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Abstract: Innate immune interferons (IFNs) including type I and III IFNs constitute critical antiviral
mechanisms. Recent studies reveal that IFN dysregulation is key to determine COVID-19
pathogenesis. Effective IFN stimulation or prophylactic administration of IFNs at the early stage
prior to severe COVID-19 may elicit an autonomous antiviral state, restrict the virus infection and
prevent COVID-19 progression. Inborn genetic flaws and autoreactive antibodies that blocking IFN
response have been significantly associated with about 14% patients with life-threatening COVID-
19 pneumonia. In most severe COVID-19 patients without genetic errors in IFN-relevant gene loci,
IFN dysregulation is progressively worsen and associated with the situation of proinflammation
and immunopathy that prone to autoimmunity. In addition, the high correlation of severe COVID-
19 with seniority, males and individuals with pre-existing comorbidities, will be plausibly explained
by coincidence of IFN dysfunction in these situations. Collectively, current studies call for a better
understanding of the IFN response regarding the spatiotemporal determination and subtype-
specificity against SARS-CoV-2 infections, which are warranted to devise IFN-related prophylactics
and therapies.

Keywords: COVID-19; Interferons; Interferon signaling; SARS-CoV2; Immunopathy

1. Diverted type I interferon (IFN) response associated with hyper-inflammation

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), which causes the current
pandemic of new coronavirus disease 2019 (COVID-19), shows an evolutionary success to adapt its
infectivity and contagiousness to efficiently spread in human societies [1-6]. The prognosis of SARS-
CoV2-infected patients is very broad, with a vast majority of people (50-80% based different research
scenarios, CDC) only have mild symptoms like common cold or asymptomatic [7]; however, still the
other significant numbers (averagely 20-50% based on different ethnicity and pre-medical conditions)
may progress into severe respiratory and systemic syndromes needed immediate hospitalization and
critical care [8-12]. The case fatality rate of COVID-19 ranges at 1.7-13.0% in different countries [7].
Except the pathogenic impact of viral infection, major pathologies underlying severe COVID-19 come
from the dysregulation of vast immune factors at both the cellular and molecular levels. For example,
severe COVID-19 patients display macrophage overreaction (also known as macrophage activation
syndrome (MAS)) and lymphopenias of effective lymphocytes including neutrophils, CD4 T cells,
and natural killer (NK) cells [13-15]. At the molecular level, hyper-regulation of proinflammatory
mediators (including IL-6, TNF«, S100A8/9 and C-reactive protein), significant decrease of human
leukocyte antigen D related (HLA-DR) gene expression in CD14 monocytes, and dysregulated
antiviral interferon (IFN) response, have been reported in COVID-19 patients with critical illness [13-
15]. In this review, we focus on the determinant role of dysfunctional IFN response underlying the
progression of severe COVID-19. Interferon (IFN) system comprises a series of antiviral IFN
cytokines, classified as type I, II and III based on their distinct molecular signatures and recognition
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receptors in cells to induce hundreds for IFN-stimulated effector genes (ISGs) exerting various
antiviral and other immunomodulatory functions (Figure 1) [16-18]. The IFN molecules of three IFN
types are further designated into subtypes, which include the single IFN-y for type II and IFN-A1-4
for type III such as in humans. There are multiple subtypes of type I IFNs, which include general
subtypes of IFN-a and IFN-{ produced by most cells, and more cell-specific subtypes including IFN-
€ (reproductive tract), IFN-«k (keratinocytes), IFN-w (leukocytes/epithelial cells), and species-specific
subtypes of IFN-0 (pigs), IFN-t (cattle) and IFN-& (mice) [16-18].

Studies using transcriptomic analysis in SAR-CoV2-infected human bronchial cells or IFN assays
in clinical plasma samples, demonstrated a distinct immune-reaction phenotype in symptomatic
COVID-19 patients, being a highly impaired interferon (IFN) response [19,20]. The impaired type I
IFN response was characterized by decreased IFN-a/ expression in both SARS-CoV2 infected
human bronchial cells and circulating mononuclear blood cells, which was diagnosed together with
a persistent viremia and an exacerbated inflammatory response upon reactions to increased pro-
inflammatory mediators including tumor necrosis factor-a (TNF-a) and interleukin (IL)-6 [19,20].
Together with other previously in vitro studies, these data suggest that SARS-CoV2 bears similar
antagonistic mechanisms as other severe human coronaviruses (i.e. SARS and MERS) to interfere
with the host IFN signaling, especially the production of type I IFNs (Figure 1) [21,22]. In contrast,
other studies by Lee et al. (2020) and Lucas et al. (2020) detected that patients with severe COVID-19
had a sustained type I IFN response and consistent proinflammatory response in the blood of patients
subjected to severe COVID-19 [23,24]. Contradictory results about type I IFN responses in COVID19
patients may come from the disparity of criteria to define disease severity and different sampling
times during the disease progression [25]. In addition, using large cohorts of COVID-19 patients in
European countries, recent genome-wide associated studies (GWAS) have significantly associated
several critical genetic loci with severe COVID-19, which contain genetic regions spanning multiple
genes that are centered in both chemokine and IFN signaling [26,27]. All these studies highlight the
potential role of IFN signaling in determining the host susceptibility to SARS-CoV2 infection and the
progression of severe COVID-19 [19-27].

1

[Halicase)
| Nspl Nsp2 Nsp3 Nsp4  Nsp5 Nsp6 Nspl2 (RdRp) Nspl3 Nspl4 Nspl5 Nsplé
_,—-—“"”'/n-r.

—— A wlu f— Spike protein e
‘_'-"‘-*-"-‘._ .5 F".e' Mvmgm""'—‘m
=< jiER SARS-CoV2 & Genome
SN * S E protein
7/ QspD> %, Earlyviral RNA o )
i i detection IFNa/B/Ng A
(E:E:E) i 0 .@ rone to e ive
§ @ FNA/LR Antiviral immunity
@ L \@FNWB/J\.. R e @D iz
7 N (RF3/7 ° Rstar1)(STAT2R
{ TRAF3 a %} \ STAT2 o>
viral RNA \ /' \v . \ 1565, e.g.
Cytokine B 1FNap) STAT1 - -, 1SG15, MxA
Mavs € -~ ) [WFes] IRF3/7 [ - E‘ﬁa;sun sTar2 i
Fa ™ o’ — AT
cans) e - FTOOVNAG At g
. . . N Non-canonical ISGs,

IFN induction signaling ‘\ Pathogenic DNA from massive cell 7‘TNF' TLR IFN action signaling e.g. IL-6, ACE2

death & inflammatory signaling=—""
Prone toimmunopathies from
persistent |[FN response

Figure 1: SARS-CoV2 genomic structure and analogical antagonism to interferon (IFN) signaling.
Analogical to typical human (-coronaviruses, SARS-CoV2 genome contains ORFla/lb encoding a
polyprotein, which is proteolytically processed into non-structural protein (Nsp) 1-16 (top
schematic). Structural proteins, including spike (S), envelope (E), membrane (M), and nucleocapsid
(N) proteins are diagramed to depict the genome and viron structures (middle). Other accessory
proteins encoded at the 3" end of the viral genome comprise ORF3a, 3b, 6, 7a, 7b, 8, 9a, 9b, and 10
(colored in grey). Bottom panel depicts SARS-CoV-2 proteins (colored ovals with red outlines) that
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interfere with either IFN induction or action pathways, and are posited next to their known or
hypothetic targets/steps in the IFN signaling. SARS-CoV2 seems evolving multiple antagonistic
mechanisms against the host IFN signaling, and especially those on early IFN induction signaling.
Note, cellular IFN induction may go with either a MAVS- or a STING-dependent pathways that
respond to cytosolic pathogenic RNA or DNA molecular patterns, respectively. Similarly, IFN action
signaling may lead through a canonical ISGs induction with limited pro-inflammation, or crosstalk
with inflammatory signaling from TNF and TLR to increase the expression of non-canonical ISGs
accompanying a proinfalmmatory and autoimmune ambient through epigenetic regulation. The
canonical IFN signaling flow, which acts generally at early stage of SARS-CoV2 infection for primarily
restricting viral infection, is depicted using black arrows; and brown arrows for the non-canonical
IFN signaling flow activated at later stage in severe COVID-19, which is highly associated with pro-
inflammation and immunopathies. Abbreviations: cGAS, cyclic GMP-AMP synthase; IFNA/LR, interferon alpha/beta
OR lambda receptor; IKKe, IxB kinase-¢; IRF, IFN regulatory factor; ISG, IFN-stimulated gene; JAK, Janus kinase; MAVS,
mitochondrial antiviral signaling protein; ORF, open reading frame; P, phosphate; TLR/RLR, Toll-like receptor or retinoic acid-
inducible gene 1-like receptors; SARS-CoV, severe acute respiratory syndrome coronavirus; STAT, signal transducer and activator
of transcription; STING, signaling effector stimulator of interferon gene; TBK1, TANK-binding kinase 1; TRAF3, tumor necrosis

factor receptor-associated factor 3; TYK2, tyrosine kinase 2.

Interferon signaling, for either IFN induction or action, is not a linear cascade but an interacting
network dynamically adapting to alternative and crosstalk with other cytokine signaling pathways
[16-18, 25,27]. For IEN induction signaling during a RN A-virus infection as in COVID-19, the typical
pathway is triggered by viral RNA through membrane-bound or cytoplasmic receptors (TLRs or RLR
as in Figure 1), and culminated at IFN-regulatory factor (IRF)-3/7 activation and IFN expression.
Alternatively, animal cells are also capable of inducing IFN expression through cellular receptor like
cyclic GMP-AMP synthase (cGAS) to detect pathogenic DNA (pDNA) motifs from bacteria, viruses
and dead cells, and to activate a stimulator of IFN genes (STING)-dependent pathway for IFN and
inflammatory cytokine production (Figure 1, bottom-left panel). Similarly for IFN action signaling,
the canonical IFN signaling is through engagement of membrane-bound IFN receptor (Figure 1,
IFNA/LR for type I and III IFNs, respectively) and activation of STAT1/2 and ISGF3 transcription
factors leading to robust expression of hundreds of classical IFN-stimulated genes (ISGs, such as
ISG15, MxA, IFITM etc.), which exert antiviral role to restrict viral replication and spreading [16-18].
Alternatively, IFN signaling may divert to or synergize with TLR-mediated or cytokines (mainly
TNF) signaling pathways to epigenetically promote the expression a group of recently characterized
non-canonical ISGs (non-ISGs) [18,28,29]. Two newly characterized non-canonical ISGs are
inflammatory cytokine IL-6 and angiotensin-converting enzyme 2 (ACE2), a key component in renin-
angiotensin-aldosterone system (RAAS) and adopted by SARS-CoV2 as a primary cellular receptor
for infection [30-32]. For a RNA-virus infection like in COVID-19, the canonical IFN induction and
action signaling is plausibly activated early to induce IFN and ISG production due to cell perceiving
the presence of viral RNA in infected cells. The non-canonical IEN signaling, for that responding to
PDNA through cGAS-STING and non-canonical ISG stimulation via IFN-TNF epigenetic
coordination might occur at the latter stage accompanying massive cell death from pyroptosis (a
highly inflammatory form of programmed cell death in infected cells) and NETosis (an
immunologically regulated form of neutrophil cell death) as seen in severe COVID19 cases [16-18,33-
38]. In addition to induction of IFNs/ISGs, the canonical and especially non-canonical IFN signaling
pathway also lead to the production of inflammatory cytokines, which is further exacerbated by the
virus suppression of ACE2 activity to develop into a cytokine release syndrome (CRS) or cytokine
storm [30,31,34-38]. We propose that the integration of both canonical and non-canonical IFN
signaling sufficiently addresses the contradictory observations from different studies as discussed
previously [19-25]. It explains that: (1) the weak IFN response is due to SARS-CoV2-suppression on
the canonical IFN signaling mainly triggered by viral RNA species, which signifies the early stage of
the disease prior to severe progression [19-21]; and (2) the robust IFN/ISG observations in severe
COVID-19 cases accumulate consequential activation of non-canonical IFN signaling through both
cGAS-STING for IFN production and IFN-TNF epigenetic regulation for ISG expression [23,24,33-
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38], which mostly happen at the late stage of the severe COVID-19 or patients experienced
complication of progressive pneumonia and multi-organ damage [23,24]. To support this proposal,
most known IFN antagonistic mechanisms of SARS-like coronavirus evolve to target on major
components of IFN canonical signaling, especially for IFN induction (Figure 1) [21]. Intensively, a
study by Christopher et al. (2020) indicates that the IFN suppression of SARS-CoV2 (probably
through NSP3 on IRFE3) effectively curates inflammatory responses through cGAS-STING pathway,
which correlates to immunopathies from IFN dysregulation as worsened in severe COVID-19 [37-
39].

2. Immunopathological effect of dysregulated IFN responses

The suppression of IFN response, especially IFN production at the early stage of COVID-19
progression diminishes the host capacity to restrict (thus benefits) the virus spreading [19,20,40].
Notably, IFN system like all other immune mechanisms can be a double-edged sword to cause
immunopathies given it is not activated appropriately in a right time or intensity [41-43]. As in
COVID-19, both the early stage of type I IFN deficiency and the late stage of IFN persistence could
be a hallmark of severe COVID-19 [19-24]. As well studied in the cases of major autoimmune diseases
and chronic viral infections, type I IFNs (IFN-a and IFN-B) are widely associated with
immunopathology [33,40-43]. In contrast, type III IFN (IFN-A) responses are restrictively mucosa-
specific and exert antiviral defense with less damaging from proinflammatory responses [17,43].
Accordingly, IFN-A has been thought to have therapeutic advantages in COVID-19 [43]. However,
updated studies in COVID-19 complicate the prophylactic promise of type III IFN-based clinical
trials. Broggi et al. determined the subtype-dependent stimulation of type I and type III IFNs in the
upper airway (naso-oropharyngeal swabs) and lung (BALF) samples, and their correlation to COVID-
19 patient morbidity [44]. Data showed that the virus-positive BALF samples from the severe COVID-
19 patients in ICUs contained significant higher human IFN-a/ and type III IFN-A2/3 but not IFN-
Al compared with either the virus-positive or —negative swab samples [45]. Further data from in vivo
mouse models indicates that the inductive expression of IFN-a/p and IFN-A2/3 by the lung immune
cells (primarily dendritic cells) causes damage to the lung epithelium, which hampers lung repair
and increases susceptibility to lethal bacterial coinfections [44-46]. Indeed, a meta-analysis evaluated
4.3-9.5% of COVID-19 patients with bacterial infection, which was more common in severe patients
(8.1%) [47]; so were incidences of co-infection from other microbes including fungi and other viruses
in critically ill COVID-19 patients, who suffer dysfunctional IFN and other immune reaction [48]. As
mammalian IFN-a and IFN-A2/3 subtypes evolve more inductive and antiviral activity than the
epithelial-specific IFN subtypes (such as IFN-3 and IFN-A1) [49,50], robust reaction of inflammatory
IFN responses via recruited immune cells in the lung certainly deteriorate the pulmonary
homeostasis maintained by the epithelial IFN subtypes, which is more constitutively expressed by
pneumocytes prior to immunopathic IFN responses in severe COVID-19. Therefore, more subtype-
specific examination of the immunomodulatory and antiviral roles of both type I and type III IFNs in
SARS-CoV2 infection is imperative for IFN-based prophylactic development [25].

3. Evidence from life-threatening COVID-19 cases with inborn IFN deficiency

By genetic screening of 659 patients with life-threatening COVID-19 pneumonia, relative to 534
subjects with asymptomatic or benign infections, Zhang et al., (2020) detected an enrichment in
functional deficiency of 13 human gene loci that are known to govern TLR3- and IRF7-mediated
antiviral IFN induction signaling in the severe COVID-19 patients [51]. These inborn errors in IFN
induction ascribed to 23 patients (3.5%), who experienced life-threatening COVID-19 and aged 17 to
77 years. Despite a small proportion, the correlation indicate a group of genetic extremity (compared
with progressive IFN suppression by the virus and potential comorbidity conditions) in IFN
deficiencies that underlies life-threatening COVID-19 patients without prior severe infection [51].
Another study by Bastard et al (2020) revealed an autoimmune blocking on IEN action signaling [52].
In this case, they detected 101 of 987 (10.2%) patients with life-threatening COVID-19 pneumonia had
auto-antibodies (auto-Abs), which were capable of binding and functionally blocking out almost all
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subtypes of type I IFNSs, particularly of IFN-a, IFN-w, and both IFN-a/w subtypes, in further antiviral
regulation [52]. In a few cases, the auto-antibodies was also detected against the tissue-specific type
I IEN subtypes including IFN-¢ and IFN-k typically expressed in the reproductive tract and skin
keratinocytes, respectively [53,54]. In comparison, these auto-Abs were rarely found in the control
cohort (663 individuals) who were SARS-CoV2-positive but asymptomatic or with mild signs [52].
Comparably, auto-Abs against type I IFNs were previously reported in patients subjected to IFN
therapies and of systemic lupus erythematosus [55,56], and detected in almost all patients with
autoimmune polyendocrinopathy syndrome type I (APS-1) [52,57]. In addition, 95% of the patients
with the IFN auto-Abs were male, which may at least partially explain why men face higher risk of
severe COVID-19 and resulted higher risk of mortality [10,11,52]. Collectively, evidence from both
inborn deficiency and auto-immune blocking of IFN function elegantly demonstrate IFN signaling is
a critical determinant of severe COVID-19 progression [51,52].

4. Category of IFN dysregulation underlying severe COVID-19 development

Figure 2 recaps our understanding about the dynamic interaction of the host IFN system to
SARS-CoV2 infection and the progression of COVID-19 into a severe status. The majority of healthy
individuals, who are capable of mounting effective IFN responses during the early phase of the viral
infection, will be recovered naturally or without intensive medical care to escape from the worse
progression [58-60]. However, for another proportion of patients, who have a pre-existing
comorbidity or concur a chronic inflammatory condition, their IFN response will be swayed to an
immunopathic situation to exacerbate the pneumonia in a severe COVID-19 development [61-63].
Dysregulation of IFNs and other immune factors have been associated with aging, sex difference, and
pre-existing medical conditions, which have been clinically associated with a higher risk of severe
COVID-19 [10-12,61-63]. Studies showed that both blood and lung dendritic cells (DCs), as a group
of major IFN producers, whose capacity in IFN production is severely impaired in aged individuals
when compared to juveniles. On the contrary, blood DCs from aged people secreted higher basal
levels of proinflammatory cytokines/chemokines including IL-6, TNF-a, CXCL-8, CXCL-10 [64,65].
Together with other aging-associated lympocytic abnormalities [66], this IFN and inflammatory
dysregulation in DC response in aged individuals may invoke lung inflammation, impair antiviral
resistance and exaggerate major clinical signs as exacerbated in severe COVID-19 [8-12]. For the sex
difference of IFN response, studies have demonstrated that plasmacytoid DCs (pDC) from healthy
females are more potent to produce type I IFNs via TLR7-mediated signaling than the pDCs from
males [67,68]. Plasmacytoid DCs serve as natural IFN producers and efficient sentinels in
orchestrating antiviral immunity. This finding implicates an inferior status of males in the early
antiviral IFN induction, a suitable stage for most IFN-based clinical trials having positive effect [25].
As for most preexisting medical conditions, including cardiovascular diseases, hypertension, obesity,
and diabetes mellitus that increase the risk of severe COVID-19 [61,63], many studies have unraveled
the progressive incidence of IFN insensitivity and chronic inflammation and have been reviewed
elsewhere [40-42,69-71]. In addition, pathological consequence from persistent IFN and
proinflammatory response as well as remarkable presence of auto-Abs represent typical pathological
mechanisms underlying most autoimmune diseases including diabetes, multiple sclerosis and
systemic lupus erythematosus (SLE) [40-42,69-71]. The dysregulation of IFN and other immune
factors in the COVID-19 patients with pre-existing comorbidities, could be further complicated by
the virus attacking on endothelial cells to cause vasculitis, aneurysms and coagulopathy as well as
tissue damage in the kidney, heart and even brain [72-75]. The dysregulation of IFN response can be
progressively resulted from the viral antagonism and virulence during viral replication (Figure 1).
Furthermore, the preexisting comorbidities, gender and age inclination, and particularly exacerbated
hyperinflammation associated with the IFN immunopathies and rigorous viral infection, will
undermine the distinctness of immune and pathological responses and lead to a life-threatening
situation or death [10-12,61-63]. The inborn genetic and autoimmune deficiency of IFN response have
been shown in about 14% of the examined life-threatening COVID-19 patients [51,52], who may
experience sudden consequence even without a severe progression thus, further associate the



234
235
236
237

238

239
240
241
242
243
244
245
246
247
248

249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

Viruses 2020, 12, x FOR PEER REVIEW 6 of 12

dysfunction of IFN response with severe and life-threatening COVID-19 [51,52]. Hence, the
prophylactic or therapeutic effect of IFN trial regimens should be carefully designed based on the
temporal characteristics and subtype-specificity of IFN responses during SARS-CoV2 infection and
the disease progression [25,49,50,53,54,76].

[ Asymptoticormild | | COVID-19 progression | | Severe COVID-19 )

[ Effective IFN prophylactics |  Disputable IFN effect? | [ Immunopathic IFN effect |

(1) Normal (or subnormal (2) Impairedand (3) Persistentand immunopathic
but still effective) IFN dysregulated IFN response IFN response accompanyingviral
responseovercoming by both the virus and propagation, hypoinflammation

SARS-CoV2 antagonism preexisting comorbidities auto-Abs, and tissuedamage

[ Virus spreading | . I )
(4) Inborn genetic or epigenetic
r errors causingIFN deficiency an
prone to hyperinflammationan
Genetic loci-based IFN prophylactic effect utoimmunity

Life-threatening COVID-19

Figure 2. Schematic of patient cohorts of SARS-CoV2 infections based on the severity of COVID-19
and underlying IFN responses. The effective or dysregulated interferon (IFN) response underlies the
development of severe and life-threatening COVID-19. The dysregulation of IFN response can be
progressively resulted from the viral antagonism/virulence, preexisting comorbidities, gender/age
inclination, and exacerbated hyperinflammation, with the extremal genetic flaws impairing IFN
signaling pathway. Hence, the prophylactic or therapeutic effect of IFN therapies should be designed
and more dependent on the spatiotemporal kinetics of IFN responses during SARS-CoV2 infection
and the disease progression. In addition to its evolving antagonism to divert the host IFN response,
the high contagiousness of SARS-CoV2 also comes from the efficient virus infection and spreading by
the non-hospitalized individuals who are asymptomatic or only having mild signs.

5. Conclusive remarks: Precise IFN response kinetics and application to COVID-19 clinical trials

Effective IFN response, or vice versa IFN dysregulation constitutes a key determinant of COVID-
19 prognosis, which also highlights the potential of IFNs for therapeutic intervention [25].
Prophylactic administration of IFNs at the early stage prior to pneumonia progression may
antagonize the viral suppression on IFN production and elicit an autonomous antiviral state in
affected cells to block viral infection and COVID-19 pathogenesis. An early trial study
(NCT04320238) showed that daily IFN« nasal drops enhanced the protection of at-risk health-care
workers from COVID-19 over 28 days without noticeable adverse effects [78]. However, the COVID-
19 therapeutic effect of IFN treatments remains controversial, with respect to particularly the timing
of administration and the pre-existing medical condition according to COVID-19 progression [25,78].
Interferon signaling has intricating crosstalk with multiple inflammatory cytokines including TNF-
a, IL-6, because they intersect in using some common intracellular signaling components [16,27]. In
this context, prophylactic effect of early IFN application may actually mitigate the CRS through the
antiviral and anti-inflammatory effect of some epithelial specific IFN subtypes. However, extensive
validation of subtype-specific activity is warranted for a better optimization of IFN’s clinical uses [79-
81]. By contrast, clinical trials of relevant IL-6, TNF, and JAK STAT inhibitors and blocking antibodies
are applicable to the adverse side of dysregulated IFN response, which are devised to mitigate the
pathological IFN and pro-inflammatory response sustained in severe COVID19 [79-81]. Recent
studies, per significant association of life-threatening COVID-19 with inborn genetic flaws and auto-
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Abs that blocking IFN response, genetically and epigenetically, reveal the critical role of IFN
dysregulation in severe COVID-19 [51,52]. In most other severe COVID-19 patients without genetic
errors in IFN-relevant gene loci, IFN dysregulation is progressively worsen and associated with the
situation of proinflammation and immunopathy that prone to autoimmunity [41,61-63,82-84]. In
addition, the high correlation of severe COVID-19 with seniority, males and individuals with pre-
existing comorbidities, will be plausibly explained by coincidence of IFN dysfunction in these listed
situations, which have been reviewed elsewhere [41,82-86]. In addition, ACE2, a key enzyme of RAAS
and sneaked as a primary receptor by SARS-CoV2 infection, has been recently identified as a non-
canonical ISG like IL-6 in response to IFN-induced epigenetic regulation [18,28-32]. Because the
expression and affinity of ACE2 to SARS-CoV2 determines host susceptibility and cell tropism [28-
32], the dysregulated IFN response will further deteriorate the viral infection in multiple organs and
incapacitate a series of functions regulated through the RAAS axis [30,86]. This will certainly
complicate the understanding and application of IFNs particularly for treatment of severe COVID-19
[25,30,86]. All these call for a better understanding of the spatiotemporal characteristics and subtype-
specificity of IFN response to SARS-CoV-2 infections, which are warranted to devise IFN-related
prophylactics and therapies. It is noteworthy that all designed IFN therapies, which are based on
normal IFN signaling, will be not properly functional in individuals who have inborn genetic or auto-
immune deficiency of IFN system [52,53]. This will demand for early diagnosis of this kind of genetic
and auto-Ab errors in potential and hospitalized patients who are irresponsive to IFN-based
treatments [27,52,53].
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