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Eigensystem Multiscale Analysis for the
Anderson Model via the Wegner Estimate

Alexander Elgart and Abel Klein

Abstract. We present a new approach to the eigensystem multiscale anal-
ysis (EMSA) for random Schrödinger operators that relies on the Wegner
estimate. The EMSA treats all energies of the finite volume operator in
an energy interval at the same time, simultaneously establishing localiza-
tion of all eigenfunctions with eigenvalues in the energy interval with high
probability. It implies all the usual manifestations of localization (pure
point spectrum with exponentially decaying eigenfunctions, dynamical lo-
calization). The new method removes the restrictive level spacing hypoth-
esis used in the previous versions of the EMSA. The method is presented
in the context of the Anderson model, allowing for single-site probability
distributions that are Hölder continuous of order α ∈ (0, 1].
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Introduction

In [16,17] we developed an eigensystem multiscale analysis (EMSA) for proving
localization (pure point spectrum with exponentially decaying eigenfunctions,
dynamical localization) for random Schrödinger operators. The EMSA treats
all energies of the finite volume operator in an energy interval at the same time,
simultaneously establishing localization of all eigenfunctions with eigenvalues
in the energy interval with high probability. The analysis in [16,17] (and its
bootstrap enhancement in [30]) relies on a probability estimate for level spac-
ing. For the Anderson model with a Hölder continuous single-site probability
distribution of order α ∈ ( 1

2 , 1] such an estimate is provided by [29, Lemma 2],
where it is derived from Minami’s estimate [31]. (This is the level spacing prob-
ability estimate used in [16,17,30].) A weaker level spacing estimate is proven
for the continuous Anderson model in [13, Theorem 2.2]; it requires a covering
condition for the random potential, it holds only in a certain interval at the
bottom of the spectrum, it requires the single-site probability distribution to
be absolutely continuous with a density that is uniformly Lipschitz continuous
and bounded below on its support, and provides weak probability estimates.
The fact that level spacing probability estimates are not widely known, and
where known require extra hypotheses, imposes a strong limitation on the
applicability of the EMSA.

The well-known methods previously developed for proving localization for
random Schrödinger operators are the multiscale analysis (MSA) (see [7,9,14,
15,19–23,25,27,32]) and the fractional moment method (FMM) (see [1–5]). As
opposed to the EMSA, these methods are based on the study of finite volume
Green’s functions, and the analysis is performed either at a fixed energy in a
single box, or for all energies in an interval at once but with two boxes with an
‘either or’ statement for each energy. Green’s functions-based methods do not
rely on level spacing. Rather, they use either explicitly (MSA) or implicitly
(FMM) a more widely available bound, the Wegner estimate (e.g., [8–10,26,28,
33]). This estimate is proven for a large family of both lattice and continuum
random Schrödinger operators, making it possible to establish localization in
these contexts.

Unfortunately, the Green’s function quickly becomes an inadequate tool
in the study of many-body localization, rending the traditional approaches to
localization ineffective. The EMSA approach to localization shows more flexi-
bility in this regard: In a forthcoming paper, [18], we use the EMSA to establish
many-body localization results in the context of random XXZ spin quantum
chains. However, as we already mentioned, the previously available version of
the method uses the level spacing hypothesis, which (although expected) has
never been proven for many-body systems so far. The main innovation of the
present work is the removal of this restrictive condition, replacing it by an ar-
gument based on the Wegner estimate. More precisely, the new approach uses
Wegner estimates between boxes, as in [15,22,23,27]. To illustrate the method,
we consider here its application to a single particle lattice Anderson model. In
this context it applies when the single-site probability distribution is Hölder
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continuous of order α ∈ (0, 1], in contrast to the EMSA with level spacing of
[16,17] that requires α ∈ ( 1

2 , 1]. Moreover, this version of EMSA is expected to
admit extensions to random Schrödinger operators where a suitable Wegner
estimate is available, such as the continuum Anderson model.

1. Definitions and Results

A discrete Schrödinger operator is an operator of the form H = −Δ + V on
�2(Zd), where Δ is the (centered) discrete Laplacian:

(Δϕ)(x) :=
∑

y∈Z
d

|y−x|=1

ϕ(y) for ϕ ∈ �2(Zd), (1.1)

and V is a bounded potential.

Definition 1.1. The Anderson model is the random discrete Schrödinger oper-
ator

Hω := −Δ + Vω on �2(Zd), (1.2)

where Vω is a random potential: Vω (x) = ωx for x ∈ Z
d, where ω = {ωx}x∈Zd

is a family of independent identically distributed random variables, whose
common probability distribution μ has bounded support and is assumed to be
Hölder continuous of order α ∈ (0, 1]:

Sμ(t) ≤ Ktα for all t ∈ [0, 1], (1.3)

where K is a constant and Sμ(t) := supa∈R
μ {[a, a + t]} is the concentration

function of the measure μ.

To formulate our main result, we need to introduce some additional no-
tation. Given Θ ⊂ Z

d, we let HΘ be the restriction of χΘHχΘ to �2(Θ). We
write ‖ϕ‖ = ‖ϕ‖�2(Θ) for ϕ ∈ �2(Θ). We call (ϕ, λ) an eigenpair for HΘ if
ϕ ∈ �2(Θ) with ‖ϕ‖ = 1, λ ∈ R, and HΘϕ = λϕ. (In other words, λ is an
eigenvalue for HΘ and ϕ is a corresponding normalized eigenfunction.) A col-
lection {(ϕj , λj)}j∈J of eigenpairs for HΘ will be called an eigensystem for HΘ

if {ϕj}j∈J is an orthonormal basis for �2(Θ). If Θ ⊂ Z
d is finite, we let σ̃(HΘ)

denote the eigenvalues of HΘ repeated according to multiplicity (and thought
of as different points in σ̃(HΘ)), so an eigensystem for HΘ can be rewritten as
{(ϕλ, λ)}λ∈σ̃(HΘ), i.e., it can be labeled by σ̃(HΘ).

If x = (x1, x2, . . . , xd) ∈ R
d, we set |x| = |x|2 =

(∑d
j=1 x2

j

) 1
2

and ‖x‖ =

|x|∞ = maxj=1,2,...,d |xj |. We consider boxes in Z
d centered at points of R

d.
The box in Z

d of side L > 0 centered at x ∈ R
d is given by

ΛL(x) = ΛR

L(x) ∩ Z
d, where ΛR

L(x) =
{
y ∈ R

d; ‖y − x‖ ≤ L
2

}
. (1.4)

By a box ΛL we will mean a box ΛL(x) for some x ∈ R
d. We have

(L − 2)d < |ΛL(x)| ≤ (L + 1)d for all L ≥ 2 and x ∈ R
d. (1.5)
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The EMSA is based on the study of localized eigensystems. The relevant
definitions are stated in terms of exponents τ, κ′ ∈ (0, 1) that will be chosen
later. We use the notation Lτ = �Lτ	 for L ≥ 1.

Definition 1.2. Let ΛL be a box, x ∈ ΛL, and m ≥ 0. Then ϕ ∈ �2(ΛL) is said
to be (x,m)-localized if ‖ϕ‖ = 1 and

|ϕ(y)| ≤ e−m‖y−x‖ for all y ∈ ΛL with ‖y − x‖ ≥ Lτ . (1.6)

We consider energy intervals I(E,A) = (E−A,E+A) with center E ∈ R

and radius A > 0. (When we write I(E,A) it will be implicit that E ∈ R and
A > 0.) Given an interval I = I(E,A), we set

hI(t) = h
(

t−E
A

)
for t ∈ R, with h(s) =

{
1 − s2 if s ∈ (−1, 1)
0 otherwise

. (1.7)

Note that hI(t) > 0 ⇐⇒ t ∈ I, which implies hI = χIhI .

Definition 1.3. Given an energy interval I = I(E,A), a box ΛL will be called
(m, I)-localizing for H if

L−κ′ ≤ m ≤ 1
2 log

(
1 + A

4d

)
, (1.8)

and there exists an (m, I)-localized eigensystem for HΛL
, that is, an eigensys-

tem {(ϕν , ν)}ν∈σ̃(HΛL
) for HΛL

such that for all ν ∈ σ̃(HΛL
) there is xν ∈ ΛL

so ϕν is (xν ,mhI(ν))-localized.

Given a box Λ� ⊂ Θ, a crucial step in our analysis shows that if (ψ, λ)
is an eigenpair for HΘ, with λ ∈ I not too close to the eigenvalues of HΛ�

,
and the box Λ� is (m, I)-localizing for H, then ψ is exponentially small deep
inside Λ� (see Lemma 2.2.). This is proven by expanding the values of ψ in-
side Λ� in terms of an (m, I)-localizing eigensystem for HΛ�

. The problem
is we only know decay for the eigenfunctions with eigenvalues in I; we have
no information whatsoever concerning eigenfunctions with eigenvalues that lie
outside the interval I. As in [17], the decay of the term containing the latter
eigenfunctions comes from the distance from the eigenvalue λ to the comple-
ment of the interval I, and consequently the decay rate for the localization of
an eigenfunction goes to zero as the corresponding eigenvalue approaches the
edges of the interval I. The introduction of the modulating function hI in the
decay rate models this phenomenon.

The control of the term containing eigenfunctions corresponding to eigen-
values that lie outside the interval I is given by [17, Lemma 3.2(ii)], which
requires the upper bound in (1.8). The lower bound in (1.8) is a requirement
for the multiscale analysis, as in [20,23,25,27].

Our main result pertaining to the eigensystem multiscale analysis in an
energy interval is given in the following theorem. To state the theorem, given
exponents 0 < ξ < ζ < 1, we choose the exponents τ, κ′ ∈ (0, 1) that appear
in Definitions 1.2 and 1.3, as well as exponents β, κ, � ∈ (0, 1) and γ > 1,
satisfying the relations described in Appendix A. In what follows, once the
exponents 0 < ξ < ζ < 1 are fixed, we always assume we choose and fix the
other exponents as in Appendix A.
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Theorem 1.4. Let Hω be an Anderson model. Given 0 < ξ < ζ < 1, there
exists a finite scale L = L(d, ξ, ζ) and a constant Cd = Cd,ξ,ζ > 0 with the
following property: Suppose for some scale L0 ≥ L and interval I0 = I(E,A0)
we have

inf
x∈Rd

P {ΛL0(x) is (m0, I0)-localizing for Hω } ≥ 1 − e−Lζ
0 . (1.9)

Then for all L ≥ Lγ
0 we have

inf
x∈Rd

P
{
ΛL(x) is (m∞, IL

∞)-localizing for Hω

} ≥ 1 − e−Lξ

, (1.10)

where

IL
∞ = IL

∞(L0) = I(E,A∞(1 − L−κ)−1),

A∞ = A∞(L0) = A0

∞∏

k=0

(
1 − L−κγk

0

)
,

L−γκ′
0 ≤ m∞ = m∞(L0) = m0

∞∏

k=0

(
1 − CdL

−�γk

0

)
< 1

2 log
(
1 + A∞

4d

)
.

(1.11)

In particular, limL0→∞ A∞(L0) = A0 and limL0→∞ m∞(L0) = m0.

We now state a corollary of Theorem 1.4 that encapsulates the usual
forms of Anderson localization (pure point spectrum with exponentially decay-
ing eigenfunctions, dynamical localization, etc.) on the interval I∞ = I(E,A∞),
as in [16,24,25]. We fix ν > d

2 , and given a ∈ Z
d we define Ta as the operator

on �2(Zd) given by multiplication by the function Ta(x) := 〈x − a〉ν , where

〈x〉 =
√

1 + ‖x‖2. Since 〈a + b〉 ≤ √
2〈a〉〈b〉, we have ‖TaT−1

b ‖ ≤ 2
ν
2 〈a −

b〉ν . A function ψ : Z
d → C is a ν-generalized eigenfunction for the discrete

Schrödinger operator H if ψ is a generalized eigenfunction and
∥∥T−1

0 ψ
∥∥ < ∞.

(
∥∥T−1

0 ψ
∥∥ < ∞ if and only if

∥∥T−1
a ψ

∥∥ < ∞ for all a ∈ Z
d.) We let V(λ) denote

the collection of ν-generalized eigenfunctions for H with generalized eigenvalue
λ ∈ R. Given λ ∈ R and a, b ∈ Z

d, we set

W
(a)
λ (b) :=

{
supψ∈V(λ)

|ψ(b)|
‖T −1

a ψ‖ if V(λ) �= ∅
0 otherwise

. (1.12)

For all a, b, c ∈ Z
d we have

W
(a)
λ (a) ≤ 1, W

(a)
λ (b) ≤ 〈b − a〉ν , and W

(a)
λ (c) ≤ 2

ν
2 〈b − a〉νW

(b)
λ (c).

(1.13)

Corollary 1.5. Suppose the conclusions of Theorem 1.4 hold for an Anderson
model Hω , and let I = I∞, m = m∞. There is a finite scale L = Ld,ν such
that, given L ≤ L ∈ 2N and a ∈ Z

d, there exists an event YL,a with the
following properties:
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(i) YL,a depends only on the random variables {ωx}x∈Λ5L(a) and

P {YL,a} ≥ 1 − Ce−Lξ

. (1.14)

(ii) Given ω ∈ YL,a, for all λ ∈ I we have that

max
b∈Λ L

3
(a)

W
(a)
ω ,λ(b) > e− 1

4 mhIL (λ)L =⇒ max
y∈AL(a)

W
(a)
ω ,λ(y) ≤ e− 7

132 mhIL (λ)‖y−a‖,

(1.15)

where

AL(a) :=
{
y ∈ Z

d; 8
7L ≤ ‖y − a‖ ≤ 33

14L
}

. (1.16)

In particular, for all ω ∈ YL,a and λ ∈ I we have

W
(a)
ω ,λ(a)W (a)

ω ,λ(y) ≤ e− 7
132 mhIL (λ)‖y−a‖ for all y ∈ AL(a). (1.17)

Although Corollary 1.5 looks exactly like [17, Theorem 1.7], Theorem 1.4
is not the same as [17, Theorem 1.6] (the definitions of a localizing box are
different, the conclusion (1.10) is stated differently from [17, Equation (1.20)]).
For this reason the derivation of Corollary 1.5 from Theorem 1.4 has some
differences from the derivation of [17, Theorem 1.7] from [17, Theorem 1.6], so
it is included in this paper.

The usual forms of localization can be derived from Corollary 1.5 and are
stated in the following corollary.

Corollary 1.6. Suppose the conclusions of Theorem 1.4 hold for an Anderson
model Hω , and let I = I∞, m = m∞. Then the following holds with probability
one:

(i) Hω has pure point spectrum in the interval I.
(ii) If ψλ is an eigenfunction of Hω with eigenvalue λ ∈ I, then ψλ is expo-

nentially localized with rate of decay 7
132mhI(λ), more precisely,

|ψλ(x)| ≤ Cω ,λ

∥∥T−1
0 ψ

∥∥ e− 7
132 mhI(λ)‖x‖ for all x ∈ R

d. (1.18)

(iii) If λ ∈ I, then for all x, y ∈ Z
d we have

W
(x)
ω ,λ(x)W (x)

ω ,λ(y) ≤ Cm,ω ,ν (hI(λ))−νe( 4
33+ν)mhI(λ)(2d log〈x〉)

1
ξe− 7

132 mhI(λ)‖y−x‖.
(1.19)

(iv) If λ ∈ I, then for ψ ∈ χ{λ}(Hω ) and all x, y ∈ Z
d we have

|ψ(x)| |ψ(y)|

≤ Cm,ω ,ν (hI(λ))−ν
∥∥T −1

x ψ
∥∥2 e(

4
33+ν)mhI (λ)(2d log〈x〉)

1
ξ
e− 7

132 mhI (λ)‖y−x‖

≤ 2νCm,ω ,ν (hI(λ))−ν
∥∥T −1

0 ψ
∥∥2 〈x〉2νe(

4
33+ν)mhI (λ)(2d log〈x〉)

1
ξ
e− 7

132 mhI (λ)‖y−x‖.

(1.20)
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(v) If λ ∈ I, then there exists xλ = xω ,λ ∈ Z
d, such that for ψ ∈ χ{λ}(Hω )

and all x ∈ Z
d we have

|ψ(x)| ≤ Cm,ω ,ν (hI(λ))
−ν
∥∥T −1

xλ
ψ
∥∥ e(

4
33

+ν)mhI(λ)(2d log〈xλ〉)
1
ξ

e− 7
132

mhI(λ)‖x−xλ‖

≤ 2
ν

2 Cm,ω ,ν (hI(λ))
−ν
∥∥∥T −1

0 ψ
∥∥∥〈xλ〉νe(

4
33

+ν)mhI(λ)(2d log〈xλ〉)
1
ξ

e− 7
132

mhI(λ)‖x−xλ‖.

(1.21)

In Corollary 1.6, (i) and (ii) are statements of Anderson localization,
(iii) and (iv) are statements of dynamical localization ((iv) is called SUDEC
(summable uniform decay of eigenfunction correlations) in [24]), and (v) is
SULE (semi-uniformly localized eigenfunctions; see [11,12,24]). Statements of
localization in expectation can also be derived, as in [24,25].

The proof of Corollary 1.6 from Corollary 1.5 is the same as the proof of
[17, Corollary 1.8] from [17, Theorem 1.7], with some obvious modifications,
so we refer to [17].

Theorem 1.4 also implies localization at the bottom of the spectrum as
in [17, Section 2].

The conclusions of Theorem 1.4 are equivalent to the conclusions of the
energy interval multiscale analysis [15,22,23,27]; this can be seen proceeding
as in [17, Section 6]. Finally, we stress that the theorem holds for Anderson
models whose single-site probability distributions satisfy (1.3).

In the remainder of this paper, we fix 0 < ξ < ζ < 1 and the corre-
sponding exponents τ, β, κ, κ′, � ∈ (0, 1) and γ > 1, as in Appendix A. The
deterministic lemmas for the EMSA are introduced in Sect. 2. The probability
estimates based on Wegner estimates are presented in Sect. 3. Theorem 1.4 is
proven in Sect. 4. The proof of Corollary 1.5 is given in Sect. 5.

2. Lemmas for the Eigensystem Multiscale Analysis

In this section we introduce notation and deterministic lemmas that will play
an important role in the eigensystem multiscale analysis. By H we always
denote a discrete Schrödinger operator H = −Δ+V on �2(Zd). We also fix an
interval I = I(E,A).

2.1. Preliminaries

Let Φ ⊂ Θ ⊂ Z
d. We define the boundary, exterior boundary, and interior

boundary of Φ relative to Θ, respectively, by

∂ΘΦ = {(u, v) ∈ Φ × (Θ\Φ) ; |u − v| = 1} ,

∂Θ
exΦ =

{
v ∈ (Θ\Φ) ; (u, v) ∈ ∂ΘΦ for some u ∈ Φ

}
,

∂Θ
inΦ =

{
u ∈ Φ; (u, v) ∈ ∂ΘΦ for some v ∈ Θ\Φ

}
. (2.1)

If t ≥ 1, we let

ΦΘ,t = {y ∈ Φ; dist (y,Θ\Φ) > �t	} and ∂Θ,t
in Φ = Φ\ΦΘ,t. (2.2)
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We use the notation

RΘ(y) = dist
(
y, ∂Θ

inΦ
)

for y ∈ Φ. (2.3)

For a box ΛL ⊂ Θ ⊂ Z
d we write ΛΘ,t

L (x) = (ΛL(x))Θ,t. For L ≥ 2 we
have

∣∣∂Θ
inΛL

∣∣ ≤ ∣∣∂Θ
exΛL

∣∣ =
∣∣∣∂ΘΛL

∣∣∣ ≤ sdL
d−1, where sd = 2dd. (2.4)

For v ∈ Θ we let v̂ ∈ ∂Θ
inΛL be the unique u ∈ ∂Θ

inΛL such that (u, v) ∈ ∂ΘΛL

if v ∈ ∂Θ
exΛL, and set v̂ = 0 otherwise.

If Φ ⊂ Θ ⊂ Z
d, we consider �2(Φ) ⊂ �2(Θ) by extending functions on Φ

to functions on Θ that are identically 0 on Θ\Φ. We have

HΘ = HΦ ⊕ HΘ\Φ + Γ∂ΘΦ on �2(Θ) = �2(Φ) ⊕ �2(Θ\Φ),

where Γ∂ΘΦ(u, v) =

{
−1 if either (u, v) or (v, u) ∈ ∂ΘΦ

0 otherwise
. (2.5)

Given J ⊂ R, we set σJ(HΘ) = σ(HΘ) ∩ J and σ̃J(HΘ) = σ̃(HΘ) ∩ J .
A function ψ : Θ → C is called a generalized eigenfunction for HΘ with

generalized eigenvalue λ ∈ R, and (ψ, λ) is called a generalized eigenpair for
HΘ, if ψ is not identically zero and

〈(HΘ − λ)ϕ,ψ〉 = 0 for all ϕ ∈ �2(Θ) with finite support. (2.6)

Lemma 2.1. Let Θ ⊂ Z
d and let (ψ, λ) be a generalized eigenpair for HΘ. Let

Φ ⊂ Θ finite, η > 0, and suppose

dist (λ, σ(HΦ)) ≥ η. (2.7)

Then for all y ∈ Φ we have

|ψ(y)| ≤ 2dη−1
∣∣∂Θ

exΦ
∣∣ 12 |ψ(y1)| for some y1 ∈ ∂Θ

exΦ. (2.8)

The estimate (2.8) also holds (trivially) for y ∈ ∂Θ
exΦ if 2dη−1 ≥ 1.

Proof. Let {(ϕν , ν)}ν∈σ̃(HΦ) be an eigensystem for HΦ. If ν ∈ σ̃(HΦ), we have
|λ − ν| ≥ η by (2.7). Since Φ is finite, using (2.6) and (2.5) we get

〈ϕν , ψ〉 = (λ − ν)−1 〈(HΘ − ν) ϕν , ψ〉 = (λ − ν)−1 〈(HΘ − HΦ) ϕν , ψ〉
= (λ − ν)−1 〈ϕν ,Γ∂ΘΦψ〉 . (2.9)

It follows that for y ∈ Φ we have

ψ(y) = 〈δy, ψ〉 =

〈
δy,

∑

ν∈σ̃(HΦ)

〈ϕν , ψ〉 ϕν

〉

=

〈
δy,

∑

ν∈σ̃(HΦ)

(λ − ν)−1 〈ϕν ,Γ∂ΘΦψ〉 ϕν

〉

=

〈
δy,

∑

ν∈σ̃(HΦ)

(λ − ν)−1 〈ϕν , χΦΓ∂ΘΦψ〉 ϕν

〉
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=

〈
δy, (λ − HΦ)−1

∑

ν∈σ̃(HΦ)

〈ϕν , χΦΓ∂ΘΦψ〉 ϕν

〉

=
〈
δy, (λ − HΦ)−1 χΦΓ∂ΘΦψ

〉
. (2.10)

Using (2.7), we get

|ψ(y)| ≤ η−1 ‖χΦΓ∂ΘΦψ‖ = η−1
∥∥χΦΓ∂ΘΦχ∂Θ

exΦψ
∥∥ ≤ 2dη−1

∥∥χ∂Θ
exΦψ

∥∥

≤ 2dη−1
∣∣∂Θ

exΦ
∣∣ 12 |ψ(y1)| for some y1 ∈ ∂Θ

exΦ. (2.11)

�

For the interval I = I(E,A) and L > 1, we set

IL = I(E,A(1 − L−κ)) � I = I(E,A) � IL = (E,A(1 − L−κ)−1). (2.12)

We write IL′
L = (IL)L′

=
(
IL′
)

L
, and observe that IL

L = I. Note that

hI(t) ≥ 1 − (1 − L−κ)2 ≥ L−κ for all t ∈ IL, so hIχIL
≥ L−κχIL

.

(2.13)

2.2. Localizing Boxes

The following lemma plays a crucial role in the multiscale analysis. It says that
given an eigenpair (ψ, λ) for HΘ and a box Λ� ⊂ Θ with λ ∈ I� not too close
to the eigenvalues of HΛ�

, then ψ is exponentially small deep inside Λ� if the
box Λ� is (m, I)-localizing for H.

If Λ� is an (m, I)-localizing box, {(ϕν , ν)}ν∈σ̃(HΛ�
) will denote an (m, I)-

localized eigensystem for HΛ�
. If Λ� ⊂ Θ ⊂ Z

d, J ⊂ I and t > 0, we set

σ̃Θ,t
J (HΛ�

) =
{

ν ∈ σ̃J(HΛ�
); xν ∈ ΛΘ,t

�

}
. (2.14)

Given a scale � ≥ 1, we set L = �γ . The exponent τ̃ is defined in (A.3).
We use the notation Lτ = �Lτ	 and Lτ̃ = �Lτ̃	.

Lemma 2.2. Let ψ : Θ ⊂ Z
d → C be a generalized eigenfunction for HΘ with

generalized eigenvalue λ ∈ I�. Consider a box Λ� ⊂ Θ such that Λ� is (m, I)-
localizing for H. Suppose

dist (λ, σI(HΛ�
)) ≥ 1

2e−Lβ

. (2.15)

Then, if � is sufficiently large, for all y ∈ ΛΘ,�τ̃

� we have

|ψ(y)| ≤ e−m3hI(λ)RΘ(y) |ψ(v)| for some v ∈ ∂Θ
exΛ�, (2.16)

where

m3 = m3(�) ≥ m
(
1 − Cd�

− 1−τ
2

)
. (2.17)
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Lemma 2.2 resembles [17, Lemma 3.4], but the hypothesis (2.15) is stronger
than the corresponding hypothesis [17, Eq. (3.24)], so the proof is slightly eas-
ier, and the conclusions are slightly stronger. The main issue in the proof is
the same: the hypothesis that the box Λ� ⊂ Θ is (m, I)-localizing only gives
decay for eigenfunctions with eigenvalues in I. To compensate, we take λ ∈ I�,
and use [17, Lemmas 3.2 and 3.3].

Proof (Proof of Lemma 2.2).
Given y ∈ Λ� and t > 0, it follows from [17, Lemma 3.2(i)] that

ψ(y) =
〈

e−t
(
(HΛ�

−E)2−(λ−E)2
)

δy, ψ

〉
− 〈Ft,λ−E(HΛ�

− E)δy,Γ∂ΘΛ�
ψ
〉
,

(2.18)

where Γ∂ΘΦ is defined in (2.5) and Ft,λ(z) is the entire function given by

Ft,λ(z) =
1 − e−t(z2−λ2)

z − λ
for z ∈ C \ {λ} and Ft,λ(λ) = 2tλ. (2.19)

We take E = 0 by replacing the potential V by V − E. Setting PI =
χI (HΛ�

) and P̄I = 1 − PI , we have
〈
e−t(H2

Λ�
−λ2)δy, ψ

〉
=
〈
e−t(H2

Λ�
−λ2)PIδy, ψ

〉
+
〈
e−t(H2

Λ�
−λ2)P̄Iδy, ψ

〉
.

(2.20)

It follows from [17, Lemma 3.3] that
∣∣∣
〈
e−t(H2

Λ�
−λ2)P̄Iδy, ψ

〉∣∣∣ ≤ ‖χΛ�
ψ‖
∥∥∥e−t(H2

Λ�
−λ2)P̄I

∥∥∥

≤ (� + 1)
d
2 e−tA2hI(λ) |ψ(v)| , (2.21)

for some v ∈ Λ�. Estimating |ψ(v)| by Lemma 2.1, we get
∣∣∣
〈
e−t(H2

Λ�
−λ2)P̄Iδy, ψ

〉∣∣∣ ≤ 4d
(
sd�

d−1
) 1

2 (� + 1)
d
2 eLβ

e−tA2hI(λ) |ψ(v0)|
≤ e2Lβ

e−tA2hI(λ) |ψ(v0)| , for some v0 ∈ ∂Θ
exΛ�. (2.22)

We now use the fact that Λ� is (m, I)-localizing for H, so it has an (m, I)-
localized eigensystem {ϕν , ν}ν∈σ̃(HΛ�

), and write
〈
e−t(H2

Λ�
−λ2) PIδy, ψ

〉
=

∑

ν∈σ̃I(HΛ�
)

e−t(ν2−λ2)ϕν(y) 〈ϕν , ψ〉 . (2.23)

If ν ∈ σ̃I(HΛ�
), we have |λ − ν| ≥ 1

2e−Lβ

by (2.15). Since Λ� is finite, (2.6)
gives

〈ϕν , ψ〉 = (λ − ν)−1 〈(HΘ − ν) ϕν , ψ〉 . (2.24)

It follows from [16, Eq. (3.12) in Lemma 3.2] that

|ϕν(y) 〈ϕν , ψ〉| ≤ 2eLβ ∑

v∈∂Θ
exΛ�

|ϕν(y)ϕν(v̂)| |ψ(v)| . (2.25)
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We now assume y ∈ ΛΘ,�τ̃

� , so RΘ(y) ≥ �τ̃ . For ν ∈ σ̃Θ,�τ

I (HΛ�
) and

v′ ∈ ∂Θ
inΛ�, we have, as in [16, Eq. (3.41)],

|ϕν(y)ϕν(v′)| ≤ e−m′
1hI(ν)RΘ(y) with m′

1 ≥ m(1 − 2�
τ−1
2 ), (2.26)

so, as in [16, Eq. (3.44)], for ν ∈ σ̃Θ,�τ

I (HΛ�
) we have

|ϕν(y) 〈ϕν , ψ〉| ≤ 2eLβ

sd�
d−1e−m′

1hI(ν)RΘ(y) |ψ(v1)|
≤ e2Lβ

e−m′
1hI(ν)RΘ(y) |ψ(v1)| , (2.27)

for some v1 ∈ ∂Θ
exΛ�. If ν ∈ σ̃I(HΛ�

) with xν ∈ ∂Θ,�τ

in Λ�, we have

‖xν − y‖ ≥ RΘ(y) − �τ ≥ RΘ(y)
(
1 − 2�τ−τ̃

)
= RΘ(y)

(
1 − 2�

τ−1
2

)
,

(2.28)

so

|ϕν(y) 〈ϕν , ψ〉| ≤ e−mhI(ν)‖xν−y‖ ‖χΛψ‖

≤ e
−mhI(ν)RΘ(y)

(
1−2�

τ−1
2

)

(� + 1)
d
2 |ψ(v2)| ≤ (� + 1)

d
2 e−m′

1hI(ν)RΘ(y) |ψ(v2)| ,
(2.29)

for some v2 ∈ Λ�, where m′
1 is given in (2.26). It follows that for all ν ∈ σ̃I(HΛ�

)
we have

e−t(ν2−λ2) |ϕν(y) 〈ϕν , ψ〉| ≤ e2Lβ

e−t(ν2−λ2)e−m′
1hI(ν)RΘ(y) |ψ(v)| , (2.30)

for some v ∈ Λ�∪ ∈ ∂Θ
exΛ�.

We now take

t = m′
1RΘ(y)
A2 =⇒ e−t(ν2−λ2)e−m′

1hI(ν)RΘ(y) = e−m′
1hI(λ)RΘ(y) for ν ∈ I,

(2.31)

obtaining
∣∣∣∣

〈
e− m′

1RΘ(y)
A2 (H2

Λ�
−λ2)PIδy, ψ

〉∣∣∣∣ ≤ (� + 1)de2Lβ

e−m′
1hI(λ)RΘ(y) |ψ(v)|

≤ 4d
(
sd�

d−1
) 1

2 (� + 1)de3Lβ

e−m′
1hI(λ)RΘ(y) |ψ(v′)|

≤ e4Lβ

e−m′
1hI(λ)RΘ(y) |ψ(v′)| , (2.32)

for some v ∈ Λ� ∪ ∂Θ
exΛ�, and then for some v′ ∈ ∂Θ

exΛ� using Lemma 2.1.
Combining (2.20), (2.22) and (2.32) yields
∣∣∣∣

〈
e− m′

1RΘ(y)
A2 (H2

Λ�
−λ2)δy, ψ

〉∣∣∣∣ ≤ 2e4Lβ

e−m′
1hI(λ)RΘ(y) |ψ(v)| , (2.33)

for some v ∈ ∂Θ
exΛ�.
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We now use [17, Lemma 3.2(ii)] (it follows from (1.8) that �−κ′

2 < m′
1 ≤

m ≤ 1
2 log

(
1 + A

4d

)
), getting

∣∣∣∣

〈
Fm′

1RΘ(y)

A2 ,λ
(HΛ)δy,Γ∂ΘΛ�

ψ

〉∣∣∣∣ ≤ 70sd�
d−1A−1e−m′

1hI(λ)RΘ(y) |ψ(v)| ,
(2.34)

for some v ∈ ∂Θ
exΛ�. We conclude from (2.33) and (2.34) that

|ψ(y)| ≤ Cd

(
�d−1+κ′

+ e4Lβ
)

e−m′
1hI(λ)RΘ(y) |ψ(v)|

≤ C ′
de

4Lβ

e−m′
1hI(λ)RΘ(y) |ψ(v)|

≤ e−m3hI(λ)RΘ(y) |ψ(v′)| for some v ∈ ∂Θ
exΛ�, (2.35)

where, using hI(λ) ≥ �−κ since λ ∈ I�, we have

m3 ≥ m
(
1 − Cd�

− min{τ̃−γβ−κ−κ′, 1−τ
2 }) = m

(
1 − Cd�

− 1−τ
2

)
. (2.36)

�

2.3. Buffered Subsets

The probability estimates of a multiscale analysis do not allow all boxes to
be localizing, so we must control non-localizing boxes. If a box Λ� ⊂ ΛL is
not (m, I)-localizing for H, we will add a buffer of (m, I)-localizing boxes and
study eigensystems for the enlarged subset.

Definition 2.3. We call Υ ⊂ ΛL an (m, I)-buffered subset of the box ΛL if the
following holds:

(i) Υ is a connected set in Z
d of the form

Υ =
J⋃

j=1

ΛRj
(aj) ∩ ΛL, (2.37)

where J ∈ N, a1, a2, . . . , aJ ∈ ΛR

L, and � ≤ Rj ≤ L for j = 1, 2, . . . , J .
(ii) There exists GΥ ⊂ ΛR

L such that:
(a) Λ�(a) ⊂ ΛL for all a ∈ GΥ and {Λ�(a)}a∈GΥ

is a collection of (m, I)-
localizing boxes for H.

(b) For all y ∈ ∂ΛL

in Υ there exists ay ∈ GΥ such that y ∈ ΛΛL,�τ̃

� (ay).

This definition of a buffered subset has subtle but important differences
from [17, Definition 3.6], in addition to not requiring level spacing conditions.
Definition 2.3(ii) requires Λ�(a) ⊂ ΛL and y ∈ ΛΛL,�τ̃

� (ay), while the corre-
sponding [17, Definition 3.6](iii) has Λ�(a) ⊂ Υ and y ∈ ΛΥ,2�τ

� (ay).
In the multiscale analysis, we control the effect of buffered subsets using

the following lemma.

Lemma 2.4. Let ΛL = ΛL(x0), x0 ∈ R
d, and let (ψ, λ) be an eigenpair for HΛL

with λ ∈ I�. Let Υ � ΛL be an (m, I)-buffered subset, and suppose
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dist (λ, σI(HΥ)) ≥ 1
2e−Lβ

and min
a∈GΥ

dist
(
λ, σI(HΛ�(a))

) ≥ 1
2e−Lβ

.

(2.38)

Then for all y ∈ Υ we have

|ψ(y)| ≤ e− m3
2 hI(λ)�τ̃ |ψ(y1)| for some y1 ∈

⋃

a∈GΥ

∂ΛL
ex Λ�(a), (2.39)

where m3 = m3(�) is as in (2.17).

Proof. Let y ∈ Υ. In view of (2.38) it follows from Lemma 2.1 that

|ψ(y)| ≤ 4deLβ ∣∣∂ΛL
ex Υ

∣∣ |ψ(y1)| for some y1 ∈ ∂ΛL
ex Υ. (2.40)

Let a1 ∈ GΥ be such that y1 ∈ ΛΛL,�τ̃

� (a1). It then follows from (2.38) and
(2.16) in Lemma 2.2 that

|ψ(y1)| ≤ e−m3hI(λ)�τ̃ |ψ(y2)| for some y2 ∈ ∂ΛL
ex Λ�(a1). (2.41)

Since |Υ| ≤ |ΛL| ≤ (L + 1)d and
∣∣∂ΛL

ex Υ
∣∣ ≤ 2d |Υ| ≤ 2d(L + 1)d, and we

have (2.13) as λ ∈ I�, we get

|ψ(y)| ≤ 8d2(L + 1)deLβ

e−m3hI(λ)�τ̃ |ψ(y3)| ≤ e− m3
2 hI(λ)�τ̃ , (2.42)

for some y3 ∈ ⋃a∈GΥ
∂ΛL
ex Λ�(a), if L is sufficiently large. �

3. Spectral Separation

We recall the Wegner estimate for the Anderson model as in Definition 1.1
(see, e.g., [8, Appendix A]).

Lemma 3.1. Let Hω be an Anderson model. Let Θ ⊂ Z
d. Then, for all E ∈ R,

P {dist {E, σ(HΘ,ω )} ≤ η} ≤ K̃ηα |Θ| , (3.1)

where with K̃ = 2K if α = 1 and K̃ = 82αK if α ∈ (0, 1).

Definition 3.2. Let R > 0. Two finite sets Θ,Θ′ ⊂ Z
d will be called R-

separated for H if dist {σ(HΘ), σ(HΘ′)} ≥ e−Rβ

, i.e., |λ − λ′| ≥ e−Rβ

for
all λ ∈ σ(HΘ) and λ′ ∈ σ(HΘ′).

Definition 3.3. Let Θ ⊂ Z
d and R > 0. A family {Φj}j∈J of finite subsets of Θ

is called R-separated for H if Φj and Φj′ are R-separated for H for all j, j′ ∈ J
such that Φj ∩ Φj′ = ∅.

Lemma 3.1 implies the Wegner estimate for R-separated sets (see, e.g.,
[26, Lemma 5.28]).

Lemma 3.4. Let Hω be an Anderson model. Let Θ,Θ′ ⊂ Z
d with Θ ∩ Θ′ = ∅.

Then, for all 0 < η,

P {dist {σ(HΘ), σ(HΘ′)} ≤ η} ≤ K̃ηα |Θ| |Θ′| . (3.2)

In particular,

P {Θ,Θ′ are R-separated for H} ≥ 1 − K̃e−αRβ |Θ| |Θ′| . (3.3)
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4. Eigensystem Multiscale Analysis

In this section we fix an Anderson model Hω and prove Theorem 1.4.
The following is an extension of Definition 1.3.

Definition 4.1. Let J = I(E,B) ⊂ I = I(E,A) be bounded open intervals
with the same center. A box ΛL will be called (m,J, I)-localizing for H if

L−κ′ ≤ m ≤ 1
2 log

(
1 + B

4d

)
, (4.1)

and there exists an (m,J, I)-localized eigensystem for HΛL
, that is, an eigensys-

tem {(ϕν , ν)}ν∈σ̃(HΛL
) for HΛL

such that for all ν ∈ σ̃(HΛL
) there is xν ∈ ΛL

so ϕν is (xν ,mχJ(ν)hI(ν))-localized.

Note that (m, I, I)-localizing/localized is the same as (m, I)-localizing/
localized. If ΛL is (m,J, I)-localizing for H it is also (m,J)-localizing for H as
χJhI ≥ hJ .

Proposition 4.2. There exists a finite scale L = L(d) with the following prop-
erty: Suppose for some scale L0 ≥ L and interval I0 = I(E,A0) we have

inf
x∈Rd

P {ΛL0(x) is (m0, I0)-localizing for Hω } ≥ 1 − e−Lζ
0 . (4.2)

Set Lk+1 = Lγ
k, Ak+1 = Ak(1−L−κ

k ), and Ik+1 = I(E,Ak+1), for k = 0, 1, . . ..
Then for all k = 1, 2, . . . we have

inf
x∈Rd

P {ΛLk
(x) is (mk, Ik, Ik−1)-localizing for Hω } ≥ 1 − e−Lζ

k , (4.3)

where

L−κ′
k < mk−1

(
1 − CdL

−�
k−1

) ≤ mk < 1
2 log

(
1 + Ak

4d

)
. (4.4)

The proof of Proposition 4.2 relies on the following lemma, the induction
step for the multiscale analysis.

Lemma 4.3. Let I = (E,A). Suppose for some scale � we have

inf
x∈Rd

P {Λ�(x) is (m, I)-localizing for Hω } ≥ 1 − e−�ζ

. (4.5)

Then, if � is sufficiently large, we have (recall L = �γ)

inf
x∈Rd

P {ΛL(x) is (M, I�, I)-localizing for Hω } ≥ 1 − e−Lζ

, (4.6)

where

L−κ′
< m

(
1 − Cd�

−�
) ≤ M < 1

2 log
(
1 + A(1−�−κ)

4d

)
. (4.7)

Proof. To prove the lemma we proceed as in [17, Proof of Lemma 4.2], with
several modifications.

We assume (4.5) for a scale �. We take ΛL = Λ(x0), where x0 ∈ R
d,

and let CL,� = CL,� (x0) be the suitable �-cover of ΛL with ς as in (A.7) (see
Appendix B). Given a, b ∈ ΞL,�, we will say that the boxes Λ�(a) and Λ�(b) are
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disjoint if and only if ΛR

� (a) ∩ ΛR

� (b) = ∅, that is, if and only if ‖a − b‖ ≥ k�ρ�ς

(see Remark B.3). We take (recall (A.3))

N = N� =
⌊
�(γ−1)ζ̃

⌋
, (4.8)

and let BN denote the event that there exist at most N disjoint boxes in CL,�

that are not (m, I)-localizing for Hω . For sufficiently large �, we have, using
(B.5), (4.5), and the fact that events on disjoint boxes are independent, that

P {Bc
N} ≤ ( 2L

�ς

)(N+1)d
e−(N+1)�ζ

= 2(N+1)d�(γ−ς)(N+1)de−(N+1)�ζ

< 1
2e−Lζ

.
(4.9)

We now fix ω ∈ BN . There exists AN = AN (ω) ⊂ ΞL,� = ΞL,� (x0) such
that |AN | ≤ N and ‖a − b‖ ≥ k�ρ�ς if a, b ∈ AN and a �= b, with the following
property: if a ∈ ΞL,� with dist(a,AN ) ≥ k�ρ�ς , so ΛR

� (a) ∩ ΛR

� (b) = ∅ for all
b ∈ AN , the box Λ�(a) is (m, I)-localizing for Hω . In other words,

a ∈ ΞL,� \
⋃

b∈AN

ΛR

2(k�−1)ρ�ς (b) =⇒ Λ�(a) is (m, I)-localizing for Hω .

(4.10)

We want to embed the boxes {Λ�(b)}b∈AN
into (m, I)-buffered subsets of

ΛL. To do so, we consider graphs Gi = (ΞL,�, Ei), i = 1, 2, both having ΞL,�

as the set of vertices, with sets of edges given by

E1 =
{{a, b} ∈ Ξ2

L,�; 0 < ‖a − b‖ ≤ (k� − 1)ρ�ς
}

=
{{a, b} ∈ Ξ2

L,�; a �= b and ΛR

� (a) ∩ ΛR

� (b) �= ∅} ,

E2 =
{{a, b} ∈ Ξ2

L,�; k�ρ�ς ≤ ‖a − b‖ ≤ (3k� − 1)ρ�ς
}

=
{{a, b} ∈ Ξ2

L,�; ΛR

� (a) ∩ ΛR

� (b) = ∅ and ΛR

2k�ρ�ς+�(a) ∩ ΛR

2k�ρ�ς+�(b) �= ∅} .
(4.11)

Given Ψ ⊂ ΞL,�, we let Ψ = Ψ∪∂G1
ex Ψ, where ∂G1

ex Ψ, the exterior boundary
of Ψ in the graph G1, is defined by

∂G1
ex Ψ = {a ∈ ΞL,� \ Ψ; dist(a,Ψ) ≤ (k� − 1)ρ�ς}

= {a ∈ ΞL,� \ Ψ; (b, a) ∈ E1 for some b ∈ Ψ} . (4.12)

Let Φ ⊂ ΞL,� be G2-connected, so diam Φ ≤ (3k� − 1)ρ�ς (|Φ| − 1). (The
diameter of a set Ξ ⊂ R

d is given by diam Ξ = supx,y∈Ξ ‖y − x‖.) Then

Φ̃ = {a ∈ ΞL,�; dist(a,Φ) ≤ k�ρ�ς} (4.13)

is a G1-connected subset of ΞL,� such that

diam Φ̃ ≤ diam Φ + 2k�ρ�ς ≤ ((3k� − 1) |Φ| − (k� − 1)) ρ�ς ≤ 5� |Φ| .
(4.14)

We set

ΥΦ =
⋃

a∈Φ̃

Λ�(a) and GΥΦ = ∂G1
ex Φ̃. (4.15)
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Let {Φr}R
r=1 = {Φr(ω)}R

r=1 denote the G2-connected components of AN

(i.e., connected in the graph G2); we have R ∈ {1, 2, . . . , N} and
∑R

r=1 |Φr| =

|AN | ≤ N . We conclude that
{

Φ̃r

}R

r=1
is a collection of disjoint, G1-connected

subsets of ΞL,�, such that

dist(Φ̃r, Φ̃s) ≥ k�ρ�ς > � if r �= s. (4.16)

Moreover, it follows from (4.10) that

a ∈ G = G(ω) = ΞL,� \
R⋃

r=1

Φ̃r =⇒ Λ�(a) is (m, I)-localizing for Hω .

(4.17)

In particular, we conclude that Λ�(a) is (m, I)-localizing for Hω for all a ∈
∂G1
ex Φ̃r, r = 1, 2, . . . , R.

Each Υr = ΥΦr
, r = 1, 2, . . . , R, clearly satisfies all the requirements to

be an (m, I)-buffered subset of ΛL with GΥr
= ∂G1

ex Φ̃r (see Definition 2.3).
Moreover the sets {Υr}R

r=1 are disjoint. Note also that it follows from (4.14)
that

diam Υr ≤ diam Φ̃r + � ≤ 5� |Φr| + � ≤ 6� |Φr| , (4.18)

so, using (A.4), we have
R∑

r=1

diam Υr ≤ 6�N ≤ 6�(γ−1)ζ̃+1 � �γτ = Lτ . (4.19)

Let

Sω = {Λ�(a)}a∈G ∪ {Υr}R
r=1 . (4.20)

We can arrange for Sω to be an L-separated family of subsets of ΛL for H as
follows. Let

FN =
N⋃

r=1

F(r), where F(r) = {Φ ⊂ ΞL,�; Φ is G2-connected and |Φ| = r} .

(4.21)

We set S̃N = {Λ�(a)}a∈ΞL,�
∪ {ΥΦ}Φ∈FN

. Given S1, S2 ∈ S̃N , S1 ∩ S2 = ∅, it
follows from Lemma 3.4 that

P {S1 and S2 are not L-separated for Hε,ω } ≤ K̃e−αLβ

(L + 1)2d ≤ e− α
2 Lβ

.
(4.22)

We have |ΞL,�| ≤ 2d�(γ−ς)d from (B.5). Setting F(r, a) = {Φ ∈ F(r); a ∈ Φ}
for a ∈ ΞL,�, and letting κ(a) denote the number of nearest neighbors of
a ∈ ΞL,� in the graph G2, and noting that

κ(a) ≤ (2(3k� − 1) + 1)d − (2(3k� − 2) + 1)d ≤ d (2(3k� − 1) + 1)d−1

= d (6k� − 1)d−1 ≤ d20d−1�(1−ς)(d−1) ≤ �d−1, (4.23)
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we get

|F(r, a)| ≤ (r − 1)!�(d−1)(r−1) =⇒ |F(r)| ≤ (L + 1)d(r − 1)!�(d−1)(r−1)

=⇒ |FN | ≤ (L + 1)dN !�(d−1)(N−1). (4.24)

Thus, we get
∣∣∣S̃
∣∣∣
N

≤ 2d�(γ−ς)d + (L + 1)dN !�(d−1)(N−1) ≤ 2(L + 1)dN !�(d−1)(N−1).

(4.25)

Letting SN denote that the event that S̃N is an L-separated family of
subsets of ΛL for H, and taking N = N� as in (4.8), we get

P {Sc
N} ≤ e− α

2 Lβ

2(L + 1)dN�!�(d−1)(N�−1) < e− α
4 Lβ

< 1
2e−Lζ

, (4.26)

for sufficiently large L, since (γ − 1)ζ̃ < (γ − 1)β < γβ and ζ < β.
We now define the event EN = BN ∩ SN . It follows from (4.9) and (4.26)

that

P {EN} > 1 − e−Lζ

. (4.27)

To finish the proof we need to show that for all ω ∈ EN the box ΛL is (M, I�, I)-
localizing for Hω , where M is given in (4.7).

Let us fix ω ∈ EN . Then we have (4.17), the subsets {Υr}R
r=1 constructed

in (4.15) are buffered subsets of ΛL for Hω , and the collection Sω is an L-
separated family of subsets of ΛL for H. It follows from (B.4) and Defini-
tion 2.3(ii) that

ΛL =

{
⋃

a∈G
ΛΛL, �−�ς

2
� (a)

}
∪
{

R⋃

r=1

Υr

}
. (4.28)

Note that ΛΛL, �−�ς

2
� (a) ⊂ ΛΛL,�τ̃

� (a).
Let {(ψλ, λ)}λ∈σ̃(HΛL

) be an eigensystem for HΛL
. ( Since ω is fixed, we

omit it from the notation.) Given λ ∈ σ̃I�
(HΛL

), we claim there exists Sλ ∈ Sω

such that

dist (λ, σ(HSλ
)) ≤ 1

2e−Lβ

. (4.29)

Suppose not, i.e., dist (λ, σ(HS)) > 1
2e−Lβ

for all S ∈ Sω . Let y ∈ ΛL. If

y ∈ ΛΛL, �−�ς

2
� (a) for some a ∈ G, we have RΛL

(y) ≥ ⌊ �−�ς

2

⌋
, so it follows from

(2.16) that

|ψλ(y)| ≤ e−m3hI(λ)� �−�ς

2 	 ≤ e−m3�−κ� �−�ς

2 	 ≤ e− 1
4 m3�1−κ

. (4.30)

If not, it follows from (4.28) that y ∈ Υr for some r ∈ {1, 2 . . . , R}. But then
it follows from (2.39) in Lemma 2.4 that

|ψλ(y)| ≤ e− m3
2 hI(λ)�τ̃ ≤ e− m3

2 �−κ�τ̃ ≤ e− 1
4 m3�τ̃−κ

. (4.31)

We conclude that

1 = ‖ψλ‖2 ≤ (L + 1)de− 1
4 m3�τ̃−κ

< 1, (4.32)
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a contradiction.
We now pick xλ ∈ Sλ. We will show that ψλ is an (xλ,MhI(λ))-localized

eigenfunction for Hω , where M is given in (4.7).
Let S

(λ)
ω = {S ∈ Sω ; S ∩ Sλ = ∅}. If S ∈ S

(λ)
ω , S and Sλ are L-separated,

so it follows from (4.29) that

dist (λ, σ(HS)) ≥ dist (σ(HS), σ(HSλ
)) − dist (λ, σ(HSλ

))

≥ e−Lβ − 1
2e−Lβ

= 1
2e−Lβ

. (4.33)

We consider two cases:

(i) Let y ∈ ΛΛL, �−�ς

2
� (a), where Λ�(a) ∈ S

(λ)
ω . In this case it follows from

(2.16) that

|ψλ(y)| ≤ e−m3hI(λ)� �−�ς

2 	 |ψλ(y1)| for some y1 ∈ ∂ΛL
ex Λ�(a), (4.34)

where m3 = m3(�) is as in (2.17). Moreover, we have

‖y − y1‖ ≤ � + 1 − ⌊ �−�ς

2

⌋ ≤ �+�ς

2 + 2 ≤ �+2�ς

2 . (4.35)

(ii) Let y ∈ Υr, where Υr ∈ S
(λ)
ω and {Λ�(a)}a∈GΥr

⊂ S
(λ)
ω . Then it follows

from (2.39) in Lemma 2.4 that

|ψλ(y)| ≤ e− m3
2 hI(λ)�τ̃ |ψλ(y2)| ≤ e− m3

4 �τ̃−κ |ψλ(y2)| (4.36)

for some y2 ∈ ⋃a∈GΥr
∂ΛL
ex Λ�(a), where m3 = m3(�) is as in (2.17). Note

that

‖y − y2‖ ≤ diam Υr + �. (4.37)

Now let us take y ∈ ΛL such that ‖y − xλ‖ ≥ Lτ . Suppose |ψλ(y)| > 0,
since otherwise there is nothing to prove. We estimate |ψλ(y)| using either
(4.34) or (4.36) repeatedly, as appropriate, stopping when we get too close to
xλ so we are not in one of the two cases described above. (Note that this must
happen since |ψλ(y)| > 0.) We accumulate decay only when we use (4.34), and
just use e− m3

4 �τ̃−κ

< 1 when using (4.36). In view of (4.35) and (4.37), this
can be done using (4.34) at least S times, as long as

�+2�ς

2 S +
R∑

r=1

(diam Υr + �) + 2� ≤ ‖y − xλ‖ . (4.38)

Since
∑R

r=1 (diam Υr + �) ≤ 7�N in view of (4.19), this can be guaranteed by
requiring

�+2�ς

2 S + 7�(γ−1)ζ̃+1 + 2� ≤ ‖y − xλ‖ . (4.39)

We can thus have

S =
⌊

2
�+2�ς

(
‖y − xλ‖ − 7�(γ−1)ζ̃+1 − 2�

)⌋
− 1

≥ 2
�+2�ς

(
‖y − xλ‖ − 7�(γ−1)ζ̃+1 − 2�

)
− 2

= 2
�+2�ς

(
‖y − xλ‖ − 7�(γ−1)ζ̃+1 − 3� − 2�ς

)
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≥ 2
�+2�ς

(
‖y − xλ‖ − 8�(γ−1)ζ̃+1

)
. (4.40)

Thus we conclude that

|ψλ(y)| ≤ e−m3hI(λ)� �−�ς

2 	 2
�+2�ς

(
‖y−xλ‖−8�(γ−1)ζ̃+1

)

≤ e−MhI(λ)‖y−xλ‖ (4.41)

where

M ≥ m3

(
1 − Cd�

− min{1−ς,γτ−(γ−1)ζ̃−1})

= m3

(
1 − Cd�

−(γτ−(γ−1)ζ̃−1)
)

≥ m
(
1 − Cd�

− min{κ, 1−τ
2 ,γτ−(γ−1)ζ̃−1}) = m

(
1 − Cd�

−�
)
, (4.42)

where we used (A.7), (2.17), and (A.6). In particular, M satisfies (4.7) for
sufficiently large �.

We conclude that ψλ is an (xλ,MhI(λ))-localized eigenfunction for ΛL,
where M satisfies (4.7).

We proved that ΛL is (M, I�, I)-localized for Hω . �

Proof of Proposition 4.2. We assume (4.2) and set Lk+1 = Lγ
k , Ak+1 = Ak(1−

L−κ
k ), and Ik+1 = I(E,Ak+1) for k = 0, 1, . . .. Since if a box ΛL is (M, I�, I)-

localizing for Hω it is also (M, I�)-localizing, if L0 is sufficiently large it follows
from Lemma 4.3 by an induction argument that we have (4.3) and (4.4) for
all k = 1, 2, . . .. �

Proposition 4.4. There exists a a finite scale L = L(d) with the following prop-
erty: Suppose for some scale L0 ≥ L and interval I0 = I(E,A0) we have

inf
x∈Rd

P {ΛL0(x) is (m0, I0)-localizing for Hω } ≥ 1 − e−Lζ
0 . (4.43)

Set Lk+1 = Lγ
k, Ak+1 = Ak(1−L−κ

k ), and Ik+1 = I(E,Ak+1), for k = 0, 1, . . .,
Then for all k = 1, 2, . . . we have

inf
x∈Rd

P {ΛL(x) is (mk, Ik, Ik−1)-localizing for Hω } ≥ 1 − e−Lξ

for L ∈ [Lk, Lk+1),

(4.44)

where

L−κ′
k < mk−1

(
1 − CdL

−�
k−1

) ≤ mk < 1
2 log

(
1 + Ak

4d

)
, (4.45)

with Cd as in (4.4).

Proof. We apply Proposition 4.2, which gives a scale L such that, taking L0 ≥
L we have the conclusions of Proposition 4.2.

Given a scale L ≥ L1, let k = k(L) ∈ {1, 2, . . .} be defined by Lk ≤ L <

Lk+1. We have Lk = Lγ
k−1 ≤ L < Lk+1 = Lγ2

k−1, so L = Lγ′
k−1 with γ ≤ γ′ <

γ2. We proceed as in Lemma 4.3. We take ΛL = ΛL(x0), where x0 ∈ R
d, let

{(ψλ, λ)}λ∈σ̃(HΛL
) be an eigensystem for HΛL

, and let CL,Lk−1 = CL,Lk−1 (x0)
be the suitable Lk−1-cover of ΛL. We let B0 denote the event that all boxes
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in CL,Lk−1 are (mk−1, Ik−1)-localizing for Hω . It follows from (B.5) and (4.3)
that

P {Bc
0} ≤

(
2L

Lς
k−1

)d

e−Lζ
k−1 = 2dL

(γ′−ς)d
k−1 e−Lζ

k−1 ≤ 2dL(1− ς
γ′ )de−L

ζ
γ′

< 1
2e−Lξ

,

(4.46)

if L0 is sufficiently large, since ξγ′ < ξγ2 < ζ. Moreover, given Λ1,Λ2 ∈
CL,Lk−1 , Λ1 ∩ Λ2 = ∅, it follows from Lemma 3.4 that

P {Λ1 and Λ2 are not L-separated for Hω } ≤ K̃e−αLβ

(Lk−1 + 1)2d ≤ e− α
2 Lβ

.
(4.47)

Thus, letting S0 denote the event that CL,Lk−1 is an L-separated family of
subsets of ΛL for H, it follows from (B.5) that

P {Sc
0} ≤

(
2L

Lς
k−1

)2d

e− α
2 Lβ ≤ 1

2e−Lξ

, (4.48)

if L0 is sufficiently large, since ξ < β. Thus, letting E0 = B0 ∩ S0, we have

P {E0} ≥ 1 − e−Lξ

. (4.49)

It only remains to prove that ΛL is (mk, Ik, Ik−1)-localizing for Hω for all
ω ∈ E0. To do so, we fix ω ∈ E0 and proceed as in the proof of Lemma 4.3. Since
ω ∈ B0, ΛLk−1(a) is (mk−1, Ik−1)-localizing for Hω for all a ∈ G = ΞL,Lk−1 .
Since ω is now fixed, we omit them from the notation. ,

Let λ ∈ σ̃Ik
(HΛL

) (note (Ik−1)Lk−1 = Ik). To finish the proof we need to
show that ψλ is (mk, Ik, Ik−1)-localized. Since CL,Lk−1 is an L-separated family
of subsets of ΛL for H, there must exist aλ ∈ G = ΞL,Lk−1 such that, setting
Λλ = ΛLk−1(aλ), we have (as in the proof of Lemma 4.3)

dist (λ, σ(HΛλ
)) ≤ 1

2e−Lβ

, (4.50)

and if a ∈ Gλ =
{
b ∈ G; ΛLk−1(b) ∩ Λλ = ∅},

dist (λ, σ(HΛ)) ≥ 1
2e−Lβ

. (4.51)

If y ∈ ΛL and ‖y − aλ‖ ≥ 2Lk−1, it follows from (B.4) that y ∈ ΛΛL,
Lk−1−Lς

k−1
2

Lk−1
(a)

for some a ∈ Gλ, so it follows from (2.16) that

|ψλ(y)| ≤ e
−mk−1,3hIk−1 (λ)

⌊
Lk−1−Lς

k−1
2

⌋

|ψλ(y1)| , (4.52)

for some y1 ∈ ∂ΛL,2(Lk−1)τ ΛLk−1(a), where we need

mk−1,3 = mk−1,3(Lk−1) ≥ mk−1

(
1 − CdL

−( 1−τ
2 )

k−1

)
, (4.53)

and we have

‖y − y1‖ ≤ Lk−1+2Lς
k−1

2 , (4.54)

as in (4.35).
Now consider y ∈ ΛL such that ‖y − aλ‖ ≥ Lτ . Suppose |ψλ(y)| > 0,

since otherwise there is nothing to prove. We estimate |ψλ(y)| using either
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(4.52) repeatedly, as appropriate, stopping when we get within 2Lk−1 of aλ.
In view of (4.54) , we can use (4.52) S times, as long as

Lk−1+2Lς
k−1

2 S + 2Lk−1 ≤ ‖y − aλ‖ . (4.55)

We can thus have

S =
⌊

2
Lk−1+2Lς

k−1
(‖y − aλ‖ − 2Lk−1)

⌋
− 1

≥ 2
Lk−1+2Lς

k−1
(‖y − aλ‖ − 2Lk−1) − 2

≥ 2
Lk−1+2Lς

k−1

(‖y − aλ‖ − 3Lk−1 − 2Lς
k−1

)

≥ 2
Lk−1+2Lς

k−1
(‖y − aλ‖ − 4Lk−1) . (4.56)

Thus we conclude that

|ψλ(y)| ≤ e
−mk−1,3hIk−1 (λ)

⌊
Lk−1−Lς

k−1
2

⌋
2

Lk−1+2Lς
k−1

(‖y−aλ‖−4Lk−1)

≤ e−mkhIk−1 (λ)‖y−aλ‖ (4.57)

where mk can be taken to satisfy (4.4).
We conclude that ψλ is an (mk, Ik, Ik−1)-localized eigenfunction, where

mk satisfies (4.4).
We proved that the box ΛL is (mk, Ik, Ik−1)-localizing for Hω . �

Proof of Theorem 1.4. Let Lk+1 = Lγ
k , Ak+1 = Ak(1−L−κ

k ), Ik+1 = I(E,Ak+1),
and mk+1 = mk

(
1 − CdL

−�
k

)
for k = 0, 1, . . .. Given L ≥ Lγ

0 = L1, let
k = k(L) ∈ {1, 2, . . .} be defined by Lk ≤ L < Lk+1. Let A∞, I∞,m∞ be
defined by (1.11). Since

Ak = A∞
∞∏

j=k

(
1 − L−κ

j

)−1
for k = 0, 1, . . . , (4.58)

we have

A∞
(
1 − L−κ

)−1 ≤ A∞
(
1 − L−κ

k

)−1
< Ak, (4.59)

and hence IL
∞ ⊂ Ik. Since m∞ ≤ mk, we conclude that (1.10) follows from

(4.44). �

5. Localization

In this section we prove Theorem 1.5 for an Anderson model Hω .

Lemma 5.1. Let I = (E,A). There exists a finite scale Ld,ν such that for all
L ≥ Ld,ν and a ∈ Z

d, given an (m, IL)-localizing box ΛL(a) for the discrete
Schrödinger operator H, then for all λ ∈ I,

max
b∈Λ L

3
(a)

W
(a)
λ (b) > e− 1

4 mhIL (λ)L =⇒ min
θ∈σIL (HΛL(a))

|λ − θ| < 1
2e−Lγβ

.

(5.1)
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Proof. Let λ ∈ I =
(
IL
)
L
, and suppose |λ − θ| ≥ 1

2e−Lγβ

for all θ ∈ σIL(HΛL(a)).
Let ψ ∈ V(λ). Then it follows from Lemma 2.2 that for large L and b ∈ ΛL

3
(a)

we have

|ψ(b)| ≤ e−m3(L)hIL (λ)(L
3 −1) ∥∥T−1

a ψ
∥∥ 〈L

2 + 1
〉ν ≤ e− 1

4 mhIL (λ)L
∥∥T−1

a ψ
∥∥ .

(5.2)

�

Proof of Theorem 1.5. Assume Theorem 1.4 holds for some L0, and let I =
I∞, m = m∞. Consider Lγ

0 ≤ L ∈ 2N and a ∈ Z
d. We have

Λ5L(a) =
⋃

b∈{a+ 1
2 LZd}, ‖b−a‖≤2L

ΛL(b). (5.3)

Let YL,a denote the event that {ΛL(b)}b∈{a+ 1
2 LZd}, ‖b−a‖≤2L is an Lγ-separated

family of (m, IL)-localizing boxes for H. It follows from (1.10) and Lemma 3.4
that

P
{Yc

L,a

} ≤ 9de−Lξ

+ K̃92d (L + 1)2d e−αLγβ ≤ Cμe−Lξ

. (5.4)

Suppose ω ∈ YL,a, λ ∈ I, and maxb∈Λ L
3

(a) W
(a)
ω ,λ(b) > e− 1

4 mhIL (λ)L. It

follows from Lemma 5.1 that minθ∈σIL (HΛL(a)) |λ − θ| < 1
2e−Lγβ

. Since the
family of boxes is Lγ-separated family for Hω , we conclude that

min
θ∈σIL (HΛL(b))

|λ − θ| ≥ 1
2e−Lγβ

(5.5)

for all b ∈ {a + 1
2LZ

d
}

with 3
2L ≤ ‖b − a‖ ≤ 2L. Since

AL(a) ⊂
⋃

b∈{a+ 1
2 LZd}, 3

2 L≤‖b−a‖≤2L

Λ
L
7
L (b), (5.6)

it follows from Lemma 2.2 that for all y ∈ AL(a) we have, given ψ ∈ Vω (λ),

|ψ(y)| ≤ e−m3(L)hIL (λ)(L
7 −2) ∥∥T−1

a ψ
∥∥ 〈 5

2L + 1〉ν ≤ e−mhIL (λ) L
8
∥∥T−1

a ψ
∥∥

≤ e− 7
132 mhIL (λ)‖y−a‖ ∥∥T−1

a ψ
∥∥ , (5.7)

so we get

W
(a)
ω ,λ(y) ≤ e− 7

132 mhIL (λ)‖y−a‖ for all y ∈ AL(a). (5.8)

Since we have (1.13), we conclude that for ω ∈ YL,a we always have

W
(a)
ω ,λ(a)W (a)

ω ,λ(y) ≤ max
{

e− 7
66 mhIL (λ)‖y−a‖〈y − a〉ν , e− 7

132 mhIL (λ) ‖y−a‖
}

≤ e− 7
132 mhIL (λ)‖y−a‖ for all y ∈ AL(a). (5.9)

�
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Appendix A: Exponents

Given 0 < ξ < ζ < 1, we consider β, τ ∈ (0, 1) and γ > 1 such that

0 < ξ < ζ < β <
1
γ

< 1 < γ <
√

ζ
ξ and max

{
γβ, (γ−1)β+1

γ

}
< τ < 1;

(A.1)

it follows that

0 < ξ < ξγ2 < ζ < β <
τ

γ
<

1
γ

< τ < 1 <
1 − β

τ − β
< γ <

τ

β
. (A.2)

We set

ζ̃ =
ζ + β

2
∈ (ζ, β) and τ̃ =

1 + τ

2
∈ (τ, 1), (A.3)

so

(γ − 1)ζ̃ + 1 < (γ − 1)β + 1 < γτ. (A.4)

We take κ ∈ (0, 1) and κ′ ∈ [0, 1) such that

κ + κ′ < τ − γβ. (A.5)

We let

� = min
{

κ, 1−τ
2 , γτ − (γ − 1)ζ̃ − 1

}
, note 0 < κ ≤ � < 1, (A.6)

and choose

ς ∈ (0, 1 − �], so � < 1 − ς. (A.7)

We select exponents satisfying (A.1)–(A.7) and fix these exponents.

Appendix B: Suitable Covers of a Box

To perform the multiscale analysis in an efficient way we use suitable covers
of a box as in [17, Section 3.4], an adaptation of [25, Definition 3.12]. We state
the definition and properties for the reader’s convenience.

Definition B.1. Fix ς ∈ (0, 1). Let ΛL = ΛL(x0), x0 ∈ R
d be a box in Z

d, and
let � < L. A suitable �-cover of ΛL is the collection of boxes

CL,� = CL,� (x0) = {Λ�(a)}a∈ΞL,�
, (B.1)

where

ΞL,� = ΞL,�(x0) :=
{
x0 + ρ�ς

Z
d
} ∩ ΛR

L with ρ ∈ [ 12 , 1
] ∩ {L−�

2�ςk ; k ∈ N
}

.

(B.2)

We call CL,� the suitable �-cover of ΛL if ρ = ρL,� := max
[

1
2 , 1
]∩{L−�

2�ςk ; k ∈ N
}

.
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Lemma B.2 ([25, Lemma 3.13], [17, Lemma 3.10]) Let � ≤ L
2 . Then for every

box ΛL = ΛL(x0), x0 ∈ R
d, a suitable �-cover CL,� = CL,� (x0) satisfies

ΛL =
⋃

a∈ΞL,�

Λ�(a); (B.3)

for all b ∈ ΛL there is Λ(b)
� ∈ CL,� such that b ∈

(
Λ(b)

�

)ΛL, �−�ς

2
,

i.e., ΛL =
⋃

a∈ΞL,�

ΛΛL, �−�ς

2
� (a); (B.4)

#ΞL,� =
(

L−�
ρ�ς + 1

)d

≤ ( 2L
�ς

)d
. (B.5)

Moreover, given a ∈ x0 + ρ�ς
Z

d and k ∈ N, it follows that

Λ(2kρ�ς+�)(a) =
⋃

b∈{x0+ρ�ςZd}∩ΛR

(2kρ�ς+�)(a)

Λ�(b), (B.6)

and {Λ�(b)}b∈{x0+ρ�ςZd}∩ΛR

(2kρ�ς+�)(a) is a suitable �-cover of the box Λ(2kρ�ς+�)(a).

Note that Λ(b)
� does not denote a box centered at b, just some box in

CL,� (x0) satisfying (B.4). By Λ(b)
� we will always mean such a box. We will

use

dist
(
b, ∂ΛL

in Λ(b)
�

)
≥ �−�ς

2 − 1 for all b ∈ ΛL. (B.7)

Note also that ρ ≤ 1 yields (B.4). We specified ρ = ρL,� in for the suitable
�-cover for convenience, so there is no ambiguity in the definition of CL,� (x0).

Suitable covers are convenient for the construction of buffered subsets
(see Definition 2.3) in the multiscale analysis, where we will assume ς ∈ (0, 1)
is as in (A.7). We will use the following observation:

Remark B.3. Let CL,� be a suitable �-cover for the box ΛL, and set k� = kL,� =⌊
ρ−1�1−ς

⌋
+ 1. Then for all a, b ∈ CL,� we have

ΛR

� (a) ∩ ΛR

� (b) = ∅ ⇐⇒ ‖a − b‖ ≥ k�ρ�ς . (B.8)
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