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Abstract

We consider a contact process on Z¢ with two species that interact in a symbiotic
manner. Each site can either be vacant or occupied by individuals of species A and/or
B. Multiple occupancy by the same species at a single site is prohibited. The name
symbiotic comes from the fact that if only one species is present at a site then that
particle dies with rate 1 but if both species are present then the death rate is reduced
to p < 1 for each particle at that site. We show the critical birth rate A.(u) for
weak survival is of order /u as p — 0. Mean-field calculations predict that when
i < 1/2 there is a discontinuous transition as A is varied. In contrast, we show that,
in any dimension, the phase transition is continuous. To be fair to the physicists that
introduced the model, [27], the authors say that the symbiotic contact process is in the
directed percolation universality class and hence has a continuous transition. However,
a 2018 paper, [?], asserts that the transition is discontinuous above the upper critical
dimension, which is 4 for oriented percolation.

1 Introduction

In the ordinary contact process the state at time ¢ is a function & : Z? — {0,1}. 1’s are
particles and 0’s are empty sites. Particles die at rate 1, and are born at vacant sites at rate
Af1 where f; is the number of nearest neighbors in state 1. A number of contact processes
with two types of particles have been investigated. Neuhauser [26] considered the competing
contact process & : Z% — {0,1,2}. 0’s again are vacant sites but now 1’s and 2’s are two
types of particles. Each type of particle dies at rate 1, while particles of type ¢ are born at
vacant sites at rate \; f; where f; is the fraction of nearest neighbors in state 7, i« = 1,2 . She
showed that there was no coexistence if Ay # Ao. When A\; = Ay there is no coexistence in
d < 2 but there is when d > 3, behavior reminiscent of the voter model.

Durrett and Swindle [17] studied a contact process in which 0’s are vacant sites, 1’s are
bushes and 2’s are trees. 1’s and 2’s die at rate 1. Particles of type i give birth at rate \;,
and send their offspring to a randomly chosen nearest neighbor. If the site is vacant then
it becomes type 7. A 2 landing on a 1 changes the site to state 2, but a 1 landing on a 2
does nothing. In contrast to Neuhauser’s model, coexistence is possible. More work on this
system can be found in [16].

Krone [22] studied a contact process with states 0, 1, and 2. Again 0’s are vacant sites,
but now 1’s are young particles that cannot reproduce, while 2’s are mature particles that



can. Particles of type ¢ die at rate ¢;. Transitions from 1 to 2 occur at a constant rate f3.
Vacant sites change to state 1 at rate A fy;. Krone proved the existence of a phase transition
and established some qualitative results about the phase diagram. He left a number of open
problems, most of which were solved by Foxall [18].

Lanchier and Zhang [23] studied the stacked contact process, which was then generalized
by Foxall and Lanchier [19]. In the (generalized) stacked contact process the state space
at each site is {0,1,2}. 0 stands for empty site. 1 means there is a host but there is no
symbiont associated to the host. 2 means there are both a host and an associated symbiont.
0 becomes 1 at rate A\jgf; and becomes 2 at rate \ygfo. 2 and 1 becomes 0 at rate 1. The
symbiont is called a pathogen if Aoy < A\jp and a mutualist if Agg > Ajg. 1 becomes 2 at rate
Ao1 fo and 2 becomes 1 at rate §. The authors showed in [19] that in the case where d = 1,
§ = 0 and A\jg > A(Z') > Ay only the host can survive locally but not the symbiont, no
matter how large \g; is. Here \.(Z!) is the critical value of contact process in Z'. This is in
contrast with the mean field prediction which says there is coexistence of host and symbiont
if Ao and \o; is large enough.

de Olivera, dos Santos, and Dickman [27] introduced the symbiotic contact process & :
7% — {0, A, B, AB}. Here A’s and B’s are different species of particles. As in the contact
process there can be at most one individual of a given type at a site, but in this process
there can be one A and one B at a site. If only one type is present then the system reduces
to a contact process in which particles die at rate 1, and vacant sites become occupied at
rate A f, where fj is the fraction of neighbors in state i. Presence of the other type does not
affect the birth rates, but the death rates of particles at doubly occupied sites is reduced to
u < 1 due to the symbiotic interaction between the two species.

To describe the system formally, for any site x € Z¢ we write the state of x as (i,7) €
{0,1}? where i is the number of individuals of species A at the site and j is the number of
individuals of species B. Letting fa (resp. fg) be the fraction of neighbors that have an A
particle (resp. a B particle), and ¢,j € {0,1} the transition rates are as follows

(0,5) — (1,5) at rate Af

(7,0) — (i, 1) at rate Afp
(1,0) — (0,0) (0,1) — (0,0) at rate 1
(1,1) — (0,1) (1,1) — (1,0) at rate p

1.1 Mean-field calculations

Often the first step in understanding the behavior of an interacting particle is to look at the
predictions of mean-field theory in which we pretend that adjacent sites are independent.
Let po, pa, pp and pap be the probabilities a site is in state (0,0), (1,0), (0,1), and (1,1).
By considering the possible transitions we see that

d

% = Apo(pa + pas) + ppas — pa — Apa(ps + pas) (1)
d

1;;13 = 2\paps + AN(pa + pB)paB — 21pan (2)
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Figure 1: Plot of the equilibrium values of ps = pa+pap versus A for yp = 0.3,0.4,0.5,0.6, 0.8.
Curves increase as ju decreases. The curves for p = 0.3 and 0.4 show bistability when
V4u(l — ) < A < 1. Here bistability refers to the fact that there are two attracting fixed
point solutions to equations (1) and (2)

See (1) in [27]. We are only interested in solutions with p4 = pp = p. (2) implies that in
equilibrium we must have
2\p* + 2\ppap — 2upap = 0.

Solving gives

Ap?
p—Ap
Noting that py = 1 — pa — pg — pap and rewriting (1)

(3)

PaAB =

0=X1-3p—pap)(p+paB) + pa —p (4)

Combining equations (3) and (4) we arrive at a quadratic equation for p with coefficients
that are quadratic polynomials in  and A. Solving, see Section 2, leads to the conclusions

e For y > 1/2, p grows continuously from zero at A = 1.

e When p < 1/2 there is a discontinuity at A = y/4u(1 — p).

1.2 Bounds on the critical value

Before defining critical value, we introduce a graphical representation for the symbiotic
contact process (SCP). For each ordered pair of neighboring sites x,y € Z% we let I*%4 be a
Poisson process with rate A\/2d. When the Poisson clock associated to (x,y) rings, we draw



an arrow from x to y to indicate a possible infection events from x to y, i.e., if there is an
A or AB at x at this time and there is no A or AB at y then the state at y will change
from 0 to A or from B to AB. Simirly we introduce the Poisson processes %% to indicate
the possible infection events of species B. In what follows, we will frequently use the term
‘arrow’ to refer to possible infection events.

Throughout the paper we will suppose © < 1. To represent the death events, we use
Poisson processes D™ with rate u to denote death events that kills species A at site  no
matter whether B is present at x at that time or not. We also introduce Poisson processes
D*42 with rate 1 — u to denote the death events that kill species A at site  only if B is not
present at z. Similarly we also introduce two Poisson processes D*%1 and D*#2 to produce
death events for species B. All the Poisson processes in the construction are independent.

Let A; be the number of sites that have an A, and let B; be the number of sites that
have a B. Let

Qs = {A; > 0 and B; > 0 for all ¢} (5)

be the event that the process survives. Using the graphical representation we can construct a
coupling between SCP with p; = ps and Ay < Ay by introducing new Poisson processes with
rate Ay — A1 that produce additional infections in the second process but not in the first. It
is easy to see that if 2., happens in the first process then it also happens in the second. Let
P4po(Q) be the probability of survival when we start with one AB at the origin and all
other sites vacant. It follows from the coupling that Papo({2x) is an nondecreasing function
of A for fixed . Hence we can define the critical value

Ae(p) = inf{\: Papo(Qs) > 0}. (6)

If we set ;4 = 1 then the A’s and B’s are independent contact process. Using the graphical
construction again we see that if ;1 < 1 then A.(u) < A.(1) where A\.(1) is the critical value
for survival of ordinary contact process on Z?. To do this we build the process with p using
death Poisson processes D41 and D®B:! that are a superposition of D®4! and D»42 and
D®B1 and D%5? respectively.

The next result shows that symbiosis can have a great effect on the survival of the
system. The upper bound uses a block construction which sacrifices accuracy to keep the
renormalized sites independent, so it is very crude. As in the case of the ordinary contact
process one can project Z¢ into Z by mapping ¥ — x; + - - - + x4 in order to extend the result
tod > 1.

Theorem 1. For any d, the critical value \.(u) satisfies
Ci(p) < Ae(p) < Ca(p).

The values of C(u) and Cy(p) are summarized in the following table.
| Ci(p) | Ca(p), p < 1/1600 | Cy(p), p > 1/1600

d=1 | /8u—4u? 40,/p Ae(1)
d>11|+\/pu/2 - p/4 | min{40d, /i, A.(1)} Ae(1)

To explain the division into cases, recall A\c(1) > 1 in d = 1 so min{40,/z, A.(1)} = 40,/p if
p < 1/1600.



1.3 The phase transition is continuous

We use a block construction for the basic contact process that is similar to the one originally
developed by Bezuidenhout and Grimmett [6]. We follow the approach in Section 1.2 of
Liggett [24]. For positive number L, let I = [—(a + h)L,(a + h)L] and W = I% The
constant a is given in (21). We set h = 1/2 to make formulas easier to write. Let Wd*"’n]d
denote the symbiotic contact process (SCP) starting from all sites in [—n,n]? occupied by
AB and no births are allowed outside of W. Sometimes we omit the superscript [—n,n]<.
The space-time box is B(L,T) = W x [0,1.017]. n, L and T will be chosen in the proof of
Theorem 2. In the argument in Liggett one produces occupied translates of [—n,n]? on the
top and sides of the space-time box. We will instead make copies near the top and near the

sides in regions that we call slabs. The top slab is
Hpr = 1% [T,1.017]
We will have 2d side slabs. They are

Sl =171 X [AL, (a+ R)L] x 17" x [0,1.17]
SZL} ="' x[—(a+ h)L,—hL] x I x [0,1.1T]

where ¢ ranges from 1 to d.
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Figure 2: Picture of the block construction. To enhance visualization we have drawn the
figure assuming that the solid with sides pZLiT is opaque.



The union of the side slabs Spr = Ule(Sé} U Sz}) is an “annulus” with (outer) sides

aLT ="' x {(a+ h)L} x I*7" x [0, 1.1T]
o =1I""x{=(a+h)L} x I x [0, 11T
oLr =Ul(0cr Vo)

and inner sides

pLT =TIt x{hL} x I"7" x [0,1.17]
prr=1""x{=hL} x I"" x [0,1.17]
pLT = U?=1(Pii,+T U PiL’er)

Theorem 2. Suppose (1) < Ae(1) and that the SCP starting from a single AB at the
origin survives with positive probability and A < A\.(1). For any € > 0, there are choices of a
(only depending on \), n, L, T, s.t.

P(W&fn,n]d = AB on x + [-n,n]* for some (v,t) € Hpr ) >1—¢ (7)
and for any 1 <i <d
P(Wgt[—n,n]d = AB on x + [—n,n]® for some (z,t) € SZL*{F )>1—e (8)

By symmetry the last result holds for SZ‘T

This is the analog of Theorem 2.12 in Liggett [24]. Once this is done one can repeat the
comparison with oriented percolation described on pages 51-55 in [24] to show that the SCP
dies out at the critical value. The restriction to A < A.(1) in Theorem 2 is needed because
our proof uses the fact that the system with only one type of particle is subcritical. It is
natural to

Conjecture 1. If p < 1 then A\.(u) < A:(1)

The bounds on the critical value given in Theorem 1 imply that A.(u) < A.(1) for small
1. Strict monotonicity results for critical values have been proved for percolation, the Ising
model, and other related systems. For early results see Chapter 10 of Kesten’s book on
percolation [21]. Given a pair of lattices, £; and Ly, Menshikov [25] gave conditions that
guaranteed that the site percolation critical values p.(L1) > p.(L2). His results were later
generalized in [1] by Aizenman and Grimmett, who showed that the critical value for an
infinite entangled set of open bonds in Z3 is smaller than that the critical value for an infinite
connected component of open bonds. They also showed for ferromagnetic spin systems that
the critical temperature was a strictly increasing function of the interaction strengths. For
more results in this direction see Bezuidenhout, Grimmett, and Kesten [7]. Results for the
Ising and Potts models are proved by reducing to dependent percolation using the Fortuin-
Kasteleyn representation. In the analysis of percolation one uses that there is only one fluid
moving through the graph, so we do not think these methods can be used to prove Conjecture
1, which involves two types of fluids spreading through a graphical representation.
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In the case of the ordinary contact process, 7;, a second corollary of Theorem 2 is the
complete convergence theorem. That is if 7 = inf{t : n; = ()} then

m = P(1 < 00)dy + P(1 = oo)néo

Here = is convergence in distribution, dy the point mass on the all 0’s configuration and n!,
is the limit starting from all sites occupied. The SCP is attractive so the limit ¢7 starting
from all AB exists, but SCP process is not additive in the sense of Harris [20], so there is
no dual process, which is a key ingredient in the contact process proof. Therefore one can
not duduce complete convergence for SCP process from Theorem 2. (It is not clear to the
authors whether complete convergence holds or not.)

The absence of an additive dual creates another open problem. We say &7 is nontrivial
if it puts positive mass on configurations with infinitely many A’s and infinitely many B’s.
Using the graphical representation for the SCP introduced in Section 1.2 one can show if
€48 is nontrivial for some )\, then €22 must also be nontrivial for any A > \;. Hence for
fixed 4 < 1 we can define another critical value.

Ae(p) = inf{\ : €28 is nontrivial}.
Using the graphical representation one can show

where €, has been defined in (5). It is the probability that SCP starting from a sgingle
site survives. This implies that A\, < A.. Toom’s model shows that these two critical values
are not equal in general. In this model the state of the system is & : Z? — {0,1}. As in
the contact process occupied sites (1’s) become vacant (0) at rate 1. However now a vacant
site at x becomes occupied at rate A only if both x + (1,0) and x + (0,1) are occupied.
For Toom’s model finite configuration cannot escape from a box that contains it, since if
initially & € R for some rectangle R, then all x with x ¢ R can’t get infected since either
x+(1,0) or x + (0,1) is not in R. Since we have a death rate 1 for all occupied sites, there
must be a finite time when all sites of R becomes empty. The process then dies out. It
follows that A. = co. Toom [?] proved that A\. < co. See Bramson and Gray [8] for another
approach. For some rigorous results about this model see [12].

It would be interesting if the SCP was another example in which the two critical values
are different, but we have no reason to believe they should be, so we

Conjecture 2. A\ (u) = (1)

1.4 Symbiotic contact process with diffusion

The question we address here is “What happens if, in additions to the birth and death events,
we also let particles move according to the simple exclusion process?” This question was
considered by de Olivera and Dickman [28]. To be precise, we view the symbiotic contact
process as taking place on Z4 x {0,1} with A’s living on level 0 and B’s living on level 1.
Particles jump to each neighbor on the same level at rate e=2, subject to the exclusion rule:



if the chosen neighbor is already occupied then nothing happens. We refer to this process
as the symbiotic contact process with diffusion (SCPD) and denote it by &;.

In [28] simulations showed that for moderate diffusion rates, the process exhibits dis-
continuous phase transition but the transition becomes continuous again once € gets small
enough. They conjecture the critical value for A for small € is 1 regardless of the value of pu.
Theorem 3 supports their conjecture.

Consider the SCPD starting from all sites occupied by AB. By attractiveness &; A8 as
a weak limit as ¢ — oo that we denote by 545, Here, we are interested in the limit of
€548 as € — 0. To do this using the methods of Durrett and Neuhauser [15] it is convenient
to implement the simple exclusion dynamics using the stirring process: for each pair of
neighbors x and y on a given level we exchange the values at x and y on that level at rate
¢~2. Following the approach in [15] the first step is to show convergence of a “dual process” to
a branching Brownian motion and then derive a partial differential equation for the evolution
of the local densities of A, B and AB, which we denote by p(t, z), ps(t, x), p4ps(t, x). We
also set ¢4 (¢, x) = pip(t, x) +p4(t x) and g5(t, z) = pup(t, ©) +p5(t, x). Ase—0, ¢4 — qa
and ¢% — ¢p that satisfy:

0 1
gfzéﬁw+nAM1—%ﬂ—1+@—ﬂMﬂ (9)
0 1
% =580 +¢5(AML = ¢5) = 1+ (1 =~ 1)ga) (10)

If we use the initial condition ¢5(0,-) = ¢5(0,-) = 1 then by symmetry we can replace gp by
ga in equation (9) to get
a@i: - %AqAJr (A —=1)ga — (A =1+ p)g5. (11)
The reaction term on the right-hand side is = 0 when g4 =0 or g4 = (A —1)/(A — 1+ p).
If A < 1 the reaction term is < 0 on (0,1] so the limit is = 0. When A > 1, we have
f/(0) =X =1 >0, so the root at 0 is unstable. Results of Aronson and Weinberger [2, 3]
imply that (11) has a traveling wave solution and that starting from any initial condition
q4(0,z) € [0,1] that is not identically 0, g4 (¢, z) is close to (A —1)/(A+ p — 1) on a linearly
growing set.
The fast stirring makes the states on the A and B lattice independent so the equilibrium

density of AB’s is
o A-10V?
PaB = AFp—1

Subtracting this from the limit of the g4 we find that the limiting density of A’s and B”s

are given by
pa=pp = A= Dr
(A+p—1)
Combining the PDE result with a block construction one can establish the existence of a

nontrivial stationary distribution when A < 1 using the methods in [15]. However, if we use
Theorem 1.4 in [9] instead we get the stronger result:



Theorem 3. Fiz any pu € (0,1]. (i) If X > 1, then for small € > 0, £$2P is nontrivial, and
in any stationary distribution that assigns mass 1 to configurations with infinitely many A’s

and B’s the densities of A’s, B’s, and AB’s are close to pa, pp and pap.
(ii) If X < 1 then for small € we have (4P = 0.

The proof of Theorem 3 is described in Section 7. All of the steps are in [15] or [9],
but for the convenience of the reader, we will give an outline of the argument and indicate
where detailed proofs can be found. It may surprise the reader to hear that the proof of
the second result is much more difficult than the first. In part (i) if we can prove that
the densities are close to the proposed values then we can conclude there is a non-trivial
stationary distribution. However, in part (ii) we have to show that the density is 0, not just
close to 0.

1.5 Outline of the paper

The remainder of the paper is devoted to proofs. The mean-field calculations are carried
out in Section 2. The bounds on the critical values are proved in Section 3. The proof of
Theorem 2 fills Sections 4 to 6. We will now state the two lemmas that are the key to its
proof. However, first we need some more notation.

Given a finite space-time rectangular solid R, the number of AB’s in R, AB(R), is
the size of the largest set C of space time points (x,¢) in R so that (i) if (z,t) € C then
&(x,t) = AB and (ii) if (x1,t1), (z2,t2) € C then either x1 # x5 or 11 = x5 and |t; — to| > 1.
Since the size of such a collection is bounded above by the cardinality of a set that has a point
at each x every 1 unit of time, a maximal set exists. Similarly we can define A(R), B(R).

For some M, N > 0, whose specific values are to be determined, let

Ryr={AB(Hpr) < M,AB(Sr1) < N},

We omit the dependence of various events on parameters other than L and T to make
notation simpler. Recall we start the SCP from [—n,n]? occupied by AB. Also, there is a
parameter a involved in the definition of the block construction in Section 1.3. In the next

two lemmas k() is a constant introduced in equation (19) and (20). Let €y be the event
that the SCP dies out.

Lemma 1. For any T;, L; — oo with lim;_, Tj(/i(/\))“LjL?_l =0 andlim;_, T;/(log L;) =
oo we have
limsup P(Ry, 1;) < P(£)

Jj—00
Lemma 2. For any sequence L; — oo, one can choose T; = T'(L;) that satisfies
: aLj yd-1 Sy
lim Tj(k(\))* L =0 and liminf — > 0, (12)

j—o00 j—oo L

J

These Lemmas are similar to steps in Liggett’s proof. For example, Lemma 1 is analogous
to his Proposition 2.8. However, here we need a large number of sites occupied by AB’s in
SZ;TJ,, but the argument in [24] only gives us a large number of sites occupied by A’s or



B’s. Intuitively since the SCP with only one type contact is subcritical an isolated A will
soon die. So if the SCP is to survive with high probability there must be many AB’s . To
translate this idea into a proof, we show in Section 5 that an A on the inner side pf}, is

unlikely to have a descendant on the outer side 02} unless it encounters a B along the way
(and hence produces an AB).

Lemma 1 is proved in Section 4 and Lemma 2 in Section 5. These two results are combined
in Section 6 to prove Theorem 2. All of this material is independent of the calculations in
Sections 2 and 3.

2 Mean-field calculations

Using (3) we get

Ap? Ap? Ap?
O:)\(l—?)p— P )(p+ P )+u rF__,
= Ap p— Ap p— Ap

Multiplying by (u — Ap)? we have
0= A(1=3p)(— Ap) = Ap?) - (p(p — Ap) + Ap?) + pAp” (e — Ap) — p(p — Ap)?

= A — (A +3p)p + 22p°) (pp) + (12 Xp* — pA?p?) — p(p® — 2pdp + A?p?)
= MNP — M+ 3p)up® + 2X°up® + P Ap? — pNPp® — pPp + 2urp® — Np’.

Dividing by p we arrive at the quadratic equation
0= (A\® = ) + (A4 3+ X+ 2p\)p + (2021 — pA? = A2)p?,
or after some algebra
0 =2 (A= 1) + (=N = 26° X + 2u\)p + N (p — 1)p?
= 2N = 1)+ A2 = X = 2p)p + N — 1)p°.
Using the quadratic formula the solutions are
—pAR(L = ) = N &= VPN [2(1 — ) — A2 — 4P A2 (A - 1)(p — 1)
23 (p—1)

21 —p) =N £ V20 —p) = AP -4 - D(p-1)
2M(1 = p)

= p

Note that in the last step we removed the minus sign out front by changing u—1 to 1 — p in
the denominator. If A = 1 the second term under the square root vanishes and the numerator
is 2(1 —p) — 1+ |2(1 — p) — 1]. If x> 1/2 the plus root is 0 and the minus root is < 0 so
Ae = 1 and there will be one positive root. If 4 < 1/2 then the plus root is > 0 and the
minus root is 0.

To further investigate the case u < 1/2 note that inside the square root

201 = )= A2 = 4\ = 1)(u — 1)
=N ANl —p) +4(1—p)?* —4X(p— 1) +4(p—1)

10



Cancelling the second and fourth terms gives
=N+ 4(1 =2+ p® +p—1) =N —4u(l — p)
so the roots can be written as

m{%l—u—kﬂ:\/ﬂ—‘lu(l—u)},

which agrees with (5) in [28].

If A < +/4p(1 — p) the roots are complex. When p < 1/2 and A = y/4u(1 — p),
2(1 = p) = 2¢/p(1 = ) > 0,

since y < 1—p. Combining this with the previous observation, we see that there are two roots
when 4pu(1 — ) < XA < 1. The larger root and the root at 0 are stable so we have bistability
for the ODEs (1) and (2) in this region. (An ODE is bistable if it has two attracting fixed
points.)

3 Proof of critical vaule bounds

3.1 Upper bound on ).

We first consider the case dimension d = 1. Once we show A < C'\/p in d = 1 we can prove
the result in d > 1 by restricting the process to a line and it follows that A, < Cd,/iz . We use
a block construction. (m,n) € L is said to be wet if one of the sites in {2m, 2m+1} is in state
AB at time nT', where T is to be specified later. Let B,,,, = [2m—1,2m+2| x [nT, (n+1)T].
If n is even we only allow m to be even integers and if n is odd we only allow m to be odd
integers. Note that these blocks are disjoint. So if we only use arrows with both ends in the
box to spread the occupancy, the events associated with these boxes are independent.

oo o o o o o o o o o o =2

m=—1 m=1 m=3

oo o ol o o o ol o oo o n=1
m=20 m =2

ool oo o o o o o o o o =0

-3-2-1 0 1 2 3

.
(@
(@)
-3
oo

Figure 3: Picture of the block construction.

In order to compare with oriented site percolation on £ = {(m,n) : m + n is even }, we
need an upper bound on the critical value. A simple contour argument, see e.g., Section 4 in
[13], shows that when sites are open with probability p > 80/81 there is positive probability
of percolation. Using a result of Balister, Bollobés, and Stacy [4] gives an upper bound
pe < 0.726. Returning to the SCP, we can show
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Lemma 3. Suppose A > 40,/p and p < 1/1600. If (m,n) is wet then (m —1,n + 1) and
(m+ 1,n 4 1) will be wet with probability > 0.726.

We first compute for the process with = 0. Without loss of generality suppose m =0
and n = 0 and that the AB is at 0. The state of site 1 will go from

0— Aor B atrate\
Aor B— 0 atratel
Aor B— AB at rate \/2

Let N be the number of transitions 0 — A or B before we arrive at AB. Since this is the
first time the third transition occurs before the second one, it is clear that /N has a geometric
distribution with success probability (A/2)/(1 + A/2), that is,

2 "1
P(N = k) =
¥=0-(s33) 7

The time t' for a transition 0 — A or B is exponential with rate 7, = X. The time t? for
Aor B — 0or AB is exponential with rate ro = 1+ (A/2). The means are Et! = 1/\
and Et* = (1 + A/2)7! = O(1) respectively. As A — 0, the second will be much smaller
than the first. The total waiting time is (] + -+ + tL) + (t3 + -+ + t%). The following
well-known result shows each sum has an exponential distribution. We include its simple
proof for completeness.

Lemma 4. If N is geometric with success probability p, i.e., P(N = k) = p(1 — p)*~t, and

X1, X, ... are an independent i.i.d. sequence with an exponential distribution with rate r
then Sy = Xy + -+ - + Xy 1s exponential with rate pr.

Proof. Eexp(0X;)=r/(r +0) so conditioning on the value of N

E@m@&ﬂ—pgiﬂ—pfq( : )k

r—+0

__ pr/(r+9)
1= =p)r/(r+0)
pr _pr
r+0—(1—-pr O+pr

which is the Laplace transform of an exponential with rate rp proving the desired result. [

Let Thg =ti + -+t and T35 = t? + --- + 1%. Using Lemma 4 we see that T}y has
an exponential distribution with rate

pri = A/(A+2) and mean (A + 2) /)%
T2 has an exponential distribution with rate

pra = A/2 and mean 2/\.

12



Let ¢ be a constant to be chosen later and let

A+2 2 3N+2
T:C(ETjB_’_ETXB) =C |:T+X:| = )\2

If we let S, the time to produce an AB at —1 then by Lemma 4 we have
P(SY, > T) < P(Tp > ETP) + P(T5; > cET,'P) < 2¢7° (13)

If we let S} the time to produce an AB at 1 and Si be the additional time to produce an
AB at 2 then

P(S! + S >T) <2P(S! > T/2) < 4e™/? (14)

To return to the situation where > 0 we note that the probability there is no u-death

on {—1,0,1,2} during [0,7] is e"*T. If we take u = b/T then the probability of a u-death
in the box is 1 — e~#*. Thus, to prove Lemma 3 we want to pick ¢ and b so that

2e 4+ 47?41 —e < 1-0.726=0.274 (15)

To do this we first decide to take ¢ = 9 so that 2e~¢ < 2.4682x 10, 4e~/? < 0.0444359. This
means we need 1 — e~% < 0.229317. This holds if we take b < by = (1/4)log(1/0.77069) =
0.028281. Thus we have survival if

2
b A s 9BA+2)

<y
H= T =""96a+2) =140

Hence by monotonicity of the survival probability we will have survival if

93X + 2)
bo

and 4541/by < 1 which holds if © < 1600. If 40,/p > 1, then we can simply bound A.(x) by
A(1), the critical value for ordinary contact process on Z!.

)\QE/L

3.2 Lower bound on A\,

For some 0 < 6 < 1 define M; = (AB);+ d(A; + B;). Here (AB);, A; and B; are the number
of sites in states AB, A, and B at time t. The idea is to show for certain values of A, it’s
possible to choose the 6 so that M; is a supermartingale. Since M; > 0, it converges to a
finite limit, which must be identically 0 since M; has values in a discrete set of values. This
then implies both species have to die out with probability 1. Changes in M, results from the
following

e An AB becomes A or B. This decreases M; by 1 — ¢ and the total rate is 2u(AB);.

e AB or A or B gives birth creating a new AB. This increases M; by 1 —¢ and the total
rate is < A(A; + B;) (note an A or B can become an AB at rate at most \).

e An AB gives birth so that a new A or B is created. This increases M; by § and the
total rate is < 2A(AB);.

13



e An A or B dies. This decreases M, by ¢ and the total rate is A; + B;.
e An A or B creates anew A or B. This increases M; by §. The total rate is < A(A;+ By).

Based on the items in the previous list, we can conclude that if F; = 0{ Ay, Bs, (AB)s, s <

t}.

LM F) < —20(AB)(1 - 8) + A(A, + By)(1— )

dt
+ 20\(AB); — 6(As + By) + MA: + By)
= [—2u(1 — 8) + 20\[(AB); + (A(1 = &) — 0 + \)(A; + By),

To get a supermartingale we fix A\ and p and pick ¢ so that
—2u(1 —0)+26A <0 and AN1—-6)—0+A<0.

For this to hold we need
A+ A A+1

For this to be possible we need p(A+1) > 2X\(u+)). Rearranging we want 0 > —p+Au+2\2
Using the quadratic equation we find that a ¢ exists if and only if

\ < THE VR 8
J— 4 .

This implies that A\, > /u/2 — pu/4.

3.3 Improved lower bound in d =1

Consider the symbiotic biased voter model (SBVM) starting with AB’s at all integers n < 0.
To be precise, the birth rates for A’s and B’s remains the same, however, in this model only
the rightmost A or B is allowed to die. Let r4(t) be the right most A and rg(t) the right
most B. Each extreme particle dies at rate y if the state there is AB or at rate 1 if the site
is singly occupied. For example, in the realization drawn in Figure 4, he B at rp(t) dies at
rate 1, while the A at r4(t) dies at rate p.

ra(t) rp(t)

! !
BBBBBBBBBB
AAAAAA

Figure 4: An example illustrating the defintions.

Let r(t) = max{ra(t),rg(t)}. The existence of an edge speed
tlim r(t)/t) = a(N)

14



can be proved using the subadditive ergodic theorem. Using arguments in [10] for the one-
dimensional contact process (see also [11] for the case of oriented percolation) we can also
show that if we define

NEBYM —infiX : a(N\) > 0},

edge

then the probability of survival for SBVM, starting from origin occupied by AB and other
sites vacant, is 0 for A < APV, One can construct the SBVM on the same graphical
representation of SCP by ignoring deaths that do not effect the right-most A and B. It
follows from the coupling and the results quoted above that if A < AS2Y* then the SCP dies
out. From this it follows that )\fngM < M5CP the critical value for survival from a finite set
defined in Section 1.3.

If r4(t) < rp(t) then the right-most A and the right most B give birth at rate A/2. Let
Ny =|ra(t)—rp(t)]. If Ny =n>0and ra(t) < rp(t) then the A at r,(t) dies at rate 1, and
the B at rp(t) dies at rate u. Let ¢ be the Q-matrix for V;.

e If n > 1 then ¢(n,n+ 1) = p+ A/2 due to birth of an A or death of a B;
qg(n,n —1) =1+ \/2 due to death of an A or birth of a B.

e If n =0 then ¢(0,1) = A + 2u due to a birth or death of an A or a B.

To compute the stationary distribution set (1) =c. If n > 1

(n) <1+g) — n(n— 1) @ +u)

so we have )
A+2u\""
= 16
wn =< (554) (10
To compute 7(0) we note that
A
T(0) (A +2p) =c (1 + E) (17)
Using (16) and (17) then summing we have
G 1+ /2
S () = LEND ‘
— A+ 2p 1—(A+2u)/(A+2)

{1+>\/2Jr A+2 1
A2 2(1—p)

From this and our bullet list of flip rates, it follows that in equilibrium

d

Loy -]

1+ X/2 A+2
T o (A_QMH—?(l—u)(/\/Q_I)}

M [A=2u  A2-1
= 1 —_
C( +2) {A+2u+ 1—u}
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To find when this is positive we set
A=2p) (1= p) + (A +20)(A/2-1) =0
A little algebra converts this into

0=2u"—A+2)p+A+puA—2)+A/2 -\
= 2u% — 4y + /2

so for the SBVM the critical value A\3BVM = | /8y — 4u2. As remarked above this is a lower
bound on A.(p) for SCP.

4 Proof of Lemma 1

At several points in the proof we will use Harris’ result on “positive correlations.” See Theo-
rem B17 on page 9 of [24]. If (; is an attractive particle system starting from a deterministic
initial condition and g is the distribution at time ¢ then for any increasing functions f and

: /fgduZ/fdu'/gdu (18)

In most of our applications f =14 and g = 1 will be indicator functions.

We begin our investigation by recalling some facts about the subcritical d-dimensional
contact process. Let A\ be the total birth rate from an occupied site and let the death rate
be 1. We suppose that in the initial condition only the origin is occupied and denote the
process by 1. Combining Theorems 2.34 and 2.48 of [24] shows that if A < . then there
exists some k() < 1 so that

E(|m|) < Cr(N), (19)

for all ¢. By increasing the value of x(\) if necessary we also have
P(n) ever reaches dB;(0, s) for some t) < Cr(\)?, (20)

where 9By (0, s) is the boundary of the L' ball of radius s in Z? centered at 0. Here L' means

dist(z,y) = Z?Zl |x; — y;| for . = (x1,...,24) and y = (y1, ..., Ya)-
Let a be chosen so that

(=(0)"€(1 — exp(— o)) < 1. (21)

The reason we choose an a that satisfies the above will become clear in the proof of Lemma
6.

Recall that Ry, r, = {AB(Hy, 1) < M, AB(Sr1, ;) < N}. Define Dy, 1, ; to be the event
that there are fewer than [ arrows with one side occupied by A or B or AB escaping from

the side of space time box, i.e., or, ;. Define Er, 7,; to be the event that there are fewer
than [ sites in state A or B or AB on the top, W(L) x {1.017}}.
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Lemma 5. Let M and N be fized. For any Tj, L; — oo such that lim;_ Tj(/i()\))“Lngfl =

0 and lim % = 0o we have
j—>oo og Lij
llim limsupP(Rz, 7, N D} 7. ,) =0 (22)
— 00 j—>OO 70790
llim limsup P(Ry,;m, N E], 1,,) = 0. (23)

Jj—00

Proof. To begin we consider equation (22). Observe that for any A or B reaching the outer
boundary o, 7;, that particle must have an ancestor on the inner boundary pr, 7, s.t. the
infection path from the ancestor to the descendant completely lies in the side slab Sz, ;.
There are two possibilities for this infection path. Either it meets a particle of the other
species during the journey or not. We say the descendants of an A travel alone if they never
share a site with a B individual. An individual A on pg, 7, has probability of less than
C(k(N))* to reach oy, 1, if they travel alone and the infection path stays in the side slab.
Note that due to their definitions A(pz, ;) and B(pr,r,) are bounded by C’TjL;l’l. Since
we assume
lim T3 (r(3))" L~ =,

by union bound the probability that there exists one A or B on pr, 7, that make it to or; 1,
by traveling alone in the side slab is bounded by C”TjL?_l(m()\))aLﬂ', which goes to 0 as
J — oo by assumption. Since N is fixed finite number on the event Ry 7, the number of
particles in the side slab that do not travel alone in the side slab is at most C” N with high
probability. Combining the two types of possibilities for spreading (traveling alone or not)
we see the number of offspring that can reach the sides o, 7, is also at most C” N with high
probability. This proves (22). The proof of (23) is similar. O

Proof of Lemma 1. For any given n > 0, by Lemma 5 we can pick [ large enough s.t.,

limsupP(Ry, ;) <n+limsupP(Rr, 7, N Dr, 1,0 N Er,10)-

Jj—00 J—00

Each individual dies at rate at least u, so the probability for it to die in 1 unit of time is
at least 1 — exp(—pu). The probability that this individual does not produce a new particle
within 1 unit of time is at least exp(—A\). Using positive correlations, we see that on the
event Dr. 7., N EL; 1,1, there is always probability

> [(1 — exp(—p)) exp(=A)*

that all the births escaping from the side are killed and all the sites occupied at top slice
recover before giving any birth. If we denote by Fp(r, 1, the sigma algebra generated by
the Poisson process in the space-time box B(L;,T;), then on Dy, 1, N Er, 1, we have

P(Q0|Fpz,,my) 2 [(1 = exp(—p)) exp(=A)*.
Levy’s 0-1 law (see e.g. [14, Theorem 5.5.8]) implies that

P<Qo|f(LJ7T])) - 1907
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which implies on the event limsup,_, ., Dy, ;N EL; 1,1 we have 1g, = 1. It follows from this
and the fact limsup, . P(Dy, 7,0 N Er, 1;0) < P(limsup; . D, 7,0 N Dy, r,1) that for any
L

limsupP(Dpr, 0 N Er,10) < P(Q0).

J—00

Lemma 1 follows because 1 can be taken arbitrarily small. ]

5 Proof of Lemma 2
In this section, our goal is to prove

Lemma 2. For any sequence L; — 0o, one can choose T; = T(L;) that satisfies

T.
lim Tj(ﬁ()\))aLjL?_l =0 and liminf =~ > 0, (24)

so that for j large P(AB(SL, ;) > N) =1 — /P({).
Let Jp;, = {AB(Sr,+) > N} and let f(L;,t) = P(Jy, ). The first step is to show

Lemma 6. Let L; be any sequence going to o0o. Set c3 = e~ 8(1 — e VD) and define

then
jlilgj<f(Lj7tj) —P(Jr, 0 wyée, =0)) =0 (25)
and
lim #;(k(A))* L = 0. (26)
Jj—oo

To prove this we use the following proposition:

Proposition 1. For any t and any possible configuration v (r,)&, there are two possibilities

e Scenario 1. There is no AB in w ;)& and for any v,y € W(L;) with an A at x
and a B at y we have dist(x,y) > L;. In this case there are constants ci,cy so that

PW(Lj)ft(W(Lj)gt‘f‘Lj = @) Z 1 - Cl((a + h)LJ)deXp(_CQLj)‘ (27)

e Scenario 2. There are x,y with dist(x,y) < L; with an A or AB at x and a B or
AB aty. If we let ¢z = e ¥(1— e M) and we let Up,; = [—(a+h)Lj, —hL;] x I*7' x
[t,t+5LJ] U [th, (CL+ h)L]] X Idil X [t7t+5LJ] where I = [—(cH— h)Lj, (CL‘Fh)Lﬂ then

PW(L].)Et(W(Lj)f has an AB in U, ) > cgj (28)
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Proof of Proposition 1. In scenario 1, equation (20) implies that a single particle z has prob-
ability at most C'k(\)%/2 to ever reach some point outside B; (z, L;/2). Using a union bound,
we see that with probability at least 1 —C'((a+h)L;)?x(A)% none of the particles in the box
will move for a distance greater than L;/2. Conditioned on the event that none of the A’s and
B’s meet, they will die out before time L; with a probability of at least 1—C((a+h)L;)?r(\)%s
by equation (19). Using union bound again we get equation (27).

In Scenario 2, the result comes from the fact that for any A and B with distance less
than L, the probability that they will meet to form an AB within time of L; is

> (671((1 . 67)\/(2d))671>L]-'

To prove this, let 29 = x, 21, ... z; = y be a path with length < L; and note that to get from
z; occupied at time ¢ to z;,1 occupied at time ¢+ 1: the particle at z; has to survive for time
1, give birth onto z;,1 and the newborn particle needs to survive until time ¢ + 1. If the AB
is already in [—(a+h)L;, —hL;] x IV U[hL;, (a+ h)L;] x I%7" then we are done. Otherwise
we let this AB produce an AB in [—(a+ h)L;, —hL;] x IV U [hL;, (a+ h)L;] x 7" within
time 2L; with probability at least

(6_2“(1 . e_’\/(Qd))ze_l)Lj.

To see this, for any point in [—(a + h)L;, (a + h)L,] there is a path of length at most L;
connecting this point to some other point in [—(a+h)L;, —hL;]x I*"*U[hL;, (a+h)L;] x %71,
This time the events along the path that result in spreading the infection are:

(i) The AB at z; has to survive for time 1 (with probability e~2*).

(ii) During this time unit there has to be a birth of an A and a B at z;;; which occurs
with probability > (1 — e~/ (24)2),

(iii) The first born particle has to survive until the second birth occurs which occurs with
probability > e™1).
Then we repeat this process for the newly formed AB until we reach the final point of the
path. Using positive correlations we prove (28) with ¢z = e8(1 — e=V )4 since (e7!((1 —
6—A/(2d))6—1)L]~ (672”(1 _ 6—/\/(2d))26—1)Lj = Céj. 0

Proof of Lemma 6. We divide [0, t;] into intervals of length 5L;. Denote by ¢, the resulting
division points for 1 < k < t;/(5L;) By Proposition 1, on the event y ()&, # 0 if we look
at the restricted process w(z,)& at times t; j we need to stay in scenario 2 otherwise the
restricted process will die with high probability. On the other hand, falling into scenario 2
implies that we will have a chance of at least céj to get an AB in Spp. If t;/L; is large
enough so that

lim L— = 00, (29)

then with high probability the number of AB in Sp; will grow to oo. To see this, recall
that for any collection of independent Bernoulli random variables {I,.} using Chebyshev’s
inequality with the fact that var (I,) < E(/,) we have

]P’(ZIT > %ZE(L)) > 1-%.

r
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If we choose t; = [1/(c3k(N))45/2) equation (29) is satisfied since c3/k(A)? > 1, which
implies
hm ]P)(W(Lj)ftj 7é @,AB(SLN].) S N) = 0.

J—00

This proves (25). Since x(A)*/c3 < 11it is clear from the definition of ¢; that (26) holds. O

Proof of Lemma 2. It is clear that f(L;,0) = 1 and f(L;,t) is an decreasing function of ¢.
We need to find 7} that satisfies f(L;,1;) = /P(£). By comparison with Richardson’s
model, see [?], it follows that the SCP spreads at most linearly. Hence if T; = o(L;) then
lim; .o f(Lj,Tj) = 1. This implies that if we have

f(L, T;) = V/P(), for large j,

then it must be true that liminf; .., 7;/L; > 0.

Lemma 6 gives us, see (26) and (25), a sequence of ¢; that satisfies lim;_, t;(k()\))* =0
and limsup; . f(L;,t;) < P(Qo). Since f(Lj,t) is decreasing in ¢t we have proved the
existence of T; with the properties desired in Lemma 2. O

6 Proof of Theorem 2

Using Lemma 1, positive correlations, and Lemma 2 we see that if j is large

2P(Q) > P(AB(Hyr) < M,AB(St1) < N)
> P(AB(HLr) < M)P(AB(Sr) < N)
=P(AB(HLr) < M)\/P(Qy)
Rearranging we have
P(AB(Hpr) > M) >1—2y/P() (30)

For the moment we will restrict to d = 1 and drop the superscript ¢ from the notation for the
slabs. To bound the other probability we use Lemma 2, monotonicity, positive correlations,
and symmetry to conclude

B(Q) = P(AB(Sr,) < N) > P(AB(SE,) < N/2, AB(S7,) < N/2)
P(AB(S},) < N/2B(AB(Sy,) < N/2)
P

(AB(S7.) < N/2)?

AVARAY,

which gives
P(AB(S,) > N/2), P(AB(S7,) > N/2) = 1 — B()"/*

The same calculation gives for the SCP on Z<:
P(AB(Sy;) > N/2),P(AB(Sy,) > N/2) > 1 — P(Q)"/* (31)

It remains to show if we have many AB’s then with high probability at some time
t < 1.017 we will have an box of length 2n that is filled with AB. Denote by F; the event
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that we ™" 5 2+ [—n,n]? for some z € [hL, (a+ h)L] x I*"! and some t € [0,1.0177], and
F, = {AB(S%JLF) > N/2}. Let € be the constant in Theorem 2 and let § = (¢/4)*. Note that
by the ergodic theorem we know that P(Qy) — 0 as n — oo, so if we pick n large enough
then P(€)) < ¢/2. Having chosen the value of n, we will show

Lemma 7. P(F¢N Fy) < 6Y* for N large enough.
Assume Lemma 7 for the moment, it follows from Lemma 2
P(F}) < P(Fy) + P(Ff N F) < 26" = ¢,
Equation (7) can be shown similarly by using (30) in place of (31).

Proof of Lemma 7. Following the proof of (5.6) in [5], we will use an algorithm that will stop
if we find (2n)¢ consecutive AB’s. It is designed so that each time we choose an AB site, the
probability that this chosen point fails to generates (2n)? AB’s within next one unit of time
is less than o which is a number only depends on n. Also whether or not we can get (2n)?
AB’s is independent of information obtained before. This proves that P(F¢ N Fy) < 2(26)3
as long as the algorithm allows us enough choices on F5.

Let t; be the first time that an AB appears in Si; and let the coordinate of this first
point by (x1,t1). Let F; be the sigma-algebra generated by the Poisson processes in W up to
time t;. Given JF, the probability that this chosen point fails to generates an interval of (2n)?
AB’s in (x1 + [—n,n|?) x [t;,t; + 1] using only Poisson arrivals in (x1 + [—n,n|?) x [t;, t; + 1]
is less than a. If we do get (2n)¢ AB’s then the algorithm stops otherwise we continue.

At the next step we try to find the first t5 > ¢, so that we have an AB at (x9,t5) in Sz;
When t; <ty <7 + 1 we ignore points with |xe — 21| < 4n. If t5 > t; + 1 we let F; be the
sigma-algebra generated by the Poisson processes in W up to time t5. If t; <ty <t;+1, we
need to add information about the Poisson processes in (z1 + [—n, n|?) x [t;,t; +1]. In either
case, given Fy, there is a probability of less than « that we cannot find (2n)? consecutive
AB’s by using the Poisson process in (zy + [—n,n|?) X [ta, to + 1].

We continue the search until we either get (2n)? consecutive AB’s or we come to time
1.017. The probability of failure when running this algorithm for k steps is < o*. This will
be < §/4 if

log(9)

log(a)
Recall that we count two space time points (y,s;) and (y,ss) as different AB only if

|s; — s3] > 1. Hence at each step of the algorithm we ignore at most (8n)? AB points.
It follows that if

k> (1/4)

log o d
N 1/4)—— 1
> (1222 (s)+ 1),
then we can run the algorithm for at least 1/4(logd)/(log «) steps if needed, which implies

the probability of failure is < §'/4. This completes the proof of Lemma 7 and hence completes
the proofof Theorem 2. O
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7 Proof of Theorem 3

The first step is define the dual process. For this we need to construct the process using
Poisson processes. For each ordered pair of neighboring sites x,y € eZ% and level i we have
a rate A Poisson process Ty"""", n > 1 which cause births from (z,7) to (y,7). For each
unordered pair of neighbors and level ¢ we have a rate e 2 Poisson process S™¥¢ n > 1 the
values at (z,1) to (y,7). For each site z and level i we have a rate pu Poisson process T, o)
n > 1 that always causes death of a particle at x on level 7, and a rate 1 — u Poisson process
Sy(f”), n > 1 that causes death of a particle at x on level ¢ if there is no particle at x on level
1—1.

The first three Poisson processes are part of an additive process but the last one is not,
so the dual process that works backwards from x on level ¢ at time ¢ is what [15] call the
influence set. The state at (z,4) at time ¢ can be computed if we know the states of the sites
in Z»"" at time ¢t — s. When a particle in Z%"* hits an arrival in one of our Poisson processes
the following changes occur.

o T™" We draw an arrow from (y,7) — (x,1) to indicate a potential birth and add a
particle at (y, ). If there is already a particle at (y,7) the two particle coalesce to one.

e 52¥i We draw an arrow from (z,i) — (y,i) and an arrow from (y,i7) — (z,1) to
indicate that the values will be exchanged. We move the particle at (z,4) to (y,4). if
there is a particle at (y,4) it moves to (x,1)

e 7% We kill the particle at (z,7) and write a § next to it.

e 5% We write a 0 at (z,i) and draw an arrow from (z,1 — i) — (z,4) to indicate that
if (z,1—1) is occupied the particle at (x,7) is saved from death. We leave (z,1%) in the
dual and add a particle at (z,1 — 7).

For more details about the construction of the dual see Section 2 in [15]. In that section it
is shown that the correlations of particle movements caused by stirring neighboring particles
tend to 0 as € — 0, so the dual converges to a branching Brownian motion. In Sections 2d
and 2e of [15], the convergence of the dual to branching Brownian motion is used to conclude
that the ¢4 (¢, z) and ¢%(t.x) converge to limits g (¢, z) and gg(t, ) that satisfy (9) and (10).
This is also proved in Chapter 2 of [9]. However the fact that we have stirring instead of
random walks makes things simpler: we do not have to trim the dual to remove particles
that exist for only a very short amount of time.

The results of Aronson and Weinberger [2, 3] imply that when A > 1 Lemma 3.2 in [15]
holds and consequently there is a nontrivial stationary distribution. Essentially the same
proof is carried out in Chapter 6 of [9], but in that reference a more careful comparison with
percolation is used to guarantee that the densities are close to the values that emerge from
the mean-field ordinary differential equation.

To prove result (ii) we have to use a comparison with oriented percolation to show that
holes (regions that are = 0) grow linearly so the system dies out. In doing this we have to deal
with the fact that our block event that produces dead regions sometimes fails. To guarantee
that the configuration is = 0 even in that case, we use another percolation argument to show
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that the failed block events are surrounded by a connected dead region so it is impossible
for there to be particles in the region with the failed block construction. This argument is
done in Sections 4 and 5 of [15] for the quadratic contact process, and in greater generality

in Chapter 7 of [9].
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