separating
the derived analogs.
To the latter end, we turned toward functionalizing 8−12 by

exploring reactivity under oxidation and chlorination con-
ditions, two known transformations of boronic esters, which
were chosen for their robustness (Scheme 4). Additionally, we
initially speculated that the derived phenols and chlorides
would allow a quick probe into the biological impact of their
respective hydrogen bond donating and accepting properties.
In the event, the boronic esters in 8−12 were transformed to
the corresponding phenols by exposure to NaBO3 (Table 1,
entries 1−3).34−36 Fortunately, after deprotecting the Boc
groups under TFA conditions, we were able to separate the
derived phenol regiomers 13−17. Applying this same sequence
to the mixtures of 8/9 and 11/12 but including a methylation

Scheme 2. Attempted Borylation of 1 and 6a,b

aTrace product observed by LC-MS. bBoc = tert-butyloxycarbonyl.
All reactions were run in sealed reaction vessels using THF solvent
and [Ir(COD)OMe]2 precatalyst.

Scheme 3. Borylation of Bis-Boc Staurosporine 7a

aDMAP = 4-dimethylaminopyridine, TEA = triethylamine, COD =
1,5-cyclooctadiene, Phen = 1,10-phenanthroline, B2Pin2 = bis-
(pinacolato)diboron.
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step (MeI) prior to Boc deprotection furnished the
corresponding methyl ethers 18−21 which, in contrast to
their parent phenols, proved recalcitrant toward separation
(Table 1, entries 4 and 5). Turning next to the chloride
analogs, we opted to employ halogenation chemistry
developed by Kabalka and Hartwig.37,38 To this end, exposure
of the Bpin analogs 8/9 and 11/12 to CuCl2 furnished
intermediate aryl chlorides which, upon Boc deprotection,
provided separable mixtures of 22/23 and 24/25, respectively
(Table 1, entries 6 and 7).
Having accessed several novel staurosporine analogs we

turned to a brief investigation of biological activity. As
indicated above, over 1000 semisynthetic analogs of ICZs
have been assayed for activity since the original isolation of
staurosporine by O mura, and among these, many have been

produced via electrophilic aromatic substitution, which only
provides access to functionality at C3 and C9.16 To our
knowledge the only known example of a staurosporine analog
functionalized elsewhere on the aromatic indolocarbazole core
is the natural product TAN-999 (19), which possesses a
methoxy substituent at C10.20 To date, detailed biological
studies of 19 reported in the open literature have been focused
on its immunomodulatory activity in macrophages and a brief
notation that it inhibits protein kinase C.20 In our studies, we
evaluated the cytotoxicity of staurosporine (1) and novel
phenol analogs 13 and 14 against breast cell lines including
tumor-derived MDA-MB-231 cells and nontransformed,
immortalized, HMLE cells (Table 2). The activities of 13

and 14 against the MDA-MB-231 cell line were found to be
equipotent to staurosporine. Interestingly, these studies also
revealed that inclusion of a phenol at either the C9 or C10
position selectively diminishes activity against HMLE with 9-
OH- and 10-OH-staurosporine (13 and 14) being 5.6-fold and
12.0-fold less potent, respectively. Thus, activity toward the
nontransformed mammary cell line, HMLE, was compromised
indicating the possibility of an increased therapeutic index.

Scheme 4. Strategy for Analog Synthesis

Table 1. Analogs of Staurosporine

Entry SM R1 R2 R3 Condition Product R1 R2 R3 Yield

1 8 Bpin H H Aa 13 OH H H 26%
9 H Bpin H A 14 H OH H 10%

2 10 H H Bpin A 15 H H OH 21%
3 11 Bpin H Bpin A 16 OH H OH 12%

12 H Bpin Bpin A 17 H OH OH 24%
4 8 Bpin H H Bb 18 OMe H H 52%c

9 H Bpin H B 19 H OMe H c

5 11 Bpin H Bpin B 20 OMe H OMe 23%d

12 H Bpin Bpin B 21 H OMe OMe d

6 8 Bpin H H Ce 22 Cl H H 20%
9 H Bpin H C 23 H Cl H 51%

7 11 Bpin H Bpin C 24 Cl H Cl 30%
12 H Bpin Bpin C 25 H Cl Cl 48%

aCondition A: (1) NaBO3, H2O:THF (1:1), 25 °C, (2) TFA:DCM (2:3), 25 °C. bCondition B: (1) NaBO3, H2O:THF (1:1), 25 °C, (2) MeI,
K2CO3, THF, 40 °C, (3) TFA:DCM (1:4), 25 °C. cCombined yield of 18 and 19 in 1:2.3 ratio determined by 1H NMR. dCombined yield of 20
and 21 in 1:1.4 ratio determined by 1H NMR. eCondition C: (1) CuCl2, H2O:MeOH (1:1), 70 °C, (2) TFA:DCM (1:4), 25 °C; TFA =
trifluoroacetic acid, DCM = dichloromethane, Bpin = pinacol boronic ester.

Table 2. Cytotoxic Activity of Staurosporine (1), 13, and
14a

MDA-MB-231 HMLE

compound IC50 (nM) SD IC50 (nM) SD

Staurosporine (1) 2.5 ±0.2 4.9 ±0.4
13 2.0 n.d. 27.5 ±10.8
14 3.4 ±1.3 58.7 ±20.1

aMDA-MB-231 = human breast adenocarcinoma cell line, HMLE =
immortalized human mammary epithelial cells, IC50 = half maximal
inhibitory concentration, SD = standard deviation.
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Clearly these findings highlight the potential of applying C−H
borylation/derivatization chemistry in preparing active analogs
of other complex small molecules that are otherwise
challenging to access.
In conclusion, we have developed a method for accessing

novel analogs of staurosporine wherein functionality resides at
C2 and C10 of the indolocarbazole aromatic region. This
method will allow for the preparation of many new
staurosporine analogs and potentially open the door to further
improvements in the kinase specificity profile manifest by this
class of molecules. In addition, we have established the viability
of the method by preparing 13 analogs of 1 and, in a brief
biological study, determined that introducing functionality in
this previously inaccessible region does not abrogate kinase
activity and indeed changes the cytotoxic selectivity profile.
Characterization of the inhibitory selectivity profiles against
kinase panels of selected new analogs is ongoing. The
preparation of additional analogs and results of further
biological evaluations will be reported in due course.
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