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ABSTRACT

Consistent Query Answering (CQA) is a rigorous and principled ap-
proach to answering queries posed against inconsistent databases.
Computing consistent answers to a Select-Project-Join (SPJ) query
or an SPJ query with aggregation operators on a given inconsistent
database can be an intractable problem. We demonstrate CAvSAT,
a system for CQA that leverages a set of natural reductions from
a given CQA instance to boolean Satisfiability (SAT) and its op-
timization variants. CAvSAT is the first system that is capable of
handling unions of SPJ queries with aggregation operators SUM and
COUNT, and databases that are inconsistent w.r.t. key constraints,
functional dependencies, and denial constraints.

CCS CONCEPTS

« Theory of computation — Incomplete, inconsistent, and
uncertain databases.
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1 INTRODUCTION

A relational database instance is inconsistent if it violates one or
more integrity constraints, such as primary keys or functional de-
pendencies, on its schema. Managing inconsistencies in real-world
databases is important because poor data quality is estimated to
cost the US economy alone over 3 trillion dollars each year [1]. Data
cleaning is the main approach used in industry towards managing
inconsistent databases (see the survey [18]). Data cleaning is often
ad hoc since the user often has to make arbitrary choices while
cleaning the data; for example, if a person has two different social
security numbers in a database, which of the two should be kept?
The framework of database repairs and consistent query answering,
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introduced by Arenas, Bertossi, and Chomicki [2], is an alterna-
tive, and arguably more principled, approach to data cleaning. In
contrast to data cleaning, the inconsistent database is left as is;
instead, inconsistencies are handled at query time by considering
all possible repairs of the inconsistent database, where a repair of
an inconsistent database 7 is a consistent database J that differs
from 7 in a “minimal” way. The main algorithmic problem in this
framework is to compute the consistent answers to a query g on a
given database 7, that is, the tuples that lie in the intersection of
the results of q applied on each repair of 7 (see the monograph [6]).
Computing the consistent answers to a query q on I can be compu-
tationally harder than evaluating q on 7, because an inconsistent
database instance exponentially many repairs. In particular, com-
puting the consistent answers of a fixed Select-Project-Join (SPJ)
query can be a coNP-complete problem. Frequently asked database
queries often involve one of the standard aggregation operators
MINCA), MAX(A), SUM(A), COUNT(A), COUNT (%), or AVG(A). Such
queries are called aggregation queries and they may also involve a
GROUP BY clause that partitions a relation into disjoint groups so
that the aggregate operators are applied separately to each group.
Thus, an aggregation query is of the form
Q:= SELECT Z, f(A) FROM T(U,Z, A) GROUP BY Z,

where f(A) is an aggregation operator and T(U, Z, A) is the relation
returned by a SPJ query g expressed in SQL. A scalar aggregation
query is an aggregation query without a GROUP BY clause.

What is the semantics of an aggregation query over an inconsis-
tent database? An aggregation query may return different answers
on different repairs of an inconsistent database; thus, there is typi-
cally no consistent answer as per the earlier definition of consistent
answer. To obtain meaningful semantics to aggregation queries,
Arenas et al. [3] introduced the range consistent answers.

Let Q be a scalar aggregation query. The set of possible answers
to Q on a database instance J inconsistent w.r.t. a fixed set ¥ of
integrity constraints consists of the answers to Q over all repairs of
I wrt. 2, ie,Poss(Q,7,%) ={Q(J) | J is arepair of I w.rt. 2}.
By definition, the range consistent answers to Q on I is the interval
[glb(Q, T),lub(Q, )], where the endpoints of this interval are,
respectively, the greatest lower bound (glb) and the least upper
bound (lub) of the set Poss(Q, I, ) of possible answers to Q on 7.
For example, the range consistent answers to the query

SELECT SUM(ACCT.BAL) FROM ACCT, CUSTACCT WHERE
ACCT.ACCID = CUSTACCT.ACCID AND CUSTACCT.CID = ‘C2’

on the instance in Table 1 is the interval [900, 2200]. The meaning
is that no matter how the database I is repaired, the answer to the
query is guaranteed to be in the range between 900 and 2200.
Arenas et al. [4] focused on scalar aggregation queries only. Fux-
man, Fazli, and Miller [14] extended the notion of range consistent
answers to aggregation queries with grouping. For a query
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Table 1: Running example — an inconsistent database instance 7 (primary key attributes are underlined)

CUSTOMER | CID CNAME CITY ACCT | ACCID TYPE CITY BAL
C1 John LA fi Al Checking LA 900 fs CUSTACCT | CID  ACCID
C2 Mary LA f A2 Checking LA 1000 f fu
C2 Mary SF f A3 Saving  S] 1200 fg fiz
C3 Don SF f3 A3 Saving SF -100 fo fis
c4 Jen LA fs Ad Saving SI 300 fio fia
Q := SELECT Z, f(A) FROM T(U,Z,A) GROUP BY Z, Query Pre-processor Module This module takes the query and the

we say that a tuple (T, [glb, lub]) is a range consistent answer to Q
on 7, if the following three conditions hold: (i) For every repair
of T, there exists d s.t. (T,d) € Q(J) and glb < d < lub; (ii) For
some repair J of I, we have that (T, glb) € Q(J); (iii) For some
repair J of 7, we have that (T, lub) € Q( 7).

If Q is an aggregation query, Cons(Q) denotes the problem:
given an instance J, compute the range semantics of Q on 7.

Several academic prototype systems for consistent query answer-
ing have been developed [4, 5, 8, 10, 13-15, 17, 19, 21, 22]. These
systems use different approaches, including as logic programming
[5, 17], compact representations of repairs [7], or reductions to
solvers [11, 13, 19, 21]. Among these, only the ConQuer system
[14, 15] is capable of handling aggregation queries with grouping.
However, ConQuer can only handle an aggregation query with
grouping, provided the underlying SPJ query belongs to a class
called Cfypest- For such a query Q, the range consistent answers of
Q are SQL-rewritable, i.e., there is a SQL query Q’ such that the
range consistent answers of Q on an instance 7 can be obtained
by directly evaluating Q” on 7. This leaves out, however, many
aggregation queries with grouping, including all queries whose
range consistent answers are not SQL-rewritable or are NP-hard to
compute. Up to now, no system supports such queries.

Here, we demonstrate CAvSAT (Consistent Answers via Satisfi-
ability Solving), the first system to compute the range consistent
answers to all aggregation queries involving the aggregation opera-
tors SUM(A), COUNT (A), COUNT (*) with or without grouping. Note
that, while an earlier version of CAvSAT supporting the consistent
answers to SPJ queries (but not to aggregation queries) was reported
in [10, 11], this is the first time that CAvSAT is demonstrated. A
full account of CAVSAT with technical results concerning the range
semantics and a detailed experimental evaluation are in [12].

The distinctive feature of CAvSAT is that it uses natural re-
ductions to reduce the consistent answers of SPJ queries and the
range consistent answers of aggregation queries to Boolean satisfi-
ability (SAT) and to optimization variants of SAT, such as Partial
MaxSAT and Weighted Partial MaxSAT. It then deploys powerful
SAT solvers, such as the MaxHS solver [9], to compute the answers.
Moreover, CAvSAT can handle databases that are inconsistent not
only w.r.t. primary keys but w.r.t. arbitrary denial constraints, a
much broader class of constraints that contains primary keys and
functional dependencies as special cases [6].

2 CAVSAT SYSTEM OVERVIEW
2.1 System Architecture

CAVSAT has a modular architecture, which is shown in Figure 1.
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set of integrity constraints as inputs and attempts to determine the
complexity of computing the consistent answers to the query. For
SPJ queries without self-joins and with primary key constraints, the
module implements the attack graph algorithm [20] to determine
whether or not the consistent answers are SQL-rewritable. If the
consistent answers are SQL-rewritable, the query is forwarded to
the Query Re-writing module. If the consistent answers are not SQL-
rewritable or their complexity is not known in the pre-processing
stage, the queries are forwarded to one of the SAT-solving modules
depending on whether or not the query has aggregate operators.

Query Re-writing Module This module implements the query-
rewriting algorithms in [14, 15, 20]. For queries with SQL-rewritable
consistent answers, this module produces the consistent rewriting
and evaluates it on the inconsistent database instance directly to
obtain the consistent answers to the original input query.

Query Re-writing

SPJ Queries with aggregation and —
grouping that have SQL-rewritable
consistent answers

Input Query SAT Solving
—_—

Consistent

L ) Answers
All SPJ Queries (including theones —

with intractable consistent answers)

Query
Pre-processor

Integrity
Constraints

SAT Solving

i -
Inconsistent Database &=

L, All SPJ Queries with aggregation
functions and grouping

Figure 1: Modular architecture of CAvSAT

SAT Solving Modules These two modules reduce a given CQA
instance to an instance of Boolean satisfiability (SAT) or one of its
variants via polynomial-time reductions. After constructing such a
SAT instance, these modules invoke a SAT solver to compute an (op-
timal) solution and then extract the consistent answers to the query.
For queries without aggregation, the reductions and the detailed
workings of the SAT-solving module for queries are presented in our
earlier paper [11]. Here, we focus on demonstrating the SAT-solving
module tailored to answer queries with the aggregation operators
SUM(A), COUNT(A), and COUNT (). In the SAT-solving module for
aggregation queries, we reduce the computation of the range consis-
tent answers to Partial MaxSAT for COUNT (*) and COUNT (A), and
to Weighted Partial MaxSAT for SUM(A). Due to space limitation,
we only present the reduction for the SUM(A) aggregation operator.
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2.2 Workflow of the SAT Solving Module

Let Q := SELECT SUM(A) FROM T (U, A) be an aggregation query
where T(U, A) is a relation expressed using an SPJ query q. Let
I be a database instance and G be the set of groups of tuples of
T that share the values of the key attributes. Moreover, let W =
Wi, - -+, Wiy, be the set such that each W; is a minimal set of tuples

that satisfy the query ¢* on 7, where ¢* := SELECT 1 FROM T(U, A).

ReDUCTION 2.1. Foreach tuple f; of I, introduce a boolean variable
x;. Construct a weighted partial CNF formula ¢ as follows:

(1) For each Gj € G,

e construct a hard clause aj :== vV x;.

fieG;
e foreach pair (fm, fn) of tuples in G such that m # n, construct
a hard clause a;."" = (mxm V —xp).

(2) Let Wp and Wy be the subsets of ‘W such that for each
W; € W, we have W; € Wp iff ¢*(W;) > 0, and W; € Wy
iff ¢ (W;) < 0. Let also w; = [lg"(W))||, where [|g"(W))|| is the
absolute value of g* (W;). Construct a weighted soft clause f; and a
conjunction y; of hard clauses as follows. If W; € Wy, introduce a
new variable y;j and let

Bj = (yj,wj) andy; = ((feij ﬂxi) Vyj) A (f,-eij (-y; in)).

i

Construct a weighted partial CNF formula

|G| |G| W
= Aai|A| A mENAl A Bi|l A A il
! (Fla]) (j_l(fm/e\gjaj )) (1‘:1 ﬁj) (wjewNy’)
fnegG;

It can be shown that if 7 is a database instance, Q is an aggre-
gation query with SUM(A), and ¢ is the WPMaxSAT-instance con-
structed using Reduction 2.1, then, in a maximum (a minimum) sat-
isfying assignment of ¢, the sum of weights of the falsified clauses
is the glb-answer (lub-answer) in the range consistent answers
Cons(Q) on 7. We illustrate the workflow of computing range
consistent answers using Reduction 2.1 using an example. Let 7
be the database instance from Table 1 and let Q be the following
aggregation query Q, which asks for the sum of all account balances
belonging to a customer named Mary:

SELECT SUM(ACCT.BAL) FROM CUSTOMER, ACCT, CUSTACCT
WHERE CUSTOMER.CID CUSTACCT.CID AND ACCT.ACCID
CUSTACCT.ACCID AND CUSTOMER.CNAME = ‘Mary’

From Reduction 2.1, we construct the following clauses:

a-clauses: x1, (x2 V x3), X4, X5, X6, X7, (X8 V X9), X10;

a™-clauses: (—xp V =x3), (—-xg V —x9);

P-clauses: (—xz V —x7,1000), (=x3 V —x7,1000), (—x2 V —xg, 1200),
(=x3 V =x3,1200), (y1, 100), (y2, 100);

y-clauses: (=xz V=x9 Vy1), (=41 Vx2), (=y1V x9), (=x3V =x9 Vy2),
(=2 V x3), (=y2 V x9).

Observe that the the variables corresponding to the tuples in the
CUSTACCT relation can be omitted, because CUSTACCT does not vi-
olate X. The witnesses {f2, fo, fi3} and {f3, fo, fi3} belong to Wy
due to the account balance being -100 in both cases, so we introduce
new variables y; and y; respectively, and construct hard y-clauses
as described above. The f-clauses corresponding to these witnesses
are (y1,100) and (y2, 100) respectively. Observe that the sum of
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weights of all soft clauses of ¢ is 4400. An assignment in which
xg = 0 and x9 = 1 is a maximum satisfying assignment to the
PMaxSAT instance ¢ constructed from above clauses. The sum of
satisfied soft clauses by this assignment is 3500 since it satisfies two
clauses with weights 1200 each, one with weight 1000 and one with
weight 100. Thus, the glb-answer is 4400 - 3500 = 900. Similarly,
setting xg = 1 and x9 = 0 yields a minimum satisfying assignment
in which the sum of satisfied soft clauses is 2200, since it satisfies
one clause with weight 1200 and one with weight 1000, indicating
that the lub-answer is 4400 - 2200 = 2200. Hence, we have that
Cons(Q, T) = [900, 2200].

The preceding Reduction 2.1 assumes that the constraints on
the schema consist entirely of keys and, actually, that there is one
key per relation. The reduction can be extended to arbitrary denial
constraints on the schema - the details can be found in [12].

3 IMPLEMENTATION OVERVIEW

Figure 2 depicts the implementation of CAVSAT at a high level.
We use the Microsoft SQL Server 2019 to store the inconsistent
database instance accompanied with a set of integrity constraints.
Since we need the database server to store inconsistent data and
handle inconsistencies at query time, the integrity constraints are
not applied on the database instance within the server, but are stored
separately as a relation. The reductions from consistent answers
to variants of SAT are implemented in Java 8, and are hosted as a
Spring application on a web server. This server also runs MaxHS, a
powerful Weighted MaxSAT solver [9]. The web-based graphical
user interface of CAvSAT is implemented using the React]S front-
end development framework that connects to the CAvSAT back-end
via REST API calls. The CAvSAT source code is available at the
GitHub repository https://github.com/uccross/cavsat via a BSD-
style open-source license.

CAVSAT backend
Spring App (Java)

GUI

EIE]ENS
Instance

ReactlS

WPMaxSAT
solver (MaxHS)

Set of integrity
constraints

Figure 2: Implementation overview of CAVSAT

From our experimental evaluation, we observed that the reduc-
tions that encode the given CQA instance into a suitable variant
of SAT take the majority of the overall time taken by CAvVSAT to
compute the range consistent answers to aggregation queries. This
is because the SAT-solving modules need to run SQL queries on
the inconsistent data in order to construct the clauses of the CNF
formula and it is a time-consuming task if the input query has more
joins or high selectivity. We have tested queries involving joins with
up to six relations over large databases, but it remains to be seen
whether constructing the clauses corresponding to the minimal
witnesses is a computational bottleneck causing the performance of
CAVSAT to deteriorate as the number of joins in the query increase.
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4 DEMONSTRATION OVERVIEW

We describe the features of the system that we will demonstrate.
First, the user connects to a remote database server via SQL server

CAVSAT ©

CAVSAT

Consistent Answers via Satisfiability

CAVS,

and ¢

nconsistent d
Jules via REST API calls.

swering queries ove antics. This prototype Ul is built using React,

hank yc

Start by connecting to a database below.
Ms SQL Server
cqa database windows net
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Figure 3: CAvSAT GUI while connecting to a remote data-
base using SQL server authentication

authentication, as shown in Figure 3. After a connection is estab-
lished, the user is asked to choose the database instance on which
queries will be evaluated. The top right corner of the user interface
in Figure 4 shows that the user is connected to a Microsoft SQL
Server at localhost and ready to run queries on a database instance
named bank_accounts. CAvSAT allows the user to specify the in-
put query either using SQL or with first-order logic syntax. The user
has a choice between evaluation strategies for computing consistent
answers: the default is to use SAT solving, while two SQL-rewriting
algorithms from [14, 20] can be used for SPJ queries having SQL-
rewritable consistent answers. After evaluating a query, CAvSAT
internally runs a suitable solver (or evaluates an SQL-rewriting)
and displays the consistent answers (or range consistent answers
in case of an aggregation query) to the user (Figure 4).

Select Project-oin (%) Query *sa
SELECT SUM(ACCOUNTS.BAL) FROM CUSTOMER, ACCOUNTS, CUSTACC WHERE CUSTOMER.CID = CUSTACC.CID AND ACCOUNTS.ACCID =

CUSTACC.ACCID AND CUSTOMER.CNAME = 'Mary"

otential Answers Query Analysis

Result via Partial MaxSAT Solving

1 %0

Figure 4: CAVSAT GUI after computing the range consistent
answers to an aggregation query from Section 2.2

CAvVSAT has several other features, including the following:

(a) The user can preview the selected schema, the integrity con-
straints on the schema and the raw data in the tab titled Preview
Schema and Raw Data.

(b) The Potential Answers tab displays the answers to the input
query evaluated directly on the inconsistent database instance. This
not only helps users to visualize the difference between potential
and consistent answers, but to also determine the overhead of
computing consistent answers compared to evaluating the input
query on the database directly.

(c) The Query Analysis tab shows the complexity of computing
consistent answers to the query if it is determined by the Query
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Pre-processor module. The attack graph and the join graph of the
input query are also visualized (Figure 5).

(d) The Running Time Analysis tab shows the break-down of the
internal tasks performed by CAvSAT while computing the consis-
tent answers along with the time taken to complete each of those
tasks (Figure 6).

Select Project Join (5P)) Query o sal

SELECT CUSTOMER.CNAME FROM CUSTOMER, ACCOUNTS, CUSTACC WHERE CUSTOMER.CID = CUSTACC.CID AND ACCOUNTS.ACCID =
CUSTACC.ACCID AND CUSTOMER.CITY = ACCOUNTS.CITY

Query Analys

ACCQUNTS
CUSTOMER
/ CUSTACC
\
cus?
S \\J‘ CUSTOMER
ACCCUNTS

Figure 5: Query Analysis tab showing an attack graph of a
query: a visual explanation on why computing consistent
answers to the input query is coNP-complete

SAT / Partial MaxSAT Solving

Time to compute answers from the consistent part of the database (ms)
Time to compute minimal witnesses to the query (ms)

Time to compute relevant facts (ms)

Time to attach FactiDs to the relevant facts (ms)

Time to create positive clauses from key-equal groups (ms) 4
Time to create negative clauses from minimal witnesses (ms)
Time to write the clauses to a DIMAC file (ms) 3
Time to eliminate inconsistent potential answers (ms)
Total SAT-solving time (ms)

Time to write the final consistent answers to a table (ms)

Total Evaluation Time (ms)

Figure 6: Screenshot of the break-down of time taken to com-
pute consistent answers using the SAT-solving module

An extensive experimental evaluation of CAvSAT is presented
n [12]. This evaluation involves both synthetic and real-word
databases, and a variety of aggregation queries with and without
grouping. The first set of experiments included a comparative study
of CAvSAT with ConQuer [14, 16]. In a standalone performance
evaluation of CAvSAT, we experimented with TPC-H databases of
varying sizes starting from 0.5 GB (8 million tuples) to up to 5 GB (44
million tuples) and varying degree of inconsistency w.r.t. primary
key constraints from 5% to 35%. The experiments with a real-world
database were carried out to evaluate CAvSAT’s performance in
presence of functional dependencies and denial constraints. We
obtained promising results from both sets of experiments that cor-
roborate the applicability and the scalability of CAvSAT.
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