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Abstract: Current novel coronavirus disease (COVID-19) has spread globally within a matter of
months. The virus establishes a success in balancing its deadliness and contagiousness, and causes
substantial differences in susceptibility and disease progression in people of different ages, genders
and pre-existing comorbidities. Since these host factors are subjected to epigenetic regulation, rele-
vant analyses on some key genes underlying COVID-19 pathogenesis were performed to longitudi-
nally decipher their epigenetic correlation to COVID-19 susceptibility. The genes of host angioten-
sin-converting enzyme 2 (ACE2, as the major virus receptor) and interleukin (IL)-6 (a key immune-
pathological factor triggering cytokine storm) were shown to evince active epigenetic evolution via
histone modification and cis/trans-factors interaction across different vertebrate species. Extensive
analyses revealed that ACE2 ad IL-6 genes are among a subset of non-canonical interferon-stimu-
lated genes (non-ISGs), which have been designated recently for their unconventional responses to
interferons (IFNs) and inflammatory stimuli through an epigenetic cascade. Furthermore, signifi-
cantly higher positive histone modification markers and PWM (position weight matrix) scores of
key cis-elements corresponding to inflammatory and IFN signaling, were discovered in both ACE2
and IL6 gene promoters across representative COVID-19-susceptible species compared to unsus-
ceptible ones. Findings characterize ACE2 and IL-6 genes as non-ISGs that respond differently to
inflammatory and IFN signaling from the canonical ISGs. The epigenetic properties ACE2 and IL-6
genes may serve as biomarkers to longitudinally predict COVID-19 susceptibility in vertebrates and
partially explain COVID-19 inequality in people of different subgroups.
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1. Introduction

First identified in Wuhan, China, last December, the novel coronavirus disease 2019
(COVID-19) has spread worldwide and caused over 0.68 million confirmed deaths and 17
million infected cases across 200 countries by the end of July 2020 [1,2]. COVID-19 stands
out as a new zoonotic disease caused by Severe Acute Respiratory Syndrome coronavirus
2 (SARS-CoV2) [3], which, in the view of a virus, obtains an effective balance between its
deadliness and contagiousness in humans [4,5]. In line with that, patients with the ages
over 45, especially 75 years old had a worse prognosis and 5-10 fold higher mortality rate
than younger ones at 0-17 years old, who mostly showed a mild disease or even asymp-
tomatic [6-15]. Similarly, higher mortality rates were observed in males than females, and
particularly in the patients who have pre-existing medical conditions (comorbidities) re-
gardless of gender or age [6-15]. These underlying comorbidities include diabetes, cancer,
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immunodeficiency, hypertension and cardiovascular disease, asthma and lung disease,
kidney disease, as well as chronic Gl/liver disorders. In addition to predictable symptoms
of cough, fever and headache from the lung infection, the virus can spread to almost every
organ including the brain, heart, gut, kidneys and skin to cause organ-specific problems
[6-15]. Therefore, on the host side, SARS-CoV2 susceptibility and disease progression of
COVID-19 is a phenomenon of epigenetic regulation, which underlies the diversity of the
disease progression throughout the body system and across different patients that share
a near identical genetic background except those have inborn genetic mutations [16-19].

Zoonosis and reverse zoonosis infer a dynamic exchange of pathogens between hu-
mans and animals, particularly domestic and wild vertebrates. This constitutes a major
challenge for both public health and animal health, and unites them into ONE ecological
health. The potential infection of SARS-CoV2 in both wild and domestic animals is a pub-
lic health concern after the COVID-19 prevalence in human society [20,21]. This concern
emphasizes: (1) the identification of reservoir animal species that originally passed SARS-
CoV2 to humans; and (2) potential risks of infected people passing the virus to animals,
particularly domestic species, to form an amplifying zoonotic cycle and exacerbate SARS-
CoV2 evolution and cross-species transmission [20,21]. Recent studies provided evidence
that domestic minks, cats and dogs could be virally or serologically positive for SARS-
CoV2 [20-28], as were several Bronx zoo tigers [29]. Experimental animal inoculations
with human SARS-CoV?2 isolates demonstrated that ferrets, hamsters, domestic cats and
some non-human primate species were susceptible to human SARS-CoV2 strains; how-
ever, pigs, alpacas, and (putatively) cattle are not [20-29]. Previously, we and several oth-
ers have proposed structural simulation models of ACE2 and the viral S-Receptor binding
domain (S-RBD) to predict SARS-CoV2 susceptibility across representative vertebrates,
especially major domestic and wild mammalian species [30-33]. The structural affinity be-
tween ACE2 and S-RBD plays a primary role in the viral attachment and accessibility in
cells, and the specific early cellular responses that regulate ACE2 expression and signal
early immune responses determine the host susceptibility to the virus [34-40]. We propose
an integrative model, which incorporates both ACE2-RBD structural affinity (primarily
determined by cross-species genetic difference) and epigenetic regulation of key genes
during the early phase of the virus-host interaction, to predict host COVID-19 susceptibil-
ity and disease progression [30-33].

Among the core host factors that determine COVID-19 susceptibility and early dis-
ease progression, angiotensin-converting enzyme 2 (ACE2) and interleukin (IL)-6 were
focused upon because of their critical roles directly involved in viral infection and host
immunopathies [41-45]. In SARS-CoV2 pathogenesis, ACE2 serves as primary receptors
for cell attachment and entry [42,43]. Several groups have reported that SARS-CoV2 exerts
higher receptor affinity to human ACE2 than other coronaviruses, which may contribute
to the high-contagiousness and rapid spread of SARS-CoV2 in humans [42,43]. Being a
key enzyme in the body’s renin-angiotensin-aldosterone system (RAAS), ACE2 catalyzes
angiotensinogen (AGT) to produce the active forms of hormonal angiotensin (Ang) 1-9,
which directly regulate the blood volume/pressure, body fluid balance, sodium and water
retention, as well as co-opt multiple effects on inflammation, apoptosis, and generation of
reactive oxygen species (ROS) [43-45]. In this regard, not only do the virus direct binding
and functional impairment of ACE2 enzymatic function but also epigenetic regulation of
ACE2 expression in various tissues/conditions, serve as a physio-pathological mechanism
underlying COVID-19 disease complex and further relate to blood clotting, aneurism and
chilblains in infant patients [43-46].

SARS-CoV2 seizes ACE2 for cell entry, which can be followed by a cytokine-related
syndrome, namely acute respiratory distress syndrome (ARDS). Plausibly, the occupancy
of the ACE2 catalytic domain by the viral Spike protein (S) blocks AGT activation into
Angl1-9 and leads to the accumulation of Ang?2 in the serum [43-46]. Circulatory increase
of Ang?2 induces inflammatory cytokines, including TNF-a, IL-6, and soluble IL-6 receptor
a (sIL-6Ra) in pneumocytes and macrophages, through binding Angl-receptor (AT1R)
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and activating disintegrin- and metalloprotease 17 (ADAM17)-mediated cascade [41-46]. 99
This process is followed by activation of the IL-6 amplifier (IL-6-AMP), which co-activates 100
NF-kB and transcription factor STAT3 to enhance inflammatory response and leads to 101
ARDS underlying COVID-19. Ang2-ATIR activation also induces pyroptosis, a highly in- 102
flammatory form of programmed cell death accompanying cytotoxicity caused by viral 103
infections [41,45,46]. Aggregately, SARS-CoV2 itself also activates NF-kB via various pat- 104
tern recognition receptors (PPRs) [33-40]. Therefore, IL-6 and IL-6 AMP are biomarkers of 105
hyperactivation of inflammatory machinery exacerbated by ACE2 blocking and viral in- 106
fection, which represent key cytokines in deciphering cytokine-related syndrome and dis- 107
ease progression of COVID-19 [41,45,46]. 108
The expression of ACE2 is inter-regulated by multiple physio-pathological factors, 109
including intracellular pathogenic infection, pre-existing inflammatory condition from 110
comorbidities, and inflammatory cytokines including TNF and IFNs [41-46]. Several re- 111
cent studies demonstrated that human ACE2 gene behaved like an interferon-stimulated 112
gene (ISG) and was stimulated by viral infection and IFN treatment; however, mouse Ace2 113
gene was not [47-49]. Canonical ISGs describe over a thousand cellular genes that are in- 114
duced by IFN simulation via the IFN-JAK-STAT signaling axis [50]. These canonical ISGs 115
are mainly induced by type I and type III IFNs but overlap with those upregulated by 116
type II IEN (i.e. IFN-y) [47-50]. These ISGs comprise a frontline of antiviral immunity to 117
restrict virus spreading from the initial infection sites [50]. However, based on gene evo- 118
lution and epigenetic analyses, ACE2 may not be a member of these classical antiviral 119
ISGs, and more likely belong to the non-canonical ISGs (non-ISGs) like IL-6 (a.k.a. IFN-f2 120
in humans) [47-51]. These non-ISGs are primed under a pre-inflammatory condition and 121
stimulated by IFN or IFN plus TNF through an epigenetic cascade involving positive his- 122
tone modification (mainly H3K4me3 and H3K27ac) to increase chromatin accessibility for 123
binding by transcription factors (including PU.1, IRFs, and NF-kB) and culminating in = 124
non-ISGs expression (Figure 1) [51-54]. To confirm that, we conducted cross-species com- 125
parative analysis between IL-6 and ACE2 genes. First, annotation of ENCODE epigenetic 126
datasets discovered similarity of H3K4me3 and H3K27ac markers between IL-6 and ACE2 127
gene promoters in both humans and mice; however, significantly higher Z-scores and en- 128
richment of H3K4me3 and H3K27ac in human IL-6 and ACE2 genes were detected than 129
in their mouse orthologs, respectively [55]. Second, detection of cis-regulatory elements 130
(CREs) that bind core transcription factors of non-ISGs, including PU.1, IRFs, and NF-kB, 131
in ACE2 and IL-6 gene proximal promoter regions across 25 representative animal species 132
[30,56]. Third, we found that the evolutionary increase of ACE2, and especially the IL-6 133
genes response to inflammatory and IFN signaling may serve as epigenetic marker for 134
COVID-19 susceptibility in some animal species including humans. Finally, using our 135
non-biased RNA-Seq data, we further categorize more non-ISGs that resemble the expres- 136
sion pattern of either IL-6 or ACE2 [57]. Notably, we detected two ACE2 isoforms, which 137
differ in both proximal promoters and coding regions, in some livestock species including 138
pigs, dogs and cattle [30]. In pigs, the ACE2 short isoform (ACE2S) has an expression pat- 139
tern more similar to IL-6 than the long isoform (ACE2L). Collectively, our findings char- 140
acterize ACE2 and IL-6 genes as non-ISGs responding differently to inflammatory and 141
IFN signaling, and their epigenetic properties may serve as biomarkers to predict COVID- 142
19 susceptibility in vertebrates longitudinally and partially explain COVID-19 inequality = 143
in people of different subgroups [20,30-33]. 144
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Figure 1. Schematic of epigenetic regulation and interferon (IFN) signaling to coordinate induction
of non-canonical IFN-stimulated genes (non-ISGs). Stimulation of lung macrophages and epithe-
lial cells with tumor necrosis factor (TNF) induces transient expression of TNF-target genes encod-
ing inflammatory mediators, such as IL6 and TNF, followed by an insensitive state in which sig-
naling responses to TLR ligands are strongly suppressed, and chromatin is not activated (depicted
by a grey shade). This transient suppression state can be activated by a co-stimulation with TNF
plus IFN-a and results in increase of positive histone markers (mostly H3K4me3 and H3K27ac)
and chromatin accessibility, which further coordinate binding of IRFs and NF-«B transcription
factors and lead to non-ISG marker gene (such as IL-6) expression. Many inflammatory genes in-
cluding angiotensin converting enzyme 2 (ACE2) as demonstrated in recent studies can be among
these genes, which are bookmarked with primed chromatin and subsequently exhibit a robust
transcriptional response even to very weak proximal TLR-induced signals, which may comprise a
critical factor in exacerbation of pulmonary inflammatory and COVID-19 syndrome. Adapted and
redrawn from Barrat et al. (2019) [51]. Abbreviations: ac, acetyl; me, methylation; Pol, polymerase;
PU.1, transcription factor binding to the PU-box, a.k.a SPI1; Non-ISG, non-canonical interferon
stimulated genes; GTF, sTF, or TF, general (G), tissue-specific (s) transcription factor (TF); TLR,
toll-like receptor; TSS, transcription start site.

2. Materials and Methods
2.1. Annotation of ENCODE epigenetic datasets:

The profile of epigenetic markers relevant to histone positive modification, mainly
H3K4me3 and H3K27ac, were searched using the gene symbols through the ENCODE
public domain at https://www.encodeproject.org/ under the default condition [55]. The
ENCODE datasets for generating the epigenetic results include those mainly based on
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Chip-Seq and ATAC-Seq from 839 and 157 cell/tissue types of humans and mice, respec- 169
tively. The Max Z-Scores and locations of the histone markers on the gene promoter re- 170
gions were then curated under a permission for academic users, and manually diagramed. 171

2.2. Promoter sequence extraction and alignment: 172

The DNA sequences of the proximal promoters of analyzed genes were extracted 173
from NCBI Gene and relevant databases (https://www.ncbi.nlm.nih.gov/gene). Both IL-6 174
and ACE2 genes and corresponding transcripts have been well annotated in most repre- 175
sentative vertebrate species. In most cases, the annotations were double verified through 176
the same Gene entries at Ensembl (https://www.ensembl.org). The protein and DNA se- 177
quences were collected from all non-redundant transcript variants and further verified for 178
expression using relevant RNA-Seq data (NCBI GEO profiles) (Supplemental Excel Sheet). 179
The proximal promoter region spans ~2.5 kb before the predicted transcription (or trans- 180
lation) start site (TSS). The protein and DNA sequences were aligned using the multiple 181
sequence alignment tools of ClustalW or Muscle through an EMBL-EBI port 182
(https://www .ebi.ac.uk/). Other sequence management was conducted using programs at 183
the Sequence Manipulation Suite (http://www.bioinformatics.org). Sequence alignments 184
were  visualized using Jalview  (http://www jalview.org) and MEGAx 185
(https://www.megasoftware.net). Sequence similarity calculation and plotting were done 186
using SDT1.2 (http://web.cbio.uct.ac.za/~brejnev). Other than indicated, all programs 187
were run with default parameters [30]. 188

2.3. Examining transcription factor binding sites in the gene promoters and PWM scoring: 189

We use two programs/databases to confirm each other for the major CRE predictions. 190
The regulatory elements (and corresponding binding factors) in the ~2.5 kb proximal pro- 191
moter regions were examined against both human/animal TFD Database using a program 192
Nsite (Version 5.2013, at http://www.softberry.com). The mean position weight matrix 193
(PWM) of key cis-elements in the proximal promoters were calculated using PWM tools 194
through https://ccg.epfl.ch/cgi-bin/pwmtools, and the binding motif matrices of examined 195
TFs were extracted from MEME-derived HOCOMOCOvV11 TF collection affiliated with 196
the PWM tools [56]. The species-specific CRE sequences were then extracted from each 197
promoter sequence for alignments in Fig. 3. 198

2.4. Phylogenic analysis and topological comparison: 199

Evolutionary analyses were conducted in MEGA X as described [30]. The evolution- 200
ary history was inferred by using the Maximum Likelihood method and Tamura-Nei 201
model. Initial tree(s) for the heuristic search were obtained automatically by applying 202
Neighbor-Join and BioN] algorithms to a matrix of pairwise distances estimated using the = 203
Tamura-Nei model, and then selecting the topology with superior log likelihood value. 204
For topological comparison between phylogenic trees generated using IL-6 and ACE2 205
gene proximal promoters, the phylogenies of Newick strings were generated using the 206
MEGA program, and topological comparison between the Newick trees was performed 207
with Compare2Trees at (http://www.mas.ncl.ac.uk/~ntmwn/compare2trees) to obtain the 208
overall topological scores. Other than indicated, all programs were run with default pa- 209
rameters as the programs suggested. 210

2.5. RNA-Seq and data analysis: 211

During cross-species annotation of ACE2 and IL-6 genes, RNA-Seq datasets that are 212
affiliated to NCBI gene entries (such as BioProjects PRJEB4337 and PRJNA66167 for hu- 213
mans and mice genes) were used to verify the gene expression per RNA-Seq exon/intron 214
coverage analyses. The detailed records for NCBI RNA-Seq data analyses was provided 215
as in Supplement Excel Sheet. For expression confirmation, several sets of RNA-Seq data 216
from NCBI Gene databases, and one of ours generated from porcine alveolar macrophages 217
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(BioProject with an accession number of SRP033717), were analyzed for categorizing ISGs 218
and non-ISGs accordingly to the expression patterns of IL-6 and ACE2 genes. Significantly = 219
and differentially expressed genes (DEGs) between two treatments were called using an 220
edgeR package and visualized using bar charts (RPKM) or heatmaps (Log?2 fold ratio) as 221

previously described [57]. 222
3. Results and Discussion 223
3.1. Epigenetic processes in induction of non-canonical IFN-stimulated genes (non-1SGs): 224

Studied mostly in humans and mice, the hundreds of classical ISGs, such as ISG15 225
and IRF1, contain the main IFN-responsive CREs, including IFN-stimulated regulatory 226
element (ISRE) and vy-activated sequence (GAS), in their promoter regions [47,50]. The 227
tripartite IFN-stimulated gene factor 3 (ISGF3), which is composed of three transcription 228
factors including STAT1, STAT2 and IRF9, is activated downstream of the IFN-JAK-STAT = 229
signaling axis to bind ISREs and stimulate canonical ISG expression [47,50]. In additionto 230
this classical axis to induce ISGs, IFNs also co-opt multiple non-canonical signaling path- 231
ways to activate these ISGs or other corresponding genes together through various alter- 232
ative mechanisms [51-54]. These non-canonical IFN signaling pathways involve extensive 233
crosstalk between the signaling pathways mediated by various cellular pathogen pattern- 234
recognition receptors (PRRs) and inflammatory cytokines, notably IL-1, IL-6 and TNF [51- 235
54]. The non-canonical signaling pathways not only diversify mechanisms for inducing 236
ISGs, but also extend the spectrum of IFN-responsive genes, indicating a multifunctional 237
property of IFNs in antiviral and immuno-physiological regulation [50-54]. Recent studies 238
showed that human IL-6 and ACE2 are two candidates for these non-ISGs [47-51]. Figure 239
1 shows current understanding of the gene activation cascade of human IL-6 (and plausi- 240
bly ACE2) genes as an example of non-ISGs, whose IFN-inductive property and systemic 241
role recently recognized as underlying multiple inflammatory comorbidities [51,54]. In 242
brief, stimulation of epithelial cells and tissue macrophages by early pro-inflammatory 243
signaling of TNF induces transient expression of TNF-target genes encoding inflamma- 244
tory mediators, such as IL6 and TNF. This is followed by a transient state that is insensitive =~ 245
to further inflammatory signaling from TLR activation, and thus relevant chromatin con- 246
taining non-ISGs are not activated (depicted by a grey shade in Fig. 1). This transient sup- 247
pression state, however, can be activated by a co-stimulation with TNF plus IFN-a result- 248
ing in increase of positive histone marks (H3K4me3 and H3K27ac) and chromatin acces- 249
sibility of the gene promoter regions, which sequentially recruit the binding of corre- 250
sponding transcription factors including IRFs and NF-«B to activate non-ISG expression 251
[51,54]. Besides IL-6, many tunable ISGs including human ACE2 as demonstrated in re- 252
cent studies show sustainable response to IFN and pathogenic inflammatory signaling, 253
and share expression patterns involving epigenetic sensation and synergistic IFN-induc- 254
tion as depicted for non-ISGs (Figure 1) [47-54]. However, the cross-species evolutionary 255
characterization of non-ISGs has not been studied. Using IL-6 and ACE2 as examples, ex- 256
tensive epigenetic and expression analyses were performed in this study to determine 257
their epigenetic evolution and potential role as biomarkers to predict the susceptibility 258
and disease progression of COVID-19. 259

3.2. Determine species-specific positive histone marks in human and mouse IL-6 and ACE2 gene 260
promoters 261

Epigenetic positive histone modification in a certain chromatin region, mainly in- 262
cluding histone H3 with tri-methylation at the 4t lysine residue (H3K4me3) or with the 263
acetylation at the 27t lysine residue (H3K27ac) here, is associated with a higher activation 264
status of adjacent gene transcription, thus defined as positive epigenetic marks enhancing 265
relevant gene expression. The enrichment of H3K4me3 and H3K27ac defines one epige- 266
netic feature of non-ISGs post activation [51-55]. Through annotation of Chip-Seq and 267
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ATAC-Seq datasets from 839 and 157 cell/tissue types of humans and mice through EN- 268
CODE (https://www.encodeproject.org/) [55], we detected significant and comparative 269
existence of H3K4me3 and H3K27ac markers between IL-6 and ACE2 gene promoters in 270
various humans and mouse samples (Figure 2). However, higher Z-scores and enrichment 271
of H3K4me3 and H3K27ac were found in human IL-6 and ACE2 genes (Figure 2A and 2B) 272
than their mouse orthologs (Figure 2C and 2D). In both distal and proximal regions of the 273
ACE2 gene promoters, the human gene (Figure 2A) was marked by 2-3 folds more of these 274
positive histone modification than the mouse ortholog, indicating higher activation and 275
transcription activity of human IL-6 and ACE2 genes under similar conditions. Notably, 276
human IL-6 is a short gene located distantly from other coding genes and might correlated 277
to higher histone marks (esp. H3K27Ac) relevant to distal super enhancers. By contrast, 278
human ACE2 gene is a relatively long gene surrounded by other genes, and its major pro- 279
moter is compacted in a more proximal region and has a limited H3K27Ac marks span- 280
ning the 2000-5000 bp distal region. Because these findings are extracted from the exten- 281
sive datasets representing systemic sample types, it is convincing that typical epigenetic 282
positive histone modifications, H3K4me3 and H3K27ac, are significantly associated with 283
the promoter regions of ACE2 as with IL-6 genes. Specifically, IL-6 genes were shown to 284
have more histone modifications around their proximal promoter regions than ACE2 285
genes, which had more in a very distal region (>20kb). There were higher Z-score and 286
enrichment of these positive histone markers in the human genes than their mouse 287
orthologs, indicating evolutionary and probably species-specific manner of epigenetic 288
regulation of these non-ISGs [51,54]. This epigenetic difference of key non-ISGs might con- 289
tribute to disease susceptibility and progression when animals of different species are ex- 290
posed to same pathogenic pressure. 291
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Figure 2. Profiling of positive histone markers (H3K4me3 and H3K27ac) indicating chromatin 293
accessibility of RNA polymerase II adjacent to human and mouse ACE2 and IL-6 gene bodies, 294
respectively. Annotation of ENCODE epigenetic datasets (Chip-Seq and ATAC-Seq from 839 and 295
157 cell/tissue types of humans and mice, respectively from https://www.encodeproject.org/). 296
Comparative existence of H3K4me3 and H3K27ac markers was detected between IL-6 and ACE2 297
gene promoters in either humans (A & B) and mice (C & D); however, higher Z-scores and enrich- 298
ment of H3K4me3 and H3K27ac were found in human IL-6 and ACE2 genes (A & B) than their 299

orthologs in mice (C & D). Distal, >2000 bp before the transcription start sites (TSS), and proximal 300
promoter is within 2000 bp before the TSS. Datasets with Z-score higher than the overall average 301

are shaded with oval shapes. 302
3.3. Cross-species comparison of key cis-regulatory elements (CREs) that mark non-ISG 303
regulation in IL-6 and ACE2 genes 304

After determination of positive histone markers along the IL-6 and ACE2 gene bod- 305
ies, we examined the existence of cis-regulatory elements (CREs) that interact with typical 306
non-ISGs transcription factors including PU.1 (a.k.a. SPI1), IRFs, and NF-«kB1/2 in the pro- 307
moter regions of IL-6 and ACE2 gene orthologs [50-56]. We extracted the primary pro- 308
moter sequences from IL-6 and ACE2 genes from 25 representative vertebrate species, 309
which contain ten previously validated SARS-CoV2-susceptible species and other natu- 310
rally unsusceptible species based on collected evidence [26-30]. As shown in Figure 3, all 311
three types of CREs (i.e. PU.1, IRFs, and NF-kB) that mark non-ISG expression were 312
mapped for cross-species existence in the promoter regions of both IL-6 and ACE2 genes. 313
Significant PWM scores (p < 0.0001) were determined for their CREs when each was com- 314
pared with the corresponding human CRE matrix (Figure 3A-3C) [56]. ACE2 geneshad a 315
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generally lower PWM scores for these CREs than those for IL-6 genes, in particular the 316
PWM scores for NF-xkB2 CRE in ACE2 genes were at 2-8 Log2 units lower (Figure 3D). 317
This indicates that ACE2 genes were less responsive to non-canonical NF-kB signaling 318
mediated by NF-«kB2 [58,59]. Because dysregulation of non-canonical NF-«kB signaling 319
contributes to various autoimmune and inflammatory diseases, the differential role of 320
ACE2 and IL-6 in inflammatory immunopathies are worth further investigation [58,59]. 321
Notably, only CRE matrices to IRF1 were shown in Figure 3C, both ACE2 and IL-6 gene 322
promoters actually contain CREs binding IRF2-8 with high PWM scores, except of CREs 323
interacting with IRF5 and IRF9 had low PWM scores in most tested species (Figure 4 and 324
Figure 5). Because IRF9 is a key component of ISGF3 and binding to ISREs to activate 325
canonical ISG expression, this discovery evidently distinguish ACE2 and IL-6 genes from 326
the classical ISGs such as ISG15 and IRF1 (Figure 4) [50,51]. However, IL-6 genes of eight 327
species maintain their IRF9 binding CREs as for examples in Zebrafish and frogs, only rat 328
ACE2 gene showed a high PWM score for containing an IRF9 binding CRE (Figure 4). 329
This further postulates a species-dependent trend of non-ISG evolution, and warrants fur- 330
ther investigation in contributing to host-pathogen interaction. 331
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Figure 3. Existence of cis-regulatory elements (CREs) that bind typical non-ISGs transcription fac- 333
tors of (A) PU.1 (a.k.a. SPI1), (B) IRF1, and (C & D) NF-kB1/2 in the promoter regions of IL-6 and 334
ACE?2 gene orthologs from the representative two SARS-CoV2-unsusceptible species (pigs and 335
mice) and seven susceptible species. All three types of CREs have comparable Log2(mPWM) 336
scores between ACE2 and IL-6 genes, except NF-«kB2 that mediates non-canonical NF- kB response 337
(D) has a significant lower mPWN score (2-6 Log2 units), indicating ACE2 genes are among differ- 338
ent non-ISGs group other than IL-6. P/D, proximal or distal regions of promoters; +/- sense or anti- 339
sense strands. mPWM scores are calculated using tools at 340
https://ccg.epfl.ch/pwmtools/pwmscore.php with CRE Matrices are from MEME-derived HOCO- 341
MOCOV11 TF collection affiliated with the PWM tools. PWM, position weight matrix. 342
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Figure 4. Lack of ISRE/IRF9 binding site that responds to IFN signaling for ISG expression in ana-
lyzed IL-6 and ACE2 genes. Cross-species analysis of mean PWM (mPWM) scores of cis-regula-
tory elements (CREs) that bind ISRE/IRF9 in the proximal promoter regions of IL-6 and ACE2
gene orthologs from the 25 representative vertebrate species. mPWM score is presented in a
Log2(mPWM) scale. It further indicates IL-6 and especially ACE2 genes in most species are non-
ISGs. Canonical ISGs of human ISG15 and IRF1 are used as references (Black bars). mPWM scores
are calculated using tools at https://ccg.epfl.ch/pwmtools/pwmscore.php with CRE Matrices

from MEME-derived HOCOMOCOv11 TF collection affiliated with the PWM tools. PWM, posi-
tion weight matrix. Abbreviations: D-rerio, Danio rerio (Zebrafish); X_trapicalis, Xenopus trap-
icalis; G_monkey, African Green Monkey; h-: human.

Figure 5 gathers cross-species analyses of mean PWM scores of the CREs, which bind
STAT1/2, PU.1 (a.k.a. SPI1), NF-kB1, NF-kB2, and multiple IRFs (including, IRF1-4, IRF7,
and IRF8 that show significant PWM scores with p<0.0001 under the algorithm’s default)
in the proximal promoter regions of IL-6 and ACE2 gene orthologs from the 25 representa-
tive vertebrate species. As shown, these bookmarking CREs for non-ISGs had comparable
Log2(mPWM) scores between ACE2 and IL-6 genes across different species and also
showed species-specific variation to some extent. IL-6 genes generally had a higher
mPWM scores for more of the tested animal species with CREs that bind STAT1/2 and
IRFs downstream of IFN signaling (Figure 5A and 5E) [50, 52]. Of significant difference
between ACE2 and IL-6 genes was their CREs” PWM scores pertinent to NF-kB1 and NE-
kB2 (Figure 5C and 5D). Whereas ACE2 genes evolved to be slightly more responsive to
the canonical NF-«kB1 signaling in most mammalian species (Figure 5C), IL-6 genes ob-
tained much higher responsiveness to non-canonical NF-kB2 signaling (Figure 5D). Re-
cent studies showed that defects in non-canonical NF-«xB2 signaling are associated with
severe immune deficiencies, and dysregulation of this pathway contributes to the patho-
genesis of various autoimmune and inflammatory diseases [58,59]. The epigenetic differ-
ence of IL-6 and ACE2 genes downstream of canonical NF-kB1 and non-canonical NF-kB2
signaling thus may serve as differential gene markers for inflammatory-related syn-
dromes [58,59].

343

344
345
346
347
348
349
350
351
352
353

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372


https://ccg.epfl.ch/pwmtools/pwmscore.php
https://ccg.epfl.ch/pwmtools/pwmscore.php
https://ccg.epfl.ch/pwmtools/pwmscore.php

Genes 2021, 12, x FOR PEER REVIEW 12 of 22

A 5.0

g
8200
b

C 250
gzu.u
@

;15.1]

D

225

r
in

Mean PWM Score
- fa
m un

m
s
n
o

P
e
=

Mean PWM Score
]
[=]

(=
=]
=]

o '¢{’_$‘
+.r

STAT1/2 BIL-6gene BACE2 gene

%15.{1
£10.0
5.0

PU.1 (SPI1) BIL-6 gene M ACE2 gene

||| ||I||I|||| I ‘III|I|\II|\I| |I
it 111

B L-& gene M ACE2 gene
NFxB1

=
10.0

2

2
5.0

M IL-& gene MW ACE2 gene

NFxB2

M IL-6 gene M ACE2 gene

IRFs

50 |I I| ‘l | |I || || | || || “ “ ‘l ‘l “ ‘l ‘l ‘l || ‘l ||

& ] g}"\ ,;_-';54. L-b '“ P ;g- .\E'} {‘“&-
m?q_.p K ‘;f & o *‘:9’ gﬁ Q“qé‘-' é"\,}*‘
tf oS
o
A Gene proximal promoter region

Figure 5. Cross-species analysis of mean PWM scores of cis-regulatory elements (CREs) that bind
(A) STAT1/2, (B) PU.1 (a.k.a. SPI1), (C) NF-kB1, (D) NF-kB2, and (E) IRFs (including IRF1-9, which
show significant PWM scores with p<0.0001) in the proximal promoter regions of IL-6 and ACE2
gene orthologs from the 25 representative vertebrate species. All types of CREs have comparable
Log2(mPWM) scores between ACE2 and IL-6 genes, except NF-kB2 that mediates non-canonical
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NF-kB response (D) has a significant lower mPWN score (2-6 Log2 units), indicating ACE2 genes 379
are among different non-ISGs group other than IL-6. Canonical ISGs of human ISG15 and IRF1 are 380
used as references. mPWM scores are calculated using tools at 381
https://ccg.epfl.ch/pwmtools/pwmscore.php with CRE Matrices from MEME-derived HOCOMO- 382
COv11 TF collection affiliated with the PWM tools. PWM, position weight matrix. Other abbrevia- 383
tions are as in Figure 4. 384

3.4. Epigenetic evolution of higher PWM scores of non-ISG’s core CREs in ACE2 and especially 385
IL-6 gene promoters in COVID-19 susceptible species 386

As previously described, in addition to its core role in physiological regulation of 387
blood volume/pressure and body fluid balance, the RAAS also critically affects inflamma- 388
tion, apoptosis, and other immune reactions. For instance, suppression of ACE2 increases 389
Ang? production to signal pro-inflammatory and apoptotic responses in affected tissues 390
[44-46]. When exacerbated by infection of an intracellular pathogen, such as SARS-CoV2 391
in COVID-19 cases, a high inflammatory form of programed cell death, known as pyrop- 392
tosis, is induced accompanying massive production of pro-inflammatory cytokines in- 393
cluding IL-1, IL-6, TNF and CXCL10 [41,45,46]. Because the potential clinical relevance to 394
these CREs in COVID-19, we performed a comparative study to determine if the COVID- 395
19 susceptible animal species obtain some epigenetic features in these core CREs in regu- 396
lation of IL-6 and ACE2 expression. Figure 6 compares the mPWM scores of these core 397
non-ISG CREs between two groups: known SARS-CoV2 susceptible species [CoV2(+)] and 398
unsusceptible species [CoV2(-)]. Figure 6 shows that ACE2 and IL-6 genes from CoV2(+) 399
species contain CREs that have significantly higher mPWM scores. This indicates that in =~ 400
some vertebrate species, non-ISGs like ACE2 and especially IL-6 genes evolve to obtain 401
high inductive propensity by inflammatory and IFN signaling [47-54]. Therefore, in addi- 402
tion to the ACE2 structure and affinity to S-RBD, the epigenetic evolution for IL-6 and 403
ACE2 stimulation (reflected by higher mPWM scores), may serve as epigenetic bi- 404
omarkers (or triggers) for susceptibility prediction of COVID19 and other ARDS longitu- 405
dinally across vertebrates and horizontally in the subgroups of humans [30,47-54]. 406
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Figure 6. Cross-species correlation of epigenetically regulatory CREs, which associate with inflam- 408
matory and IFN signaling, in IL-6 and ACE2 gene promoters as biomarkers for COVID-19 suscep- 409
tibility. Mean PWM (mPWM) scores were generated as described in previous figures, and com- 410
pared between two groups of known COVID-19 susceptible species [CoV2(+)] and unsusceptible 411
species [CoV2(-)]. This shows that ACE2 and especially IL-6 genes from CoV2(+) species contain 412

the CREs have significantly higher mPWM scores, indicating that in some vertebrate species, non- 413
ISGs like ACE2 and especially IL-6 genes evolved to obtain high inductive propensity by inflam- 414
matory and IFN signaling, and may serve as epigenetic biomarkers (or triggers) for susceptibility 415
prediction of COVID19 and other ARD syndrome. Abbreviation: H_Bat, Great horseshoe bat, and 416
other abbreviations are as in Figure 4. 417
3.5. Overall comparison of phylogenic topologies between IL-6 and ACE2 gene promoter 418
Sequences 419

In addition to focusing on epigenetic analysis of these non-ISG CREs, we also con- 420
ducted cross-species comparison of phylogenic topology between the full proximal pro- 421
moter sequences of IL-6 and ACE2 genes. Overall, the topology of the phylogenies of IL- 422
6 and ACE2 gene promoters are similar with a comparative topological score of 86.5 % 423
(Figure 7). Sharing a root of low vertebrates (D. rerio and/or X. tropicalis), the CoV2(+) spe- 424
cies were distributed within the clades containing primates, carnivores and glires. In con- 425
trast, all the ruminant promoters were clustered into a most phylogenically distant clade 426
and associated with no CoV2(+) species (Figure 7). Comparison of the two phylogeniesin 427
detail showed that the major difference came from the location of the chicken, rabbit, 428
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guinea pig, and pig. In the IL-6 promoter phylogeny (Figure 7, left panel), chicken IL-6 429
promoter seems to derive rodent IL-6 gene promoters after evolution from the fish and 430
frog; in the ACE2 promoter phylogeny (Figure 7, right panel), however, the chicken ACE2 431
promoter serves as a root leaf with the zebrafish. The largest difference is between phylo- 432
genic positions of IL-6 and ACE2 gene promoters for pigs and guinea pigs. Whereas in 433
the IL-6 promoter phylogeny, the porcine one sisters to those of the alpaca and horse, 434
within the Carnivore clade that contains most of the validated CoV2(+) species in addition 435
to the primate clade, porcine ACE2 gene promoter was next to the ruminant clade that 436
has no CoV2(+) species identified so far [20-29]. Guinea pig as a rodent species has its IL- 437
6 promoter surprisingly within the primate clade, but its ACE2 promoter appears more 438
primitive and shares the clade with the frog. Given the primate and carnivore clades con- 439
tain most identified CoV2(+) species, if pig and guinea pig are proved to be CoV2(+) spe- 440
cies, the IL-6 promoter phylogeny may better correlate to CoV2(+) prediction; otherwise, 441
the ACE2 promoter phylogeny correlates better. The rabbit and otter, which occupy sim- 442
ilar positions in both IL-6 and ACE2 promoter phylogenies, may have a high potential to 443
be CoV2(+) and COVID-19 susceptible based on this and previous studies, which used 444
epigenetic and structural models, respectively [30-33]. In this regard, pigs and guinea pigs 445
may serve as symbol species to estimate the epigenetic role of non-ISGs in CoV2(+) pre- 446
diction. No study has tested CoV2/COVID-19 susceptibility in guinea pigs, but studies in 447
pigs concluded the species was unsusceptible [20]. This may indicate that the overall epi- 448
genetic feature of ACE2 genes better relates to CoV2(+) status in some mammalian species. ~ 449
However, the study of key CRE scores of non-ISGs in Figure 6 indicates that IL-6 gene 450
CRE scores have a higher correlation when compared between the CoV2(+) and CoV2() 451
species. This may reflect an etiological fact that CoV2(+) is necessary but not sufficient for 452
COVID-19 progression; and the latter is indeed dependent on the host immune reaction, 453
particularly the early ISGs and non-ISG responses studied here [51,54]. In that regard, 454
epigenetic evolution/regulation of ACE2 and IL-6 genes may signify two layers of COVID- 455
19 progression, i.e. ACE2 is better for CoV2(+) and IL-6 is better for downstream COVID- 456
19 symptoms [51,54,58,59]. 457
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Figure 7. Cross-species phylogenic and topological comparison of IL-6 and ACE2 gene promot-
ers. Evolutionary analyses were conducted in MEGA X. The evolutionary history was inferred by
using the Maximum Likelihood method and Tamura-Nei model. The tree with the highest log
likelihood (-52755.39) is shown. The percentage of trees in which the associated taxa clustered to-
gether is shown next to the branches. Initial tree(s) for the heuristic search were obtained automat-
ically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated
using the Tamura-Nei model, and then selecting the topology with superior log likelihood value.
For topological comparison between phylogenic trees generated using IL-6 and ACE2 gene proxi-
mal promoters, the phylogenies of Newick strings were generated using the MEGA, and topologi-
cal comparison between the Newick trees was performed with Compare2Trees at
(http://www.mas.ncl.ac.uk/~ntmwn/compare2?trees) to obtain the overall topological scores. Or-
ange circle: marking COVID-19 susceptible species. Arrows: other tentative marker species to de-
termine which group (IL-6 or ACE2) of non-ISGs are more determined for COVID-19 susceptibil-
ity. Abbreviations are as in Figure 4.

458

459
460
461
462
463
464
465
466
467
468
469
470
471
472


http://www.mas.ncl.ac.uk/~ntmwn/compare2trees

Genes 2021, 12, x FOR PEER REVIEW 17 of 22

3.6. Non-bias transcriptome-based categorization of non-1SGs that resemble to the inductive 473
pattern to IL-6 or ACE2 genes 474

Compared with canonical ISGs, studies of epigenetic regulation and expression of 475
non-ISGs have just started accompanying our understanding of their role in some auto- 476
immune and inflammatory diseases in recent years [50-54]. Although some non-canonical 477
signaling pathways, that are independent of the canonical IFN-JAK-ISGF3 axis, play arole 478
in ISG induction, the classification criteria of non-ISGs is not established [50-54]. Using IL- 479
6 and ACE2 genes as examples of non-ISGs, the disparity of their cross-response to in- 480
flammatory and IFN signaling could be one way to classify them as IL-6-like or ACE2-like 481
groups. We therefore analyzed a non-biased transcriptome (RNA-Seq) dataset from por- 482
cine alveolar macrophages treated with different stimuli and infected with a porcine arte- 483
rivirus, a respiratory virus belonging to Nidovirales with coronaviruses [57]. We chose to 484
use porcine transcriptome data because of the species-focus of our projects and the anat- 485
omy and physiological resemblance between pigs and humans [57]. Figure 8 presents the 486
IL-6-like and ACE2-like groups, which were categorized based on their responsive pat- 487
terns to LPS and two types of IFNs (i.e. IFN-a or type I and type II IFN-vy) at the early 488
phase of 5 h post the treatment/infection [57]. These clustered IFN responsive genes were 489
mainly from the RAAS, TNF, IL-6, chemokine superfamilies. For IL-6 non-ISG group, all = 490
of these genes showed robust stimulation by LPS as well as a weaker response to both 491
IFNs (Figure 8A). In contrast, the ACE2-group genes were insensitive to LPS, but were 492
upregulated significantly by both types of IFNs (Figure 8B). Compared with the canonical 493
group of ISGs (Figure 8C), which shows the highest response to the type I IFN-a, IL-6 494
group had a least increase upon IFN-a and a similar stimulation by IFN-y as for ISGs; and 495
ACE2 group showed a mid-response to IFN-a but highest to IFN-y (Figure 8A-8D). Figure 49
8D statistically demonstrates the stimulatory difference among three groups of IFN-re- 497
sponsive genes: (1) for ISGs: IFN-a >IFN-y>LPS with a higher background expression in 498
PBS, IL-4 and IL-10 treatments; (2) for IL-6-like non-ISGs: LPS>IFN-y>IFN-a with the low- 499
est background expression; and (3) for ACE2-like non-ISGs: IFN-y>IFN-a >LPS with a 500
mid-background expression. Therefore, our classification of ISGs and non-ISGs represents 501
a complete scenario of gene response levels (i.e. at low, mid and high levels of responses 502
to LPS and two types of IFNs) to complement each other per their responsive propensity 503
to LPS, IFN-y, and IFN-a. As previously described, most ISGs especially non-ISGs are 504
inter-regulated through multiple canonical and non-canonical signaling pathways. The 505
cross-talking of signaling pathways mediated by different types of IFNs and inflamma- 506
tory cytokines is dynamic to form into an intricate regulatory network underlying animal 507
immunity to determine disease pathogenesis in various situations [50-54]. So with the 508
functional extension of physiological genes, such as AGT and ACE2, the new discovery of = 509
species-dependent response to viral infections and IFN stimulation, posits them as immu- 510
nogenetic factors critical to determining COVID-19 disease progression in addition to its 511
role as a major virus receptor [44-49]. Notably, several ACE2 isoforms have been identified 512
in humans and several major livestock species [30, 60, 61]. Our transcriptome analysis also 513
picked up one short porcine ACE2 isoform (ACE2S), its expression pattern actually is 514
more like IL-6 non-ISGs than the consensus ACE2 longer isoform (ACE2L) [30]. In addi- 515
tion to ACE2, the AGT gene of the RAAS also showed a non-ISG property similar to ACE2 516
(Figure 8A and 8B). Collectively, transcriptomic annotation afforded us to cluster tentative 517
non-ISGs that share expression patterns similar to IL-6 or ACE2 genes. Interestingly, most 518
of them belong to IL-6, TNF and chemokine superfamilies, whose roles in regulation of 519
autoimmune and inflammatory diseases, as well as in COVID-19 progression warrant fur- 520
ther investigation. 521
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Figure 8. Genome-wide categorizing non-ISGs based on the similarity of inductive pattern to IL-6
and ACE2 genes. The non-biased genome-wide transcriptomic data was generated using a RNA-
Seq procedure in porcine lung macrophages stimulated with each of activation stimulator of IL-4,
IL-10, LPS, IFN-a or IFN-y at 20 ng/ml and infected by porcine arterivirus virus for 5 h, using an
Mlumina procedure as previously described [57]. Significantly differentially expressed genes
(DEGs) in renin-angiotensin system (RAS), interleukin (IL)-6, TNF and chemokine super-families
were annotated and grouped using heatmaps according to their inductive expression patterns
similar to: (A) IL-6, (B) ACE2; (C) Examples of canonical ISGs as reference; (D) Averaged tran-
scriptomic expression levels (normalized at Reads Per Kilobase of transcript per Million mapped
reads, RPKM) of the grouped ISGs or non-ISGs above. Indicated by arrows, pigs have two ACE2
isoforms, namely ACE2L and ACE2S, which have different expression patterns, ACE2S similar to
IL-6 was showing less responsive to IFN-a but highly responsive to LPS and IFN-y. In contrast,
ACE2L and another key gene, AGT, in RAS were categorized together with other non-ISGs (B),
which is more like the expression pattern of canonical ISGs (C) than the IL-6 group (A).

4. Conclusions

Figure 9 depicts the working summary of this study for epigenetic evolution and
regulation of IL-6 and ACE2 as non-ISGs, indicating their potentials as biomarkers for
inflammatory syndrome underlying pathogenic viral infection such as of COVID-19. Non-
ISGs such as those categorized by resemblance to IL-6 and ACE2 genes were sequentially
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regulated by TNF, IFN and TLR signaling, which modify chromatin accessibility through 542
activating histone modification and recruitment of transcription factors including PU.1, 543
IRF and NF-«B binding on the promoter regions of these non-ISGs. In turn, it will amplify 544
the inflammatory loop through IL-6-mediated response and inducing more ACE2 expres- 545
sion, which collectively contributes to the occurrence of respiratory and inflammatory 546
syndromes as in COVID-19. Therefore, high expression of non-ISGs such as IL-6 and 547
ACE2 could be biomarkers for the exacerbation of inflammation underlying some viral 548
infections especially those like SARS-CoV2, which dysregulates the physiological function 549
of ACE2 in the RAAS-centric body systems. In addition, the cross-species epigenetic evo- 550
lution of these key physio-pathological genes may provide a key to decipher molecular 551

mechanisms underlying species-specific susceptibility to COVID-19 from the host side. 552
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Figure 9. Working summary for IL-6 and ACE2 as non-ISGs biomarkers and contribution to 554
COVID-19 susceptibility. Epigenetic regulation of non-ISGs such as IL-6 and ACE2 was sequen- 555
tially regulated by such as TNF, IFN and TLR signaling, which modify chromatin accessibility 556
through activating histone modification and recruitment of transcription factors including PU.1, 557
IRF and NF-kB binding on promoter regions of IL-6 and ACE2 genes. In turn, it will amplify in- 558
flammatory loop through IL-6-mediated response and inducing more ACE2 expression, which 559
collectively contribute to the occurrence of respiratory distress syndrome as in COVID-19. There- 560
fore, high expression of non-ISGs such as IL-6 and ACE2 could be biomarkers to determine 561
COVID-19 susceptibility and disease development in different animal species. Abbreviations: non- 562
ISG, non-canonical interferon stimulated genes; GTF, sTF, or TF, general (G), tissue-specific (s) 563

transcription factor (TF); TLR, toll-like receptor; TSS, transcription start site. 564
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