
CAvSAT: Answering AggregationQueries over Inconsistent
Databases via SAT Solving

Akhil A. Dixit

University of California Santa Cruz

USA

Phokion G. Kolaitis

University of California Santa Cruz and IBM Research

USA

ABSTRACT
Consistent Query Answering (CQA) is a rigorous and principled ap-

proach to answering queries posed against inconsistent databases.

Computing consistent answers to a Select-Project-Join (SPJ) query

or an SPJ query with aggregation operators on a given inconsistent

database can be an intractable problem. We demonstrate CAvSAT,

a system for CQA that leverages a set of natural reductions from

a given CQA instance to boolean Satisfiability (SAT) and its op-

timization variants. CAvSAT is the first system that is capable of

handling unions of SPJ queries with aggregation operators SUM and
COUNT, and databases that are inconsistent w.r.t. key constraints,

functional dependencies, and denial constraints.

CCS CONCEPTS
• Theory of computation → Incomplete, inconsistent, and
uncertain databases.

KEYWORDS
consistent query answering, SAT solving, range consistent answers

ACM Reference Format:
Akhil A. Dixit and Phokion G. Kolaitis. 2021. CAvSAT: Answering Aggrega-

tion Queries over Inconsistent Databases via SAT Solving. In Proceedings
of the 2021 International Conference on Management of Data (SIGMOD ’21),
June 20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 5 pages.

https://doi.org/10.1145/3448016.3452749

1 INTRODUCTION
A relational database instance is inconsistent if it violates one or
more integrity constraints, such as primary keys or functional de-

pendencies, on its schema. Managing inconsistencies in real-world

databases is important because poor data quality is estimated to

cost the US economy alone over 3 trillion dollars each year [1]. Data

cleaning is the main approach used in industry towards managing

inconsistent databases (see the survey [18]). Data cleaning is often

ad hoc since the user often has to make arbitrary choices while

cleaning the data; for example, if a person has two different social

security numbers in a database, which of the two should be kept?

The framework of database repairs and consistent query answering,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3452749

introduced by Arenas, Bertossi, and Chomicki [2], is an alterna-

tive, and arguably more principled, approach to data cleaning. In

contrast to data cleaning, the inconsistent database is left as is;

instead, inconsistencies are handled at query time by considering

all possible repairs of the inconsistent database, where a repair of
an inconsistent database I is a consistent database J that differs

from I in a “minimal” way. The main algorithmic problem in this

framework is to compute the consistent answers to a query 𝑞 on a

given database I, that is, the tuples that lie in the intersection of

the results of 𝑞 applied on each repair of I (see the monograph [6]).

Computing the consistent answers to a query 𝑞 on I can be compu-

tationally harder than evaluating 𝑞 on I, because an inconsistent

database instance exponentially many repairs. In particular, com-

puting the consistent answers of a fixed Select-Project-Join (SPJ)

query can be a coNP-complete problem. Frequently asked database

queries often involve one of the standard aggregation operators

MIN(𝐴), MAX(𝐴), SUM(𝐴), COUNT(𝐴), COUNT(*), or AVG(𝐴). Such
queries are called aggregation queries and they may also involve a

GROUP BY clause that partitions a relation into disjoint groups so

that the aggregate operators are applied separately to each group.

Thus, an aggregation query is of the form

𝑄 := SELECT 𝑍, 𝑓 (𝐴) FROM 𝑇 (𝑈 ,𝑍,𝐴) GROUP BY 𝑍,

where 𝑓 (𝐴) is an aggregation operator and𝑇 (𝑈 ,𝑍,𝐴) is the relation
returned by a SPJ query 𝑞 expressed in SQL. A scalar aggregation
query is an aggregation query without a GROUP BY clause.

What is the semantics of an aggregation query over an inconsis-

tent database? An aggregation query may return different answers

on different repairs of an inconsistent database; thus, there is typi-

cally no consistent answer as per the earlier definition of consistent

answer. To obtain meaningful semantics to aggregation queries,

Arenas et al. [3] introduced the range consistent answers.
Let 𝑄 be a scalar aggregation query. The set of possible answers

to 𝑄 on a database instance I inconsistent w.r.t. a fixed set Σ of

integrity constraints consists of the answers to𝑄 over all repairs of

I w.r.t. Σ, i.e., Poss(𝑄,I, Σ) = {𝑄 (J) | J is a repair of I w.r.t. Σ}.
By definition, the range consistent answers to 𝑄 on I is the interval

[𝑔𝑙𝑏 (𝑄,I), 𝑙𝑢𝑏 (𝑄,I)], where the endpoints of this interval are,

respectively, the greatest lower bound (glb) and the least upper

bound (lub) of the set Poss(𝑄,I, Σ) of possible answers to 𝑄 on I.
For example, the range consistent answers to the query

SELECT SUM(ACCT.BAL) FROM ACCT, CUSTACCT WHERE
ACCT.ACCID = CUSTACCT.ACCID AND CUSTACCT.CID = ‘C2’

on the instance in Table 1 is the interval [900, 2200]. The meaning

is that no matter how the database I is repaired, the answer to the

query is guaranteed to be in the range between 900 and 2200.

Arenas et al. [4] focused on scalar aggregation queries only. Fux-

man, Fazli, and Miller [14] extended the notion of range consistent

answers to aggregation queries with grouping. For a query

Demo Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2701

https://doi.org/10.1145/3448016.3452749
https://doi.org/10.1145/3448016.3452749

Table 1: Running example – an inconsistent database instance I (primary key attributes are underlined)

CUSTOMER CID CNAME CITY

C1 John LA 𝑓1
C2 Mary LA 𝑓2
C2 Mary SF 𝑓3
C3 Don SF 𝑓4
C4 Jen LA 𝑓5

ACCT ACCID TYPE CITY BAL

A1 Checking LA 900 𝑓6
A2 Checking LA 1000 𝑓7
A3 Saving SJ 1200 𝑓8
A3 Saving SF -100 𝑓9
A4 Saving SJ 300 𝑓10

CUSTACCT CID ACCID

C1 A1 𝑓11
C2 A2 𝑓12
C2 A3 𝑓13
C3 A4 𝑓14

𝑄 := SELECT 𝑍, 𝑓 (𝐴) FROM 𝑇 (𝑈 ,𝑍,𝐴) GROUP BY 𝑍,

we say that a tuple (𝑇, [𝑔𝑙𝑏, 𝑙𝑢𝑏]) is a range consistent answer to 𝑄
on I, if the following three conditions hold: (i) For every repair J
of I, there exists 𝑑 s.t. (𝑇,𝑑) ∈ 𝑄 (J) and 𝑔𝑙𝑏 ≤ 𝑑 ≤ 𝑙𝑢𝑏; (ii) For

some repair J of I, we have that (𝑇,𝑔𝑙𝑏) ∈ 𝑄 (J); (iii) For some

repair J of I, we have that (𝑇, 𝑙𝑢𝑏) ∈ 𝑄 (J).
If 𝑄 is an aggregation query, Cons(𝑄) denotes the problem:

given an instance I, compute the range semantics of 𝑄 on I.
Several academic prototype systems for consistent query answer-

ing have been developed [4, 5, 8, 10, 13–15, 17, 19, 21, 22]. These

systems use different approaches, including as logic programming

[5, 17], compact representations of repairs [7], or reductions to

solvers [11, 13, 19, 21]. Among these, only the ConQuer system

[14, 15] is capable of handling aggregation queries with grouping.

However, ConQuer can only handle an aggregation query with

grouping, provided the underlying SPJ query belongs to a class

called 𝐶forest. For such a query 𝑄 , the range consistent answers of

𝑄 are SQL-rewritable, i.e., there is a SQL query 𝑄 ′
such that the

range consistent answers of 𝑄 on an instance I can be obtained

by directly evaluating 𝑄 ′
on I. This leaves out, however, many

aggregation queries with grouping, including all queries whose

range consistent answers are not SQL-rewritable or are NP-hard to

compute. Up to now, no system supports such queries.

Here, we demonstrate CAvSAT (Consistent Answers via Satisfi-

ability Solving), the first system to compute the range consistent

answers to all aggregation queries involving the aggregation opera-

tors SUM(𝐴), COUNT(𝐴), COUNT(*) with or without grouping. Note

that, while an earlier version of CAvSAT supporting the consistent

answers to SPJ queries (but not to aggregation queries) was reported

in [10, 11], this is the first time that CAvSAT is demonstrated. A

full account of CAvSAT with technical results concerning the range

semantics and a detailed experimental evaluation are in [12].

The distinctive feature of CAvSAT is that it uses natural re-

ductions to reduce the consistent answers of SPJ queries and the

range consistent answers of aggregation queries to Boolean satisfi-

ability (SAT) and to optimization variants of SAT, such as Partial

MaxSAT and Weighted Partial MaxSAT. It then deploys powerful

SAT solvers, such as the MaxHS solver [9], to compute the answers.

Moreover, CAvSAT can handle databases that are inconsistent not

only w.r.t. primary keys but w.r.t. arbitrary denial constraints, a
much broader class of constraints that contains primary keys and

functional dependencies as special cases [6].

2 CAVSAT SYSTEM OVERVIEW
2.1 System Architecture
CAvSAT has a modular architecture, which is shown in Figure 1.

Query Pre-processor Module This module takes the query and the

set of integrity constraints as inputs and attempts to determine the

complexity of computing the consistent answers to the query. For

SPJ queries without self-joins and with primary key constraints, the

module implements the attack graph algorithm [20] to determine

whether or not the consistent answers are SQL-rewritable. If the

consistent answers are SQL-rewritable, the query is forwarded to

the Query Re-writing module. If the consistent answers are not SQL-

rewritable or their complexity is not known in the pre-processing

stage, the queries are forwarded to one of the SAT-solving modules

depending on whether or not the query has aggregate operators.

Query Re-writing Module This module implements the query-

rewriting algorithms in [14, 15, 20]. For queries with SQL-rewritable

consistent answers, this module produces the consistent rewriting

and evaluates it on the inconsistent database instance directly to

obtain the consistent answers to the original input query.

Figure 1: Modular architecture of CAvSAT

SAT Solving Modules These two modules reduce a given CQA

instance to an instance of Boolean satisfiability (SAT) or one of its

variants via polynomial-time reductions. After constructing such a

SAT instance, these modules invoke a SAT solver to compute an (op-

timal) solution and then extract the consistent answers to the query.

For queries without aggregation, the reductions and the detailed

workings of the SAT-solvingmodule for queries are presented in our

earlier paper [11]. Here, we focus on demonstrating the SAT-solving

module tailored to answer queries with the aggregation operators

SUM(𝐴), COUNT(𝐴), and COUNT(∗). In the SAT-solving module for

aggregation queries, we reduce the computation of the range consis-

tent answers to Partial MaxSAT for COUNT(∗) and COUNT(𝐴), and
to Weighted Partial MaxSAT for SUM(𝐴). Due to space limitation,

we only present the reduction for the SUM(A) aggregation operator.

Demo Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2702

2.2 Workflow of the SAT Solving Module
Let 𝑄 := SELECT SUM(𝐴) FROM 𝑇 (𝑈 ,𝐴) be an aggregation query

where 𝑇 (𝑈 ,𝐴) is a relation expressed using an SPJ query 𝑞. Let

I be a database instance and G be the set of groups of tuples of

I that share the values of the key attributes. Moreover, let W =

𝑊1, · · · ,𝑊𝑚 be the set such that each𝑊𝑖 is a minimal set of tuples

that satisfy the query𝑞∗ onI, where𝑞∗ := SELECT 1 FROM 𝑇 (𝑈 ,𝐴).

Reduction 2.1. For each tuple 𝑓𝑖 ofI, introduce a boolean variable
𝑥𝑖 . Construct a weighted partial CNF formula 𝜙 as follows:

(1) For each 𝐺 𝑗 ∈ G,
• construct a hard clause 𝛼 𝑗 := ∨

𝑓𝑖 ∈𝐺 𝑗

𝑥𝑖 .

• for each pair (𝑓𝑚, 𝑓𝑛) of tuples in𝐺 𝑗 such that𝑚 ≠ 𝑛, construct
a hard clause 𝛼𝑚𝑛

𝑗
:= (¬𝑥𝑚 ∨ ¬𝑥𝑛).

(2) Let W𝑃 and W𝑁 be the subsets of W such that for each
𝑊𝑗 ∈ W, we have 𝑊𝑗 ∈ W𝑃 iff 𝑞∗ (𝑊𝑗) > 0, and 𝑊𝑗 ∈ W𝑁

iff 𝑞∗ (𝑊𝑗) < 0. Let also 𝑤 𝑗 = | |𝑞∗ (𝑊𝑗) | |, where | |𝑞∗ (𝑊𝑗) | | is the
absolute value of 𝑞∗ (𝑊𝑗). Construct a weighted soft clause 𝛽 𝑗 and a
conjunction 𝛾 𝑗 of hard clauses as follows. If𝑊𝑗 ∈ WN , introduce a
new variable 𝑦 𝑗 and let

𝛽 𝑗 = (𝑦 𝑗 ,𝑤 𝑗) and 𝛾 𝑗 =
((

∨
𝑓𝑖 ∈𝑊𝑗

¬𝑥𝑖
)
∨ 𝑦 𝑗

)
∧
(

∧
𝑓𝑖 ∈𝑊𝑗

(¬𝑦 𝑗 ∨ 𝑥𝑖)
)
.

Construct a weighted partial CNF formula

𝜙 =

(
|G |
∧
𝑗=1

𝛼 𝑗

)
∧
(
|G |
∧
𝑗=1

(∧
𝑓𝑚 ∈G𝑗

𝑓𝑛 ∈G𝑗

𝛼𝑚𝑛
𝑗

))
∧
(
|W |
∧
𝑗=1

𝛽 𝑗

)
∧
(

∧
𝑊𝑗 ∈WN

𝛾 𝑗

)
.

It can be shown that if I is a database instance, 𝑄 is an aggre-

gation query with SUM(𝐴), and 𝜙 is the WPMaxSAT-instance con-

structed using Reduction 2.1, then, in a maximum (a minimum) sat-

isfying assignment of 𝜙 , the sum of weights of the falsified clauses

is the glb-answer (lub-answer) in the range consistent answers

Cons(𝑄) on I. We illustrate the workflow of computing range

consistent answers using Reduction 2.1 using an example. Let I
be the database instance from Table 1 and let 𝑄 be the following

aggregation query𝑄 , which asks for the sum of all account balances

belonging to a customer named Mary:

SELECT SUM(ACCT.BAL) FROM CUSTOMER, ACCT, CUSTACCT
WHERE CUSTOMER.CID = CUSTACCT.CID AND ACCT.ACCID =
CUSTACCT.ACCID AND CUSTOMER.CNAME = ‘Mary’

From Reduction 2.1, we construct the following clauses:

𝛼-clauses: 𝑥1, (𝑥2 ∨ 𝑥3), 𝑥4, 𝑥5, 𝑥6, 𝑥7, (𝑥8 ∨ 𝑥9), 𝑥10;
𝛼𝑚𝑛

-clauses: (¬𝑥2 ∨ ¬𝑥3), (¬𝑥8 ∨ ¬𝑥9);
𝛽-clauses: (¬𝑥2 ∨ ¬𝑥7, 1000), (¬𝑥3 ∨ ¬𝑥7, 1000), (¬𝑥2 ∨ ¬𝑥8, 1200),
(¬𝑥3 ∨ ¬𝑥8, 1200), (𝑦1, 100), (𝑦2, 100);
𝛾-clauses: (¬𝑥2∨¬𝑥9∨𝑦1), (¬𝑦1∨𝑥2), (¬𝑦1∨𝑥9), (¬𝑥3∨¬𝑥9∨𝑦2),
(¬𝑦2 ∨ 𝑥3), (¬𝑦2 ∨ 𝑥9).
Observe that the the variables corresponding to the tuples in the

CUSTACCT relation can be omitted, because CUSTACCT does not vi-
olate Σ. The witnesses {𝑓2, 𝑓9, 𝑓13} and {𝑓3, 𝑓9, 𝑓13} belong to W𝑁

due to the account balance being -100 in both cases, so we introduce

new variables 𝑦1 and 𝑦2 respectively, and construct hard 𝛾-clauses

as described above. The 𝛽-clauses corresponding to these witnesses

are (𝑦1, 100) and (𝑦2, 100) respectively. Observe that the sum of

weights of all soft clauses of 𝜙 is 4400. An assignment in which

𝑥8 = 0 and 𝑥9 = 1 is a maximum satisfying assignment to the

PMaxSAT instance 𝜙 constructed from above clauses. The sum of

satisfied soft clauses by this assignment is 3500 since it satisfies two

clauses with weights 1200 each, one with weight 1000 and one with

weight 100. Thus, the glb-answer is 4400 - 3500 = 900. Similarly,

setting 𝑥8 = 1 and 𝑥9 = 0 yields a minimum satisfying assignment

in which the sum of satisfied soft clauses is 2200, since it satisfies

one clause with weight 1200 and one with weight 1000, indicating

that the lub-answer is 4400 - 2200 = 2200. Hence, we have that

Cons(𝑄,I) = [900, 2200].
The preceding Reduction 2.1 assumes that the constraints on

the schema consist entirely of keys and, actually, that there is one

key per relation. The reduction can be extended to arbitrary denial

constraints on the schema - the details can be found in [12].

3 IMPLEMENTATION OVERVIEW
Figure 2 depicts the implementation of CAvSAT at a high level.

We use the Microsoft SQL Server 2019 to store the inconsistent

database instance accompanied with a set of integrity constraints.

Since we need the database server to store inconsistent data and

handle inconsistencies at query time, the integrity constraints are

not applied on the database instancewithin the server, but are stored

separately as a relation. The reductions from consistent answers

to variants of SAT are implemented in Java 8, and are hosted as a

Spring application on a web server. This server also runs MaxHS, a

powerful Weighted MaxSAT solver [9]. The web-based graphical

user interface of CAvSAT is implemented using the ReactJS front-

end development framework that connects to the CAvSAT back-end

via REST API calls. The CAvSAT source code is available at the

GitHub repository https://github.com/uccross/cavsat via a BSD-

style open-source license.

Figure 2: Implementation overview of CAvSAT

From our experimental evaluation, we observed that the reduc-

tions that encode the given CQA instance into a suitable variant

of SAT take the majority of the overall time taken by CAvSAT to

compute the range consistent answers to aggregation queries. This

is because the SAT-solving modules need to run SQL queries on

the inconsistent data in order to construct the clauses of the CNF

formula and it is a time-consuming task if the input query has more

joins or high selectivity. We have tested queries involving joins with

up to six relations over large databases, but it remains to be seen

whether constructing the clauses corresponding to the minimal

witnesses is a computational bottleneck causing the performance of

CAvSAT to deteriorate as the number of joins in the query increase.

Demo Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2703

https://github.com/uccross/cavsat

4 DEMONSTRATION OVERVIEW
We describe the features of the system that we will demonstrate.

First, the user connects to a remote database server via SQL server

Figure 3: CAvSAT GUI while connecting to a remote data-
base using SQL server authentication

authentication, as shown in Figure 3. After a connection is estab-

lished, the user is asked to choose the database instance on which

queries will be evaluated. The top right corner of the user interface

in Figure 4 shows that the user is connected to a Microsoft SQL

Server at localhost and ready to run queries on a database instance

named bank_accounts. CAvSAT allows the user to specify the in-

put query either using SQL or with first-order logic syntax. The user

has a choice between evaluation strategies for computing consistent

answers: the default is to use SAT solving, while two SQL-rewriting

algorithms from [14, 20] can be used for SPJ queries having SQL-

rewritable consistent answers. After evaluating a query, CAvSAT

internally runs a suitable solver (or evaluates an SQL-rewriting)

and displays the consistent answers (or range consistent answers

in case of an aggregation query) to the user (Figure 4).

Figure 4: CAvSAT GUI after computing the range consistent
answers to an aggregation query from Section 2.2

CAvSAT has several other features, including the following:

(a) The user can preview the selected schema, the integrity con-

straints on the schema and the raw data in the tab titled Preview
Schema and Raw Data.

(b) The Potential Answers tab displays the answers to the input

query evaluated directly on the inconsistent database instance. This

not only helps users to visualize the difference between potential

and consistent answers, but to also determine the overhead of

computing consistent answers compared to evaluating the input

query on the database directly.

(c) The Query Analysis tab shows the complexity of computing

consistent answers to the query if it is determined by the Query

Pre-processor module. The attack graph and the join graph of the

input query are also visualized (Figure 5).

(d) The Running Time Analysis tab shows the break-down of the

internal tasks performed by CAvSAT while computing the consis-

tent answers along with the time taken to complete each of those

tasks (Figure 6).

Figure 5: Query Analysis tab showing an attack graph of a
query: a visual explanation on why computing consistent
answers to the input query is coNP-complete

Figure 6: Screenshot of the break-downof time taken to com-
pute consistent answers using the SAT-solving module

An extensive experimental evaluation of CAvSAT is presented

in [12]. This evaluation involves both synthetic and real-word

databases, and a variety of aggregation queries with and without

grouping. The first set of experiments included a comparative study

of CAvSAT with ConQuer [14, 16]. In a standalone performance

evaluation of CAvSAT, we experimented with TPC-H databases of

varying sizes starting from 0.5 GB (8 million tuples) to up to 5 GB (44

million tuples) and varying degree of inconsistency w.r.t. primary

key constraints from 5% to 35%. The experiments with a real-world

database were carried out to evaluate CAvSAT’s performance in

presence of functional dependencies and denial constraints. We

obtained promising results from both sets of experiments that cor-

roborate the applicability and the scalability of CAvSAT.

Acknowledgments Akhil Dixit is supported by a Baskin School

of Engineering Dissertation-Year Fellowship and by the Center for

Research in Open Source Software (CROSS) at the University of

California Santa Cruz.

Demo Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2704

REFERENCES
[1] The four V’s of big data. https://www.ibmbigdatahub.com/infographic/four-vs-

big-data.

[2] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in inconsis-

tent databases. In Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’99, pages 68–79, New York,

NY, USA, 1999. ACM.

[3] M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. Spinrad. Scalar

aggregation in inconsistent databases. Theoretical Computer Science, 296(3):405–
434, 2003. Database Theory.

[4] M. Arenas, L. E. Bertossi, and J. Chomicki. Answer sets for consistent query

answering in inconsistent databases. TPLP, 3(4-5):393–424, 2003.
[5] P. Barceló and L. E. Bertossi. Logic programs for querying inconsistent databases.

In Practical Aspects of Declarative Languages, 5th Int. Symposium, PADL 2003, New
Orleans, LA, USA, January 13-14, 2003, Proceedings, pages 208–222, 2003.

[6] L. E. Bertossi. Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2011.

[7] J. Chomicki, J. Marcinkowski, and S. Staworko. Computing consistent query

answers using conflict hypergraphs. In Proceedings of the Thirteenth ACM Inter-
national Conference on Information and Knowledge Management, CIKM ’04, pages

417–426, New York, NY, USA, 2004. ACM.

[8] J. Chomicki, J. Marcinkowski, and S. Staworko. Hippo: A system for computing

consistent answers to a class of SQL queries. In Advances in Database Technology
- EDBT 2004, pages 841–844, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[9] J. Davies and F. Bacchus. Solving MAXSAT by solving a sequence of simpler SAT

instances. In J. Lee, editor, Principles and Practice of Constraint Programming –
CP 2011, pages 225–239, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[10] A. A. Dixit. CAvSAT: A system for query answering over inconsistent databases.

In Proceedings of the 2019 International Conference on Management of Data, SIG-
MOD ’19, page 1823–1825, New York, NY, USA, 2019. Association for Computing

Machinery.

[11] A. A. Dixit and P. G. Kolaitis. A SAT-based system for consistent query answering.

In M. Janota and I. Lynce, editors, Theory and Applications of Satisfiability Testing
- SAT 2019 - 22nd Int. Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proc.,
volume 11628 of Lecture Notes in Computer Science, pages 117–135. Springer, 2019.

[12] A. A. Dixit and P. G. Kolaitis. Consistent answers of aggregation queries using

SAT solvers. CoRR, abs/2103.03314, 2021.
[13] S. Flesca, F. Furfaro, and F. Parisi. Querying and repairing inconsistent numerical

databases. ACM Trans. Database Syst., 35(2):14:1–14:50, 2010.
[14] A. Fuxman, E. Fazli, and R. J. Miller. ConQuer: Efficient management of inconsis-

tent databases. In Proc. of the 2005 ACM SIGMOD Int. Conference on Management
of Data, SIGMOD ’05, pages 155–166, New York, NY, USA, 2005. ACM.

[15] A. Fuxman, D. Fuxman, and R. J. Miller. ConQuer: A system for efficient querying

over inconsistent databases. In Proceedings of the 31st International Conference on
Very Large Data Bases, VLDB ’05, pages 1354–1357. VLDB Endowment, 2005.

[16] A. Fuxman and R. J. Miller. First-order query rewriting for inconsistent databases.

J. Comput. Syst. Sci., 73(4):610–635, June 2007.
[17] G. Greco, S. Greco, and E. Zumpano. A logical framework for querying and

repairing inconsistent databases. IEEE Trans. on Knowl. and Data Eng., 15(6):1389–
1408, Nov. 2003.

[18] I. F. Ilyas and X. Chu. Trends in cleaning relational data: Consistency and

deduplication. Found. Trends databases, 5(4):281–393, Oct. 2015.
[19] P. G. Kolaitis, E. Pema, and W. Tan. Efficient querying of inconsistent databases

with binary integer programming. PVLDB, 6(6):397–408, 2013.
[20] P. Koutris and J.Wijsen. Consistent query answering for self-join-free conjunctive

queries under primary key constraints. ACM Trans. Database Syst., 42(2):9:1–9:45,
June 2017.

[21] M. Manna, F. Ricca, and G. Terracina. Consistent query answering via ASP from

different perspectives: Theory and practice. CoRR, abs/1107.4570, 2011.
[22] M. C. Marileo and L. E. Bertossi. The consistency extractor system: Answer

set programs for consistent query answering in databases. Data Knowl. Eng.,
69(6):545–572, 2010.

Demo Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2705

https://www.ibmbigdatahub.com/infographic/four-vs-big-data
https://www.ibmbigdatahub.com/infographic/four-vs-big-data

	Abstract
	1 Introduction
	2 CAvSAT System Overview
	2.1 System Architecture
	2.2 Workflow of the SAT Solving Module

	3 Implementation Overview
	4 Demonstration Overview
	References

