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Abstract—We consider the problem of finitely parameter-
ized multi-armed bandits where the model of the underlying
stochastic environment can be characterized based on a common
unknown parameter. The true parameter is unknown to the
learning agent. However, the set of possible parameters, which is
finite, is known a priori. We propose an algorithm that is simple
and easy to implement, which we call Finitely Parameterized
Upper Confidence Bound (FP-UCB) algorithm, which uses the
information about the underlying parameter set for faster
learning. In particular, we show that the FP-UCB algorithm
achieves a bounded regret under some structural condition on
the underlying parameter set. We also show that, if the under-
lying parameter set does not satisfy the necessary structural
condition, the FP-UCB algorithm achieves a logarithmic regret,
but with a smaller preceding constant compared to the standard
UCB algorithm. We also validate the superior performance of
the FP-UCB algorithm through extensive numerical simulations.

Index Terms—Multi-Armed Bandits, Online Learning, Rein-
forcement Learning

I. INTRODUCTION

ULTI-ARMED Bandits (MAB) problems are canon-

ical formalism for studying how an agent learns to
take optimal actions by repeated interactions with a stochastic
environment. The learning agent receives a reward at each
time step which will depend on the action of the agent
as well as the stochastic uncertainty associated with the
environment. The goal of the agent is to take actions in
such a way to maximize the cumulative reward. When the
model of the environment is perfectly known, computing
the optimal action is often a straightforward optimization
problem. The challenge, as in the case of most real-world
problems, is that agent does not know the stochastic model
of environment a priori. The agent needs to do exploration,
i.e., take various actions sequentially to gather information, in
order to estimate the model of the system. At the same time,
the agent needs to do exploitation of the available information
at any given time for maximizing the cumulative reward. This
exploration vs. exploitation trade-off is at the core of the
MAB problems.

Lai and Robbins in their seminal paper [1] formulated
the non-Bayesian stochastic MAB problem and characterized
the performance of a learning algorithm using the metric of
regret. They showed that no learning algorithm will be able to
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achieve a regret better than O(logT'). They also proposed a
learning algorithm that achieves an asymptotic logarithmic
regret, matching the fundamental lower bound. A simple
index-based algorithm called UCB algorithm was introduced
in [2] which achieves the order optimal regret in a non-
asymptotic manner. This approach led to the development
of a number of interesting algorithms, like linear bandits
[3], contextual bandits [4]], combinatorial bandits [5], and
decentralized and multi-player bandits [6].

Thompson (Posterior) Sampling is another class of algo-
rithms that gives superior numerical performance for MAB
problems. Posterior sampling heuristic was first introduced by
Thompson [7]], but the first rigorous performance guarantee,
an O(logT) regret, was given in [[8]. Thompson sampling
idea has been used to develop algorithms for bandits with
multiple plays [9]], contextual bandits [10], general online
learning problem [11]], and reinforcement learning [|12]. Both
classes of algorithms have been used in a number of practical
applications, like communication networks [13]], smart grids
[14], and recommendation systems [15].

Our contribution: We consider a class of multi-armed
bandits problems where the reward corresponding to each
arm can be characterized based on a common unknown
parameter. In particular, we consider the setting where the
cardinality of the set of possible parameters is finite. This
is inspired by many real-world applications. For example,
in recommendation systems and e-commerce applications
(Amazon, Netflix), it is typical to assume that each user
has a certain ‘type’ parameter (denoted as 6 in our problem
formulation), and the set of possible parameters is finite.
The preferences of the user is characterized by her type
(for example, prefer science books over fiction books). The
set of all possible types and the preferences of each type
may be known a priori, but the type of a new user may be
unknown. So, instead of learning the preferences of this user
over all possible choices, it may be easier to learn the type
parameter of this user from a few observations. In this work,
we propose an algorithm that explicitly uses the availability
of such structural information about the underlying parameter
set which enables a faster learning.

We propose an algorithm that is simple and easy to
implement, which we call FP-UCB algorithm, that uses the
structural information for faster learning. We show that the
proposed FP-UCB algorithm can achieve a bounded regret
(O(1)) under some structural condition on the underlying
parameter set. This is in sharp contrast to the increasing
(O(logT)) regret of the standard multi-armed bandits al-



gorithms. We also show that, if the underlying parameter
set does not satisfy the necessary structural condition, the
FP-UCB algorithm achieves a regret of O(logT), but with
a smaller preceding constant compared to the standard UCB
algorithm. The regret achieved by our algorithm also matches
with the fundamental lower bound given by [16]]. One re-
markable aspect of our algorithm is that, it is oblivious to
the fact if the underlying parameter set satisfies the necessary
condition or not, and thus avoiding re-tuning of the algorithm
depending on the problem instance. Instead, it achieves the
best possible performance given the problem instance.

Related work: Finitely parameterized multi-armed bandits
problem was first studied by Agrawal et al. [[16]. They also
proposed an algorithm for this setting, and proved that their
algorithm achieves a bounded regret when the parameter set
satisfies some necessary condition, and logarithmic regret
otherwise. However, their algorithm is rather complicated
which limits practical implementations and extension to other
settings. The regret analysis is also involved and asymptotic
in nature, different from the recent simpler index-based ban-
dits algorithms and their finite time analysis. [[16] also pro-
vided a fundamental lower bound for this class of problems.
Compared to this work, our FP-UCB algorithm is simple,
easy to implement, and easy to analyze, while providing non-
asymptotic performance guarantees, which matches the lower
bound.

There are some recent works on exploiting the available
structure of the MAB problem for getting tighter regret
bounds. In particular, [[17] [[18] [19] [20] consider the problem
setting similar to our paper where the mean reward of each
arm is parameterized by a single unknown parameter. [17]
assumes that the reward functions are continuous in the
global parameter and gives a bounded regret result. [18]
gives specific conditions on the mean reward to achieve a
bounded regret. [[19] considers a latent bandit problem where
the reward distributions are partitioned into a number of
clusters and indexed by a latent parameter corresponding to
the cluster. [20] characterizes the minimal rates at which sub-
optimal arms have to be explored depending on the structural
information, and proposes an algorithm which achieves these
rates. [21]] [22] [23] exploit a different structural information
where it is shown that if the mean value of the best arm
and the second best arm (but not the identity of the arms)
are known, then a bounded regret can be achieved. There
are also works on bandits algorithms that try to exploit the
side information [24] [25]], and recently in the context of
contextual bandits [26]]. Our problem formulation, algorithm,
and analysis are very different from these works. We also
note that our problem formulation is fundamentally different
from the system identification problems [27] [28] because
the goal here is to learn an optimal policy online.

II. PROBLEM FORMULATION

We consider the following sequential decision making
problem. In each time step ¢ € {1,2,...,T}, the agent
selects an arm (action) from the set of L possible arms,
denoted as, a(t) € [L] = {1,...,L}. Each arm 4, when

selected, yields a random real-valued reward. More precisely,
let X;(7) be the random reward from arm ¢ in its 7th
selection. We assume that X;(7) is drawn according to a
probability distribution P;(-;6°) with a mean p;(6°). Here
0° is the (true) parameter that determines the distribution
of the stochastic rewards. The agent does not know 6° or
the corresponding mean values i;(0°). The random reward
obtained from playing an arm repeatedly are i.i.d. and in-
dependent of the plays of the other arms. We assume that
rewards are bounded with support in [0, 1]. The goal of the
agent is to select a sequence of actions that maximizes the
expected cumulative reward, E[ZtT:1 Ha()(0°))]. The action
a(t) depends on the history of observations available to the
agent until time ¢. So, a(t) is stochastic and the expectation
is with respect to all the possible randomness.

Clearly, the optimal choice is to select the best arm (the
arm with the highest mean value) all the time, i.e., a(t) =
a*(0°),Vt, where a*(0°) = argmax;c(z) 11;(0°). However,
the agent will be able to make this optimal decision only if
she knows the parameter 6° or the corresponding mean values
1:(6°) for all i. The goal of a MAB algorithm is to learn to
make the optimal sequence of decisions without knowing the
true parameter 6°.

We consider the setting where the agent knows the set of
possible parameters ©. We assume that © is finite. If the true
parameter were 6 € ©, then agent selecting arm ¢ will get
a random reward drawn according to a distribution P;(+;0)
with a mean pu;(6). We assume that for each § € ©, the
agent knows P;(+;0) and p;(60) for all ¢ € [L]. The optimal
arm corresponding to the parameter 6 is denoted as a*(6) =
arg max;c(r] (i (). We emphasize that the agent does not
know the true parameter #° (and hence the optimal action
a*(6°)) except the fact that it is in the finite set ©.

In the multi-armed bandits literature, it is standard to
characterize the performance of an online learning algorithm
using the metric of regret. Regret is defined as the per-
formance loss of an algorithm as compared to the optimal
algorithm with complete information. Since b(t) = a*(6°),
the expected cumulative regret of a multi-armed bandits
algorithm after 7" time steps is defined as

T
E[R(T)] :=E | > (tta(60)(0°) — ttany(09)| . (1)
t=1
The goal of a multi-armed bandits learning algorithm is to
select actions sequentially in order to minimize E[R(T")].

Remark 1 (Missing proofs). Due to page restriction, we omit
many proofs. The proofs are given in [29].

III. UCB ALGORITHM FOR FINITELY PARAMETERIZED
MULTI-ARMED BANDITS

In this section, we present our algorithm for finitely
parameterized multi-armed bandits and the main theorem. We
first introduce a few notations for presenting the algorithm
and the results succinctly.

Let n;(t) be the number of times arm ¢ has been selected
by the algorithm until time ¢, i.e., n;(t) = Zj—:l Ha(r) =



i}. Here 1{.} is an indicator function. Define the empirical
mean corresponding to arm ¢ at time ¢ as,

n;(t)
fui(t) = nl( 5 > Xi(r). )

Define the set A := {a*(d) : 6 € O}, which is the
collection of optimal arms corresponding to all parameters
in ©. Intuitively, a learning agent can restrict to selecting the
arms from the set A. Clearly, A C [L] and this reduction can
be useful when |A| is much smaller than L.

Our FP-UCB Algorithm is given below.

Algorithm 1 FP-UCB

1: Initialization: Select each arm in the set A once

2: Initialize episode number k = 1, time step ¢ = |A| + 1
3: while ¢t <T do

4: tp=t—1

5:  Compute the set

" a*(0),0 € ©:Vie A,

* { i (tr) = ma(6)] < 4/ 52 }
6: if |Ag| # O then

7: Select each arm in the set Aj once
8 t—1t+ |Ak|

9 else

10: Select each arm in the set A once
11: t <« t+|A]

12:  end if

13 k+k+1

14: end while

We define the confusion set B(6°) and C(6°) as,
B(6°) :={0 €O :a"(0) # a*(0°) and

tax(6)(07) = pa=(90)(0)},
C(6°) := {a*(0) : 0 € B(6°)).

Intuitively, B(6°) is the set of parameters that can be con-
fused with the true parameter 6°. If B(6°) is non-empty,
selecting a*(6°) and estimating the empirical mean is not
sufficient to identify the true parameter because the same
mean reward can result from other parameters in B(6°). So,
if B(6°) is non-empty, more exploration (i.e., selecting sub-
optimal arms other than a*(6°)) is necessary to identify the
true parameter. This exploration will contribute to the regret.
On the other hand, if B(6°) is empty, optimal parameter can
be identified with much less exploration, which results in a
bounded regret. C'(6°) is the corresponding set of arms that
needs to be explored sufficiently for identifying the optimal
parameter. So, whether B(6°) is empty or non-empty is
the structural condition that decides the performance of the
algorithm.
We make the following standard assumption.

Assumption 1 (Unique best action). For all 8 € ©, the
optimal action, a*(0), is unique.

We define A; as,
A = fige(gy(07) — pi(6°), 3)

which is the difference between the mean value of the optimal
arm and the mean value of arm ¢ for the true parameter 6°.
This is the standard optimality gap notion used in the MAB
literature [2]).

For each arm in ¢ € C'(6°), we define,

Bi = min - |12i(0°) — pa(0)]- “4)

 9:0€B(6°),a* (6

We use the following lemma to compare our result with
classical MAB result.

Lemma 1. Let A; and B; be as defined in (@) and (@)
respectively. Then, for each i € C(6°), 8; > 0. Moreover,
Bi > A,

We now present the finite time performance guarantee for
our FP-UCB algorithm.

Theorem 1. Under the FP-UCB algorithm,

E[R(T)] < Dy, if B(6°) is empty, and (5)
E[R(T) < Dy +12l0g(T) 3 25 (6)
i€C(6°) pi

if B(0°) is non-empty,

where D1 and Do are problem dependent constants that de-
pend only on the problem parameters |A| and (11;(0),0 € ©),
but do not depend on T.

Remark 2 (Comparison with the classical MAB results).
Both UCB type algorithms and Thompson Sampling type
algorithms give a problem dependent regret bound O(log T').
More precisely, assuming that the optimal arm is arm 1, the
regret of the UCB algorithm, E[Rycg(T)], is given by [2]

L
E[Rucs (T)] = O (Z < log T) .

=2

On the other hand, FP-UCB algorithm achieves the regret
E[Rpp.ucs(T)] = O(1), if B(#°) is empty, and

ol X

i€C(0°)

A; . :
7 logT | , if B(6°) is non-empty.
i

Clearly, for some MAB problems, FP-UCB algorithm
achieves a bounded regret (O(1)) as opposed to the increasing
regret (O(log T)) of the standard UCB algorithm. Even in the
cases where FP-UCB algorithm incurs an increasing regret
(O(logT)), the preceding constant (A;/32) is smaller than
the preceding constant (1/A;) of the standard UCB algorithm
because 3; > A;.

We now give the asymptotic lower bound for the finitely
parameterized multi-armed bandits problem from [16], for
comparing the performance of our FP-UCB algorithm.



Theorem 2 (Lower bound [16]]). For any uniformly good
control scheme under the parameter 0°,

*(go 90 — Wa* 90
hmlnfw> Ha (0 )( ) % (9)( )

TSoo log(T) ~ 0eB(6°) D+ (9)(0°16) ’

where Do 9)(0°]|0) = [ Py (9)(2;0°)log(Py-(g)(;0°)/
Py (9)(x;0))dx is the KL-divergence between the probability
distributions Py-9)(+;0°) and Py« 9)(-;0).

Remark 3 (Optimality of the FP-UCB algorithm). From
Theorem |2} the achievable regret of any multi-armed bandits
learning algorithm is lower bounded by (1) when B(6°)
is empty, and Q(logT') when B(6°) is non-empty. Our FP-
UCB algorithm achieves these bounds and hence achieves
the order optimal performance.

IV. ANALYSIS OF THE FP-UCB ALGORITHM

In this section, we give the proof of Theorem For
reducing the notation, without loss of generality, we assume
that the true optimal arm is arm 1, i.e., a* = a*(6°) = 1.
We will also denote 1;(6°) as uj, for any j € A.

Now, we can rewrite the expected regret using (1)) as

T
=B (g — )] Z Ai Ef Z La(t) =i}]
L
=> A ER(T)] =) A E[ni(T)]. @)
=2 €A

The last equality is due to the fact that the algorithm selects
arms only from the set A.
We first prove the following important propositions.

Proposition 1. For all i € A\ C(0°),i # 1, under FP-UCB
algorithm, E [n;(T)] < C;, where C; is a problem dependent
constant that does not depend on T

Proof. Consider an arm i € A\ C(6°),i # 1. Then, by
definition, there exists a # € © such that a*(f) = i. Fix a
6 which satisfies this condition. Define a(6) := |u1(6°) —
11(0)|. It is straightforward to note that when ¢ € A\ C(6°),
then the 6 which we considered above is not in B(6°). Hence,
by definition, a4 (6) > 0.

For notational convenience, we will denote 1;(6) simply
as pj, for any j € A. Notice that the algorithm picks i arm
once in t € {1,...,|A|}. Let K1 be the total number of
episodes in time horizon T' for the FP-UCB algorithm. It is
straightforward that K1 < T'. Now,

T
Efni(T)]=1+E | Y 1{a(t) =i}
t=|A|+1

Kr
WitE > (i€ A4} + 1{4, = 2})

k=1
(2 1+ Z(]P’({i € A, 1€ Ar}) +P({1 ¢ Ar})).  (8)

k=1

Here (a) follows from the algorithm. Refer [29]] for (b).

We will first analyze the second summation term in (8).
First observe that, we can write n;(tz) = 1 + Z (]l{] €
A, }+ 1{A, = @}) for any j € A and episode k Thus,
«) lies between 1 and k. Now,

({1 ¢ Ar})

n»<u
2;4 (Iug (te) — uj|>\/m>

uMﬂ;\

—~ =
5}
~

IS
M)~ TTMH \TM% ﬁMﬂ M=

seatliny(t) — 2l > \/31og k/nxm})

—
INS

n;(tk)

A n tk p— nj(tk)
() b ( 3log k
g
< Z 2P Ly X0 —
€A m=1 T=1 n(tk)
) b 3l k
< 2exp(—2 °8 Z Z < 4]A].
k=1jeAm=1 k= ljeA

€))
Here (a) follows from algorithm definition, (b) from the
union bound, and (c) from the definition in (). Inequality
(d) follows by conditioning the random variable n;(¢x) that
lies between 1 and k for any j € A and episode k. Inequality
(e) follows from Hoeffding’s inequality [30, Theorem 2.2.6].
For analyzing the first summation term in (8), define
the event Ey := {ni(ty) < 12logk/a?(f)} . Denote the
complement of this event as E}. Under the event £},

]P)({’L S Ak, 1e Ak,Eg})

:IP’( Njeafli;(te) — nfl < \/3logk/n;(tx)}, )
Njeallit; (te) — pi| < /3logk/n;(te)}, Ef
[ (tr) — w3l < v/3logk/ni(tk)},

oo )-o

A1 (tk) — pa| < v/3logk/na(tr)}, Ef
(10)
This is because the events {|ii(tx) —

3logk/ni(ty)} and {|f1(tg) — | < \/3logk/n1 ty }

are disjoint under FEf, that is, when nq(tx)
12log(k) /a3 (). To see this, notice that {|fq(tx) — pS] <
V3loghk/ni(te)} € {lfn(ts) — p9l < a1(0)/2} and
{lin(te) — | < Blogh/m(tn)} € {lin(te) — | <
a1(0)/2}, for nyi(ty) > 12logk/a?(f). Moreover, since
= | = ea(0), {lints) — pfl < 1(0)/2} and
{1 (tg) — p1| < a1(0)/2} are disjoint sets. Hence, their
subsets are also disjoint.

We now move on to analyze the first summation term in
(8), under the events Ej. Define n} (¢x) := 1+ Zi: {1l e
A }. Note that, according to the FP-UCB algorithm, arm 1
can be selected if A, is empty as well, so n/ (t) < nq(tg).
Define k;(0) and m(k) as,

k;(0) == min {k: k > 3,k > [12log(k) /a3 (0)]},
m(k) := max{1,k — [121log(k)/a3 (6)]}.

Y
12)



Note that k;(6) is a problem dependent constant and does
not depend on 7. Also, m(k) = k — [121og(k)/a2(6)] for
all k > k;(6). We claim that for all k& > k;(6),

{m}(tx) < 12log(k) /0?(6)}

C{1¢ A, for some r,m(k) <7 <k—1}. (13)

To see this, suppose there exists no 7, where m(k) < 7 <
k — 1, such that 1 ¢ A,. Then, 1 € A, for all 7, where
m(k) <7 < k—1. So, by definition n/ (tx) > (k—m(k)) =
[1210g(k)/a3(6)] for k > k;(6). So, the complement of the
RHS of is a subset of the complement of the LHS of
. Hence the claim follows. Now,

E
g
&

T
D P({i € A, 1 € Ay, E}) <
k=1 k=1

(@) &
<Y P
k=1

b

() (tk) < 12log(k)/ai(0))

—~
=

k() + S Bl () < 12log(k)/0?(6))
k=k;(0)

IA

—
s}

)

IN

S

ki (0)+

T

Z P({1¢ A, for some 7,m(k) <7 <k-—1})
k=k:(0)
(

=

= ki(0)+
T 3logT
S PR g Upea {lig(r) — 12l > 4| 2281y
n;(tr)
k=k;(0)
a = 3logT
< ki(6) + Z Z ZP(\ﬂj(T)—/«Lﬂ > m)
k=k;(0) T=m(k) jJEA I
(e) = T 2041k
o+ Y Mg o 2AE
T (m(k))
k=k;(0) r=m(k) k=k; (6)
T
2|Alk
IR e LI P ()
4 [ og(k) )5
k=hi(6) [ aZ(0) W
(14)
where K;(0) is a problem dependent constant that does not

depend on T'.

In the analysis above, (a) follows from the definition of
E) and the observation that nf(tx) < mi(tx). Considering
T to be greater than or equal to k;(6)|A|, inequality (b)
follows; note that this is an artifact of the proof technique
and does not affect the theorem statement since n;(7"), for
any T’ less than k;(0)|A|, can be trivially upper bounded
by n;(T), and hence E[n;(T")] < E[n;(T)]. Inequality (c)
follows from , (d) by the FP-UCB algorithm, (e) is
similar to the analysis in (@), and (f) follows from the fact
that k > [12log(k)/a3(0)] for all k > k;(0).

Using @), (I0), and (T4) in @), we get E[n;(T)] < C;,
where C; =1+ 4|A| + mingza*(g):i(k‘i(e) + Kz<9)), which
is a problem dependent constant that does not depend on 7.
This concludes the proof. O

Proposition 2. For any i € C(6°), under FP-UCB algo-
rithm, E [n;(T)] < 2+ 4|A| + 121og(T)/3?.

We now give the proof of our main theorem.

Proof. (of Theorem [I) From (7),

= AE[n(T)]
1€EA
= Z AE[n; (T Z AE[n(T)]. (15)
1€ A\C(6°) 1€C(0°)

Whenever B(6°) is empty, notice that C'(6°) is empty. So,
with the application of proposition [T} (I3) becomes

icA icA
Whenever B(6°) is non-empty, C'(6°) is non-empty. An-
alyzing (13), we get,

ER(T) = > AEn(D]+ > AE[R(T
i€A\C(6°) ieC(0°)
(a)
< Y ACH Y AER(T
i€ A\C(6°) i€C(6°)

(b)
< |4] mag(Ai(Q + C; + 4]A]) 4+ 121og(T
1€

D

LEC(GO

Here (a) follows from proposition [I] and (b) from propo-
sition Setting D7 = |A|max;ea A;C; and Dy =
|A| max;ea A;(2 4+ C; + 4|A|) proves the regret bounds in
() and (6) of the theorem. O

V. SIMULATIONS

This section presents numerical simulations to illustrate the
performance of FP-UCB algorithm compared to other MAB
algorithms. More detailed simulations are given in [29].

We first consider a simple setting to illustrate intu-
ition behind FP-UCB algorithm. Consider © = {#!,60%}
with [u1(0"), p2(0")] = [0.9,0.5] and [p1(6%), u2(6°)] =
[0.2,0.5]. Consider the reward distributions P;,i = 1,2 to
be Bernoulli. Clearly, a*(6') =1 and a*(6?) = 2.

Suppose the true parameter is 0!, i.e., §° = §'. Then, it is
easy to note that, B(0°) is empty, and hence C'(6°) is empty.
So, according to Theorem [I| FP-UCB will achieve an O(1)
regret. The performance of the algorithm for this setting is
shown in Fig. Indeed, the regret does not increase after
some time steps, which shows the bounded regret property.
We note that in all the figures, the regret is averaged over 10
runs, with the thick line showing the average regret and the
band around shows the +1 standard deviation.

Now, suppose the true parameter is 62, ie., 8° = 62.
In this case B(6°) is non-empty. In fact, B(6°) = 0! and
C(6°) = 1. So, according to Theorem |l FP-UCB will
achieve an O(log T') regret. The performance of the algorithm
shown in Fig. [2] suggests the same.

We consider a problem with 4 arms where the mean values
for the arms (corresponding to the true parameter 6°) are
u(6°) = [0.6,0.4,0.3,0.2]. Consider the parameter set ©
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such that 1(6) for any 6 is a permutation of 1(6°). Note that
the cardinality of the parameter set, |©| = 24, in this case. It
is straightforward to show that B(6°) is empty for this case.
We compare the performance of FP-UCB algorithm for this
case with two standard multi-armed bandits algorithms. Fig.
[3] shows the performance of standard UCB algorithm and
that of FP-UCB algorithm. Fig. 4] compares the performance
of standard Thompson sampling algorithm with that of FP-
UCB algorithm. The standard bandits algorithm incurs an
increasing regret, while FP-UCB achieves a bounded regret.

VI. CONCLUSION AND FUTURE WORK

We proposed an algorithm for finitely parameterized multi-
armed bandits. Our FP-UCB algorithm achieves bounded
regret if the parameter set satisfies some necessary condition
and logarithmic regret in other cases. In both cases, the theo-
retical performance guarantees for our algorithm are superior
to the standard UCB algorithm for multi-armed bandits. Our
algorithm also shows superior numerical performance.

In the future, we will extend this approach to linear
bandits and contextual bandits. Reinforcement learning prob-
lems where the underlying MDP is finitely parameterized
is another research direction we plan to explore. We will
also develop similar algorithms using Thompson sampling
approaches.
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