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Eigensystem Multiscale Analysis for the
Anderson Model via the Wegner Estimate
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Abstract. We present a new approach to the eigensystem multiscale anal-
ysis (EMSA) for random Schrédinger operators that relies on the Wegner
estimate. The EMSA treats all energies of the finite volume operator in
an energy interval at the same time, simultaneously establishing localiza-
tion of all eigenfunctions with eigenvalues in the energy interval with high
probability. It implies all the usual manifestations of localization (pure
point spectrum with exponentially decaying eigenfunctions, dynamical lo-
calization). The new method removes the restrictive level spacing hypoth-
esis used in the previous versions of the EMSA. The method is presented
in the context of the Anderson model, allowing for single-site probability
distributions that are Holder continuous of order « € (0, 1].
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Introduction

In [16,17] we developed an eigensystem multiscale analysis (EMSA) for proving
localization (pure point spectrum with exponentially decaying eigenfunctions,
dynamical localization) for random Schrédinger operators. The EMSA treats
all energies of the finite volume operator in an energy interval at the same time,
simultaneously establishing localization of all eigenfunctions with eigenvalues
in the energy interval with high probability. The analysis in [16,17] (and its
bootstrap enhancement in [30]) relies on a probability estimate for level spac-
ing. For the Anderson model with a Holder continuous single-site probability
distribution of order o € (4, 1] such an estimate is provided by [29, Lemma 2],
where it is derived from Minami’s estimate [31]. (This is the level spacing prob-
ability estimate used in [16,17,30].) A weaker level spacing estimate is proven
for the continuous Anderson model in [13, Theorem 2.2]; it requires a covering
condition for the random potential, it holds only in a certain interval at the
bottom of the spectrum, it requires the single-site probability distribution to
be absolutely continuous with a density that is uniformly Lipschitz continuous
and bounded below on its support, and provides weak probability estimates.
The fact that level spacing probability estimates are not widely known, and
where known require extra hypotheses, imposes a strong limitation on the
applicability of the EMSA.

The well-known methods previously developed for proving localization for
random Schrédinger operators are the multiscale analysis (MSA) (see [7,9,14,
15,19-23,25,27,32]) and the fractional moment method (FMM) (see [1-5]). As
opposed to the EMSA, these methods are based on the study of finite volume
Green’s functions, and the analysis is performed either at a fixed energy in a
single box, or for all energies in an interval at once but with two boxes with an
‘either or’ statement for each energy. Green’s functions-based methods do not
rely on level spacing. Rather, they use either explicitly (MSA) or implicitly
(FMM) a more widely available bound, the Wegner estimate (e.g., [8-10,26, 28,
33]). This estimate is proven for a large family of both lattice and continuum
random Schrodinger operators, making it possible to establish localization in
these contexts.

Unfortunately, the Green’s function quickly becomes an inadequate tool
in the study of many-body localization, rending the traditional approaches to
localization ineffective. The EMSA approach to localization shows more flexi-
bility in this regard: In a forthcoming paper, [18], we use the EMSA to establish
many-body localization results in the context of random XXZ spin quantum
chains. However, as we already mentioned, the previously available version of
the method uses the level spacing hypothesis, which (although expected) has
never been proven for many-body systems so far. The main innovation of the
present work is the removal of this restrictive condition, replacing it by an ar-
gument based on the Wegner estimate. More precisely, the new approach uses
Wegner estimates between boxes, as in [15,22,23,27]. To illustrate the method,
we consider here its application to a single particle lattice Anderson model. In
this context it applies when the single-site probability distribution is Holder
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continuous of order « € (0, 1], in contrast to the EMSA with level spacing of
[16,17] that requires o € (4, 1]. Moreover, this version of EMSA is expected to
admit extensions to random Schrodinger operators where a suitable Wegner
estimate is available, such as the continuum Anderson model.

1. Definitions and Results

A discrete Schrodinger operator is an operator of the form H = —A +V on
(?(Z%), where A is the (centered) discrete Laplacian:

(Ap)(@) = Y oy for ¢e(2?), (1.1)
yez?
ly—z|=1

and V is a bounded potential.

Definition 1.1. The Anderson model is the random discrete Schrédinger oper-
ator

H,:=—-A+V, on (3179, (1.2)

where V,, is a random potential: V, (r) = w, for z € Z4¢, where w = {w, },cz4
is a family of independent identically distributed random variables, whose
common probability distribution p has bounded support and is assumed to be
Holder continuous of order « € (0, 1]:

S,(t) < Kt* forall te|0,1], (1.3)

where K is a constant and S, (t) := sup,cp p {[a,a + t]} is the concentration
function of the measure p.

To formulate our main result, we need to introduce some additional no-
tation. Given © C Z%, we let Hg be the restriction of xg HXe to £*(0). We
write [l¢f = (¢l for ¢ € 72(©). We call (¢,)) an eigenpair for Hg if
p € (2(©) with |l¢|]| = 1, A € R, and Hgp = Ap. (In other words, A is an
eigenvalue for Hg and ¢ is a corresponding normalized eigenfunction.) A col-
lection {(¢;, )\j)}jEJ of eigenpairs for Hg will be called an eigensystem for Heg
if {¢;},c s is an orthonormal basis for (2(©). If © C Z4 is finite, we let 5(Heg)
denote the eigenvalues of Hg repeated according to multiplicity (and thought
of as different points in o(Heg)), so an eigensystem for Hg can be rewritten as
{(ox, /\)}Ae&(H@)7 i.e., it can be labeled by o(Hg).

J
|z| ., = maxj_12, . 4|z;]. We consider boxes in Z? centered at points of RY.
The box in Z¢ of side L > 0 centered at = € R? is given by

Ap(z) =Af(x)NZ% where Af(z)={yeR% ly—z| <L}, (14)

1
If @ = (21,22, ..,2a) € R, we set Jo] = Jo], = (£5_,22) " and [jo] =

By a box Az, we will mean a box Az (x) for some z € RY. We have

(L—-2) <|Ap(z) < (L+1)% forall L>2 and zeRYL  (1.5)



2304 A. Elgart, A. Klein Ann. Henri Poincaré

The EMSA is based on the study of localized eigensystems. The relevant
definitions are stated in terms of exponents 7, s’ € (0,1) that will be chosen
later. We use the notation L, = |L7| for L > 1.

Definition 1.2. Let Az, be a box, # € Az, and m > 0. Then ¢ € £2(Ay) is said
to be (z,m)-localized if ||¢|| = 1 and

lo(y)| < e ™lv==ll forall yeAp with |y—z| > L,. (1.6)

We consider energy intervals I(E, A) = (E— A, E+ A) with center F € R
and radius A > 0. (When we write I(E, A) it will be implicit that F € R and
A > 0.) Given an interval I = I(E, A), we set

1—s% if se(—1,1)

N . (1.7)
0 otherwise

hi(t)=h (%) for t € R, with h(s) = {

Note that h;(t) > 0 <= t € I, which implies h; = X h;.

Definition 1.3. Given an energy interval I = I(E, A), a box Ar will be called
(m, I)-localizing for H if

L™ <m<llog(1+4), (1.8)

and there exists an (m, I)-localized eigensystem for Hy, , that is, an eigensys-
tem {(¢,, l/)}ye&(HAL) for Hy, such that for all v € 5(Hp, ) there is x, € Ap,

S0 ¢, 18 (x,, mhy(v))-localized.

Given a box Ay C O, a crucial step in our analysis shows that if (¢, \)
is an eigenpair for Hg, with A € I not too close to the eigenvalues of Hy,,
and the box Ay is (m, I)-localizing for H, then v is exponentially small deep
inside Ay (see Lemma 2.2.). This is proven by expanding the values of 1 in-
side Ay in terms of an (m,I)-localizing eigensystem for Hp,. The problem
is we only know decay for the eigenfunctions with eigenvalues in I; we have
no information whatsoever concerning eigenfunctions with eigenvalues that lie
outside the interval I. As in [17], the decay of the term containing the latter
eigenfunctions comes from the distance from the eigenvalue A to the comple-
ment of the interval I, and consequently the decay rate for the localization of
an eigenfunction goes to zero as the corresponding eigenvalue approaches the
edges of the interval I. The introduction of the modulating function h; in the
decay rate models this phenomenon.

The control of the term containing eigenfunctions corresponding to eigen-
values that lie outside the interval I is given by [17, Lemma 3.2(ii)], which
requires the upper bound in (1.8). The lower bound in (1.8) is a requirement
for the multiscale analysis, as in [20,23,25,27].

Our main result pertaining to the eigensystem multiscale analysis in an
energy interval is given in the following theorem. To state the theorem, given
exponents 0 < £ < ¢ < 1, we choose the exponents 7,x" € (0,1) that appear
in Definitions 1.2 and 1.3, as well as exponents 8,k,0 € (0,1) and v > 1,
satisfying the relations described in Appendix A. In what follows, once the
exponents 0 < £ < ¢ < 1 are fixed, we always assume we choose and fix the
other exponents as in Appendix A.
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Theorem 1.4. Let H, be an Anderson model. Given 0 < & < ¢ < 1, there
exists a finite scale £ = L£(d,&,¢) and a constant Cqg = Caec > 0 with the
following property: Suppose for some scale Ly > L and interval In = I(E, Ap)
we have

inﬂgdP{ALo (x) is (mo, Ip)-localizing for H,} > 1 — e L, (1.9)
HAS

Then for all L > L] we have
inf P {AL(2) is (Moo, 1%)-localizing for Hy} > 1 — efLE, (1.10)
z€eR

where

1L =I5 (Lo) = I(B, A(1— L7%)7),
Ao = Aso(Lo) = Ag H (1 — L™ ) ’
k=0

i, o _ k
Ly ™™ < Moo = moo(Lo) ZWOH (1*CdL0m ) < glog (1+43).
k=0
(1.11)
In particular, imp, oo Aoo(Lo) = Ao and limy,, oo Moo (Lo) = myg.

We now state a corollary of Theorem 1.4 that encapsulates the usual
forms of Anderson localization (pure point spectrum with exponentially decay-
ing eigenfunctions, dynamical localization, etc.) on the interval I = I(E, As),
as in [16,24,25]. We fix v > %, and given a € Z? we define T, as the operator
on ¢%(Z%) given by multiplication by the function T,(x) := (z — a)¥, where
(z) = /14 ||z||>. Since (a + b) < v/2(a)(b), we have 1.7, < 2%(a —
b)Y. A function ¢: Z¢ — C is a v-generalized eigenfunction for the discrete
Schrodinger operator H if 1) is a generalized eigenfunction and HTO_ 11/)H < 00.
(HTO*IwH < oo if and only if |7, 4| < oo for all a € Z9.) We let V()) denote

the collection of v-generalized eigenfunctions for H with generalized eigenvalue
A €R. Given A € R and a,b € Z%, we set

IGTIE.
W (p) i=  °PYEVR) ] v #£0. (1.12)
A 0 otherwise

For all a,b,c € Z% we have
Wi (@) <1, W) < (b—a)”, and W' (¢) < 25 (b — a)* W " (c).
(1.13)

Corollary 1.5. Suppose the conclusions of Theorem 1.4 hold for an Anderson
model Hy,, and let I = I, m = mo. There is a finite scale L = L4, such
that, given L < L € 2N and a € Z%, there evists an event Vi, with the
following properties:
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(i) Yi,a depends only on the random variables {w,} ) and

z€A51 (a
P{Vra}>1-Ce L. (1.14)
(ii) Given w € Y4, for all A € I we have that

berzl\lz)((a) W (b) > e dmhie L — max W (y) < e~ e Wly=al,
(1.15)
where
Ap(a) ={yez% EL<|y—a| < BL}. (1.16)
In particular, for allw € Vi, , and X\ € I we have

W (@W () < emszmhe W=l for all y e Ap(a).  (117)

s =

Although Corollary 1.5 looks exactly like [17, Theorem 1.7], Theorem 1.4
is not the same as [17, Theorem 1.6] (the definitions of a localizing box are
different, the conclusion (1.10) is stated differently from [17, Equation (1.20)]).
For this reason the derivation of Corollary 1.5 from Theorem 1.4 has some
differences from the derivation of [17, Theorem 1.7] from [17, Theorem 1.6], so
it is included in this paper.

The usual forms of localization can be derived from Corollary 1.5 and are
stated in the following corollary.

Corollary 1.6. Suppose the conclusions of Theorem 1.4 hold for an Anderson
model Hy,, and let I = I, m = mu. Then the following holds with probability
one:

(i) H, has pure point spectrum in the interval I.
(i1) If vy is an eigenfunction of H, with eigenvalue X\ € I, then vy is expo-
nentially localized with rate of decay émh;()\), more precisely,

[a(z)| < Cy o2 ||T(;11/J|| e~ mamhi (il forall zeRY (1.18)

(iii) If A € I, then for all z,y € Z¢ we have

WL @)W W) < Coneo (hz(A))_”e%*”)mhf“)(?dlogw o timhr(Vlly—all
(1.19)

iv) If X € I, then for v € Xy (Hy) and all z,y € we have
A hen for ) d all Z4 h
()] |2 (y)]

< Cmw o (h1(N) ™ HTz_leQ e(%-‘-”)mhl()\)(?dlog( ))5 e—@mhI(A)Hy z||

<2 Con o (h1(N) ™ }|TO*1¢||2<x>2”e<%+”>mh1“><“‘°g<w>>5e Thmhr V=l
(1.20)
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(v) If X € I, then there exists x\ = x, x € Z2, such that for ¢ € Xixy (Hy)
and all © € Z¢ we have

=1yl (S +ImAr (M) (2d log(2x)) E = Zmh(M)l|lz—as |
[(2)] < Cmw v (h1(N) V|| T3 | e e

Tofle(mmue(i-ﬁ-l')vnhz(/\)@d10:;(%))%e—éwbhz()\)”w—mH.

(1.21)

<2:Cw,w (h1 (V)7

In Corollary 1.6, (i) and (ii) are statements of Anderson localization,
(iii) and (iv) are statements of dynamical localization ((iv) is called SUDEC
(summable uniform decay of eigenfunction correlations) in [24]), and (v) is
SULE (semi-uniformly localized eigenfunctions; see [11,12,24]). Statements of
localization in expectation can also be derived, as in [24,25].

The proof of Corollary 1.6 from Corollary 1.5 is the same as the proof of
[17, Corollary 1.8] from [17, Theorem 1.7], with some obvious modifications,
so we refer to [17].

Theorem 1.4 also implies localization at the bottom of the spectrum as
in [17, Section 2].

The conclusions of Theorem 1.4 are equivalent to the conclusions of the
energy interval multiscale analysis [15,22,23,27]; this can be seen proceeding
as in [17, Section 6]. Finally, we stress that the theorem holds for Anderson
models whose single-site probability distributions satisfy (1.3).

In the remainder of this paper, we fix 0 < £ < ¢ < 1 and the corre-
sponding exponents 7, 3, k,k’, 0 € (0,1) and v > 1, as in Appendix A. The
deterministic lemmas for the EMSA are introduced in Sect. 2. The probability
estimates based on Wegner estimates are presented in Sect. 3. Theorem 1.4 is
proven in Sect. 4. The proof of Corollary 1.5 is given in Sect. 5.

2. Lemmas for the Eigensystem Multiscale Analysis

In this section we introduce notation and deterministic lemmas that will play
an important role in the eigensystem multiscale analysis. By H we always
denote a discrete Schrodinger operator H = —A +V on £?(Z%). We also fix an
interval I = I(E, A).

2.1. Preliminaries

Let ® ¢ © C Z% We define the boundary, exterior boundary, and interior
boundary of ® relative to O, respectively, by

8°® = {(u,v) € ® x (OD); |u—v|=1},
950 ={ve (O0); (uv) €8%% for some we D},
99 = {u € ®; (u,v) €9°% forsome v e @\cp}. (2.1)
Ift > 1, we let
3t = {y € ®; dist (y,0@) > [t]} and 92D = PP (2.2)
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We use the notation
Ro(y) = dist (y,05®) for ye€ ®. (2.3)
For a box A, C © C Z¢ we write A(Z)’t(m) = (AL(a:))@’t. For L > 2 we
have
’8§1AL’ < ‘GS(AL’ = ‘BOAL‘ < sqL%',  where s4=2%. (2.4)
For v € © we let © € 02 Ay, be the unique u € 92 Ay, such that (u,v) € 9°A;
if v e 09 Az, and set © = 0 otherwise.

If ® C © C Z¢, we consider £?(®) C (2(©) by extending functions on ®
to functions on O that are identically 0 on ©O\®. We have

Ho = Ho ® Ho\o + Tgeg on £%(0) = (*(®) @ £*(0\@),
—1 if either (u,v) or (v,u) € 8%®

. (2.5)
0 otherwise

where T'yeq(u,v) = {

Given J C R, we set 07(Hg) = 0(Hg) NJ and d;(Heg) = d(He) N J.

A function ¢: © — C is called a generalized eigenfunction for Hg with
generalized eigenvalue A € R, and (¢, \) is called a generalized eigenpair for
Hg, if 9 is not identically zero and

((Ho — N, ) =0 forall ¢ e ¢*(©) with finite support.  (2.6)

Lemma 2.1. Let © C Z% and let (1, \) be a generalized eigenpair for He. Let
® C O finite, n > 0, and suppose

dist (\,0(Hg)) > n. (2.7)
Then for all y € ® we have
1
[W(y)] < 2dn~ " |0S@]7 [b(y1)|  for some yi € OGO (2.8)
The estimate (2.8) also holds (trivially) for y € 09.® if 2dn~"' > 1.

Proof. Let {(vv, )}, c5(m,) Pe an eigensystem for He. If v € 0(Hsg), we have
[N —v| >n by (2.7). Since ® is finite, using (2.6) and (2.5) we get

(pvr¥0) = (A=) ((Ho — ) v, ) = (A= v) ™" ((Ho — Ha) @0, 1))
= (A=1)" (g Toeat). (2.9)
It follows that for y € ® we have

¢(y)<5ya¢><5yv >, <<Pu,¢><ﬁu>

vEF(Hg)

:<5y7 Z ()\—V)_1<<Pu,raf'>q>¢><ﬂv>

veo(Ha)

- <(Sy7 Z (A — 1/)_1 (pvs XL geat)) <Pu>

ves(Ha)
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<5y7()\Hq>)_l Z <<,OV,X<I>F39<I>1/’><PD>

veF(Hy)
= (8, (A = Ho) " XaTpoqt) (2.10)
Using (2.7), we get

() < [XeT et = 07" |[XeTgesXoe o || < 2dn~" || Xoe 0¥
< 2dnt ‘83@& [(yi)| for some y; € 9S.®. (2.11)
O

For the interval I = I(E, A) and L > 1, we set

I =1(E, A0 - L ") CI=1(E,A) CI*=(E,AQ1—-L ")™Y, (212)

We write IE" = (IL)L/ = (IL/)L, and observe that IF = I. Note that

hi(t) >1—(1- Lin)2 >L7" forall tel,, so hrx;, >L "Xyg,.
(2.13)

2.2. Localizing Boxes

The following lemma plays a crucial role in the multiscale analysis. It says that
given an eigenpair (¢, \) for Hg and a box Ay C © with A € Iy not too close
to the eigenvalues of Hy,, then ¢ is exponentially small deep inside Ay if the
box Ay is (m, I)-localizing for H.

If Ay is an (m, I)-localizing box, {(¢.,v)} Ha,) will denote an (m, I)-

veo(
localized eigensystem for Hy,. If A, C © C Z%, J C I and t > 0, we set

59U (Hy,) = {y €5(Hy,); o € A?’t}. (2.14)

Given a scale £ > 1, we set L = (7. The exponent 7 is defined in (A.3).
We use the notation L, = |L7] and Lz = |L"|.

Lemma 2.2. Let ¢): © C Z% — C be a generalized eigenfunction for Heg with
generalized eigenvalue \ € Iy. Consider a box Ay C © such that Ay is (m, I)-
localizing for H. Suppose

dist (A, o7 (Hy,)) > Le 2. (2.15)
Then, if £ is sufficiently large, for all y € A?’e* we have
[h(y)| < e~mshiNReW) |y ()| for some v e Ay, (2.16)

where

ms = ms(0) > m (1 - Cdé‘l_TT> . (2.17)
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Lemma 2.2 resembles [17, Lemma 3.4], but the hypothesis (2.15) is stronger
than the corresponding hypothesis [17, Eq. (3.24)], so the proof is slightly eas-
ier, and the conclusions are slightly stronger. The main issue in the proof is
the same: the hypothesis that the box Ay, C © is (m, I)-localizing only gives
decay for eigenfunctions with eigenvalues in I. To compensate, we take A € I,
and use [17, Lemmas 3.2 and 3.3].

Proof (Proof of Lemma 2.2).
Given y € Ay and t > 0, it follows from [17, Lemma 3.2(i)] that

2 2
() = (oD 05, ) (B, — BV Taon, ).
(2.18)
where T'geq is defined in (2.5) and F; »(z) is the entire function given by
1— e—t(ZQ—)\z)
Fia(z) = — for ze C\{A\} and F, (\)=2t\ (2.19)
We take £ = 0 by replacing the potential V' by V — E. Setting Pr =
X1 (Hy,) and Pr =1 — Py, we have

<eit(H/2\z7)‘2)5y, 1[)> — <e*t(H12V7>‘2)PI5y7 w> + <e*t(H/2\g*/\2)_PI(Sy’ ¢> .
(2.20)
It follows from [17, Lemma 3.3] that
(e R By, )| < I, vl [ 3 By |

d

< (0+1)2e AN |y (v)] (2.21)

for some v € Ay. Estimating |¢(v)| by Lemma 2.1, we get
_ 1
’<eft(Hi[7)\2)PI6y’w>’ < 4d (Sdédfl) 2 (6 + 1)%61’667“‘2}”(}\) W/('UO)‘
< 2L gt AR () [(vo)|, for some vy € O Ay. (2.22)

We now use the fact that A, is (m, I)-localizing for H, so it has an (m, I)-

localized eigensystem {p,, V}VGE(HA[V and write
— 2 )2 (222
<e t(HX, =) Pjéy,w> = Z et A0 (1) (@, 1)) (2.23)
vear(Ha,)

If v € 57(Hp,), we have |A —v| > %e’Lﬁ by (2.15). Since A is finite, (2.6)
gives

<¢V7¢> = ()‘_V)71 <(H@ _V) (pVﬂw>’ (2'24)
It follows from [16, Eq. (3.12) in Lemma 3.2] that
oo (1) (pu )] < 2627 D7 () ()] ()] (2.25)

vEDQ Ay
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We now assume y € Aé@’h, so Ro(y) > lz. For v € EI@’ZT (Hy,) and
v' € 09 Ay, we have, as in [16, Eq. (3.41)],

oy () (V)| < e MihReW)  with m) >m(1—2077),  (2.26)
so, as in [16, Eq. (3.44)], for v € 5?’ZT(HAZ) we have

() (pr, )] < 26" gt~ Tem MR [y ()|
< 2L e i (IR W) |y (yy))| (2.27)

for some vy € 3 Ao If v e ap(Hy,) with z, € 89’ Ay, we have

2 = 9ll = Re(y) — £ = Ro(y) (1-2077) = Ro(y)
(2.28)

SO

o (y) (o, )| < e ™z vl o

e—mhf(u)R@(y)(1—2€T)(£+ 1)% |’(/)(U2)| < (Z—I— 1) —mihr(v)Re(y) |w(

2)|
(2.29)
for some vy € Ay, where m] is given in (2.26). It follows that for all v € 77 (Hy,)
we have

_ l/27 2 B8 _ l/27 2 —m/ v o
e o () ()] < eI DT (IR W) g (v)], - (2.30)

)

for some v € AyU € 99 A,.
We now take

p= Tl ot mmih ()RaW) = ik (NReW) for 4 e I,

(2.31)
obtaining
‘<e W(%v)mﬂﬂ < (C4 1)t et NRe ) [y ()
< 4d (5alT1)® (04 1)L e mihi DR W) [y ()|
< 7 gmmihi (M) Re (y) CAIR (2.32)

for some v € Ay U Ay, and then for some v € 99 A, using Lemma 2.1.
Combining (2.20), (2.22) and (2.32) yields

mi R
‘<e %@)(Hifv)éy, w>‘ < 26t eIt R W) [yh(y)] (2.33)

for some v € 99 A,.
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We now use [17, Lemma 3.2(ii)] (it follows from (1.8) that % <m} <
m < Llog (14 £)), getting

‘<Fm/1R®(y) A(HA)5y7Fa@Aﬂ/)>‘ < 705d£d—1A—1e—ml1h1(>\)R(—)(?/) ‘w(v)‘ ,
Az

(2.34)
for some v € 99 Ay. We conclude from (2.33) and (2.34) that
e i B ]
< Cée4Lﬁe—7'Lihz(A)Re(y) ()]
< e~mshiMReW) |4, (1")| for some v € S Ay, (2.35)

where, using hy(\) > £~ since A € Iy, we have

ms > m (1 oy min{%wﬁ—nw’ﬂ;’}) —m (1 _ Cdg*%*) . (2.36)
O

2.3. Buffered Subsets

The probability estimates of a multiscale analysis do not allow all boxes to
be localizing, so we must control non-localizing boxes. If a box Ay C A is
not (m, I)-localizing for H, we will add a buffer of (m, I')-localizing boxes and
study eigensystems for the enlarged subset.

Definition 2.3. We call Y C Ay an (m, I)-buffered subset of the box Ay if the
following holds:

(i) Y is a connected set in Z? of the form

J

T =JAg,(a;) N AL, (2.37)
j=1

where J € N, a1, as,...,a; € A§, and { < R; < Lforj=1,2,...,J.
(ii) There exists Gy C AF such that:
(a) Ag(a) C Ap for all a € Gy and {Ay(a)}
localizing boxes for H.
(b) For all y € OAEY there exists ay € Gy such that y € A?L’é* (ay).

mn

acg, 18 a collection of (m, I)-

This definition of a buffered subset has subtle but important differences
from [17, Definition 3.6], in addition to not requiring level spacing conditions.
Definition 2.3(ii) requires Ag(a) C Ap and y € A?L’Z? (ay), while the corre-
sponding [17, Definition 3.6](iii) has A¢(a) C YT and y € Ag’zh(ay).

In the multiscale analysis, we control the effect of buffered subsets using
the following lemma.

Lemma 2.4. Let Ap = Ar(z0), 20 € RY, and let (1, \) be an eigenpair for Hy,
with A € Iy. Let T C Ay, be an (m, I)-buffered subset, and suppose
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* and min dist (/\,O'[(HAE(G))) > %e_Lﬂ.

acGy

dist (A, oy (Hy)) > 3¢ *

(2.38)
Then for all y € T we have

[W(y)| < e FhNE yy)|  for some yre | 9AFAd(a),  (2.39)
a€Gry

where mg = m3(£) is as in (2.17).
Proof. Let y € Y. In view of (2.38) it follows from Lemma 2.1 that
()| < 4de™” |9AEY| [¥(y1)| for some yy € OAEY.  (2.40)

Let a; € Gy be such that y; € A?L’Z* (a1). Tt then follows from (2.38) and
(2.16) in Lemma 2.2 that

[ih(yy)| < e MRV (yy)| for some gy € ONEAg(ar).  (2.41)

Since |Y| < [Az| < (L +1)% and [05F Y| < 2d|Y| < 2d(L + 1)%, and we
have (2.13) as A € I, we get

()| < 8d2(L + 1)%el” e maht s |y (yq)| < o= h Ve (2.42)

for some y3 € J OAL Ay(a), if L is sufficiently large. O

acGy

3. Spectral Separation

We recall the Wegner estimate for the Anderson model as in Definition 1.1
(see, e.g., [8, Appendix Al).

Lemma 3.1. Let H,, be an Anderson model. Let © C Z®. Then, for all E € R,
P{dist{E,0(Hew)} < n} < Kn™ |6, 3.1)
where with K = 2K ifa =1 and K = 82°K if a € (0,1).

Definition 3.2. Let R > 0. Two finite sets 0,0’ C Z? will be called R-
separated for H if dist{o(He),0(He/)} > e’ e, A=N| > e~ for
all A € 0(Hg) and X € o(Her).

Definition 3.3. Let © C Z? and R > 0. A family {®, } ;e of finite subsets of ©
is called R-separated for H if ®; and ®;/ are R-separated for H for all j, ;' € J
such that ®; N &, = 0.

Lemma 3.1 implies the Wegner estimate for R-separated sets (see, e.g.,
[26, Lemma 5.28]).

Lemma 3.4. Let H,, be an Anderson model. Let ©,0' C Z% with © N ©' = ().
Then, for all 0 <n,

P{dist {c(Ho),0(Heo')} <n} < IN(UO‘ |e1e’|. (3.2)
In particular,

P{0©,0’ are R-separated for H} > 1 — Ke *" |0]]0/|. (3.3)
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4. Eigensystem Multiscale Analysis

In this section we fix an Anderson model H, and prove Theorem 1.4.
The following is an extension of Definition 1.3.

Definition 4.1. Let J = I(E,B) C I = I(E,A) be bounded open intervals
with the same center. A box Ap will be called (m, J, I)-localizing for H if
L™ <m<ilog(1+2£), (4.1)

and there exists an (m, J, I)-localized eigensystem for Hy, , that is, an eigensys-
tem {(¢,, V)}ue5(HAL) for Hy, such that for all v € 6(Hy, ) there is x, € Ap
S0 ¢, is (x,, mXx j(v)h;(v))-localized.

Note that (m, I, I)-localizing/localized is the same as (m, I)-localizing/
localized. If Ay, is (m, J, I)-localizing for H it is also (m, J)-localizing for H as
Xjhr > hy.

Proposition 4.2. There exists a finite scale L = L(d) with the following prop-
erty: Suppose for some scale Ly > L and interval Iy = I(E, Ap) we have

infdJP’{ALo (x) is (mo, Ip)-localizing for H,} > 1 — e L. (4.2)
zeR®

Set Lk+1 = LZ’ Ak+1 = Ak(l—L;K), and Ik+1 = I(E7Ak+1), fork = 0, ]., cees
Then for all k =1,2,... we have

inﬂgdP{ALk (x) is (mg, I, Ix—1)-localizing for H,} > 1 — e_Li, (4.3)
EAS
where

L <mp—y (1 CaLp®)) < my < dlog (1+ 4. (4.4)

The proof of Proposition 4.2 relies on the following lemma, the induction
step for the multiscale analysis.

Lemma 4.3. Let I = (E, A). Suppose for some scale { we have
Iq

wiélﬂgd P {A¢(z) is (m, I)-localizing for H,} >1—e ", (4.5)
Then, if £ is sufficiently large, we have (recall L = £7)
IienﬂngP’{AL(x) is (M, Iy, I)-localizing for H,} > 1 — e L, (4.6)
where
L™ <m (1= Cat™®) < M < Slog (1+ 205). (4.7)

Proof. To prove the lemma we proceed as in [17, Proof of Lemma 4.2], with
several modifications.

We assume (4.5) for a scale . We take Ay = A(xg), where zo € RY,
and let Crp = Cr ¢ (x) be the suitable ¢-cover of A with ¢ as in (A.7) (see
Appendix B). Given a,b € =, 4, we will say that the boxes Ay(a) and A;(b) are
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disjoint if and only if A¥(a) N AF(b) = 0, that is, if and only if ||a — b|| > kepts
(see Remark B.3). We take (recall (A.3))

N=N, = VW*UEJ , (4.8)

and let By denote the event that there exist at most N disjoint boxes in Cy, 4
that are not (m,I)-localizing for H,. For sufficiently large ¢, we have, using
(B.5), (4.5), and the fact that events on disjoint boxes are independent, that

P{BS) < (zL)(N+1)d —(N+1)E¢ _ o(N+1)dp(y=¢)(N+1)d—(N+1)£¢ %e—Lg.
(4.9)

We now fix w € By. There exists Ay = Ay(w) C Er¢ = Zp.¢ (z0) such
that |Ax| < N and ||a — b|| > k¢pt© if a,b € Ay and a # b, with the following
property: if a € =, with dist(a, Ax) > kepls, so AF(a) N AF(b) = 0 for all
b € Ay, the box Ay(a) is (m, I)-localizing for H,,. In other words,

a€=rs\ U Aﬂg{(ké_l)peg (b) = Ay(a)is (m,I)-localizing for H,,.
be AN
(4.10)

We want to embed the boxes {A;(b)},¢c 4, into (m, I)-buffered subsets of
Ar. To do so, we consider graphs G; = (Er¢,E;), i = 1,2, both having =,
as the set of vertices, with sets of edges given by

={{a,0} €E1 ;5 0 < Jla—bl| < (ke — 1)pt°}
:{{a,b}E:Lg; a#bandAﬂ}(a)ﬂA]f 7&(})}7
= {{ab} € E% ¢ epl® < Jla = bl < (3ke — 1)pt°}

= {{a,b} € ~L ¢ Af(a) NAF(b) =0 and A]gszwe(a) N A]glwpﬁf-i-é(b) (75 (Z)})~
4.11

Given ¥ C =1 4, we let U = WUIS U, where 95 W, the exterior boundary
of ¥ in the graph Gy, is defined by

81U = {a €=, \V; dist(a, V) < (k, — 1)pl°}
={ae€ZL,\¥; (ba) € Eq for someb e T}. (4.12)
Let ® C E1, s be Go-connected, so diam ® < (3ky, — 1)pf° (|®| — 1). (The
diameter of a set Z C R? is given by diam Z = sup, ,c= |ly — z||.) Then
d={ac Er.e; dist(a, @) < kepl*} (4.13)
is a G;-connected subset of = ; such that
diam ® < diam ® + 2kepls < ((3ky — 1) |®] — (ke — 1)) pts < 5¢]®].
(4.14)
We set
Yo = |J Acla) and Gy, =03 0. (4.15)
acd
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Let {®,} | = {CI%((.;:)}f=1 denote the Gy-connected components of Ay

r=1 "
(i.e., connected in the graph Gs); we have R € {1,2,..., N} and Zf’:l D, =
~ R
|[An| < N. We conclude that {@,«} is a collection of disjoint, G;-connected
r=1

subsets of =y, ¢, such that
dist(®,, By) > kepls >0 if r#s. (4.16)
Moreover, it follows from (4.10) that

R
a€G=Gw)=Zr,\ U o, = Ag¢(a) is (m, I)-localizing for H,,.
r=1

(4.17)

In particular, we conclude that Ay(a) is (m, I)-localizing for H,, for all a €
9&1d,, r=1,2,...,R.

Each ¥, =Yg, ,r=1,2,..., R, clearly satisfies all the requirements to
be an (m, I)-buffered subset of Ay with Gy, = 0% ®, (see Definition 2.3).
Moreover the sets {Y,.}2_; are disjoint. Note also that it follows from (4.14)
that

diam Y, < diam ®,. + £ < 50|®,.| + £ < 6£|,|, (4.18)
so, using (A.4), we have
R ~
> diam T, < 60N < 6007V <« 7 = L7 (4.19)
r=1

Let
Sw = {Ac(@)}eg UL, - (4.20)

We can arrange for S,, to be an L-separated family of subsets of A; for H as
follows. Let

N
Fn = U F(r), where F(r) = {® C Ep ¢; @ is Gy-connected and |®| =r}.
r=1

(4.21)

We set Sy = {Ae(a)} ez, , U{ Yo gper, - Given 51,5 € Sn, S1 NSy =0, it
follows from Lemma 3.4 that

P {S; and S are not L-separated for H , } < Ke—ol” (L+ 1)2d < e~ 5L

(4.22)

We have |Zp | < 24099 from (B.5). Setting F(r,a) = {® € F(r); a € D}
for a € Ep 4, and letting x(a) denote the number of nearest neighbors of
a € 21, ¢ in the graph G2, and noting that

k(@) < 23k — 1) +1)? = 23k — 2) + 1) < d (2(3k — 1) + )77
= d 6k — 1) < d209 (=)A= < pd=1 (4.23)
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we get
|F(r,a)| < (r—1)@D0=D — | F ()| < (L + 1)4(r — 1)1ed-D-1)
= | Fn| < (L+1D)INWEDEN=D 4 94)
Thus, we get
8] <2809t 4 (L + 1)ANIEDND < o1 4 1N DED),
; (4.25)

Letting Sy denote that the event that Sy is an L-separated family of
subsets of Ay, for H, and taking N = N, as in (4.8), we get

P{S§} < e 3L72(L 4 1IN =DM o417 < 1e=L° - (4.26)

for sufficiently large L, since (v — 1)E< (v=1)8 <~vf and ¢ < .
We now define the event Ex = By NSy It follows from (4.9) and (4.26)

that
¢

P{En}>1—e . (4.27)
To finish the proof we need to show that for all w € Ey the box Ay, is (M, Iy, I)-
localizing for H,,, where M is given in (4.7).
Let us fix w € Ex. Then we have (4.17), the subsets {'I'r}f:1 constructed
in (4.15) are buffered subsets of Ay for H,, and the collection S, is an L-
separated family of subsets of Ay for H. It follows from (B.4) and Defini-
tion 2.3(ii) that

i R
AL = { g A?L’Z"’z(a)} U {U L} . (4.28)

acg

e
Note that A?L’ 2 (a) C AQL’Z; (a).
Let {(¢n, )‘)}Ae&(HAL) be an eigensystem for Hy, . ( Since w is fixed, we

omit it from the notation.) Given A € &7,(Hp, ), we claim there exists Sy € S,
such that

B

dist (\, 0(Hs,)) < e ™. (4.29)

Suppose not, i.e., dist (A, o(Hg)) > %e’LB forall S €S,. Let y € Ap. If

£—£S
AL, =5~

y €A, (a) for some a € G, we have Ry, (y) > V‘ngj, so it follows from
(2.16) that

[a(y)] < e OLET] < emmat TS <o imetT L (430)

If not, it follows from (4.28) that y € Y, for some r € {1,2..., R}. But then
it follows from (2.39) in Lemma 2.4 that

[a(y)] < e TG < o= FEE < gmimalT (4.31)
We conclude that
1= [l < (L+ 1)k imst™ " <1, (4.32)
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a contradiction.

We now pick x) € Sx. We will show that v is an (zx, Mhr()))-localized
eigenfunction for H,,, where M is given in (4.7).

Let SOV = {§€S,; SNS,=0}1fS e SE,)‘), S and S, are L-separated,
so it follows from (4.29) that

dist ()\,O'(Hs)) > dist (U(Hs),U(HSA)) — dist ()\,U(Hs/\))

>e L7 - %e*Lﬁ = %e*Lﬁ. (4.33)
We consider two cases:
£—£5

(i) Let y € A?L’T(a), where Ay(a) € SOV, In this case it follows from

(2.16) that
[n(y)] < &ML (y)] for some y € 937 Ae(a),  (4.34)
where mgz = m3(¢) is as in (2.17). Moreover, we have
ly—ml <e+1-—|5E5] < &5 42 < &20 (4.35)

(ii) Let y € T,., where T, € s and {Av(a)} c SO, Then it follows

from (2.39) in Lemma 2.4 that

ea@) < e FHOE o)l <em T awa)l (436)
OAL Ay(a), where mz = m3(£) is as in (2.17). Note

a€Gr,.

for some yo € |J
that

a€Gr,

Iy — |l < diam Y, + £. (4.37)

Now let us take y € Ay such that [y —2x[| = L-. Suppose [¢x(y)| > 0,
since otherwise there is nothing to prove. We estimate |1, (y)| using either
(4.34) or (4.36) repeatedly, as appropriate, stopping when we get too close to
2 so we are not in one of the two cases described above. (Note that this must
happen since |5 (y)| > 0.) We accumulate decay only when we use (4.34), and

just use e~ 3¢ " < 1 when using (4.36). In view of (4.35) and (4.37), this
can be done using (4.34) at least S times, as long as

R
G2t gy Z (diam Y, 4 €) + 20 < |ly — x| . (4.38)

r=1
Since Zf’:l (diam Y, + ¢) < 7¢N in view of (4.19), this can be guaranteed by
requiring
L2664 7p0 =D L 9p <y — a1« (4.39)
We can thus have

S = M% (Ily — m || — 7EODE 2£)J —1

e (Hy — || — T 2@) —2

= o (Hy — || - TEOTVE 30— w)
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> 725 (lly — 2| - 80D, (4.40)

Thus we conclude that
x(v)] Sefmghj()\)t 5 JH% (Hy N 8[(7—1)§+1) < e Mhi)lly=2sll (4.41)

where

M > m; (1 oy min{lfwfwfuzfl})
=y (1 - Cat~ (70705

T aT—(y=1)¢- 1}) - m (1 _ C«dg—g) , (4.42)

>m (1 — oy min{rt5

where we used (A.7), (2.17), and (A.6). In particular, M satisfies (4.7) for
sufficiently large £.

We conclude that vy is an (xx, Mhr(A))-localized eigenfunction for Ap,
where M satisfies (4.7).

We proved that Ay, is (M, Iy, I)-localized for H,,,. O

Proof of Proposition 4.2. We assume (4.2) and set Ly = L}, App1 = Ap(1—
L, ™), and Iyy1 = I(E, Agqq) for £ =0,1,.... Since if a box Ay, is (M, I, I)-
localizing for H,, it is also (M, I)-localizing, if Ly is sufficiently large it follows
from Lemma 4.3 by an induction argument that we have (4.3) and (4.4) for
all k=1,2,.... 0

Proposition 4.4. There exists a a finite scale L = L(d) with the following prop-
erty: Suppose for some scale Ly > L and interval Iy = I(E, Ag) we have

inﬂ{d P{AL,(x) is (mo, ly)-localizing for H,} > 1 — e L5, (4.43)
zE

Set Lip1 = L), App1 = Ag(1—L. "), and Iy41 = I(E, Agqr), fork =0,1,...,
Then for all k =1,2,... we have
mienﬂngP’{AL(x) is (my, I, I—1)-localizing for H,} > 1 — oL for L € [Lg, Lit1),
(4.44)

where

L <myo1 (1 CaLp?)) <my, < Llog (14 4x) (4.45)
with Cy as in (4.4).
Proof. We apply Proposition 4.2, which gives a scale £ such that, taking Ly >

L we have the conclusions of Proposition 4.2.
Given a scale L > Ly, let k = k(L) € {1 2,...} be defined by L, < L <
Li41. We have L, = L] §L<Lk+1ka 1,0 L= L7 _, with vy <4/ <
72. We proceed as in Lemma 4.3. We take Ay, = Az (z¢), where 7o € R?, let
{(7/’/\’)‘)}/\6&(HAL) be an eigensystem for Hy,, and let Cr 1, , =Cr 1, , (%0)
be the suitable Lj_i-cover of Ay. We let By denote the event that all boxes
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in Cr p,_, are (my_1, Iy_1)-localizing for H,. It follows from (B.5) and (4.3)
that

d ;¢ _ ¢ s 5 €
P{B5} < (L%L ) e Lior = 2d (Y e biny < od (17 dem L < 1omLf
k—1 Y

(4.46)

if Ly is sufficiently large, since £y < &y? < (. Moreover, given A, Ay €
CrL.Li,, A1 N A =0, it follows from Lemma 3.4 that

P{A; and A, are not L-separated for H, } < Ke—oL’ (L1 + 1)2d < e 517
(4.47)

Thus, letting Sy denote the event that Cp r, , is an L-separated family of
subsets of Ay, for H, it follows from (B.5) that

c or \* _arp _ 1 1t
P{SS} < (Lz_l) e 517 < Lot (4.48)
if Ly is sufficiently large, since £ < (. Thus, letting & = By N Sy, we have

P{&} >1—e L, (4.49)

It only remains to prove that Ay is (my, It, Ix—1)-localizing for H,, for all
w € &. To do so, we fix w € & and proceed as in the proof of Lemma 4.3. Since
w € By, A, ,(a) is (mg—_1, Iy—1)-localizing for H, for all a € G = = 1, ,.
Since w is now fixed, we omit them from the notation. ,

Let A € o1, (Hp, ) (note (Ix—1)r,_, = Ix). To finish the proof we need to
show that ¥y is (my, Ix, Ix—1)-localized. Since Cr, 1, , is an L-separated family
of subsets of Ay for H, there must exist ay € G = 21, , such that, setting
Ay = Apr,_,(ay), we have (as in the proof of Lemma 4.3)

dist (A, 0(Hy,)) < 2e™ 27, (4.50)
and if a € G\ = {b € qg; ALk,l(b) NAy = @},
dist (\, o(Hy)) > Se ™27 (4.51)

Lp_1—-Lj_3

Ify € Ay and ||y — ay|| > 2Lk_1, it follows from (B.4) that y € AJL\iil 2 (a)
for some a € Gy, so it follows from (2.16) that

Lp_1—-L}_
—mpg—1,3hr,_; () {fkl

[Ua(y)| <e J [Ua(y1)l s (4.52)

for some y; € 9Me2(Ea-1)- A (a), where we need
(it
My—1,3 = Mi—1,3(Lr—1) > mp_1 (1 - Cde£12 )) , (4.53)

and we have

Ly_1+2L;_,
2

ly =l < : (4.54)

as in (4.35).
Now consider y € Ar such that ||y —ax|| > L. Suppose |[{r(y)| > 0,
since otherwise there is nothing to prove. We estimate |1 (y)| using either



Vol. 21 (2020) Eigensystem Multiscale Analysis via the Wegner Estimate 2321

(4.52) repeatedly, as appropriate, stopping when we get within 2L;_; of ay.
In view of (4.54) , we can use (4.52) S times, as long as

Ly 1+42L5
S 2L < ly —anl) (4.55)
We can thus have
§ = | pm (- aall — 2L )| -1
ﬁu;ﬂ (lly = axl| = 2Lg—1) — 2

ly — axll = 3Lk—1 — 2L5,_,)

Y

#(
Lk71+2Lz,1
i (ly — aal = 4Lk ). (4.56)

Thus we conclude that

v

Lg—1-Lj_ 2
*mk—1,3h1k_1(>\){ — 1JLk71+2L;71(Hy*a/\H*‘lLk—l)

[oa(y)l <e
< e—mkhlk,l(A)HZ/—ﬂAH (4.57)

where my, can be taken to satisfy (4.4).

We conclude that vy is an (my, I, Ix—1)-localized eigenfunction, where
my, satisfies (4.4).

We proved that the box Ay, is (my, Ik, Ix—1)-localizing for H,,. O
Proof of Theorem 1.4. Let Lyi1 = L), Apy1 = Ag(1—=L. "), Ing1 = I(E, Ap41),
and mpy1 = myg (1—CdL;Q) for k = 0,1,.... Given L > L] = Ly, let
k= k(L) € {1,2,...} be defined by Ly < L < Lgt1. Let Ay, Ioo, Mmoo be
defined by (1.11). Since

A=A [J(-L;")™ for k=01,..., (4.58)
j=k

we have
A (1-L) <A (1-L;%) 7 < Ay, (4.59)

and hence I% C I. Since ms, < my, we conclude that (1.10) follows from
(4.44). O

5. Localization

In this section we prove Theorem 1.5 for an Anderson model H,,,.

Lemma 5.1. Let I = (E, A). There exists a finite scale Lq, such that for all
L > Lq, and a € Z2, given an (m, I*)-localizing box Ar(a) for the discrete
Schrodinger operator H, then for all A € 1,

1 . LB
max Wia)(b) > e amh ML — min IA—6] < Ze L
bEA%(a) 0€o ;L (Hay (a))

(5.1)
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Proof. Let A € I = (IL) and suppose |\ — 0| > 1 e L forall @ € ore(Hay (a))-
Let ¥ € V(A). Then it follows from Lemma 2.2 that for large L and b € A (a)
we have

|,¢( )| < e 77L3(L)hIL()\) HT 1,(/JH <L 4 1> < e 4mhIL(>\)L HT ,(/)H
(5.2)
U

Proof of Theorem 1.5. Assume Theorem 1.4 holds for some Ly, and let I =
Io, M = Meoo. Consider L] < L € 2N and a € Z%. We have

Asz(a) = U AL (b). (5.3)
be{a+3LZ4}, |[b—al<2L
Let Y1, denote the event that {Af, (b>}be{a+%LZd}, |b—a|| <2z, 18 an L7-separated

family of (m, I”)-localizing boxes for H. It follows from (1.10) and Lemma 3.4
that

P{Y§,} < 9% L 4 K9 (L+1)* e L™ < Cpe . (5.4)

Suppose w € Vi 4, A € I, and maxbeA%(a) Wu(,a;(b) > e~ 1mh (ML T

follows from Lemma 5.1 that Milgeo , (Hy, (o) IA—0] < %e—ma. Since the

family of boxes is L7-separated family for H,, we conclude that

min A —0] > Le " (5.5)
OEO'IL(HAL(b))

for all b € {a+ $LZ} with 3L < ||b— a|| < 2L. Since
L
Ar(a) U AL (), (56)
be{a+iL2e}, 3 L<b—al <2L
it follows from Lemma 2.2 that for all y € A (a) we have, given ¢ € V,,(\),
6] < OO | (L 4+ 1) < eV [
<e~ samhr (V)lly—all ||T 1,¢|| (57)
so we get
Wi(y) < emmmhieMlv=al for all y e Ap(a). (5.8)

Since we have 3), we conclude that for w € Yr, , we always have

(1.1
W£7>( )W<a>( ) <m {e—&mh,m)ny—awy_ a)?, e~ T () Hy—an}

7

e~ Mlly=al for all y e Ay (a). (5.9)
O
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Appendix A: Exponents

Given 0 < £ < ¢ < 1, we consider 8,7 € (0,1) and v > 1 such that

1 _
0<§<(<ﬂ<—<1<7<\/% and max{w,@,%}<7<l;
v

(A1)
it follows that
9 T 1 1-p T
0<ECEY" (<P < —<T<LLI<< —= <y < . (A.2)
Yo T - p
We set
~ -~ 1
C:#E(C,ﬁ) and 7=-1" ¢ (r,1), (A.3)
S0
(Y =1 +1<(y—1)B+1<7. (A.4)
We take k € (0,1) and " € [0,1) such that
K+ K <T—790. (A.5)
We let
g:min{m,l’TT,fyT—('y—l)g—l}, note 0<k<p<l1, (A6)
and choose

ce(0,1—9], so o<1-c. (A.7)

We select exponents satisfying (A.1)—(A.7) and fix these exponents.

Appendix B: Suitable Covers of a Box

To perform the multiscale analysis in an efficient way we use suitable covers
of a box as in [17, Section 3.4], an adaptation of [25, Definition 3.12]. We state
the definition and properties for the reader’s convenience.

Definition B.1. Fix ¢ € (0,1). Let A, = Az (2¢), z0 € R? be a box in Z%, and
let ¢ < L. A suitable f-cover of Ay, is the collection of boxes

Cre=Cry(z0) = {Ae(a)} ez, , - (B.1)
where
Ere=Ere(xo) == {zo + pZ*} N A} with pe [L,1]n{L=%; keN}.
(B.2)

We call Cy, ¢ the suitable (-cover of A, if p = py ¢ := max [1,1]n{Lz%; k € N} .
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Lemma B.2 ([25, Lemma 3.13], [17, Lemma 3.10]) Let £ < £. Then for every
box Az, = Ap(wp), zo € RY, a suitable -cover Cr o = Cr, ¢ (o) satisfies

A= | Ao (B.3)

a€Zr e

S

Ar,—=—
for all b € Ap there is Agb) € Cr¢ such thatb € (A@b)) ,

ie, Ap= ] A2 (a); (B.4)
a€EL ¢
= L—¢ d 2L\4
#EL = (pgc + 1) < (%) (B.5)
Moreover, given a € xg + plsZ* and k € N, it follows that
Agokpesvoy(a) = U Ae(b), (B.6)
bE{IO"!‘PegZd}nA]?zkpgc_;_e)(a)
and {Ag(b)}be{m0+pg<zd}ml\u(e2kw+e)(a) is a suitable £-cover of the box A (oppes 10)(a).

Note that Aéb) does not denote a box centered at b, just some box in

Cr.e (x0) satistying (B.4). By Aéb) we will always mean such a box. We will
use

dist (b, 007 AL") = 55— 1 forall beAp. (B.7)

Note also that p < 1 yields (B.4). We specified p = pr ¢ in for the suitable
(-cover for convenience, so there is no ambiguity in the definition of Cr, ¢ (o).

Suitable covers are convenient for the construction of buffered subsets
(see Definition 2.3) in the multiscale analysis, where we will assume ¢ € (0, 1)
is as in (A.7). We will use the following observation:

Remark B.3. Let Cy, ¢ be a suitable {-cover for the box Ay, and set ky =k, =
|p71¢'*| + 1. Then for all a,b € Cr ¢ we have

AF(@)NAFD) =0 <= |la—Db| > kept°. (B.8)
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