
Kappa: A Programming Framework for Serverless
Computing

Wen Zhang

UC Berkeley

zhangwen@cs.berkeley.edu

Vivian Fang

UC Berkeley

vivian@cs.berkeley.edu

Aurojit Panda

NYU

apanda@cs.nyu.edu

Scott Shenker

UC Berkeley/ICSI

shenker@icsi.berkeley.edu

Abstract
Serverless computing has recently emerged as a new para-

digm for running software on the cloud. In this paradigm,

programs need to be expressed as a set of short-lived tasks,

each of which can complete within a short bounded time

(e.g., 15 minutes on AWS Lambda). Serverless computing

is beneficial to cloud providers—by allowing them to better

utilize resources—and to users—by simplifying management

and enabling greater elasticity. However, developing appli-

cations to run in this environment is challenging, requiring

users to appropriately partition their code, develop new coor-

dination mechanisms, and deal with failure recovery. In this

paper, we propose Kappa, a framework that simplifies server-

less development. It uses checkpointing to handle lambda

function timeouts, and provides concurrency mechanisms

that enable parallel computation and coordination.

CCS Concepts
• Computer systems organization → Cloud comput-
ing.

Keywords
Serverless, distributed computing

ACM Reference Format:
Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker. 2020.

Kappa: A Programming Framework for Serverless Computing. In

ACM Symposium on Cloud Computing (SoCC ’20), October 19–21,
2020, Virtual Event, USA. ACM, New York, NY, USA, 16 pages. https:

//doi.org/10.1145/3419111.3421277

SoCC ’20, October 19–21, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8137-6/20/10.
https://doi.org/10.1145/3419111.3421277

1 Introduction
Serverless computing is a new cloud paradigm where, in-

stead of provisioning virtual machines (VMs), tenants regis-

ter event handlers (e.g., Python functions) with the platform.

When an event occurs, the platform invokes the handler on

a lambda function, a short-lived, stateless execution environ-

ment. A lambda function can execute for a bounded duration

(e.g., 15min on AWS) before being terminated.

Serverless computing benefits both cloud tenants and

providers. Tenants no longer need to provision or scale their

VMs, and enjoy greater elasticity from fast lambda boot times

(100s of ms on AWS). Providers can periodically terminate

jobs running on lambda functions (and place the next invoca-

tion elsewhere if desired), improving datacenter utilization.

Due to these benefits, serverless computing is being of-

fered by all major cloud providers [7, 32, 38, 55] and rapidly

adopted by tenants [23], mainly for event-driven workloads

(e.g., file transcoders). Recent work, however, has explored

more general applications on serverless including video pro-

cessing [11, 27], numerical computing [40, 81], and analyt-

ics [44, 70, 76]. These examples indicate significant interest

in exploiting serverless computing beyond event handling,

presumably because of its elasticity and ease of deployment.

Despite this interest, developing general-purpose parallel

applications on today’s serverless platforms remains difficult

due to two main challenges: (1) programmers must manually

partition their computation to fit within the lambda func-

tion time limit; and (2) programmers have no concurrency

or synchronization primitives at their disposal, and so must

either implement such primitives, restrict themselves to use

share-nothing parallelism, or eschew the use of parallel lamb-

das. Although several serverless frameworks [26, 27, 40] have
been developed to simplify development, they fail to address

Challenge 1, and they address Challenge 2 by requiring the

application to be expressed in a special form that deviates

from ordinary programming (e.g., as a state machine).

This paper presents Kappa, a programming framework for

general-purpose, parallel severless applications. Kappa aims

328

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3419111.3421277
https://doi.org/10.1145/3419111.3421277
https://doi.org/10.1145/3419111.3421277
https://creativecommons.org/licenses/by/4.0/

SoCC ’20, October 19–21, 2020, Virtual Event, USA Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker

to make serverless development as close to ordinary parallel

programming as possible—a programmer can write ordinary

Python code using a familiar concurrency API (e.g., tasks

and futures), and Kappa runs the code on an unmodified

serverless platform like AWS Lambda using parallel lambda

functions. Kappa offers three main features:

Checkpointing. To run long tasks on time-bounded lamb-

das, Kappa checkpoints program state periodically and re-

stores from this checkpoint upon lambda function timeout.

Our continuation-based checkpointing mechanism (§ 3.2)

operates in user mode and requires no modifications to the

serverless platform.

Concurrency API. To program parallel lambdas, Kappa

provides a concurrency API that supports spawning tasks,

waiting on futures, and passing messages between lamb-

das (§ 3.3). This API is modeled after Python’s built-in multi-

processing package and should be familiar to programmers.

Fault tolerance. Kappa tasks can exhibit nondeterminism

and side effects. Using checkpoints, Kappa ensures that exe-

cution never diverges due to nondeterminism, and that any

side effects invoked within the system are never re-executed

in face of arbitrary lambda function timeouts (§ 3.1).

Kappa requires no changes to the platform, thus allowing

general applications to run on existing serverless offerings.

Producing such a framework is the main contribution of our

work. While similar techniques have been used in other con-

texts (§ 7.2), our main insight lies in recognizing that these

techniques enable more general use of serverless computing.

We implemented five applications using Kappa (§ 5.3),

ranging from bulk-synchronous workloads (e.g., MapReduce)

to ones with more complex concurrency patterns (e.g., dis-

tributed web crawling). We discuss our limitations in § 6.

We have open-sourced Kappa. The code and sample ap-

plications can be found at https://github.com/NetSys/kappa,

and documentation at https://kappa.cs.berkeley.edu.

2 Background and Motivation
Many recent papers [11, 26, 27, 40, 43, 70, 81] have explored

using serverless for tasks beyond event handling. A main

motivation is that lambda functions boot much faster than

VMs
1
, allowing tenants to quickly launch many compute

cores without provisioning a long-running cluster. Server-

less platforms thus provide a scalable computation substrate

where the amount of computational resources available to

a task can be rapidly altered. Prior work has exploited this

flexibility for video processing [11, 27], numerical computa-

tion [15, 25, 33, 34, 40, 81, 96], data analytics [43, 44, 70, 76],

machine learning [18, 39, 83], and parallel compilation [26].

1
For example, we found that AWS Lambda functions launch at least 30×
faster than Amazon EC2 c4.4xlarge VMs with similar compute capacity.

However, given that serverless computing originally tar-

geted event-driven workloads, does it makes sense to use

serverless for general applications? In our work, we found

that the many benefits of serverless carry over naturally to

general computing—the cloud provider continues to enjoy

improved statistical multiplexing from the short-livedness of

serverless functions, and the tenant, fast task startup and free-

dom from managing infrastructure [41]. Although serverless

functions can cost more per unit compute than VMs, for jobs

that exhibit widely varying degrees of parallelism through-

out their execution [70, 81], serverless allows flexibly scaling

up or down compute resources according to the parallelism

needed in each stage of the computation, paying for only

what is used. For example, Pu et al. [70] demonstrate that for

analytics workloads, a serverless system can achieve compa-

rable end-to-end performance and cost to a Spark cluster.

2.1 Comparison to Existing Frameworks
Unfortunately, it is difficult to reap the benefits of general-

purpose serverless computing. As soon as one goes beyond

event handling workloads, serverless development becomes

significantly harder due to a mismatch between what the

developer needs and what the serverless platform provides:

• While developers are used to decomposing applica-

tions into parallel tasks, they commonly assume that

each task can run for an arbitrary duration until it com-

pletes. Lambda functions, however, are time-bounded

and thusmight not complete a task of arbitrary length.
2

• While developers have experience writing parallel

code using a familiar programming model (e.g., tasks
and futures), no such concurrency API is provided by

current serverless platforms, which only invoke lamb-

das concurrently as events fire simultaneously.

This mismatch has led to the development of several frame-

works aimed at simplifying serverless programming. Ex-

amples include mu [27], PyWren [40], and gg [26] from

academia; and AWS Step Functions [8], Azure Durable Func-

tions [58], and Azure Logic Apps [56] from cloud providers.

To use these frameworks, the programmer must:

(1) Partition the computation into small components,

each of which must fit within the lambda function

time limit
3
and meet other framework-specific restric-

tions (e.g., to simplify fault tolerance); and,

(2) Compose these components into a serverless applica-

tion using a framework-specific format.

2
Although the lambda function time limit varies across platforms and is

subject to change, it currently exists in every major serverless offering and

a shorter time limit provides more scheduling flexibility to the provider.

3
For the AWS and Azure offerings, a “component” can also be a call to a

managed service, e.g., a facial recognition API; the lambda time limit doesn’t

apply in this case. Kappa also supports invoking external services (§ 3.4).

329

https://github.com/NetSys/kappa
https://kappa.cs.berkeley.edu

Kappa: A Programming Framework for Serverless Computing SoCC ’20, October 19–21, 2020, Virtual Event, USA

Table 1: Comparisons of serverless frameworks.

Usage Requirements Features

Program

representation

Program

must be

partitioned

Fault

tolerant

External

service

support

mu [27] State machine Yes ✗ ✗
PyWren [40] map, wait Yes ✗ ✗

gg [26] Data-flow graph Yes ✓ ✗

AWS Step

Functions [8]

State machine Yes ✓ ✓

Azure Logic

Apps [56]

State machine Yes ✓ ✓

Azure Durable

Functions [58]

High-level lang. Yes ✓ ✓

Kappa High-level lang. No ✓ ✓

While these frameworks simplify serverless development,

they share a few limitations as each step of the workflow cre-

ates programming burden. For example, chunking a program

into components based on running time is a task most pro-

grammers are unfamiliar with (unless theworkload is already

chunked) and requires them to reason about, e.g., the wait

time for completing I/O. Once chunked in this manner, com-

bining these components often requires using an unfamiliar

specification format (e.g., finite state machines [8, 27, 56] or

data-flow graphs [26]), adding further cognitive overhead.

For example, an AWS Step Functions tutorial [9] explains

how to “break up a long-running execution into smaller

chunks” by first framing an application as repeated execu-

tions of a small task, and then implementing a loop as a state

machine with five states using a JSON-like language [6]. This
is significantly more cumbersome than the simple for-loop

that would have sufficed in any high-level language.

Table 1 compares Kappa to the prior frameworks. Kappa’s

checkpointing mechanism (§ 3.2) can resume a task when

a lambda function times out, freeing the programmer from

having to manually partition their computation. Kappa’s

high-level concurrency API (§ 3.3) lets programmers develop

parallel serverless applications using a familiar programming

model. We present additional points of comparison in § 7.1.

Of these frameworks, the closest to solving our challenges

(and the most similar to us) is Azure Durable Functions [58],

where the programmer creates serverless workflows by writ-

ing orchestrator functions using a high-level language. An

orchestrator can use the familiar async/await pattern (simi-

lar to Kappa’s concurrency API) to invoke parallel activity
functions, each executing a task on a lambda. Kappa differs

from Azure Durable Functions in two major ways:

• Durable Functions still requires partitioning compu-

tation (and chaining the parts in the orchestrator) as

activity functions are subject to the time limit, while

Kappa’s checkpointing deals with lambda timeouts.

• Due to its fault tolerance mechanism, a Durable Func-

tions orchestrator function must be deterministic, and

must be manually restarted if it runs for too long (§ 7.1).

Kappa does not impose such restrictions.

2.2 Lambda Function Time Limit
As previously discussed, a main constraint of serverless com-

puting is that lambda functions are time-bounded. For exam-

ple, the AWS Lambda platform started off with a 5-minute

limit when it launched, and raised it to 15 minutes four years

later to support more applications [4]. Why does the time

limit exist, and will providers eventually do away with it?

We are not a cloud provider, and hence cannot defini-

tively know the reason behind these time limits. However,

we believe that time-limited functions benefit operators by

providing an alternative mechanism for changing task place-

ment. In VM-based cloud computing, operators often need to

migrate long-running VMs for consolidation or maintenance

purposes using live migration [20], which can be complex,

error-prone [75, 93], and resource-consuming [21]. For ex-

ample, Azure finds live migration “particularly problematic”

due to its resource consumption and, to reduce migrations,

uses VM lifetime predictions to colocate VMs with similar

completion times and refrain from migrating VMs expected

to terminate soon [21]. By contrast, in allowing operators to

kill jobs after a short time, serverless obviates the operator’s

need to predict job lifetimes or migrate jobs.

Kappa enables long-running computation on time-bounded

lambda functions through checkpointing (§ 3.2). Because

checkpointing in Kappa is fast (e.g., less than 5ms for sizes

up to 100 KB; see § 5.1), applications can afford to checkpoint

frequently, thereby tolerating time limits evenmore stringent

than imposed by today’s platforms. For example, in § 5.3 we

demonstrate reasonable performance for two applications

under time limits of 1min and 15 s respectively, where the

exact time limit is unknown to the applications. Thus, Kappa

offers cloud providers greater flexibility in setting lambda

time limits and can even enable non-uniform time limits
4
,

further improving resource utilization and task placement.

3 Kappa Design
Kappa executes parallel code of arbitrary duration using

short-lived lambda functions. In Kappa, a task represents a

logical thread of execution running in its own memory space,

and physically runs on one or more lambda functions. We

allow tasks to span multiple lambda functions by periodically

4
For example, Azure Functions’ Premium Plan [59] provides an option

where serverless function execution is “guaranteed for 60 minutes, but

technically unbounded” [60].

330

SoCC ’20, October 19–21, 2020, Virtual Event, USA Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker

�

�

�

Launch3

Launch5

Spawn 4

Launch7
Checkpoint 8

Spawn 6
Kappa

Coordinator

Kappa Compiler1

User Code

{

}

Start Job2

{

}

{

}

{

}
+

Kappa
Library

Transformed
User Code

Figure 1: Kappaworkflow. Gray lines represent coordi-
nator actions and dashed black lines represent RPCs.

checkpointing them. When a lambda function executing a

task dies, the task is resumed on another lambda function by

restoring the checkpoint. While tasks are single-threaded,

Kappa enables concurrent processing by allowing each task

to spawn other tasks which execute in parallel, and by provid-
ing inter-task communication mechanisms that allow tasks

to communicate and coordinate with each other.

Kappa has three components: (1) a coordinator responsible
for launching and resuming tasks (§ 3.1) and for implement-

ing Kappa’s concurrency primitives (§ 3.3); (2) a compiler
responsible for generating code required for checkpointing

(§ 3.2); and (3) a library used by tasks for checkpointing,

concurrent processing, and synchronization.

As shown in Figure 1, when using Kappa, a programmer

writes code similar to what runs on a traditional platform,

with minor modifications required by Kappa (§ 6). Next, the

compiler transforms this code into a form suitable for use

by Kappa. Lastly, this program is packaged with the Kappa

library and launched by the coordinator, which starts by

running a designated “main” task.

3.1 Coordinator
The Kappa coordinator is responsible for scheduling tasks

on lambda functions, implementing synchronization and

cross-task communication, tracking task metadata (including

checkpoints), and providing fault tolerance. Similar to other

serverless systems [11, 18, 27, 40], the Kappa coordinator

runs as a regular process either on a VM instance in the

cloud or on a local machine. We merely require that the

lambda functions be able to initiate network connections to

the coordinator, and that the coordinator be able to access

the same storage services (e.g., S3) as lambda functions.

The coordinator tracks the latest checkpoint of each task.

A task writes checkpoint content directly to storage (e.g., S3

or Redis), and the coordinator maintains only checkpoint

locations. Tasks communicate with the coordinator through

the remote procedure calls (RPCs) summarized in Table 2.

Table 2: Core coordinator RPCs.

Name Description

checkpoint() Takes a checkpoint.

fut = spawn(f, args) Spawns a task to run f(args); re-
turns a future for the result.

exit(ret) Exits with result ret.

ret = fut.wait() Gets result; blocks until ready.

q = make_queue(sz) Creates a queue with max size sz.

q.enqueue(obj) Enqueues into q; blocks if full.

obj = q.dequeue() Dequeues from q; blocks if empty.

For instance, after writing a checkpoint, a task uses the

checkpoint RPC to update its checkpoint ID with the coordi-

nator. When a lambda running task 𝑡 has timed out or failed,

the coordinator restarts task 𝑡 from its latest checkpoint on

a new lambda function. Tasks may lose some progress and

re-execute some code as a result of being restarted.

Code re-execution can be problematic when making calls

with side effects. In Kappa, we assume that all effectful calls

are processed through the coordinator, and we ensure that

coordinator RPCs are executed once or are never executed,

the latter being possible when the task times out (or fails) be-

fore successfully contacting the coordinator. We implement

this guarantee by requiring the task making an RPC to also

take a checkpoint that resumes execution after the RPC. The

coordinator points the task’s metadata to this checkpoint

as it executes the RPC, so that it can resume a failed task

from the point where the RPC returns. Compared to relying

on user-provided unique IDs or runtime-generated sequen-

tial IDs, our mechanism requires neither user intervention

nor special handling for nondeterministic code. The Kappa

library invokes this mechanism automatically for RPCs.

Coordinator RPCs are synchronous by default, although

we also support asynchronous RPCs, which return as soon

as the checkpoint has been serialized locally; a background

process then persists the checkpoint to storage and contacts

the coordinator. Because the actual RPC logic is executed at

the coordinator, no processing occurs until the coordinator

has been contacted. As a result, in case the lambda is killed

before the coordinator is contacted, it is safe to restore the

task to its previous checkpoint (before the RPC is issued).

Some RPCs are blocking (e.g., wait). A task blocks by first

busy-waiting for a configurable period (1 s by default), and

then quitting the lambda function. In the latter case, the task

is resumed by the coordinator once unblocked. This hybrid

approach provides better resource efficiency than pure busy

waiting and better performance than immediately blocking.

For fault tolerance of the coordinator itself, Kappa pro-

vides the option to continuously replicate coordinator state

331

Kappa: A Programming Framework for Serverless Computing SoCC ’20, October 19–21, 2020, Virtual Event, USA

to a backing store (currently, a Redis cluster using primary-

backup replication). With this option enabled, every time the

coordinator processes an RPC or a lambda function timeout,

it sends a state update to the backing store and waits for it to

be persisted. After a failure, the coordinator can reconstruct

its previous state from the store and resume the workload.

Kappa also supports checkpoint replication to tolerate stor-

age node failures (§ 4). Our evaluations (§ 5) demonstrate low

overhead even with both coordinator state and checkpoint

replication. If needed, the overhead can be further reduced

by having the coordinator send batch updates periodically.

3.2 Checkpointing
As mentioned in § 3.1, Kappa uses checkpoints to toler-

ate lambda function timeouts and to prevent RPC duplica-

tion. Checkpoints in Kappa are implemented using contin-

uations [74], a language-level mechanism executed in user

mode. Continuations are a well understood technique for sus-

pending and resuming execution, and have been used in past

systems for checkpointing and fault tolerance [79, 88], task

migration [28, 78, 79, 88], asynchronous calls [51, 54], context

switching [86], and debugging [16]. Kappa’s checkpointing

technique is nearly identical to that of previous systems,

although there might be implementation differences.

For background, we briefly introduce continuations and

their usage in Kappa. Our implementation is specialized to

Python, and for simplicity we describe our methods in this

context. However, continuations have been implemented in

many other languages and platforms including Java [28, 78,

79, 86, 88], JavaScript [16, 51, 54], and .NET [66], and our

techniques can be easily extended to other languages.

A continuation can be thought of as a closure (i.e., a func-

tion with some associated data) that captures program state

and control flow information at some execution point; calling

the closure resumes execution from this point in the program.

Kappa takes a checkpoint by generating a continuation and

serializing it to storage, and restores from a checkpoint by

deserializing and invoking a previously stored continuation.

Using Listing 1a as an example, we will explain how con-

tinuations are generated for the checkpoint() call on Line 7.
The code is first transformed by the Kappa compiler, which

identifies all the pause points in the code, i.e., locations where

execution can be suspended for checkpointing. The two

pause points in Listing 1a are highlighted; note that the

call site bar(x, y) is identified as a pause point transitively
since the callee bar can cause a checkpoint to be taken.

For each pause point, the compiler generates a continua-
tion function definition and inserts it into the source code.

As shown in Listing 1b, a continuation function contains all

the code that executes after the corresponding pause point,

Listing 1: Example of continuations in Kappa.

(a) Sample application with
pause points highlighted.

1 def foo(x, y):
2 b = bar(x, y)
3 return b * y
4

5 def bar(x, y):
6 if x < y:
7 checkpoint()
8 z = x + 1
9 else:
10 z = y + 2
11 return z + 3

(b) Continuation functions
inserted by the compiler.

def cont_foo(b, y):
return b * y

def cont_bar(x):
z = x + 1
Skip the else branch,
which is not executed.
return z + 3

(c) The pause point in foo is wrapped in exception handling
code to unwind the call stack.

1 def foo(x, y):
2 try:
3 b = bar(x, y)
4 except CoordinatorRPCException as e:
5 e.add_continuation(cont_foo, y=y)
6 raise # Re-raise to continue unwinding.
7

8 return b * y

and takes as arguments any variable whose value is accessed

by the subsequent code (these are called live variables).5

Finally, consider the function call foo(3,4) at execution
time. The checkpoint taken by bar can be written as a list

consisting of one continuation per frame on the call stack:

[(cont_bar, x = 3), (cont_foo, b = □, y = 4)] ,

where a continuation is a tuple of (1) its continuation func-

tion’s name and (2) live variables in that frame; “□” denotes
a hole to be filled in with the previous continuation’s result.

6

To resume from this checkpoint, the Kappa library invokes

the continuations in order (e.g., cont_bar(x=3)), substitut-
ing each continuation’s return value into its successor’s hole.

The return value of the topmost function—i.e., the task’s final

result—is reported to the coordinator (§ 3.1).

We now provide more details on some mechanisms and

designs mentioned in this example.

Generating continuation functions. To reduce runtime

overhead, Kappa generates continuation code for each pause

point at compile time. Pause points can be inserted manually

(by invoking an RPC) or automatically by the compiler using

a simple heuristic—before each function call, checkpoint if

five seconds has elapsed since the previous checkpoint. We

defer finding better heuristics to future work.

5
Note, for example, that cont_bar does not include any code from the

else branch because it will not be executed afterwards. Nor does it capture
variable y, whose value is not accessed in the continuation code.

6
The same mechanism is used to return values from RPCs.

332

SoCC ’20, October 19–21, 2020, Virtual Event, USA Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker

For each pause point, the compiler statically identifies live

variables [2] and teases out the code that executes afterwards

by analyzing the control structure around the pause point

(similar to Sekiguchi et al. [78] and Tao [88]), thereby con-

structing a continuation function. We omit details of this

analysis and refer interested readers to prior work. Our com-

piler can generate continuations for common control flow

constructs including if statements, for and while loops,

and continue and break statements; it currently lacks sup-

port for some other Python features, which we detail in § 6.

Recall that the compiler must generate continuation func-

tions for transitive pause points, i.e., calls to functions that

may checkpoint. Precisely identifying transitive pause points

at compile time is challenging for Python, a dynamically

typed language with first-class functions. Instead, the Kappa

compiler conservatively assumes every function call to be a

transitive pause point and generates a continuation function

for it. Although this strategy bloats the transformed code,

for our applications the resulting code size is still negligible

compared to the Kappa and third-party libraries.

Runtime behavior. Given the statically generated contin-

uation functions, the Kappa library checkpoints at runtime

by unwinding the call stack to create a continuation for each

frame. It unwinds the stack using a common exception-based

mechanism [28, 51, 66, 79, 88], which we briefly describe.

At every pause point, our compiler inserts an exception

handler that creates a continuation upon catching an excep-

tion (Listing 1c). To make an RPC, the Kappa library records

details of the call and raises a special exception, triggering

the exception handler at every level of the call stack. Each

handler appends a new continuation and re-raises the excep-

tion. Finally, the top-most handler, part of the Kappa library,

serializes and persists the list of continuations.

Because the compiler conservatively assumes that every

function could checkpoint, it wraps every function call in a

try/except block. Even so, the normal execution overhead is

minimal since try/except in Python is “extremely efficient

if no exceptions are raised” [71]—our benchmark showed a

10 ns (≈ 8 %) overhead over a no-op function call on AWS

Lambda (Python 3.6). During checkpointing, the exception

handling overhead is negligible compared to storage I/O.

Why language-level checkpoints? Kappa checkpoints

within the high-level language that the application is written

in. An alternative, language-agnostic approach is to save a

process’s address space as in libckpt [67] and DMTCP [10].

Although more transparent, such an approach is less flexible

in checkpoint construction. For example, while Kappa saves

only live variables, a lower level strategy might save extrane-

ous data such as dead values or garbage pages that haven’t

been returned to the OS. Kappa is also more portable—it

Listing 2: Sample concurrent Kappa program.

1 def count(q):
2 ctr = 0
3 while q.dequeue() != "":
4 ctr += 1
5 return ctr
6

7 def gen(q):
8 q.enqueue("a")

9 q.enqueue("")
10

11 @on_coordinator
12 def main():
13 q = make_queue(sz = 1)
14 fut = spawn(count, (q,))
15 spawn(gen, (q,))
16 assert fut.wait() == 1

works on any serverless platform that supports Python re-

gardless of the underlying OS, including any platform that

restricts lambdas to only execute Python code.

Why not use yield? Python’s yield keyword suspends

a function and transfers control to its caller. We decided

against using yield to suspend computation in Kappa (as

Pivot [54] does for JavaScript) as we are unaware of any

portable technique for serializing the suspended state.
7

3.3 Concurrency API
Kappa provides mechanisms for launching and synchroniz-

ing parallel tasks, making it easier to exploit the resource

elasticity offered by serverless platforms. Specifically, we

provide two basic concurrency abstractions:

Spawn. The spawn RPC launches a new task to execute a

function call f(args) in parallel and returns a future [50]

for the result. A spawn is implemented by creating an initial
checkpoint that, when resumed, executes the function call;

the coordinator then invokes a lambda that restores from

this checkpoint. We also provide a map_spawn RPC, which
spawnsmultiple tasks that run the same function on different

arguments; the spawned tasks share an initial checkpoint.

FIFO queues. Kappa tasks can communicate using multi-

producer multi-consumer FIFO queues. These queues have

bounded size—a task blocks when it enqueues to a full queue

or dequeues from an empty queue. These semantics allow

queues to be used not only for inter-process communication

but also as locks and semaphores.

Listing 2 illustrates the use of these primitives. The entry

point function main is markedwith the on_coordinator dec-
orator, indicating that it runs as a process on the coordina-

tor rather than on a lambda function. On-coordinator tasks

should be lightweight (e.g., control tasks like main here) so
that the coordinator machine does not become a bottleneck.

As shown in the code, we modeled our API after Python’s

built-in multiprocessing API and expect its usage to resemble

ordinary parallel programming in Python.

7
Stackless Python [47] requires a custom Python interpreter, and the

generator_tools package [77] manipulates Python bytecode, which is

neither stable across Python versions nor portable across Python VMs [72].

333

Kappa: A Programming Framework for Serverless Computing SoCC ’20, October 19–21, 2020, Virtual Event, USA

All aforementioned concurrency operations are imple-

mented as coordinator RPCs, and thus enjoy the RPC fault tol-

erance guarantees (§ 3.1). Furthermore, by directing lambda-

to-lambda communication through the coordinator, Kappa

works around the restriction that lambda functions cannot

accept inbound network connections [36, 41].

The enqueue RPC supports either passing the object to the

coordinator as part of the RPC message, or storing the object

in storage and only passing a handle. The former mode is

faster for small objects (by saving a round trip to storage),

while the latter is better for big objects (since the object

content doesn’t go through RPC processing, also avoiding a

coordinator bottleneck). By default, enqueue picks a mode

using a threshold on object size (see § 5.2).

3.4 External Services
A Kappa task can call services external to the platform (e.g.,

a REST API for computer vision). Interactions with external

services pose two fault tolerance challenges: Kappa must

ensure that (1) external calls with side effects be issued only

once even when lambdas time out;
8
and (2) calls that last

longer than the lambda time limit make progress.

Kappa solves both challenges in an extensible manner us-

ing spawn: the programmer wraps a stateful external call in

a child task, spawns it on the coordinator (§ 3.3), and waits
for it to finish.

9
The RPC mechanism (§ 3.1) ensures that the

spawn, and thus the external service call, is never duplicated

(assuming no coordinator failures). In case of a long-lasting

call, the wait would block, causing the parent task to termi-

nate and restart when the child finishes. Note that since the

coordinator is not executed on a lambda function, Kappa can

run several on-coordinator tasks in parallel.

External storage services are treated specially. Writing

to storage is effectful and thus must happen on the coordi-

nator (except for tasks idempotent with respect to storage).

To avoid routing all write content through the coordinator,

Kappa provides a helper that first writes the content to a

temporary location in storage, and then issues a coordinator

RPC that moves the temporary file to its intended location.

We have implemented this mechanism for S3.

4 Implementation
We have implemented Kappa. Our prototype implementation

executes Python 3.6 code on AWS Lambda, although Kappa

can be extended to other languages and serverless platforms.

Compiler and library. We implemented the Kappa com-

piler in Python as described in § 3.2. The compiler-generated

8
This subsection assumes no coordinator failures—we cannot guarantee

that external side effects be issued only once if the coordinator can fail.

9
Since such tasks merely block on I/O (e.g., a REST API call), they require

little resource and are unlikely to make the coordinator a bottleneck.

code is packaged with the Kappa library, a Python module

that implements checkpointing and RPCs. It serializes con-

tinuations using Python’s built-in and widely used pickle
library, hence requiring all variables captured in a checkpoint

to be serializable using pickle.10 We can relax this require-

ment by using other serialization libraries, or by having the

compiler generate code for unserializable objects.

Coordinator. Our coordinator, written in Go, uses gorou-

tines to schedule Kappa tasks. Each task is managed by a

goroutine, which invokes lambda functions synchronously

to run the task and processes RPCs from it. Synchroniza-

tion between tasks maps to synchronization between gorou-

tines inside the coordinator. For example, each Kappa queue

is backed by a Go channel; a Kappa task blocking on an

enqueue RPC is then implemented as its “manager” gorou-

tine blocking on a send to the corresponding Go channel.

The coordinator launches Python processes locally to run

on-coordinator tasks (§ 3.3).

With fault tolerance enabled, the coordinator persists state

changes before performing any action.We use locks in the co-

ordinator and Redis transactions to ensure that state changes

and corresponding Redis updates are atomic, providing both

durability and consistent ordering for state updates.

Storage. Kappa uses storage services for checkpoints (§ 3.1)

and large queue elements (§ 3.3); we refer to both as stored
objects. We currently support using S3 and Redis for storage.

Kappa supports replicating stored objects for fault toler-

ance using a user-specified minimum replication factor
11
,

and can use a higher replication factor to load balance an ini-

tial checkpoint shared bymany tasks created by a map_spawn.
Stored objects are garbage collected using reference count-

ing (to account for checkpoint sharing from map_spawn).
When an RPC drops an object’s reference count to zero, the

coordinator instructs the issuing task to delete the object.

Garbage collection (GC) is currently implemented only for

Redis; since S3 storage is cheap, we simply delete all S3 ob-

jects when a workload ends.

5 Evaluation
We now demonstrate the performance and generality of

Kappa. For performance, we measure the overhead of check-

pointing (§ 5.1) and concurrency operations (§ 5.2) using

microbenchmarks, then the end-to-end performance of five

applications. These applications come from diverse domains

(e.g., SQL queries, streaming analytics, and web crawling)

10
The picklemodule supports most common object types including scalars

and collections of serializable objects. See its documentation [73] for details.

11
A Redis instance can offer a replication factor of > 1 if it has any backups

connected to it. When writing a checkpoint, the Kappa library waits for the

primary Redis instance and all backups to acknowledge the write.

334

SoCC ’20, October 19–21, 2020, Virtual Event, USA Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker

and exhibit different parallelism patterns (e.g., fork-join, mes-

sage passing), demonstrating the generality of our approach.

We performed our evaluations on AWS (us-west-2 region).

The Kappa coordinator runs on a m5.4xlarge EC2 instance

and creates AWS Lambda functions with maximum mem-

ory (3008MB). Unless otherwise noted, we enable coordina-

tor fault tolerance (§ 3.1) and checkpoint replication (§ 4)—the

coordinator replicates to a pair of primary-backup Redis in-

stances each on am5.large VM (two vCPUs and up to 10Gbps

of network), and checkpoints are stored in Redis with a min-

imum replication factor of 2 (using the same setup).

For applicable microbenchmarks (§ 5.2), we compare to

gg [26], PyWren [40] (v0.4), and AWS Step Functions [8]. We

configure gg to use a Redis instance (as specified above) as

storage; PyWren only supports S3. To improve their perfor-

mance, we prepackage binaries into gg’s lambda functions,

and all Python dependencies into PyWren’s (so it can skip

downloading the Anaconda runtime). We also configured

a small 100ms polling interval for PyWren’s wait function,

which polls S3 for lambda completion.

For end-to-end evaluation (§ 5.3), we compare several

Kappa applications to PyWren and Spark implementations

(the latter on VMs). We do not compare against gg, which
expects ELF executables as input [26] and has no first-class

Python support. Nor do we compare against AWS Step Func-

tions, whose lambda startup overhead is too high for any

meaningful application measurement (§ 5.2). Because our

prototype only supports AWS, we defer comparisons against

Azure Logic Apps and Durable Functions to future work.

5.1 Checkpointing Overhead
We run a task on a lambda function that checkpoints every

100ms and measure the latency. We look at both synchro-

nous checkpoints (where application processing is paused un-

til the checkpoint is persisted and the RPC returns) and asyn-

chronous checkpoints (where a background step persists the

checkpoint and makes the RPC). We overlap asynchronous

checkpointing with CPU-intensive foreground computation

to match expected application behavior. Checkpoints are

stored on either S3 or Redis; although S3 provides worse per-

formance (see below), it is more price efficient and requires

no additional setup as opposed to Redis, thus representing

the easiest option for most users. Finally, each experiment is

run with and without replication. For the replication-enabled

runs, coordinator state and Redis checkpoints are replicated

on a (separate) pair of Redis instances; we do not actively

replicate S3 checkpoints.

Figure 2 shows the checkpoint latency for various sizes. Re-

dis outperforms S3 for all sizes although the gap narrows for

larger sizes, where throughput dominates. Replication over-

head is less than 2ms for Redis checkpoints of up to 100 KB,

Table 3: Checkpoint scaling—latency of parallel lamb-
das synchronously taking replicated checkpoints of
0.5 KB at a 100 ms interval.

Parallel lambdas 1 10 100 1000

Median latency 3.55ms 3.63ms 3.54ms 3.54ms

P95 latency 6.17ms 6.47ms 4.70ms 5.41ms

but grows more rapidly afterwards as replication becomes

throughput-bound. Finally, asynchronous checkpointing is

slower as it is overlapped with foreground computation.

In terms of checkpoint content, the call stack depth and the

number of objects captured have little impact on checkpoint

latency for less than ten levels deep and 10 000 objects.

Overall, the median synchronous checkpoint latency is

under 5ms (with replication) for checkpoints up to 100 KB,

which is not expected to significantly impact application per-

formance. Data-intensive applications can use asynchronous

RPCs to reduce the impact of checkpointing or use custom

serialization to reduce checkpoint size.

Finally, we evaluate the scalability of checkpointing by

measuring the latency of concurrent lambdas simultaneously

taking 0.5 KB checkpoints (with replication) at a 100ms in-

terval. Table 3 shows that the median checkpoint latency

remains less than 4ms even with 1000 concurrent lambdas.

We can achieve good scaling for larger checkpoint sizes as

well by scaling up the Redis store (since the coordinator load

is unaffected by checkpoint size).

5.2 Performance of Kappa Library
Spawn latency. We have an on-coordinator task measure

the latency of spawning an empty task and waiting for

its completion
12
, varying the amount of data passed to the

task. For comparison, we measure the base spawn latency

of gg [26], PyWren [40], and a minimal Go launcher that

directly calls the AWS SDK.

As Table 4a shows, even when passing a large 1MB argu-

ment, Kappa launches a task within 55ms over 95 % of the

time. Compared to the minimal Go launcher, a base Kappa

spawn is at median 5.5ms slower due to RPC overhead (e.g.,

checkpointing and coordinator state replication) and check-

point loading. This mostly excludes any setup cost because

after the first spawn of each run, all subsequent tasks were

found to be running on a reused “warm” Python runtime.

In comparison, gg has slightly higher spawn latency partly
due to process launches and file operations. PyWren, on the

other hand, is significantly slower as its lambda handler polls

12
Since the wait RPC has no side effect, we enabled an optimization that

allows wait to not take a checkpoint.

335

Kappa: A Programming Framework for Serverless Computing SoCC ’20, October 19–21, 2020, Virtual Event, USA

36.439.1

3.78
2.91

35.238.9

4.21

3.04

50.953.1

3.72

2.58

40.942.6

4.49

2.73

80.679.6

9.38

5.83

222.219.

60.8

34.2
38.840.1

3.93
3.16

39.640.1

4.39

3.20

51.150.9

3.91

2.70

41.937.4

5.50

3.70

84.784.6

15.5

9.60

233.241.

82.2

55.8

Synchronous RPC Asynchronous RPC

0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000

1

10

100

Checkpoint size (KB) (log scale)

T
im

e
 (

m
s
)

(l
o

g
 s

c
a

le
)

Redis Redis (w/ replication) S3 S3 (w/ replication)

Figure 2: Checkpoint latency by checkpoint size. Each bar shows the median, 5th percentile (P5), and 95th per-
centile (P95) of 500 measurements. Up to 2% of asynchronous S3 calls failed as they hadn’t finished before the
next call was issued; all Redis calls succeeded. Redis checkpoints are replicated (where noted) to two instances;
S3 checkpoints are not actively replicated.

Table 4: Spawn performance. The “Data” column shows the amount of data passed to the spawned task. The “Go
launcher” is aminimal Go program that creates a new lambda function and invokes it directly using theAWS SDK.

(a) Spawn latency of a single task (five runs of
100 sequential spawns each).

Spawn latency

Data size Median P95

Kappa 0 15.5ms 20.5ms

100 KB 17.4ms 23.8ms

1MB 45.8ms 54.1ms

Go launcher 0 9.99ms 14.9ms

gg [26] 0 30.9ms 37ms

PyWren [40] 0 2.54 s 2.72 s

(b) Lambda launch times (mean and std. dev.) in a 1000-lambda launch (𝑛 = 20).
The “reuse 𝝀s” Go launcher reuses the same lambda handler across runs.

Launch time

Data size 500th 𝜆 990th 𝜆 1000th 𝜆

Kappa 0 467 ± 16.1ms 609 ± 51.2ms 1.31 ± 0.736 s

100 KB 468 ± 15.4ms 599 ± 51.6ms 1.26 ± 0.498 s

1MB 533 ± 13.6ms 815 ± 210ms 1.62 ± 0.132 s

Go launcher 0 487 ± 45.2ms 601 ± 46.7ms 1.09 ± 0.442 s

(reuse 𝜆s) 0 347 ± 58.5ms 414 ± 76.8ms 457 ± 106ms

gg [26] 0 668 ± 80.4ms 749 ± 81.6ms 809 ± 236ms

PyWren [40] 0 4.13 ± 0.725 s 6.56 ± 1.12 s 7.81 ± 1.22 s

for task completion at a 2 s interval (not configurable using

its API), dominating the running time of short tasks.
13

Spawn throughput. We measure task launch times in a

1000-task spawn.
14
Each task loads a shared checkpoint load-

balanced across four Redis pairs and sleeps for 5 s (subtracted

from the reported launch times). We compare to gg, PyWren,

and two versions of our Go launcher, one creating a new

AWS Lambda handler for each run (as in Kappa), the other

reusing the same handler across runs (as in PyWren and gg).

13
PyWren’s lambda handler runs user tasks in a separate process on the

lambda and checks for the subprocess’ completion periodically. This is sep-

arate from the wait function, which polls from the “coordinator” machine.

14
1000 is our per-region concurrency limit on AWS Lambda.

Table 4b shows the mean launch times for the 500th,

990th, and 1000th lambdas. For up to 990 tasks, Kappa adds

a roughly 10ms overhead over the Go launcher without

lambda reuse. Unlike in single-spawn, this overhead includes
one-time setup costs since parallel lambdas cannot recycle

execution environments. For the 1000th lambda, Kappa ex-

hibits higher mean and variance than gg. We attribute this

gap to Kappa not reusing lambda handlers, given the similar

gap between the two Go launchers. PyWren, unlike the other

systems, launches lambdas asynchronously and detects their

completion by polling S3, leading to worse performance.

Finally, we measure the spawn throughput of AWS Step

Functions, which supports both dynamic parallelism (Map)
and static parallelism (Parallel). With Map, we encountered

336

SoCC ’20, October 19–21, 2020, Virtual Event, USA Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker

0

100

200

300

0 500 1000

Time (s)

#
 la

m
b

d
a

s
 r

u
n

n
in

g Lambda duration

60 s

120 s

180 s

Figure 3: Using AWS Step Functions to launch 1000
lambdas, each sleeping for a fixed duration.

an undocumented concurrency limit of less than 50, too low

for most of our applications. With Parallel, we launched
1000 lambdas each sleeping for an identical duration. Figure 3

shows the number of lambdas running at each point in time.

Although we hit no concurrency ceiling, it took more than

18 minutes for all 1000 lambdas to launch, 130× to 2300×
the duration of the other systems (Table 4b). This overhead

would dominate our applications (§ 5.3), many of which

repeatedly invoke batches of short tasks. We thus do not

offer application comparisons against AWS Step Functions.

Message passing. To quantify task-to-task communica-

tion overhead, we report half the round-trip time to send

a message to another task and have it echoed back using

shared queues (with the receiver busy-waiting). The mes-

sage is stored either on the coordinator or in Redis (§ 3.3); in

both cases it is replicated to two copies, the former as part of

coordinator state, and the latter by stored object replication.

Figure 4 shows message passing latency for various config-

urations. Passing messages through the coordinator is faster

for small messages (tens of KB) since it saves a round-trip to

Redis, but is slower for larger messages due to RPC process-

ing overhead. It might alsomake the coordinator a bottleneck,

while Redis storage can scale more easily to handle large

messages. The enqueue RPC, by default, picks a mode using

a message size threshold (100 KB in our implementation).

Fault-tolerant writes. For fault-tolerant S3 writes (§ 3.4),

we measure the duration from when the write is issued

to when the object is moved to its intended location (al-

though asynchronous writes allow application code to pro-

ceed during the move). Figure 5 shows fault-tolerant writes

to be costly (2.08×–3.06× median overhead for synchronous

writes), because we had to implement S3 moves using a

slow COPY-DELETE sequence. Applications idempotent with

respect to storage can avoid this overhead by writing to

storage directly.

5.3 Applications
We present five Kappa applications to demonstrate the gen-

erality and performance of our framework. For some appli-

cations we also created Spark baselines, which we ran on

Amazon EMR (Spark 2.3.1) using a m5.4xlarge VM as the

master node (same as the Kappa coordinator) and c4.4xlarge

VMs as workers. Since Kappa uses only one of two hyper-

threads of a lambda, we configured Spark workers to also

only use half of all hyperthreads.

TPC-DS. We implemented four SQL queries from the TPC-

DS benchmark [90]
15

as multi-stage MapReduce jobs on

top of Kappa tasks. Tasks in each stage are launched us-

ing map_spawn, data is shuffled using Kappa queues
16
, and

query logic is implemented using the pandas library [53].

For comparison, we run the same queries with PyWren and

Spark using identical query plans; andwith Spark SQL, which

computes query plans using its query optimizer [13]. All four

read input from S3 and are given the same number of worker

cores. Kappa and PyWren invoke lambdas from the same

VM and are given the same number of Redis instances.
17

We run the queries using the TPC-DS qualification pa-

rameters on data created using the data generator (scale =

100GB). Kappa launches up to 499 parallel lambda functions

(for Q16), and shuffles 5400 (Q1) to 41 865 (Q94, Q95) items.

Figure 6 shows that for each query, Kappa achieves lower

runtime than PyWren despite providing stronger fault tol-

erance (see discussions of PyWren’s inefficiencies in § 5.2).

Compared to Spark and Spark SQL, Kappa performs compa-

rably or better even without taking into account the time

taken to set up a Spark cluster, which can be minutes.

Word count. We implemented word count in the canoni-

cal MapReduce style; it reads input from and writes output

to S3, and shuffles intermediate data through Kappa queues

(backed by two pairs of m5.large Redis VMs). We evaluate

Kappa word count, as well as a Spark baseline, using 32GB of

text from Project Gutenberg [68] in 64MB chunks, and define

a “word” as a maximal substring of at least three English let-

ters (case-insensitive). The output consists of 486 697 unique

words and their counts in text form, amounting to 7.3MB in

size. Figure 7a shows that Kappa scales well and takes 5.9 %

to 21.6 % longer than Spark at median, with the greatest

slowdown coming from the largest worker count (= 128).

Parallel grep. This application counts the occurrences

of a string in a single file split into chunks. Each worker

15
We used the queries for which PyWren implementations are available [69]

(Q1, Q16, Q94, and Q95); we modified them to improve their performance.

16
These queues are configured to pass data through Redis. By the fault

tolerance setup (§ 5), Kappa stores two copies of all shuffle data.

17
We use 18 m5.large VMs (each has 2 vCPUs and runs one Redis process).

For Kappa, they are configured as 9 master-slave pairs, one for coordinator

state replication and the rest for checkpoints and shuffle data. The PyWren

version uses all instances for data shuffling with no replication.

337

Kappa: A Programming Framework for Serverless Computing SoCC ’20, October 19–21, 2020, Virtual Event, USA

7.01
4.79

7.22
5.86

7.126.59

12.5
16.0

21.2

64.8

121.

572.

1

10

100

0.1 KB 1 KB 10 KB 100 KB 1 MB 10 MB

Message size (log scale)

T
im

e
 (

m
s
)

(l
o

g
 s

c
a

le
)

Message sent through Coordinator Redis

Figure 4: Latency ofmessage passing
between tasks (median, P5, and P95).

134.
90.7

29.6

152.

89.7

35.9

544.471.

226.

1

10

100

1000

1 KB 100 KB 10 MB

Write size (log scale)

T
im

e
 (

m
s
)

(l
o

g
 s

c
a

le
)

S3 Sync Async

Figure 5: Latency of fault-tolerant vs
raw S3 writes (median, P5, and P95).

0

20

40

60

Q1 Q16 Q94 Q95

TPC-DS query

T
im

e
 (

s
)

 Kappa PyWren Spark Spark SQL

Figure 6: TPC-DS query run time.
Bars show the median of ten runs.

30

100

300

8 16 32 64 128

workers (log scale)

T
im

e
 (

s
)

(l
o

g
 s

c
a

le
)

Kappa

Spark

(a) Word count (median, 𝑛 = 5).

3

10

30

16 32 64 128 256

workers (log scale)

T
im

e
 (

s
)

(l
o

g
 s

c
a

le
)

Kappa total time

Kappa overhead

(b) Parallel grep (median, 𝑛 = 5).

50

100

300

500

2 4 8 16 32

workers (log scale)

T
im

e
 (

s
)

(l
o

g
 s

c
a

le
)

Lambda timeout

15 s

900 s

(c) Streaming (median, min/max, 𝑛 = 3).

Figure 7: Strong scaling results for three applications.

processes a contiguous range of chunks and, to deal with

substrings that straddle chunks, communicates boundary

content with neighbors using queues.

We run parallel grep to search 32GB of data on S3 for a

three-character string that occurs roughly 200 million times.

In addition to reporting the running time, we compute the

workload’s actual duration—the makespan computed using

the actual duration of each task and the task dependency

graph; a task’s actual duration is a conservative measure-

ment of time spent reading input, computing, and writing

output. We then report the overhead (defined as the differ-

ence), which includes lambda invocation, checkpointing, etc.

Figure 7b shows that parallel grep scales well up to 128

workers (each processing two chunks), while the overhead

remains roughly constant at around 2 s. We did not compare

against a Spark implementation since the Spark program-

ming model does not naturally support dealing with the

boundary between two consecutive chunks of the input.
18

Streaming. This workload uses parallel workers to com-

pute the average number of hashtags per tweet in a stream of

18
Although Spark supports seeking to the first newline (or a custom delim-

iter) after an input chunk boundary, it remains a challenge to, e.g., search

for a byte sequence in a binary input where no natural delimiter exists.

0.0

0.5

1.0

1.5

0 2 4 6 8 10 12

Time (min)

D
o

w
n

lo
a

d
g

o
o

d
p

u
t

(G
B

/s
)

Figure 8: Web crawler with 1000 workers and a 1 min
lambda timeout—Aggregate download rate of bytes
from new pages.

tweets. Workers pull from a shared work queue and send pe-

riodic updates to an aggregator task; they checkpoint before

processing each chunk as a result of calling dequeue. For
evaluation, we use 64GB of tweets in JSON [89] stored as

128MB chunks on S3; downloading and processing a chunk

takes roughly 5 s. To stress test timeout recovery, we imposed

a short lambda timeout of 15 s and compare to runs that ex-

perienced no timeouts. Figure 7c shows that the application

scales well and that the 15 s timeout increases the median

duration by 6.8 % to 8.9 %. A less aggressive timeout of 60 s

(not shown) adds a 0.9 % to 3.2 % overhead to impacted runs.

338

SoCC ’20, October 19–21, 2020, Virtual Event, USA Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker

Web crawler. We implemented a distributed web crawler

based off UbiCrawler [17] that downloads web pages start-

ing from some seed domains [5]. A hash function partitions

domains between workers. When a worker sees a domain

outside its partition, it uses a Kappa queue to send the domain

name to a scheduling task for de-duplication and reassign-

ment. Each worker uses Python asynchronous I/O to issue

30 concurrent downloads.
19

Because our prototype compiler

doesn’t handle async/await (§ 6), we treat our I/O code as

an “external library” within which no checkpoints are taken.

When its URL frontier grows beyond a certain size, a worker

stores the remainder of the frontier in Redis (by enqueueing
to a queue) and retrieves it when its frontier runs empty.

We ran the web crawler with 1000 workers for 12min;

each worker checkpoints after processing every 20 pages. To

exercise Kappa’s fault tolerance, we imposed a short lambda

timeout of 1min. Figure 8 shows the aggregate rate of bytes

downloaded from new pages. Sudden dips in throughput,

which last from 1 s to 2 s, indicate workers timing out and

restarting. The crawler achieved a median stable throughput

of 15 587 page/s, and downloaded 10.9 million unique pages

in total. The coordinator processed an average of 976 RPC/s.

6 Limitations and Future Work
While Kappa already supports a wide range of applications,

it has a few limitations, which we discuss below.

Unsupported Python features. We have not yet added

support for some Python features to the compiler’s continu-

ation generation logic. These features include try/except,
yield, async/await, nested function definitions, and global

variables. These limitations are not fundamental—prior work

has shown how to implement these features in continuation

passing style, a paradigm that our approach depends on. For

example, Stopify [16] shows how to generate continuations

for nested functions and exception handling in JavaScript.

Other restrictions on input code. Beyond the aforemen-

tioned restrictions on Python features, Kappa requires minor

modifications to application code. The programmer must:

• Insert checkpoint() calls at appropriate points in the

program, e.g., before calling external library functions

that might take a long time;

• Mark calls that have externally visible side-effects
(e.g., resulting in I/O) with @on_coordinator, ensur-
ing that such calls are executed only once (§ 3.4); and,

• Use Kappa’s concurrency primitives (§ 3.3) instead
of primitives such as Python threads.

We did not find these requirements burdensome. Among

all the applications from § 5.3, we only had to insert one

19
To avoid overwhelming the crawled websites, we make sure to issue at

most one connection to each distinct domain across all workers.

checkpoint() call in one application.20 In all other cases, the
program already checkpoints frequently enough by invoking

RPCs, and library calls do not last long enough to require

checkpoints. Nor was our concurrency API any hurdle to

use as it resembles Python’s built-in multiprocessing API.

Static pause points. Recall that Kappa identifies pause

points statically (§ 3.1). This approach reduces the runtime

overhead of checkpointing, but restricts where checkpoints

can be generated and precludes deciding checkpoint loca-

tions at runtime. Relaxing this limitation through dynamic

continuation computation is left to future work.

Can only checkpoint in transformed code. Kappa can

checkpoint only in code transformed by the its compiler and

not in, e.g., a Python C extension like numpy. Control must

therefore return to Kappa-instrumented code once in a while

for checkpoints to be taken.

Lack of static checking. Python’s dynamic nature makes

it challenging to statically analyze application code (as noted

in prior work [63]). For example, the Kappa compiler does

not ensure at compile time that every variable captured by a

checkpoint is serializable. A future direction is to implement

static checking by leveraging Python type hints [31, 92].

Unimplemented GC features. Our garbage collection

implementation (§ 4) currently does not delete (1) a task’s

last checkpoint after it exits, or (2) any object “orphaned” due

to lambda timeout or failure (i.e., written to storage but not

reported to the coordinator); these objects are deleted when

the workload finishes. Adding these features does not change

our design and would add little overhead to the critical path.

7 Related Work
7.1 Serverless Programming Frameworks
In § 2.1, we compared Kappa to existing serverless frame-

works in terms of their usage models. Here we compare the

other features listed in Table 1.

Fault tolerance. A fault-tolerant serverless framework

avoids restarting a workload from scratch when lambda func-

tions and/or the coordinator-equivalent fails. The mu [27]

and PyWren [40] frameworks provide no fault tolerance.

gg [26] and Azure Durable Functions [58] adopt replay-based
fault tolerance—a failed component restarts from the begin-

ning and skips any completed tasks by consulting a history

table. These replay-based approaches, while performant and

transparent, have two drawbacks:

• They require application execution to be deterministic

(otherwise execution may diverge during replay).

20
The web crawler has a checkpoint() call inserted to make sure that a

checkpoint is taken for at most every 20 pages fetched.

339

Kappa: A Programming Framework for Serverless Computing SoCC ’20, October 19–21, 2020, Virtual Event, USA

• The history table can grow unboundedly even if pro-

gram state has bounded size—e.g., a long-running or-

chestrator function on Azure must be restarted manu-

ally once in a while to avoid memory exhaustion [57].

Kappa handles nondeterminism by checkpointing before

each RPC, and avoids blowup by storing state (i.e., check-

points and coordinator state) rather than history.

AWS Step Functions [8] and Azure Logic Apps [56] sup-

port specifying retry policies for failed tasks; only the former

handles availability zone failures [30]. The academic frame-

works do not handle provider datacenter failures.

External services. Kappa supports calling external ser-

vices (§ 3.4). The mu, PyWren, and gg frameworks lack this

support, while the frameworks from cloud providers support

integrating external services into serverless workflows.

Other features. Some of the features provided by previ-

ous systems that Kappa lacks include RPC pipelining [27],

dependency inference [26], straggler mitigation [26], and

workflow visualization [8, 56]. Integrating these features

into Kappa, where applicable, is deferred to future work.

7.2 Other Related Work
Checkpoint and restart. Our underlying techniques—

saving program state upon interrupts or failures and later

resuming from it—are pervasive in the systems literature.

Prior systems have used user-mode checkpointing for fault

tolerance (e.g., libckpt [67] and DMTCP [10]), process mi-

gration (e.g., c2ftc [87]), asynchronous programming (e.g.,

Tame [46] and SEDA [95]), and virtualization [45] and re-

silience to power failure [52, 91] in embedded devices. Oth-

ers, like VMADump [37, § 3.4], CRAK [99], and BLCR [35],

rely on in-kernel support to checkpoint and/or migrate user

programs. This latter category is not a good fit for existing

serverless environments, where kernel modification (includ-

ing the loading of kernel modules) is prohibited.

Improvements to serverless platforms. Recent works

have proposed serverless-optimized storage and caching so-

lutions (e.g., Pocket [44], Savanna [29, § 3], Cloudburst [85],

Aft [84], and HydroCache [97]), security enforcement via

information flow control [3], and techniques to optimize the

performance and resource usage of serverless platforms [1,

42, 49, 61, 65, 80, 82, 85, 94]. Kappa automatically benefits

from transparent platform improvements, and can exploit

new storage services by placing checkpoints and large queue

elements there (§ 4).

Concurrent processing frameworks. Our concurrency

API (§ 3.3), which is based on message passing, resembles

those of actor frameworks like Erlang [14] and Akka [48].

An alternative approach, à la MapReduce [22] and Spark [98],

relies on assumptions about program structure to parallelize

computation. As shown in § 5.3, structured parallelism can

be easily implemented using Kappa’s lower level primitives.

Ray [62] supports task- and actor-based concurrency using

APIs similar to Kappa’s. Although Ray can checkpoint its

actors, it requires manually implementing state saving and

restoration for each actor [19]; Kappa automates this process.

Continuations. Continuations have been studied exten-

sively in programming languages and compiler optimiza-

tion [74]. For example, several compilers translate source

code to continuation-passing style (CPS) for some compi-

lation passes [12]. Kappa does not directly translate code

to CPS—such a translation would cause significant slow-

downs as Python does not optimize for closure creation or

tail calls.
21
Our transformation (§ 3.1) avoids this slowdown

by largely preserving the code’s control structure and only

creating continuation objects when a checkpoint is taken.

As mentioned in § 3.2, continuations have been used by

many prior systems [16, 28, 51, 66, 78, 79, 86, 88]. In addition,

they are used by Mach 3.0 [24] for process blocking and by

Ciel [64] for task blocking. Kappa uses similar techniques

to allow tasks to block on RPC responses.

8 Conclusion
Although serverless computing originally targeted event han-

dling, recent efforts such as ExCamera [27] and PyWren [40]

have enabled the use of serverless for more diverse appli-

cations. However, developing serverless applications still

requires significant effort. Kappa is a framework that sim-

plifies serverless development by providing a familiar pro-

gramming model. By reducing the friction of developing

serverless programs, Kappa provides an avenue for a larger

set of applications to take advantage of the benefits of server-

less computing.

Acknowledgments
We thank the anonymous reviewers, James McCauley, Ed-

ward Oakes, other members of the UC Berkeley NetSys Lab,

Pratyush Patel, Gur-Eyal Sela, Irene Zhang, and Akshay

Narayan for their feedback. This work was funded in part

by NSF Grants 1817115, 1817116, and 1704941, and by grants

from Intel, VMware, Ericsson, Futurewei, Cisco, Amazon,

and Microsoft.

References
[1] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus

Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND:

Towards High-Performance Serverless Computing. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). https://www.usenix.

org/conference/atc18/presentation/akkus

[2] Frances E. Allen. 1970. Control Flow Analysis. In Proceedings of a
Symposium on Compiler Optimization. https://doi.org/10.1145/800028.

808479

21
Loitsch [51] notes a similar phenomenon for JavaScript.

340

https://www.usenix.org/conference/atc18/presentation/akkus
https://www.usenix.org/conference/atc18/presentation/akkus
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479

SoCC ’20, October 19–21, 2020, Virtual Event, USA Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker

[3] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk,

Mooly Sagiv, Thomas Schmitz, and Keith Winstein. 2018. Secure

Serverless Computing Using Dynamic Information Flow Control. Proc.
ACM Program. Lang. 2, OOPSLA, Article 118 (Oct. 2018). https://doi.

org/10.1145/3276488

[4] Amazon Web Services. 2018. AWS Lambda enables functions
that can run up to 15 minutes. Retrieved Jan 9, 2020

from https://aws.amazon.com/about-aws/whats-new/2018/10/aws-

lambda-supports-functions-that-can-run-up-to-15-minutes/

[5] AmazonWeb Services. 2019. Alexa Top 1-Million. http://s3.amazonaws.

com/alexa-static/top-1m.csv.zip

[6] Amazon Web Services. 2019. Amazon States Language—AWS Step
Functions. https://docs.aws.amazon.com/step-functions/latest/dg/

concepts-amazon-states-language.html

[7] Amazon Web Services. 2019. AWS Lambda—Serverless Compute—
Amazon Web Services. https://aws.amazon.com/lambda/

[8] Amazon Web Services. 2019. AWS Step Functions. https://aws.amazon.

com/step-functions/

[9] Amazon Web Services. 2019. Iterating a Loop Using Lambda—
AWS Step Functions. Retrieved September 19, 2019 from

https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-

create-iterate-pattern-section.html

[10] Jason Ansel, Kapil Arya, and Gene Cooperman. 2009. DMTCP: Trans-

parent Checkpointing for Cluster Computations and the Desktop. In

Proceedings of the 2009 IEEE International Symposium on Parallel &
Distributed Processing (IPDPS ’09). https://doi.org/10.1109/IPDPS.2009.

5161063

[11] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.

2018. Sprocket: A Serverless Video Processing Framework. In Pro-
ceedings of the ACM Symposium on Cloud Computing (SoCC ’18).
https://doi.org/10.1145/3267809.3267815

[12] Andrew W. Appel. 2007. Compiling with Continuations. Cambridge

University Press, USA.

[13] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies

Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J.

Franklin, Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL: Rela-

tional Data Processing in Spark. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data (SIGMOD ’15).
https://doi.org/10.1145/2723372.2742797

[14] Joe Armstrong. 2003. Making reliable distributed systems in the presence
of software errors. Ph.D. Dissertation. The Royal Institute of Technol-
ogy.

[15] Arda Aytekin and Mikael Johansson. 2019. Harnessing the Power

of Serverless Runtimes for Large-Scale Optimization. (2019).

arXiv:1901.03161 http://arxiv.org/abs/1901.03161

[16] Samuel Baxter, Rachit Nigam, Joe Gibbs Politz, Shriram Krishnamurthi,

and Arjun Guha. 2018. Putting in All the Stops: Execution Control

for JavaScript. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2018).
https://doi.org/10.1145/3192366.3192370

[17] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna.

2004. Ubicrawler: A scalable fully distributed web crawler. Software:
Practice and Experience 34, 8 (2004), 711–726.

[18] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and

Randy Katz. 2019. Cirrus: A Serverless Framework for End-to-End ML

Workflows. In Proceedings of the ACM Symposium on Cloud Computing
(SoCC ’19). https://doi.org/10.1145/3357223.3362711

[19] Hao Chen. 2019. Implement actor checkpointing by raulchen • Pull
Request #3839 • ray-project/ray. Retrieved April 22, 2019 from https:

//github.com/ray-project/ray/pull/3839

[20] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric

Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live

Migration of Virtual Machines. In Proceedings of the 2nd Conference on
Symposium on Networked Systems Design & Implementation - Volume 2
(NSDI ’05).

[21] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus

Fontoura, and Ricardo Bianchini. 2017. Resource Central: Understand-

ing and Predicting Workloads for Improved Resource Management in

Large Cloud Platforms. In Proceedings of the 26th Symposium on Oper-
ating Systems Principles (SOSP ’17). https://doi.org/10.1145/3132747.

3132772

[22] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified

Data Processing on Large Clusters. Commun. ACM 51, 1 (Jan. 2008).

https://doi.org/10.1145/1327452.1327492

[23] John Demian. 2018. Companies using serverless in production. Re-

trieved Sep 18, 2019 from https://dashbird.io/blog/companies-using-

serverless-in-production/

[24] Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W.

Dean. 1991. Using Continuations to Implement Thread Management

and Communication in Operating Systems. In Proceedings of the Thir-
teenth ACM Symposium on Operating Systems Principles (SOSP ’91).
https://doi.org/10.1145/121132.121155

[25] L. Feng, P. Kudva, D. Da Silva, and J. Hu. 2018. Exploring Serverless

Computing for Neural Network Training. In 2018 IEEE 11th Inter-
national Conference on Cloud Computing (CLOUD). 334–341. https:

//doi.org/10.1109/CLOUD.2018.00049

[26] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chat-

terjee, Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019.

From Laptop to Lambda: Outsourcing Everyday Jobs to Thousands

of Transient Functional Containers. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). https://www.usenix.org/conference/

atc19/presentation/fouladi

[27] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki

Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman,

George Porter, and Keith Winstein. 2017. Encoding, Fast and Slow:

Low-Latency Video Processing Using Thousands of Tiny Threads. In

14th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 17). https://www.usenix.org/conference/nsdi17/technical-

sessions/presentation/fouladi

[28] Stefan Fünfrocken. 1998. Transparent migration of Java-based mo-

bile agents: Capturing and re-establishing the state of Java programs.

Personal Technologies 2, 2 (01 Jun 1998). https://doi.org/10.1007/

BF01324941

[29] Xiang Gao. 2020. Next Generation Datacenter Architecture. Ph.D. Dis-
sertation. EECS Department, University of California, Berkeley. http:

//www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-30.html

[30] GoncalvesJ and WSilveiraNZ. 2018. Logic App Geo-Replication
/ Disaster-Recovery. Retrieved September 19, 2019 from https:

//social.msdn.microsoft.com/Forums/azure/en-US/b2fd4ad3-2566-

42f6-a0d0-8374b868eaf7/logic-app-georeplicationdisasterrecovery

[31] Ryan Gonzalez, Philip House, Ivan Levkivskyi, Lisa Roach, and Guido

van Rossum. 2016. PEP 526—Syntax for Variable Annotations. Retrieved
Apr 19, 2019 from https://www.python.org/dev/peps/pep-0526/

[32] Google. 2019. Cloud Functions—Event-driven Serverless Comput-
ing | Cloud Functions | Google Cloud. https://cloud.google.com/

functions/

[33] Vipul Gupta, Dominic Carrano, Yaoqing Yang, Vaishaal Shankar,

Thomas A. Courtade, and Kannan Ramchandran. 2020. Serverless

Straggler Mitigation using Local Error-Correcting Codes. (2020).

arXiv:2001.07490 https://arxiv.org/abs/2001.07490

[34] Vipul Gupta, Swanand Kadhe, Thomas A. Courtade, Michael W. Ma-

honey, and Kannan Ramchandran. 2019. OverSketched Newton: Fast

Convex Optimization for Serverless Systems. (2019). arXiv:1903.08857

http://arxiv.org/abs/1903.08857

341

https://doi.org/10.1145/3276488
https://doi.org/10.1145/3276488
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-create-iterate-pattern-section.html
https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-create-iterate-pattern-section.html
https://doi.org/10.1109/IPDPS.2009.5161063
https://doi.org/10.1109/IPDPS.2009.5161063
https://doi.org/10.1145/3267809.3267815
https://doi.org/10.1145/2723372.2742797
https://arxiv.org/abs/1901.03161
http://arxiv.org/abs/1901.03161
https://doi.org/10.1145/3192366.3192370
https://doi.org/10.1145/3357223.3362711
https://github.com/ray-project/ray/pull/3839
https://github.com/ray-project/ray/pull/3839
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/1327452.1327492
https://dashbird.io/blog/companies-using-serverless-in-production/
https://dashbird.io/blog/companies-using-serverless-in-production/
https://doi.org/10.1145/121132.121155
https://doi.org/10.1109/CLOUD.2018.00049
https://doi.org/10.1109/CLOUD.2018.00049
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://doi.org/10.1007/BF01324941
https://doi.org/10.1007/BF01324941
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-30.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-30.html
https://social.msdn.microsoft.com/Forums/azure/en-US/b2fd4ad3-2566-42f6-a0d0-8374b868eaf7/logic-app-georeplicationdisasterrecovery
https://social.msdn.microsoft.com/Forums/azure/en-US/b2fd4ad3-2566-42f6-a0d0-8374b868eaf7/logic-app-georeplicationdisasterrecovery
https://social.msdn.microsoft.com/Forums/azure/en-US/b2fd4ad3-2566-42f6-a0d0-8374b868eaf7/logic-app-georeplicationdisasterrecovery
https://www.python.org/dev/peps/pep-0526/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://arxiv.org/abs/2001.07490
https://arxiv.org/abs/2001.07490
https://arxiv.org/abs/1903.08857
http://arxiv.org/abs/1903.08857

Kappa: A Programming Framework for Serverless Computing SoCC ’20, October 19–21, 2020, Virtual Event, USA

[35] Paul H Hargrove and Jason C Duell. 2006. Berkeley lab check-

point/restart (BLCR) for Linux clusters. Journal of Physics: Conference
Series 46 (sep 2006). https://doi.org/10.1088/1742-6596/46/1/067

[36] Joseph M. Hellerstein, Jose M. Faleiro, Joseph E. Gonzalez, Johann

Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang

Wu. 2019. Serverless Computing: One Step Forward, Two Steps Back.

In Conference on Innovative Data Systems Research (CIDR ’19). https:

//arxiv.org/abs/1812.03651

[37] Erik Hendriks. 2002. BProc: The Beowulf Distributed Process Space.

In Proceedings of the 16th International Conference on Supercomputing
(ICS ’02). https://doi.org/10.1145/514191.514212

[38] IBM. 2019. Cloud Functions—Overview | IBM. https://www.ibm.com/

cloud/functions

[39] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. 2018.

Serving Deep Learning Models in a Serverless Platform. In 2018 IEEE
International Conference on Cloud Engineering, IC2E 2018. https://doi.

org/10.1109/IC2E.2018.00052

[40] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-

jamin Recht. 2017. Occupy the Cloud: Distributed Computing for the

99%. In Proceedings of the 2017 Symposium on Cloud Computing (SoCC
’17).

[41] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,

Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Car-

reira, Karl Krauth, Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada

Popa, Ion Stoica, and David A. Patterson. 2019. Cloud Programming
Simplified: A Berkeley View on Serverless Computing. Technical Re-

port UCB/EECS-2019-3. EECS Department, University of California,

Berkeley.

[42] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2019.

Centralized Core-Granular Scheduling for Serverless Functions. In

Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz,

CA, USA) (SoCC ’19). https://doi.org/10.1145/3357223.3362709

[43] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas

Pfefferle, and Animesh Trivedi. 2018. Understanding Ephemeral Stor-

age for Serverless Analytics. In Proceedings of the 2018 USENIX Confer-
ence on Usenix Annual Technical Conference (USENIX ATC ’18).

[44] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas

Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Stor-

age for Serverless Analytics. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). https://www.usenix.

org/conference/osdi18/presentation/klimovic

[45] Neil Klingensmith and Suman Banerjee. 2018. Hermes: A Real Time

Hypervisor for Mobile and IoT Systems. In Proceedings of the 19th
International Workshop on Mobile Computing Systems & Applications
(HotMobile ’18). https://doi.org/10.1145/3177102.3177103

[46] Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek. 2007. Events

Can Make Sense. In Proceedings of the USENIX Annual Technical Con-
ference (ATC ’07).

[47] Anselm Kruis. 2019. Home • stackless-dev/stackless Wiki. Retrieved

Sep 9, 2019 from https://github.com/stackless-dev/stackless/wiki

[48] Lightbend. 2019. Akka. https://akka.io/

[49] Ping-Min Lin and Alex Glikson. 2019. Mitigating Cold Starts in Server-

less Platforms: A Pool-Based Approach. (2019). arXiv:1903.12221

http://arxiv.org/abs/1903.12221

[50] B. Liskov and L. Shrira. 1988. Promises: Linguistic Support for Efficient

Asynchronous Procedure Calls in Distributed Systems. In Proceedings
of the ACM SIGPLAN 1988 Conference on Programming Language Design
and Implementation (Atlanta, Georgia, USA) (PLDI ’88). https://doi.

org/10.1145/53990.54016

[51] Florian Loitsch. 2007. Exceptional Continuations in JavaScript. In 2007
Workshop on Scheme and Functional Programming (Freiburg, Germany).

http://www.schemeworkshop.org/2007/procPaper4.pdf

[52] Kiwan Maeng and Brandon Lucia. 2018. Adaptive Dynamic Check-

pointing for Safe Efficient Intermittent Computing. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18). https://www.usenix.org/conference/osdi18/presentation/maeng

[53] Wes McKinney. 2010. Data Structures for Statistical Computing in

Python. In Proceedings of the 9th Python in Science Conference, Stéfan
van der Walt and Jarrod Millman (Eds.). 51 – 56.

[54] James Mickens. 2014. Pivot: Fast, Synchronous Mashup Isolation

Using Generator Chains. In Proceedings of the 2014 IEEE Symposium
on Security and Privacy (SP ’14). https://doi.org/10.1109/SP.2014.24

[55] Microsoft. 2019. Azure Functions—Develop Faster With Serverless Com-
pute | Microsoft Azure. https://azure.microsoft.com/en-us/services/

functions/

[56] Microsoft. 2019. Logic App Services. https://azure.microsoft.com/en-

us/services/logic-apps/

[57] Microsoft. 2019. Orchestrator function code constraints. Retrieved Sep-

tember 19, 2019 from https://docs.microsoft.com/en-us/azure/azure-

functions/durable/durable-functions-code-constraints

[58] Microsoft. 2019. What are Durable Functions? https:

//docs.microsoft.com/en-us/azure/azure-functions/durable/durable-

functions-overview

[59] Microsoft. 2020. Azure Functions Premium Plan. Retrieved September

14, 2020 from https://docs.microsoft.com/en-us/azure/azure-functions/

functions-premium-plan

[60] Microsoft. 2020. host.json reference for Azure Functions 2.x and later.
Retrieved September 14, 2020 from https://docs.microsoft.com/en-us/

azure/azure-functions/functions-host-json#functiontimeout

[61] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,

Naren Nayak, and Vadim Sukhomlinov. 2019. Agile Cold Starts for Scal-

able Serverless. In 11th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 19). https://www.usenix.org/conference/hotcloud19/

presentation/mohan

[62] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,

Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,

Michael I. Jordan, and Ion Stoica. 2018. Ray: A Distributed Framework

for Emerging AI Applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). https://www.usenix.

org/conference/osdi18/presentation/moritz

[63] Stefan C. Müller, Gustavo Alonso, Adam Amara, and André Csillaghy.

2014. Pydron: Semi-Automatic Parallelization for Multi-Core and the

Cloud. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). https://www.usenix.org/conference/osdi14/

technical-sessions/presentation/muller

[64] Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven

Smith, Anil Madhavapeddy, and Steven Hand. 2011. CIEL: A Universal

Execution Engine for Distributed Data-flow Computing. In Proceedings
of the 8th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI ’11). https://www.usenix.org/conference/nsdi11/ciel-

universal-execution-engine-distributed-data-flow-computing

[65] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,

Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK:

Rapid Task Provisioning with Serverless-Optimized Containers. In

2018 USENIX Annual Technical Conference (USENIX ATC 18). https:

//www.usenix.org/conference/atc18/presentation/oakes

[66] Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishnamurthi,

and Matthias Felleisen. 2005. Continuations from Generalized Stack

Inspection. In Proceedings of the Tenth ACM SIGPLAN International
Conference on Functional Programming (ICFP ’05). https://doi.org/10.

1145/1086365.1086393

[67] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. 1995. Libckpt:

Transparent Checkpointing Under Unix. In Proceedings of the USENIX
1995 Technical Conference Proceedings (TCON ’95).

342

https://doi.org/10.1088/1742-6596/46/1/067
https://arxiv.org/abs/1812.03651
https://arxiv.org/abs/1812.03651
https://doi.org/10.1145/514191.514212
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://doi.org/10.1109/IC2E.2018.00052
https://doi.org/10.1109/IC2E.2018.00052
https://doi.org/10.1145/3357223.3362709
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://doi.org/10.1145/3177102.3177103
https://github.com/stackless-dev/stackless/wiki
https://akka.io/
https://arxiv.org/abs/1903.12221
http://arxiv.org/abs/1903.12221
https://doi.org/10.1145/53990.54016
https://doi.org/10.1145/53990.54016
http://www.schemeworkshop.org/2007/procPaper4.pdf
https://www.usenix.org/conference/osdi18/presentation/maeng
https://doi.org/10.1109/SP.2014.24
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/logic-apps/
https://azure.microsoft.com/en-us/services/logic-apps/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-code-constraints
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-code-constraints
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-premium-plan
https://docs.microsoft.com/en-us/azure/azure-functions/functions-premium-plan
https://docs.microsoft.com/en-us/azure/azure-functions/functions-host-json#functiontimeout
https://docs.microsoft.com/en-us/azure/azure-functions/functions-host-json#functiontimeout
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/muller
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/muller
https://www.usenix.org/conference/nsdi11/ciel-universal-execution-engine-distributed-data-flow-computing
https://www.usenix.org/conference/nsdi11/ciel-universal-execution-engine-distributed-data-flow-computing
https://www.usenix.org/conference/atc18/presentation/oakes
https://www.usenix.org/conference/atc18/presentation/oakes
https://doi.org/10.1145/1086365.1086393
https://doi.org/10.1145/1086365.1086393

SoCC ’20, October 19–21, 2020, Virtual Event, USA Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker

[68] Project Gutenberg [n.d.]. Project Gutenberg. Retrieved Aug 2018 from

http://www.gutenberg.org

[69] Qifan Pu. 2018. PyWren TPC-DS scripts. Retrieved April 17, 2018 from

https://github.com/ooq/tpcds-pywren-scripts

[70] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,

Fast and Slow: Scalable Analytics on Serverless Infrastructure. In 16th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). https://www.usenix.org/conference/nsdi19/presentation/

pu

[71] Python Software Foundation. 2019. Design and History FAQ. Retrieved
April 15, 2019 from https://docs.python.org/3.6/faq/design.html

[72] Python Software Foundation. 2019. dis—Disassembler for Python
bytecode. Retrieved Sep 9, 2019 from https://docs.python.org/3/library/

dis.html

[73] Python Software Foundation. 2019. pickle—Python object serialization.
Retrieved Sep 9, 2019 from https://docs.python.org/3/library/pickle.

html

[74] John C. Reynolds. 1993. The Discoveries of Continuations. Lisp
Symb. Comput. 6, 3–4 (Nov. 1993), 233–248. https://doi.org/10.1007/

BF01019459

[75] Adam Ruprecht, Danny Jones, Dmitry Shiraev, Greg Harmon, Maya

Spivak, Michael Krebs, Miche Baker-Harvey, and Tyler Sanderson.

2018. VM Live Migration At Scale. In Proceedings of the 14th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (VEE ’18). https://doi.org/10.1145/3186411.3186415

[76] Josep Sampé, Gil Vernik, Marc Sánchez-Artigas, and Pedro García-

López. 2018. Serverless Data Analytics in the IBMCloud. In Proceedings
of the 19th International Middleware Conference Industry (Middleware
’18). https://doi.org/10.1145/3284028.3284029

[77] Kay Schluehr. 2009. generator_tools. Retrieved Sep 9, 2019 from http:

//www.fiber-space.de/generator_tools/doc/generator_tools.html

[78] Tatsurou Sekiguchi, Hidehiko Masuhara, and Akinori Yonezawa. 1999.

A Simple Extension of Java Language for Controllable Transparent

Migration and Its Portable Implementation. In Proceedings of the Third
International Conference on Coordination Languages and Models (CO-
ORDINATION ’99).

[79] Tatsurou Sekiguchi, Takahiro Sakamoto, and Akinori Yonezawa. 2001.

Portable Implementation of Continuation Operators in Imperative Lan-
guages by Exception Handling. Springer Berlin Heidelberg, Berlin,

Heidelberg, 217–233. https://doi.org/10.1007/3-540-45407-1_14

[80] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,

Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark

Russinovich, and Ricardo Bianchini. 2020. Serverless in theWild: Char-

acterizing and Optimizing the Serverless Workload at a Large Cloud

Provider. In 2020 USENIX Annual Technical Conference (USENIX ATC
20). https://www.usenix.org/conference/atc20/presentation/shahrad

[81] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram

Venkataraman, Ion Stoica, Benjamin Recht, and Jonathan Ragan-

Kelley. 2018. numpywren: serverless linear algebra. Master’s the-

sis. EECS Department, University of California, Berkeley. http:

//www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-137.html

[82] Simon Shillaker and Peter R. Pietzuch. 2020. Faasm: Lightweight

Isolation for Efficient Stateful Serverless Computing. In 2020 USENIX
Annual Technical Conference, USENIX ATC 2020, July 15-17, 2020. https:
//www.usenix.org/conference/atc20/presentation/shillaker

[83] Vikram Sreekanti, Harikaran Subbaraj, Chenggang Wu, Joseph E. Gon-

zalez, and Joseph M. Hellerstein. 2020. Optimizing Prediction Serv-

ing on Low-Latency Serverless Dataflow. (2020). arXiv:2007.05832

https://arxiv.org/abs/2007.05832

[84] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E.

Gonzalez, Joseph M. Hellerstein, and Jose M. Faleiro. 2020. A Fault-

Tolerance Shim for Serverless Computing. In Proceedings of the Fif-
teenth European Conference on Computer Systems (EuroSys ’20). https:

//doi.org/10.1145/3342195.3387535

[85] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann

Schleier-Smith, Joseph Gonzalez, Joseph M. Hellerstein, and Alexey

Tumanov. 2020. Cloudburst: Stateful Functions-as-a-Service. Proc.
VLDB Endow. 13, 11 (2020), 2438–2452. http://www.vldb.org/pvldb/

vol13/p2438-sreekanti.pdf

[86] Sriram Srinivasan and Alan Mycroft. 2008. Kilim: Isolation-Typed

Actors for Java. In Proceedings of the 22nd European Conference on
Object-Oriented Programming (ECOOP ’08). https://doi.org/10.1007/

978-3-540-70592-5_6

[87] Volker Strumpen and Balkrishna Ramkumar. 1998. Portable Check-
pointing for Heterogeneous Architectures. Springer US, Boston, MA,

73–91. https://doi.org/10.1007/978-1-4615-5449-3_4

[88] Wei Tao. 2001. A Portable Mechanism for Thread Persistence and Migra-
tion (Mobile Agent). Ph.D. Dissertation. Advisor(s) Lindstrom, Gary.

AAI3005121.

[89] The Internet Archive. 2015. Archive Team JSON Download of Twit-
ter Stream 2015-05. https://archive.org/details/archiveteam-twitter-

stream-2015-05

[90] Transaction Processing Performance Council. 2018. TPC Bench-

mark™ DS Standard Specification Version 2.8.0.

[91] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent Com-

putation without Hardware Support or Programmer Intervention. In

12th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 16). https://www.usenix.org/conference/osdi16/technical-

sessions/presentation/vanderwoude

[92] Guido van Rossum, Jukka Lehtosalo, and Łukasz Langa. 2014. PEP
484—Type Hints. Retrieved Apr 19, 2019 from https://www.python.

org/dev/peps/pep-0484/

[93] Scott Van Woudenberg. 2016. Lessons learned from a year of using live
migration in production on Google Cloud. Retrieved Sep 10, 2019 from

https://bit.ly/36M7T3c

[94] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. 2019. Replayable

Execution Optimized for Page Sharing for a Managed Runtime En-

vironment. In Proceedings of the Fourteenth EuroSys Conference 2019
(EuroSys ’19). https://doi.org/10.1145/3302424.3303978

[95] Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An Architec-

ture for Well-Conditioned, Scalable Internet Services. In Proceedings of
the Eighteenth ACM Symposium on Operating Systems Principles (SOSP
’01). https://doi.org/10.1145/502034.502057

[96] Sebastian Werner, Jörn Kuhlenkamp, Markus Klems, Johannes Müller,

and Stefan Tai. 2018. Serverless Big Data Processing using Matrix

Multiplication as Example. In IEEE International Conference on Big
Data, Big Data 2018. https://doi.org/10.1109/BigData.2018.8622362

[97] Chenggang Wu, Vikram Sreekanti, and Joseph M. Hellerstein. 2020.

Transactional Causal Consistency for Serverless Computing. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD ’20). https://doi.org/10.1145/3318464.3389710

[98] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott

Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with Work-

ing Sets. In Proceedings of the 2nd USENIX Conference on Hot Topics
in Cloud Computing (HotCloud’10). https://www.usenix.org/legacy/

events/hotcloud10/tech/full_papers/Zaharia.pdf

[99] Hua Zhong and Jason Nieh. 2001. CRAK: Linux Checkpoint/Restart
As a Kernel Module. Technical Report CUCS-014-01. Department of

Computer Science, Columbia University.

343

http://www.gutenberg.org
https://github.com/ooq/tpcds-pywren-scripts
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
https://docs.python.org/3.6/faq/design.html
https://docs.python.org/3/library/dis.html
https://docs.python.org/3/library/dis.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://doi.org/10.1007/BF01019459
https://doi.org/10.1007/BF01019459
https://doi.org/10.1145/3186411.3186415
https://doi.org/10.1145/3284028.3284029
http://www.fiber-space.de/generator_tools/doc/generator_tools.html
http://www.fiber-space.de/generator_tools/doc/generator_tools.html
https://doi.org/10.1007/3-540-45407-1_14
https://www.usenix.org/conference/atc20/presentation/shahrad
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-137.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-137.html
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://arxiv.org/abs/2007.05832
https://arxiv.org/abs/2007.05832
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/3342195.3387535
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf
https://doi.org/10.1007/978-3-540-70592-5_6
https://doi.org/10.1007/978-3-540-70592-5_6
https://doi.org/10.1007/978-1-4615-5449-3_4
https://archive.org/details/archiveteam-twitter-stream-2015-05
https://archive.org/details/archiveteam-twitter-stream-2015-05
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/vanderwoude
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/vanderwoude
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://bit.ly/36M7T3c
https://doi.org/10.1145/3302424.3303978
https://doi.org/10.1145/502034.502057
https://doi.org/10.1109/BigData.2018.8622362
https://doi.org/10.1145/3318464.3389710
https://www.usenix.org/legacy/events/hotcloud10/tech/full_papers/Zaharia.pdf
https://www.usenix.org/legacy/events/hotcloud10/tech/full_papers/Zaharia.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Comparison to Existing Frameworks
	2.2 Lambda Function Time Limit

	3 Kappa Design
	3.1 Coordinator
	3.2 Checkpointing
	3.3 Concurrency API
	3.4 External Services

	4 Implementation
	5 Evaluation
	5.1 Checkpointing Overhead
	5.2 Performance of Kappa Library
	5.3 Applications

	6 Limitations and Future Work
	7 Related Work
	7.1 Serverless Programming Frameworks
	7.2 Other Related Work

	8 Conclusion
	Acknowledgments
	References

