Kappa: A Programming Framework for Serverless
Computing

Wen Zhang
UC Berkeley
zhangwen@cs.berkeley.edu

Aurojit Panda
NYU
apanda@cs.nyu.edu

Abstract

Serverless computing has recently emerged as a new para-
digm for running software on the cloud. In this paradigm,
programs need to be expressed as a set of short-lived tasks,
each of which can complete within a short bounded time
(e.g., 15 minutes on AWS Lambda). Serverless computing
is beneficial to cloud providers—by allowing them to better
utilize resources—and to users—by simplifying management
and enabling greater elasticity. However, developing appli-
cations to run in this environment is challenging, requiring
users to appropriately partition their code, develop new coor-
dination mechanisms, and deal with failure recovery. In this
paper, we propose Kappa, a framework that simplifies server-
less development. It uses checkpointing to handle lambda
function timeouts, and provides concurrency mechanisms
that enable parallel computation and coordination.

CCS Concepts

« Computer systems organization — Cloud comput-
ing.

Keywords

Serverless, distributed computing

ACM Reference Format:

Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker. 2020.
Kappa: A Programming Framework for Serverless Computing. In
ACM Symposium on Cloud Computing (SoCC °20), October 19-21,
2020, Virtual Event, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3419111.3421277

(Ol

This work is licensed under a Creative Commons Attribution International 4.0 License.

SoCC °20, October 19-21, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8137-6/20/10.
https://doi.org/10.1145/3419111.3421277

328

Vivian Fang
UC Berkeley
vivian@cs.berkeley.edu

Scott Shenker
UC Berkeley/ICSI
shenker@icsi.berkeley.edu

1 Introduction

Serverless computing is a new cloud paradigm where, in-
stead of provisioning virtual machines (VMs), tenants regis-
ter event handlers (e.g., Python functions) with the platform.
When an event occurs, the platform invokes the handler on
a lambda function, a short-lived, stateless execution environ-
ment. A lambda function can execute for a bounded duration
(e.g., 15 min on AWS) before being terminated.

Serverless computing benefits both cloud tenants and
providers. Tenants no longer need to provision or scale their
VMs, and enjoy greater elasticity from fast lambda boot times
(100s of ms on AWS). Providers can periodically terminate
jobs running on lambda functions (and place the next invoca-
tion elsewhere if desired), improving datacenter utilization.

Due to these benefits, serverless computing is being of-
fered by all major cloud providers [7, 32, 38, 55] and rapidly
adopted by tenants [23], mainly for event-driven workloads
(e.g., file transcoders). Recent work, however, has explored
more general applications on serverless including video pro-
cessing [11, 27], numerical computing [40, 81], and analyt-
ics [44, 70, 76]. These examples indicate significant interest
in exploiting serverless computing beyond event handling,
presumably because of its elasticity and ease of deployment.

Despite this interest, developing general-purpose parallel
applications on today’s serverless platforms remains difficult
due to two main challenges: (1) programmers must manually
partition their computation to fit within the lambda func-
tion time limit; and (2) programmers have no concurrency
or synchronization primitives at their disposal, and so must
either implement such primitives, restrict themselves to use
share-nothing parallelism, or eschew the use of parallel lamb-
das. Although several serverless frameworks [26, 27, 40] have
been developed to simplify development, they fail to address
Challenge 1, and they address Challenge 2 by requiring the
application to be expressed in a special form that deviates
from ordinary programming (e.g., as a state machine).

This paper presents Kappa, a programming framework for
general-purpose, parallel severless applications. Kappa aims

https://doi.org/10.1145/3419111.3421277
https://doi.org/10.1145/3419111.3421277
https://doi.org/10.1145/3419111.3421277
https://creativecommons.org/licenses/by/4.0/

SoCC 20, October 19-21, 2020, Virtual Event, USA

to make serverless development as close to ordinary parallel
programming as possible—a programmer can write ordinary
Python code using a familiar concurrency API (e.g., tasks
and futures), and Kappa runs the code on an unmodified
serverless platform like AWS Lambda using parallel lambda
functions. Kappa offers three main features:
Checkpointing. To run long tasks on time-bounded lamb-
das, Kappa checkpoints program state periodically and re-
stores from this checkpoint upon lambda function timeout.
Our continuation-based checkpointing mechanism (§ 3.2)
operates in user mode and requires no modifications to the
serverless platform.

Concurrency API. To program parallel lambdas, Kappa
provides a concurrency API that supports spawning tasks,
waiting on futures, and passing messages between lamb-
das (§ 3.3). This API is modeled after Python’s built-in multi-
processing package and should be familiar to programmers.
Fault tolerance. Kappa tasks can exhibit nondeterminism
and side effects. Using checkpoints, Kappa ensures that exe-
cution never diverges due to nondeterminism, and that any
side effects invoked within the system are never re-executed
in face of arbitrary lambda function timeouts (§ 3.1).

Kappa requires no changes to the platform, thus allowing
general applications to run on existing serverless offerings.
Producing such a framework is the main contribution of our
work. While similar techniques have been used in other con-
texts (§ 7.2), our main insight lies in recognizing that these
techniques enable more general use of serverless computing.

We implemented five applications using Kappa (§ 5.3),
ranging from bulk-synchronous workloads (e.g., MapReduce)
to ones with more complex concurrency patterns (e.g., dis-
tributed web crawling). We discuss our limitations in § 6.

We have open-sourced Kappa. The code and sample ap-
plications can be found at https://github.com/NetSys/kappa,
and documentation at https://kappa.cs.berkeley.edu.

2 Background and Motivation

Many recent papers [11, 26, 27, 40, 43, 70, 81] have explored
using serverless for tasks beyond event handling. A main
motivation is that lambda functions boot much faster than
VMs!, allowing tenants to quickly launch many compute
cores without provisioning a long-running cluster. Server-
less platforms thus provide a scalable computation substrate
where the amount of computational resources available to
a task can be rapidly altered. Prior work has exploited this
flexibility for video processing [11, 27], numerical computa-
tion [15, 25, 33, 34, 40, 81, 96], data analytics [43, 44, 70, 76],
machine learning [18, 39, 83], and parallel compilation [26].

For example, we found that AWS Lambda functions launch at least 30x
faster than Amazon EC2 c4.4xlarge VMs with similar compute capacity.

329

Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker

However, given that serverless computing originally tar-
geted event-driven workloads, does it makes sense to use
serverless for general applications? In our work, we found
that the many benefits of serverless carry over naturally to
general computing—the cloud provider continues to enjoy
improved statistical multiplexing from the short-livedness of
serverless functions, and the tenant, fast task startup and free-
dom from managing infrastructure [41]. Although serverless
functions can cost more per unit compute than VMs, for jobs
that exhibit widely varying degrees of parallelism through-
out their execution [70, 81], serverless allows flexibly scaling
up or down compute resources according to the parallelism
needed in each stage of the computation, paying for only
what is used. For example, Pu et al. [70] demonstrate that for
analytics workloads, a serverless system can achieve compa-
rable end-to-end performance and cost to a Spark cluster.

2.1 Comparison to Existing Frameworks

Unfortunately, it is difficult to reap the benefits of general-
purpose serverless computing. As soon as one goes beyond
event handling workloads, serverless development becomes
significantly harder due to a mismatch between what the
developer needs and what the serverless platform provides:

e While developers are used to decomposing applica-
tions into parallel tasks, they commonly assume that
each task can run for an arbitrary duration until it com-
pletes. Lambda functions, however, are time-bounded
and thus might not complete a task of arbitrary length.?

e While developers have experience writing parallel
code using a familiar programming model (e.g., tasks
and futures), no such concurrency API is provided by
current serverless platforms, which only invoke lamb-
das concurrently as events fire simultaneously.

This mismatch has led to the development of several frame-
works aimed at simplifying serverless programming. Ex-
amples include mu [27], PyWren [40], and gg [26] from
academia; and AWS Step Functions (8], Azure Durable Func-
tions [58], and Azure Logic Apps [56] from cloud providers.
To use these frameworks, the programmer must:

(1) Partition the computation into small components,
each of which must fit within the lambda function
time limit> and meet other framework-specific restric-
tions (e.g., to simplify fault tolerance); and,

(2) Compose these components into a serverless applica-
tion using a framework-specific format.

2 Although the lambda function time limit varies across platforms and is
subject to change, it currently exists in every major serverless offering and
a shorter time limit provides more scheduling flexibility to the provider.
3For the AWS and Azure offerings, a “component” can also be a call to a
managed service, e.g., a facial recognition API; the lambda time limit doesn’t
apply in this case. Kappa also supports invoking external services (§ 3.4).

https://github.com/NetSys/kappa
https://kappa.cs.berkeley.edu

Kappa: A Programming Framework for Serverless Computing

Table 1: Comparisons of serverless frameworks.

Usage Requirements Features
Program Program Fault Extelinal
. must be service
representation . tolerant
partitioned support
mu [27] State machine Yes X X
PyWren [40] map, wait Yes X X
gg [26] Data-flow graph Yes 4 X
AW‘?’ Step State machine Yes 4 4
Functions [8]
Azure Logic .
Apps [56] State machine Yes 4 v
Azure Durable .
Functions [58] High-level lang. Yes v v
Kappa High-level lang. No v v

While these frameworks simplify serverless development,
they share a few limitations as each step of the workflow cre-
ates programming burden. For example, chunking a program
into components based on running time is a task most pro-
grammers are unfamiliar with (unless the workload is already
chunked) and requires them to reason about, e.g., the wait
time for completing I/O. Once chunked in this manner, com-
bining these components often requires using an unfamiliar
specification format (e.g., finite state machines [8, 27, 56] or
data-flow graphs [26]), adding further cognitive overhead.

For example, an AWS Step Functions tutorial [9] explains
how to “break up a long-running execution into smaller
chunks” by first framing an application as repeated execu-
tions of a small task, and then implementing a loop as a state
machine with five states using a JSON-like language [6]. This
is significantly more cumbersome than the simple for-loop
that would have sufficed in any high-level language.

Table 1 compares Kappa to the prior frameworks. Kappa’s
checkpointing mechanism (§ 3.2) can resume a task when
a lambda function times out, freeing the programmer from
having to manually partition their computation. Kappa’s
high-level concurrency API (§ 3.3) lets programmers develop
parallel serverless applications using a familiar programming
model. We present additional points of comparison in § 7.1.

Of these frameworks, the closest to solving our challenges
(and the most similar to us) is Azure Durable Functions [58],
where the programmer creates serverless workflows by writ-
ing orchestrator functions using a high-level language. An
orchestrator can use the familiar async/await pattern (simi-
lar to Kappa’s concurrency API) to invoke parallel activity
functions, each executing a task on a lambda. Kappa differs
from Azure Durable Functions in two major ways:

e Durable Functions still requires partitioning compu-
tation (and chaining the parts in the orchestrator) as

330

SoCC ’20, October 19-21, 2020, Virtual Event, USA

activity functions are subject to the time limit, while
Kappa’s checkpointing deals with lambda timeouts.

e Due to its fault tolerance mechanism, a Durable Func-
tions orchestrator function must be deterministic, and
must be manually restarted if it runs for too long (§ 7.1).
Kappa does not impose such restrictions.

2.2 Lambda Function Time Limit

As previously discussed, a main constraint of serverless com-
puting is that lambda functions are time-bounded. For exam-
ple, the AWS Lambda platform started off with a 5-minute
limit when it launched, and raised it to 15 minutes four years
later to support more applications [4]. Why does the time
limit exist, and will providers eventually do away with it?

We are not a cloud provider, and hence cannot defini-
tively know the reason behind these time limits. However,
we believe that time-limited functions benefit operators by
providing an alternative mechanism for changing task place-
ment. In VM-based cloud computing, operators often need to
migrate long-running VMs for consolidation or maintenance
purposes using live migration [20], which can be complex,
error-prone [75, 93], and resource-consuming [21]. For ex-
ample, Azure finds live migration “particularly problematic”
due to its resource consumption and, to reduce migrations,
uses VM lifetime predictions to colocate VMs with similar
completion times and refrain from migrating VMs expected
to terminate soon [21]. By contrast, in allowing operators to
kill jobs after a short time, serverless obviates the operator’s
need to predict job lifetimes or migrate jobs.

Kappa enables long-running computation on time-bounded
lambda functions through checkpointing (§ 3.2). Because
checkpointing in Kappa is fast (e.g., less than 5 ms for sizes
up to 100 KB; see § 5.1), applications can afford to checkpoint
frequently, thereby tolerating time limits even more stringent
than imposed by today’s platforms. For example, in § 5.3 we
demonstrate reasonable performance for two applications
under time limits of 1 min and 15 s respectively, where the
exact time limit is unknown to the applications. Thus, Kappa
offers cloud providers greater flexibility in setting lambda
time limits and can even enable non-uniform time limits?,
further improving resource utilization and task placement.

3 Kappa Design

Kappa executes parallel code of arbitrary duration using
short-lived lambda functions. In Kappa, a task represents a
logical thread of execution running in its own memory space,
and physically runs on one or more lambda functions. We
allow tasks to span multiple lambda functions by periodically

4For example, Azure Functions’ Premium Plan [59] provides an option
where serverless function execution is “guaranteed for 60 minutes, but
technically unbounded” [60].

SoCC ’20, October 19-21, 2020, Virtual Event, USA

{—
y—
User Code

° Kappa Compiler —————- .
K 5)Launch 1 |
apra =gl
oo _ Coordinator |«ge e = = 'L.S.I?E*.‘.’*Z{‘.‘.\.?.:" A ’:

VY=
Kappa Transformed oo \
Library User Code 7)Launch] A E
PSR e \ |
o @ = = Checkpoint{ 8 == ¢ !

Figure 1: Kappa workflow. Gray lines represent coordi-
nator actions and dashed black lines represent RPCs.

checkpointing them. When a lambda function executing a
task dies, the task is resumed on another lambda function by
restoring the checkpoint. While tasks are single-threaded,
Kappa enables concurrent processing by allowing each task
to spawn other tasks which execute in parallel, and by provid-
ing inter-task communication mechanisms that allow tasks
to communicate and coordinate with each other.

Kappa has three components: (1) a coordinator responsible
for launching and resuming tasks (§ 3.1) and for implement-
ing Kappa’s concurrency primitives (§ 3.3); (2) a compiler
responsible for generating code required for checkpointing
(§ 3.2); and (3) a library used by tasks for checkpointing,
concurrent processing, and synchronization.

As shown in Figure 1, when using Kappa, a programmer
writes code similar to what runs on a traditional platform,
with minor modifications required by Kappa (§ 6). Next, the
compiler transforms this code into a form suitable for use
by Kappa. Lastly, this program is packaged with the Kappa
library and launched by the coordinator, which starts by
running a designated “main” task.

3.1 Coordinator

The Kappa coordinator is responsible for scheduling tasks
on lambda functions, implementing synchronization and
cross-task communication, tracking task metadata (including
checkpoints), and providing fault tolerance. Similar to other
serverless systems [11, 18, 27, 40], the Kappa coordinator
runs as a regular process either on a VM instance in the
cloud or on a local machine. We merely require that the
lambda functions be able to initiate network connections to
the coordinator, and that the coordinator be able to access
the same storage services (e.g., S3) as lambda functions.
The coordinator tracks the latest checkpoint of each task.
A task writes checkpoint content directly to storage (e.g., S3
or Redis), and the coordinator maintains only checkpoint
locations. Tasks communicate with the coordinator through
the remote procedure calls (RPCs) summarized in Table 2.

331

Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker

Table 2: Core coordinator RPCs.

Name Description

checkpoint()
fut = spawn(f, args)

Takes a checkpoint.

Spawns a task to run f(args); re-
turns a future for the result.
exit(ret) Exits with result ret.
ret = fut.wait()

q = make_queue(sz)
g.enqueue(obj)

obj = q.dequeue()

Gets result; blocks until ready.
Creates a queue with max size sz.
Enqueues into g; blocks if full.
Dequeues from g; blocks if empty.

For instance, after writing a checkpoint, a task uses the
checkpoint RPC to update its checkpoint ID with the coordi-
nator. When a lambda running task ¢ has timed out or failed,
the coordinator restarts task t from its latest checkpoint on
a new lambda function. Tasks may lose some progress and
re-execute some code as a result of being restarted.

Code re-execution can be problematic when making calls
with side effects. In Kappa, we assume that all effectful calls
are processed through the coordinator, and we ensure that
coordinator RPCs are executed once or are never executed,
the latter being possible when the task times out (or fails) be-
fore successfully contacting the coordinator. We implement
this guarantee by requiring the task making an RPC to also
take a checkpoint that resumes execution after the RPC. The
coordinator points the task’s metadata to this checkpoint
as it executes the RPC, so that it can resume a failed task
from the point where the RPC returns. Compared to relying
on user-provided unique IDs or runtime-generated sequen-
tial IDs, our mechanism requires neither user intervention
nor special handling for nondeterministic code. The Kappa
library invokes this mechanism automatically for RPCs.

Coordinator RPCs are synchronous by default, although
we also support asynchronous RPCs, which return as soon
as the checkpoint has been serialized locally; a background
process then persists the checkpoint to storage and contacts
the coordinator. Because the actual RPC logic is executed at
the coordinator, no processing occurs until the coordinator
has been contacted. As a result, in case the lambda is killed
before the coordinator is contacted, it is safe to restore the
task to its previous checkpoint (before the RPC is issued).

Some RPCs are blocking (e.g., wait). A task blocks by first
busy-waiting for a configurable period (1 s by default), and
then quitting the lambda function. In the latter case, the task
is resumed by the coordinator once unblocked. This hybrid
approach provides better resource efficiency than pure busy
waiting and better performance than immediately blocking.

For fault tolerance of the coordinator itself, Kappa pro-
vides the option to continuously replicate coordinator state

Kappa: A Programming Framework for Serverless Computing

to a backing store (currently, a Redis cluster using primary-
backup replication). With this option enabled, every time the
coordinator processes an RPC or a lambda function timeout,
it sends a state update to the backing store and waits for it to
be persisted. After a failure, the coordinator can reconstruct
its previous state from the store and resume the workload.
Kappa also supports checkpoint replication to tolerate stor-
age node failures (§ 4). Our evaluations (§ 5) demonstrate low
overhead even with both coordinator state and checkpoint
replication. If needed, the overhead can be further reduced
by having the coordinator send batch updates periodically.

3.2 Checkpointing

As mentioned in § 3.1, Kappa uses checkpoints to toler-
ate lambda function timeouts and to prevent RPC duplica-
tion. Checkpoints in Kappa are implemented using contin-
uations [74], a language-level mechanism executed in user
mode. Continuations are a well understood technique for sus-
pending and resuming execution, and have been used in past
systems for checkpointing and fault tolerance [79, 88], task
migration [28, 78, 79, 88], asynchronous calls [51, 54], context
switching [86], and debugging [16]. Kappa’s checkpointing
technique is nearly identical to that of previous systems,
although there might be implementation differences.

For background, we briefly introduce continuations and
their usage in Kappa. Our implementation is specialized to
Python, and for simplicity we describe our methods in this
context. However, continuations have been implemented in
many other languages and platforms including Java [28, 78,
79, 86, 88], JavaScript [16, 51, 54], and .NET [66], and our
techniques can be easily extended to other languages.

A continuation can be thought of as a closure (i.e., a func-
tion with some associated data) that captures program state
and control flow information at some execution point; calling
the closure resumes execution from this point in the program.
Kappa takes a checkpoint by generating a continuation and
serializing it to storage, and restores from a checkpoint by
deserializing and invoking a previously stored continuation.

Using Listing 1a as an example, we will explain how con-
tinuations are generated for the checkpoint () call on Line 7.
The code is first transformed by the Kappa compiler, which
identifies all the pause points in the code, i.e., locations where
execution can be suspended for checkpointing. The two
pause points in Listing 1a are highlighted; note that the
call site bar (x, y) is identified as a pause point transitively
since the callee bar can cause a checkpoint to be taken.

For each pause point, the compiler generates a continua-
tion function definition and inserts it into the source code.
As shown in Listing 1b, a continuation function contains all
the code that executes after the corresponding pause point,

332

SoCC ’20, October 19-21, 2020, Virtual Event, USA

Listing 1: Example of continuations in Kappa.

(a) Sample application with (b) Continuation functions
pause points highlighted. inserted by the compiler.

def foo(x, y):

1

2 b = bar(x, y) def cont_foo(b, y):

3 return b * y return b * y

4

5 def bar(x, y):

6 if x <y:

7 checkpoint () def cont_bar(x):

8 z=x+1 z=x+1

9 else: # Skip the else branch,
0 z=y+2 # which is not executed.
1

return z + 3 return z + 3

(c) The pause point in foo is wrapped in exception handling
code to unwind the call stack.

1 def foo(x, y):

2 try:

3 b = bar(x, y)

4 except CoordinatorRPCException as e:

5 e.add_continuation(cont_foo, y=y)

6 raise # Re-raise to continue unwinding.
7

8

return b x y

and takes as arguments any variable whose value is accessed
by the subsequent code (these are called live variables).’
Finally, consider the function call foo(3,4) at execution
time. The checkpoint taken by bar can be written as a list
consisting of one continuation per frame on the call stack:

[(cont_bar,x = 3), (cont_foo,b =0,y = 4)],

where a continuation is a tuple of (1) its continuation func-
tion’s name and (2) live variables in that frame; “0” denotes
a hole to be filled in with the previous continuation’s result.®

To resume from this checkpoint, the Kappa library invokes
the continuations in order (e.g., cont_bar (x=3)), substitut-
ing each continuation’s return value into its successor’s hole.
The return value of the topmost function—i.e., the task’s final
result—is reported to the coordinator (§ 3.1).

We now provide more details on some mechanisms and
designs mentioned in this example.
Generating continuation functions. To reduce runtime
overhead, Kappa generates continuation code for each pause
point at compile time. Pause points can be inserted manually
(by invoking an RPC) or automatically by the compiler using
a simple heuristic—before each function call, checkpoint if
five seconds has elapsed since the previous checkpoint. We
defer finding better heuristics to future work.

5Note, for example, that cont_bar does not include any code from the
else branch because it will not be executed afterwards. Nor does it capture
variable y, whose value is not accessed in the continuation code.

%The same mechanism is used to return values from RPCs.

SoCC 20, October 19-21, 2020, Virtual Event, USA

For each pause point, the compiler statically identifies live
variables [2] and teases out the code that executes afterwards
by analyzing the control structure around the pause point
(similar to Sekiguchi et al. [78] and Tao [88]), thereby con-
structing a continuation function. We omit details of this
analysis and refer interested readers to prior work. Our com-
piler can generate continuations for common control flow
constructs including if statements, for and while loops,
and continue and break statements; it currently lacks sup-
port for some other Python features, which we detail in § 6.

Recall that the compiler must generate continuation func-

tions for transitive pause points, i.e., calls to functions that
may checkpoint. Precisely identifying transitive pause points
at compile time is challenging for Python, a dynamically
typed language with first-class functions. Instead, the Kappa
compiler conservatively assumes every function call to be a
transitive pause point and generates a continuation function
for it. Although this strategy bloats the transformed code,
for our applications the resulting code size is still negligible
compared to the Kappa and third-party libraries.
Runtime behavior. Given the statically generated contin-
uation functions, the Kappa library checkpoints at runtime
by unwinding the call stack to create a continuation for each
frame. It unwinds the stack using a common exception-based
mechanism [28, 51, 66, 79, 88], which we briefly describe.

At every pause point, our compiler inserts an exception
handler that creates a continuation upon catching an excep-
tion (Listing 1c). To make an RPC, the Kappa library records
details of the call and raises a special exception, triggering
the exception handler at every level of the call stack. Each
handler appends a new continuation and re-raises the excep-
tion. Finally, the top-most handler, part of the Kappa library,
serializes and persists the list of continuations.

Because the compiler conservatively assumes that every
function could checkpoint, it wraps every function call in a
try/except block. Even so, the normal execution overhead is
minimal since try/except in Python is “extremely efficient
if no exceptions are raised” [71]—our benchmark showed a
10ns (=~ 8 %) overhead over a no-op function call on AWS
Lambda (Python 3.6). During checkpointing, the exception
handling overhead is negligible compared to storage I/O.
Why language-level checkpoints? Kappa checkpoints
within the high-level language that the application is written
in. An alternative, language-agnostic approach is to save a
process’s address space as in libckpt [67] and DMTCP [10].
Although more transparent, such an approach is less flexible
in checkpoint construction. For example, while Kappa saves
only live variables, a lower level strategy might save extrane-
ous data such as dead values or garbage pages that haven’t
been returned to the OS. Kappa is also more portable—it

333

Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker

Listing 2: Sample concurrent Kappa program.

1 def count(q): 9 g.enqueue("")

2 ctr = 0 10

3 while g.dequeue() != "": 11 @on_coordinator

4 ctr += 1 12 def main():

5 return ctr 13 q = make_queue(sz = 1)
6 14 fut = spawn(count, (q,))
7 def gen(q): 15 spawn(gen, (q,))

8 g.enqueue("a") 16 assert fut.wait() == 1

works on any serverless platform that supports Python re-
gardless of the underlying OS, including any platform that
restricts lambdas to only execute Python code.

Why not use yield? Python’s yield keyword suspends
a function and transfers control to its caller. We decided
against using yield to suspend computation in Kappa (as
Pivot [54] does for JavaScript) as we are unaware of any
portable technique for serializing the suspended state.”

3.3 Concurrency API

Kappa provides mechanisms for launching and synchroniz-
ing parallel tasks, making it easier to exploit the resource
elasticity offered by serverless platforms. Specifically, we
provide two basic concurrency abstractions:

Spawn. The spawn RPC launches a new task to execute a
function call f(args) in parallel and returns a future [50]
for the result. A spawn is implemented by creating an initial
checkpoint that, when resumed, executes the function call;
the coordinator then invokes a lambda that restores from
this checkpoint. We also provide a map_spawn RPC, which
spawns multiple tasks that run the same function on different
arguments; the spawned tasks share an initial checkpoint.
FIFO queues. Kappa tasks can communicate using multi-
producer multi-consumer FIFO queues. These queues have
bounded size—a task blocks when it enqueues to a full queue
or dequeues from an empty queue. These semantics allow
queues to be used not only for inter-process communication
but also as locks and semaphores.

Listing 2 illustrates the use of these primitives. The entry
point function main is marked with the on_coordinator dec-
orator, indicating that it runs as a process on the coordina-
tor rather than on a lambda function. On-coordinator tasks
should be lightweight (e.g., control tasks like main here) so
that the coordinator machine does not become a bottleneck.

As shown in the code, we modeled our API after Python’s
built-in multiprocessing API and expect its usage to resemble
ordinary parallel programming in Python.

"Stackless Python [47] requires a custom Python interpreter, and the
generator_tools package [77] manipulates Python bytecode, which is
neither stable across Python versions nor portable across Python VMs [72].

Kappa: A Programming Framework for Serverless Computing

All aforementioned concurrency operations are imple-
mented as coordinator RPCs, and thus enjoy the RPC fault tol-
erance guarantees (§ 3.1). Furthermore, by directing lambda-
to-lambda communication through the coordinator, Kappa
works around the restriction that lambda functions cannot
accept inbound network connections [36, 41].

The enqueue RPC supports either passing the object to the
coordinator as part of the RPC message, or storing the object
in storage and only passing a handle. The former mode is
faster for small objects (by saving a round trip to storage),
while the latter is better for big objects (since the object
content doesn’t go through RPC processing, also avoiding a
coordinator bottleneck). By default, enqueue picks a mode
using a threshold on object size (see § 5.2).

3.4 External Services

A Kappa task can call services external to the platform (e.g.,
a REST API for computer vision). Interactions with external
services pose two fault tolerance challenges: Kappa must
ensure that (1) external calls with side effects be issued only
once even when lambdas time out;® and (2) calls that last
longer than the lambda time limit make progress.

Kappa solves both challenges in an extensible manner us-
ing spawn: the programmer wraps a stateful external call in
a child task, spawns it on the coordinator (§ 3.3), and waits
for it to finish.” The RPC mechanism (§ 3.1) ensures that the
spawn, and thus the external service call, is never duplicated
(assuming no coordinator failures). In case of a long-lasting
call, the wait would block, causing the parent task to termi-
nate and restart when the child finishes. Note that since the
coordinator is not executed on a lambda function, Kappa can
run several on-coordinator tasks in parallel.

External storage services are treated specially. Writing
to storage is effectful and thus must happen on the coordi-
nator (except for tasks idempotent with respect to storage).
To avoid routing all write content through the coordinator,
Kappa provides a helper that first writes the content to a
temporary location in storage, and then issues a coordinator
RPC that moves the temporary file to its intended location.
We have implemented this mechanism for S3.

4 Implementation

We have implemented Kappa. Our prototype implementation
executes Python 3.6 code on AWS Lambda, although Kappa
can be extended to other languages and serverless platforms.
Compiler and library. We implemented the Kappa com-
piler in Python as described in § 3.2. The compiler-generated

8This subsection assumes no coordinator failures—we cannot guarantee
that external side effects be issued only once if the coordinator can fail.
9Since such tasks merely block on I/O (e.g., a REST API call), they require
little resource and are unlikely to make the coordinator a bottleneck.

334

SoCC ’20, October 19-21, 2020, Virtual Event, USA

code is packaged with the Kappa library, a Python module
that implements checkpointing and RPCs. It serializes con-
tinuations using Python’s built-in and widely used pickle
library, hence requiring all variables captured in a checkpoint
to be serializable using pickle.!® We can relax this require-
ment by using other serialization libraries, or by having the
compiler generate code for unserializable objects.
Coordinator. Our coordinator, written in Go, uses gorou-
tines to schedule Kappa tasks. Each task is managed by a
goroutine, which invokes lambda functions synchronously
to run the task and processes RPCs from it. Synchroniza-
tion between tasks maps to synchronization between gorou-
tines inside the coordinator. For example, each Kappa queue
is backed by a Go channel; a Kappa task blocking on an
enqueue RPC is then implemented as its “manager” gorou-
tine blocking on a send to the corresponding Go channel.
The coordinator launches Python processes locally to run
on-coordinator tasks (§ 3.3).

With fault tolerance enabled, the coordinator persists state
changes before performing any action. We use locks in the co-
ordinator and Redis transactions to ensure that state changes
and corresponding Redis updates are atomic, providing both
durability and consistent ordering for state updates.
Storage. Kappa uses storage services for checkpoints (§ 3.1)
and large queue elements (§ 3.3); we refer to both as stored
objects. We currently support using S3 and Redis for storage.

Kappa supports replicating stored objects for fault toler-
ance using a user-specified minimum replication factor!!,
and can use a higher replication factor to load balance an ini-
tial checkpoint shared by many tasks created by a map_spawn.

Stored objects are garbage collected using reference count-
ing (to account for checkpoint sharing from map_spawn).
When an RPC drops an object’s reference count to zero, the
coordinator instructs the issuing task to delete the object.
Garbage collection (GC) is currently implemented only for
Redis; since S3 storage is cheap, we simply delete all S3 ob-
jects when a workload ends.

5 Evaluation

We now demonstrate the performance and generality of
Kappa. For performance, we measure the overhead of check-
pointing (§ 5.1) and concurrency operations (§ 5.2) using
microbenchmarks, then the end-to-end performance of five
applications. These applications come from diverse domains
(e.g., SQL queries, streaming analytics, and web crawling)

19The pickle module supports most common object types including scalars
and collections of serializable objects. See its documentation [73] for details.
11 A Redis instance can offer a replication factor of > 1 if it has any backups
connected to it. When writing a checkpoint, the Kappa library waits for the
primary Redis instance and all backups to acknowledge the write.

SoCC ’20, October 19-21, 2020, Virtual Event, USA

and exhibit different parallelism patterns (e.g., fork-join, mes-
sage passing), demonstrating the generality of our approach.

We performed our evaluations on AWS (us-west-2 region).
The Kappa coordinator runs on a m5.4xlarge EC2 instance
and creates AWS Lambda functions with maximum mem-
ory (3008 MB). Unless otherwise noted, we enable coordina-
tor fault tolerance (§ 3.1) and checkpoint replication (§ 4)—the
coordinator replicates to a pair of primary-backup Redis in-
stances each on am5.large VM (two vCPUs and up to 10 Gbps
of network), and checkpoints are stored in Redis with a min-
imum replication factor of 2 (using the same setup).

For applicable microbenchmarks (§ 5.2), we compare to
gg [26], PyWren [40] (v0.4), and AWS Step Functions [8]. We
configure gg to use a Redis instance (as specified above) as
storage; PyWren only supports S3. To improve their perfor-
mance, we prepackage binaries into gg’s lambda functions,
and all Python dependencies into PyWren’s (so it can skip
downloading the Anaconda runtime). We also configured
a small 100 ms polling interval for PyWren’s wait function,
which polls S3 for lambda completion.

For end-to-end evaluation (§ 5.3), we compare several
Kappa applications to PyWren and Spark implementations
(the latter on VMs). We do not compare against gg, which
expects ELF executables as input [26] and has no first-class
Python support. Nor do we compare against AWS Step Func-
tions, whose lambda startup overhead is too high for any
meaningful application measurement (§ 5.2). Because our
prototype only supports AWS, we defer comparisons against
Azure Logic Apps and Durable Functions to future work.

5.1 Checkpointing Overhead

We run a task on a lambda function that checkpoints every
100 ms and measure the latency. We look at both synchro-
nous checkpoints (where application processing is paused un-
til the checkpoint is persisted and the RPC returns) and asyn-
chronous checkpoints (where a background step persists the
checkpoint and makes the RPC). We overlap asynchronous
checkpointing with CPU-intensive foreground computation
to match expected application behavior. Checkpoints are
stored on either S3 or Redis; although S3 provides worse per-
formance (see below), it is more price efficient and requires
no additional setup as opposed to Redis, thus representing
the easiest option for most users. Finally, each experiment is
run with and without replication. For the replication-enabled
runs, coordinator state and Redis checkpoints are replicated
on a (separate) pair of Redis instances; we do not actively
replicate S3 checkpoints.

Figure 2 shows the checkpoint latency for various sizes. Re-
dis outperforms S3 for all sizes although the gap narrows for
larger sizes, where throughput dominates. Replication over-
head is less than 2 ms for Redis checkpoints of up to 100 KB,

335

Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker

Table 3: Checkpoint scaling—latency of parallel lamb-
das synchronously taking replicated checkpoints of
0.5 KB at a 100 ms interval.

Parallel lambdas 1 10 100 1000
Median latency 3.55ms 3.63ms 3.54ms 3.54ms
P95 latency 6.17ms 6.47ms 4.70ms 5.41ms

but grows more rapidly afterwards as replication becomes
throughput-bound. Finally, asynchronous checkpointing is
slower as it is overlapped with foreground computation.

In terms of checkpoint content, the call stack depth and the
number of objects captured have little impact on checkpoint
latency for less than ten levels deep and 10 000 objects.

Overall, the median synchronous checkpoint latency is
under 5 ms (with replication) for checkpoints up to 100 KB,
which is not expected to significantly impact application per-
formance. Data-intensive applications can use asynchronous
RPCs to reduce the impact of checkpointing or use custom
serialization to reduce checkpoint size.

Finally, we evaluate the scalability of checkpointing by
measuring the latency of concurrent lambdas simultaneously
taking 0.5KB checkpoints (with replication) at a 100 ms in-
terval. Table 3 shows that the median checkpoint latency
remains less than 4 ms even with 1000 concurrent lambdas.
We can achieve good scaling for larger checkpoint sizes as
well by scaling up the Redis store (since the coordinator load
is unaffected by checkpoint size).

5.2 Performance of Kappa Library

Spawn latency. We have an on-coordinator task measure
the latency of spawning an empty task and waiting for
its completion!?, varying the amount of data passed to the
task. For comparison, we measure the base spawn latency
of gg [26], PyWren [40], and a minimal Go launcher that
directly calls the AWS SDK.

As Table 4a shows, even when passing a large 1 MB argu-
ment, Kappa launches a task within 55 ms over 95 % of the
time. Compared to the minimal Go launcher, a base Kappa
spawn is at median 5.5 ms slower due to RPC overhead (e.g.,
checkpointing and coordinator state replication) and check-
point loading. This mostly excludes any setup cost because
after the first spawn of each run, all subsequent tasks were
found to be running on a reused “warm” Python runtime.

In comparison, gg has slightly higher spawn latency partly
due to process launches and file operations. PyWren, on the
other hand, is significantly slower as its lambda handler polls

128ince the wait RPC has no side effect, we enabled an optimization that
allows wait to not take a checkpoint.

Kappa: A Programming Framework for Serverless Computing

SoCC ’20, October 19-21, 2020, Virtual Event, USA

Synchronous RPC

Asynchronous RPC

[l Redis [| Redis (w/ replication) [| S3 [I S3 (w/ replication)

79.680.6

100+

53.150.9 B6ads

Time (ms) (log scale)
o

219.222.

241.233.

84.684.7

50.951.1

40.138.8 40.139.6

01 1 100 1000

10000

39! 4.3 391
34 3.2 27
0.1 1 1

0 100 1000 10000

Checkpoint size (KB) (log scale)

Figure 2: Checkpoint latency by checkpoint size. Each bar shows the median, 5th percentile (P5), and 95th per-
centile (P95) of 500 measurements. Up to 2% of asynchronous S3 calls failed as they hadn’t finished before the
next call was issued; all Redis calls succeeded. Redis checkpoints are replicated (where noted) to two instances;

S3 checkpoints are not actively replicated.

Table 4: Spawn performance. The “Data” column shows the amount of data passed to the spawned task. The “Go
launcher” is a minimal Go program that creates a new lambda function and invokes it directly using the AWS SDK.

(a) Spawn latency of a single task (five runs of
100 sequential spawns each).

(b) Lambda launch times (mean and std. dev.) in a 1000-lambda launch (n = 20).
The “reuse As” Go launcher reuses the same lambda handler across runs.

Spawn latency

Launch time

Data size Median P95 Data size 500th A 990th A 1000th A

Kappa 0 155ms 205ms Kappa 0 467+16.1ms 609+51.2ms 1.31+0.736s
100KB 17.4ms 23.8ms 100KB 468 +154ms 599+ 51.6ms 1.26+0.498s

1MB 458ms 54.1ms 1IMB 533+13.6ms 815+210ms 1.62+0.132s

Go launcher 0 9.99ms 14.9ms Go launcher 0 487 +45.2ms 601 +46.7ms 1.09+0.442s
(reuse As) 0 347 +58.5ms 414+76.8ms 457 + 106 ms

gg [26] 0 30.9ms 37ms gg [26] 0 668+80.4ms 749+ 81.6ms 809 + 236ms
PyWren [40] 0 2.54s 2.72s PyWren [40] 0 4.13+0.725s 6.56 +1.125s 7.81+1.22s

for task completion at a 2 s interval (not configurable using
its API), dominating the running time of short tasks.'?

Spawn throughput. We measure task launch times in a
1000-task spawn.!* Each task loads a shared checkpoint load-
balanced across four Redis pairs and sleeps for 5 s (subtracted
from the reported launch times). We compare to gg, PyWren,
and two versions of our Go launcher, one creating a new
AWS Lambda handler for each run (as in Kappa), the other
reusing the same handler across runs (as in PyWren and gg).

13PyWren’s lambda handler runs user tasks in a separate process on the
lambda and checks for the subprocess’ completion periodically. This is sep-
arate from the wait function, which polls from the “coordinator” machine.
141000 is our per-region concurrency limit on AWS Lambda.

336

Table 4b shows the mean launch times for the 500th,
990th, and 1000th lambdas. For up to 990 tasks, Kappa adds
a roughly 10 ms overhead over the Go launcher without
lambda reuse. Unlike in single-spawn, this overhead includes
one-time setup costs since parallel lambdas cannot recycle
execution environments. For the 1000th lambda, Kappa ex-
hibits higher mean and variance than gg. We attribute this
gap to Kappa not reusing lambda handlers, given the similar
gap between the two Go launchers. PyWren, unlike the other
systems, launches lambdas asynchronously and detects their
completion by polling S3, leading to worse performance.

Finally, we measure the spawn throughput of AWS Step
Functions, which supports both dynamic parallelism (Map)
and static parallelism (Parallel). With Map, we encountered

SoCC 20, October 19-21, 2020, Virtual Event, USA

g) 3001 Lambda duration
c — 60s
2 200 ---- 120s
(2]
o] -
:8 - 180 s
4 -~
[1001 /N YT N
© oS
** \~\\\
O- T T
0 500 1000
Time (s)

Figure 3: Using AWS Step Functions to launch 1000
lambdas, each sleeping for a fixed duration.

an undocumented concurrency limit of less than 50, too low
for most of our applications. With Parallel, we launched
1000 lambdas each sleeping for an identical duration. Figure 3
shows the number of lambdas running at each point in time.
Although we hit no concurrency ceiling, it took more than
18 minutes for all 1000 lambdas to launch, 130X to 2300%
the duration of the other systems (Table 4b). This overhead
would dominate our applications (§ 5.3), many of which
repeatedly invoke batches of short tasks. We thus do not
offer application comparisons against AWS Step Functions.
Message passing. To quantify task-to-task communica-
tion overhead, we report half the round-trip time to send
a message to another task and have it echoed back using
shared queues (with the receiver busy-waiting). The mes-
sage is stored either on the coordinator or in Redis (§ 3.3); in
both cases it is replicated to two copies, the former as part of
coordinator state, and the latter by stored object replication.

Figure 4 shows message passing latency for various config-
urations. Passing messages through the coordinator is faster
for small messages (tens of KB) since it saves a round-trip to
Redis, but is slower for larger messages due to RPC process-
ing overhead. It might also make the coordinator a bottleneck,
while Redis storage can scale more easily to handle large
messages. The enqueue RPC, by default, picks a mode using
a message size threshold (100 KB in our implementation).
Fault-tolerant writes. For fault-tolerant S3 writes (§ 3.4),
we measure the duration from when the write is issued
to when the object is moved to its intended location (al-
though asynchronous writes allow application code to pro-
ceed during the move). Figure 5 shows fault-tolerant writes
to be costly (2.08x-3.06X median overhead for synchronous
writes), because we had to implement S3 moves using a
slow COPY-DELETE sequence. Applications idempotent with
respect to storage can avoid this overhead by writing to
storage directly.

337

Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker

5.3 Applications

We present five Kappa applications to demonstrate the gen-
erality and performance of our framework. For some appli-
cations we also created Spark baselines, which we ran on
Amazon EMR (Spark 2.3.1) using a m5.4xlarge VM as the
master node (same as the Kappa coordinator) and c4.4xlarge
VMs as workers. Since Kappa uses only one of two hyper-
threads of a lambda, we configured Spark workers to also
only use half of all hyperthreads.
TPC-DS. We implemented four SQL queries from the TPC-
DS benchmark [90]!° as multi-stage MapReduce jobs on
top of Kappa tasks. Tasks in each stage are launched us-
ing map_spawn, data is shuffled using Kappa queues!®, and
query logic is implemented using the pandas library [53].
For comparison, we run the same queries with PyWren and
Spark using identical query plans; and with Spark SQL, which
computes query plans using its query optimizer [13]. All four
read input from S3 and are given the same number of worker
cores. Kappa and PyWren invoke lambdas from the same
VM and are given the same number of Redis instances.!’
We run the queries using the TPC-DS qualification pa-
rameters on data created using the data generator (scale =
100 GB). Kappa launches up to 499 parallel lambda functions
(for Q16), and shuffles 5400 (Q1) to 41 865 (Q94, Q95) items.
Figure 6 shows that for each query, Kappa achieves lower
runtime than PyWren despite providing stronger fault tol-
erance (see discussions of PyWren’s inefficiencies in § 5.2).
Compared to Spark and Spark SQL, Kappa performs compa-
rably or better even without taking into account the time
taken to set up a Spark cluster, which can be minutes.
Word count. We implemented word count in the canoni-
cal MapReduce style; it reads input from and writes output
to S3, and shuffles intermediate data through Kappa queues
(backed by two pairs of m5.large Redis VMs). We evaluate
Kappa word count, as well as a Spark baseline, using 32 GB of
text from Project Gutenberg [68] in 64 MB chunks, and define
a “word” as a maximal substring of at least three English let-
ters (case-insensitive). The output consists of 486 697 unique
words and their counts in text form, amounting to 7.3 MB in
size. Figure 7a shows that Kappa scales well and takes 5.9 %
to 21.6 % longer than Spark at median, with the greatest
slowdown coming from the largest worker count (= 128).
Parallel grep. This application counts the occurrences
of a string in a single file split into chunks. Each worker

15We used the queries for which PyWren implementations are available [69]
(Q1, Q16, Q94, and Q95); we modified them to improve their performance.
1®These queues are configured to pass data through Redis. By the fault
tolerance setup (§ 5), Kappa stores two copies of all shuffle data.

7We use 18 m5.large VMs (each has 2 vCPUs and runs one Redis process).
For Kappa, they are configured as 9 master-slave pairs, one for coordinator
state replication and the rest for checkpoints and shuffle data. The PyWren
version uses all instances for data shuffling with no replication.

Kappa: A Programming Framework for Serverless Computing

572.
Message sent through [J Coordinator [0 Redis |

1000
121

2
3

100 9.7

7.01 722 559 72
7
1 1

Time (ms) (log scale)

Time (ms) (log scale)

[0 s3 [0 sync @ Async

SoCC ’20, October 19-21, 2020, Virtual Event, USA

i

+| Kappa @ PyWren E Spark . Spark SQL

60

?2 %M

471,

O O O

@

Time (s)
o

0.1 KB 1KB 10 KB 100 KB 1MB

Message size (log scale)

10 MB

Figure 4: Latency of message passing
between tasks (median, P5, and P95).

—©— Kappa 30
300

— =% - Spark —
))
< <
@ @
o o 10
S 2
= 100 =
< <
1) 1)
£ £
[oy

A

A. A

30 x | e N

100 KB
Write size (log scale)

Figure 5: Latency of fault-tolerant vs
raw S3 writes (median, P5, and P95).

10MB Q16 Q94

TPC-DS query

Figure 6: TPC-DS query run time.
Bars show the median of ten runs.

—©— Kappa total time Lambda timeout
ke 15

- & - Kappa overhead __ 500 s
o)
T —e— 900s
& 300
<)
o
)
o
£
£ 100

R TR PP § A
i a 50

8 16 32 64
workers (log scale)

128 16 32

(a) Word count (median, n = 5).

64
workers (log scale)

(b) Parallel grep (median, n = 5).

256 2 4 8 16 32
workers (log scale)

(c) Streaming (median, min/max, n = 3).

Figure 7: Strong scaling results for three applications.

processes a contiguous range of chunks and, to deal with
substrings that straddle chunks, communicates boundary
content with neighbors using queues.

We run parallel grep to search 32 GB of data on S3 for a
three-character string that occurs roughly 200 million times.
In addition to reporting the running time, we compute the
workload’s actual duration—the makespan computed using
the actual duration of each task and the task dependency
graph; a task’s actual duration is a conservative measure-
ment of time spent reading input, computing, and writing
output. We then report the overhead (defined as the differ-
ence), which includes lambda invocation, checkpointing, etc.

Figure 7b shows that parallel grep scales well up to 128
workers (each processing two chunks), while the overhead
remains roughly constant at around 2 s. We did not compare
against a Spark implementation since the Spark program-
ming model does not naturally support dealing with the
boundary between two consecutive chunks of the input.'®
Streaming. This workload uses parallel workers to com-
pute the average number of hashtags per tweet in a stream of

18 Although Spark supports seeking to the first newline (or a custom delim-
iter) after an input chunk boundary, it remains a challenge to, e.g., search
for a byte sequence in a binary input where no natural delimiter exists.

338

—_ -
o o

Download
o
o

goodput (GB/s)

©
o

0 2 4 6 8 10

Time (min)

Figure 8: Web crawler with 1000 workers and a 1 min
lambda timeout—Aggregate download rate of bytes
from new pages.

tweets. Workers pull from a shared work queue and send pe-
riodic updates to an aggregator task; they checkpoint before
processing each chunk as a result of calling dequeue. For
evaluation, we use 64 GB of tweets in JSON [89] stored as
128 MB chunks on S3; downloading and processing a chunk
takes roughly 5 s. To stress test timeout recovery, we imposed
a short lambda timeout of 15 s and compare to runs that ex-
perienced no timeouts. Figure 7c shows that the application
scales well and that the 15 s timeout increases the median
duration by 6.8 % to 8.9 %. A less aggressive timeout of 60 s
(not shown) adds a 0.9 % to 3.2 % overhead to impacted runs.

SoCC ’20, October 19-21, 2020, Virtual Event, USA

Web crawler. We implemented a distributed web crawler
based off UbiCrawler [17] that downloads web pages start-
ing from some seed domains [5]. A hash function partitions
domains between workers. When a worker sees a domain
outside its partition, it uses a Kappa queue to send the domain
name to a scheduling task for de-duplication and reassign-
ment. Each worker uses Python asynchronous I/O to issue
30 concurrent downloads.!® Because our prototype compiler
doesn’t handle async/await (§ 6), we treat our I/O code as
an “external library” within which no checkpoints are taken.
When its URL frontier grows beyond a certain size, a worker
stores the remainder of the frontier in Redis (by enqueueing
to a queue) and retrieves it when its frontier runs empty.
We ran the web crawler with 1000 workers for 12 min;
each worker checkpoints after processing every 20 pages. To
exercise Kappa’s fault tolerance, we imposed a short lambda
timeout of 1 min. Figure 8 shows the aggregate rate of bytes
downloaded from new pages. Sudden dips in throughput,
which last from 1s to 2's, indicate workers timing out and
restarting. The crawler achieved a median stable throughput
of 15587 page/s, and downloaded 10.9 million unique pages
in total. The coordinator processed an average of 976 RPC/s.

6 Limitations and Future Work

While Kappa already supports a wide range of applications,
it has a few limitations, which we discuss below.
Unsupported Python features. We have not yet added
support for some Python features to the compiler’s continu-
ation generation logic. These features include try/except,
yield, async/await, nested function definitions, and global
variables. These limitations are not fundamental—prior work
has shown how to implement these features in continuation
passing style, a paradigm that our approach depends on. For
example, Stopify [16] shows how to generate continuations
for nested functions and exception handling in JavaScript.
Other restrictions on input code. Beyond the aforemen-
tioned restrictions on Python features, Kappa requires minor
modifications to application code. The programmer must:

o Insert checkpoint() calls at appropriate points in the
program, e.g., before calling external library functions
that might take a long time;

e Mark calls that have externally visible side-effects
(e.g., resulting in I/O) with @on_coordinator, ensur-
ing that such calls are executed only once (§ 3.4); and,

e Use Kappa’s concurrency primitives (§ 3.3) instead
of primitives such as Python threads.

We did not find these requirements burdensome. Among
all the applications from § 5.3, we only had to insert one

9To avoid overwhelming the crawled websites, we make sure to issue at
most one connection to each distinct domain across all workers.

339

Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker

checkpoint () call in one application.?’ In all other cases, the
program already checkpoints frequently enough by invoking
RPCs, and library calls do not last long enough to require
checkpoints. Nor was our concurrency API any hurdle to
use as it resembles Python’s built-in multiprocessing APL
Static pause points. Recall that Kappa identifies pause
points statically (§ 3.1). This approach reduces the runtime
overhead of checkpointing, but restricts where checkpoints
can be generated and precludes deciding checkpoint loca-
tions at runtime. Relaxing this limitation through dynamic
continuation computation is left to future work.

Can only checkpoint in transformed code. Kappa can
checkpoint only in code transformed by the its compiler and
not in, e.g., a Python C extension like numpy. Control must
therefore return to Kappa-instrumented code once in a while
for checkpoints to be taken.

Lack of static checking. Python’s dynamic nature makes
it challenging to statically analyze application code (as noted
in prior work [63]). For example, the Kappa compiler does
not ensure at compile time that every variable captured by a
checkpoint is serializable. A future direction is to implement
static checking by leveraging Python type hints [31, 92].
Unimplemented GC features. Our garbage collection
implementation (§ 4) currently does not delete (1) a task’s
last checkpoint after it exits, or (2) any object “orphaned” due
to lambda timeout or failure (i.e., written to storage but not
reported to the coordinator); these objects are deleted when
the workload finishes. Adding these features does not change
our design and would add little overhead to the critical path.

7 Related Work

7.1 Serverless Programming Frameworks

In § 2.1, we compared Kappa to existing serverless frame-
works in terms of their usage models. Here we compare the
other features listed in Table 1.

Fault tolerance. A fault-tolerant serverless framework
avoids restarting a workload from scratch when lambda func-
tions and/or the coordinator-equivalent fails. The mu [27]
and PyWren [40] frameworks provide no fault tolerance.
gg [26] and Azure Durable Functions [58] adopt replay-based
fault tolerance—a failed component restarts from the begin-
ning and skips any completed tasks by consulting a history
table. These replay-based approaches, while performant and
transparent, have two drawbacks:

e They require application execution to be deterministic
(otherwise execution may diverge during replay).

20The web crawler has a checkpoint() call inserted to make sure that a
checkpoint is taken for at most every 20 pages fetched.

Kappa: A Programming Framework for Serverless Computing

e The history table can grow unboundedly even if pro-
gram state has bounded size—e.g., a long-running or-
chestrator function on Azure must be restarted manu-
ally once in a while to avoid memory exhaustion [57].

Kappa handles nondeterminism by checkpointing before
each RPC, and avoids blowup by storing state (i.e., check-
points and coordinator state) rather than history.

AWS Step Functions [8] and Azure Logic Apps [56] sup-
port specifying retry policies for failed tasks; only the former
handles availability zone failures [30]. The academic frame-
works do not handle provider datacenter failures.

External services. Kappa supports calling external ser-
vices (§ 3.4). The mu, PyWren, and gg frameworks lack this
support, while the frameworks from cloud providers support
integrating external services into serverless workflows.
Other features. Some of the features provided by previ-
ous systems that Kappa lacks include RPC pipelining [27],
dependency inference [26], straggler mitigation [26], and
workflow visualization [8, 56]. Integrating these features
into Kappa, where applicable, is deferred to future work.

7.2 Other Related Work

Checkpoint and restart. Our underlying techniques—
saving program state upon interrupts or failures and later
resuming from it—are pervasive in the systems literature.
Prior systems have used user-mode checkpointing for fault
tolerance (e.g., libckpt [67] and DMTCP [10]), process mi-
gration (e.g., c2f'tc [87]), asynchronous programming (e.g.,
Tame [46] and SEDA [95]), and virtualization [45] and re-
silience to power failure [52, 91] in embedded devices. Oth-
ers, like VMADump [37, § 3.4], CRAK [99], and BLCR [35],
rely on in-kernel support to checkpoint and/or migrate user
programs. This latter category is not a good fit for existing
serverless environments, where kernel modification (includ-
ing the loading of kernel modules) is prohibited.
Improvements to serverless platforms. Recent works
have proposed serverless-optimized storage and caching so-
lutions (e.g., Pocket [44], Savanna [29, § 3], Cloudburst [85],
AFT [84], and HYDROCACHE [97]), security enforcement via
information flow control [3], and techniques to optimize the
performance and resource usage of serverless platforms [1,
42, 49, 61, 65, 80, 82, 85, 94]. Kappa automatically benefits
from transparent platform improvements, and can exploit
new storage services by placing checkpoints and large queue
elements there (§ 4).

Concurrent processing frameworks. Our concurrency
API (§ 3.3), which is based on message passing, resembles
those of actor frameworks like Erlang [14] and Akka [48].
An alternative approach, a la MapReduce [22] and Spark [98],
relies on assumptions about program structure to parallelize
computation. As shown in § 5.3, structured parallelism can

340

SoCC ’20, October 19-21, 2020, Virtual Event, USA

be easily implemented using Kappa’s lower level primitives.
Ray [62] supports task- and actor-based concurrency using
APIs similar to Kappa’s. Although Ray can checkpoint its
actors, it requires manually implementing state saving and
restoration for each actor [19]; Kappa automates this process.
Continuations. Continuations have been studied exten-
sively in programming languages and compiler optimiza-
tion [74]. For example, several compilers translate source
code to continuation-passing style (CPS) for some compi-
lation passes [12]. Kappa does not directly translate code
to CPS—such a translation would cause significant slow-
downs as Python does not optimize for closure creation or
tail calls.?! Our transformation (§ 3.1) avoids this slowdown
by largely preserving the code’s control structure and only
creating continuation objects when a checkpoint is taken.

As mentioned in § 3.2, continuations have been used by
many prior systems [16, 28, 51, 66, 78, 79, 86, 88]. In addition,
they are used by Mach 3.0 [24] for process blocking and by
CrIEL [64] for task blocking. Kappa uses similar techniques
to allow tasks to block on RPC responses.

8 Conclusion

Although serverless computing originally targeted event han-
dling, recent efforts such as ExCamera [27] and PyWren [40]
have enabled the use of serverless for more diverse appli-
cations. However, developing serverless applications still
requires significant effort. Kappa is a framework that sim-
plifies serverless development by providing a familiar pro-
gramming model. By reducing the friction of developing
serverless programs, Kappa provides an avenue for a larger
set of applications to take advantage of the benefits of server-
less computing.

Acknowledgments

We thank the anonymous reviewers, James McCauley, Ed-
ward Oakes, other members of the UC Berkeley NetSys Lab,
Pratyush Patel, Gur-Eyal Sela, Irene Zhang, and Akshay
Narayan for their feedback. This work was funded in part
by NSF Grants 1817115, 1817116, and 1704941, and by grants
from Intel, VMware, Ericsson, Futurewei, Cisco, Amazon,
and Microsoft.

References

[1] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND:
Towards High-Performance Serverless Computing. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). https://www.usenix.
org/conference/atc18/presentation/akkus

[2] Frances E. Allen. 1970. Control Flow Analysis. In Proceedings of a
Symposium on Compiler Optimization. https://doi.org/10.1145/800028.
808479

2Loitsch [51] notes a similar phenomenon for JavaScript.

https://www.usenix.org/conference/atc18/presentation/akkus
https://www.usenix.org/conference/atc18/presentation/akkus
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479

SoCC 20, October 19-21, 2020, Virtual Event, USA

(3]

[10]

(11

—

[12

=

(13

—_

(14]

(15

=

[16]

(17

—

(18]

(19]

[20]

Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk,
Mooly Sagiv, Thomas Schmitz, and Keith Winstein. 2018. Secure
Serverless Computing Using Dynamic Information Flow Control. Proc.
ACM Program. Lang. 2, OOPSLA, Article 118 (Oct. 2018). https://doi.
org/10.1145/3276488

Amazon Web Services. 2018. AWS Lambda enables functions
that can run up to 15 minutes. Retrieved Jan 9, 2020
from https://aws.amazon.com/about-aws/whats-new/2018/10/aws-
lambda-supports-functions-that-can-run-up-to-15-minutes/
Amazon Web Services. 2019. Alexa Top 1-Million. http://s3.amazonaws.
com/alexa-static/top-1m.csv.zip

Amazon Web Services. 2019. Amazon States Language—AWS Step
Functions. https://docs.aws.amazon.com/step-functions/latest/dg/
concepts-amazon-states-language.html

Amazon Web Services. 2019. AWS Lambda—Serverless Compute—
Amazon Web Services. https://aws.amazon.com/lambda/

Amazon Web Services. 2019. AWS Step Functions. https://aws.amazon.
com/step-functions/

Amazon Web Services. 2019. Iterating a Loop Using Lambda—
AWS Step Functions. Retrieved September 19, 2019 from
https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-
create-iterate-pattern-section.html

Jason Ansel, Kapil Arya, and Gene Cooperman. 2009. DMTCP: Trans-
parent Checkpointing for Cluster Computations and the Desktop. In
Proceedings of the 2009 IEEE International Symposium on Parallel &
Distributed Processing (IPDPS "09). https://doi.org/10.1109/IPDPS.2009.
5161063

Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.
2018. Sprocket: A Serverless Video Processing Framework. In Pro-
ceedings of the ACM Symposium on Cloud Computing (SoCC ’18).
https://doi.org/10.1145/3267809.3267815

Andrew W. Appel. 2007. Compiling with Continuations. Cambridge
University Press, USA.

Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies
Liu, Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J.
Franklin, Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL: Rela-
tional Data Processing in Spark. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data (SIGMOD ’15).
https://doi.org/10.1145/2723372.2742797

Joe Armstrong. 2003. Making reliable distributed systems in the presence
of software errors. Ph.D. Dissertation. The Royal Institute of Technol-
ogy.

Arda Aytekin and Mikael Johansson. 2019. Harnessing the Power
of Serverless Runtimes for Large-Scale Optimization. (2019).
arXiv:1901.03161 http://arxiv.org/abs/1901.03161

Samuel Baxter, Rachit Nigam, Joe Gibbs Politz, Shriram Krishnamurthi,
and Arjun Guha. 2018. Putting in All the Stops: Execution Control
for JavaScript. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2018).
https://doi.org/10.1145/3192366.3192370

Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna.
2004. Ubicrawler: A scalable fully distributed web crawler. Software:
Practice and Experience 34, 8 (2004), 711-726.

Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and
Randy Katz. 2019. Cirrus: A Serverless Framework for End-to-End ML
Workflows. In Proceedings of the ACM Symposium on Cloud Computing
(SoCC ’19). https://doi.org/10.1145/3357223.3362711

Hao Chen. 2019. Implement actor checkpointing by raulchen * Pull
Request #3839 « ray-project/ray. Retrieved April 22, 2019 from https:
//github.com/ray-project/ray/pull/3839

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live

341

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker

Migration of Virtual Machines. In Proceedings of the 2nd Conference on
Symposium on Networked Systems Design & Implementation - Volume 2
(NSDI °05).

Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. 2017. Resource Central: Understand-
ing and Predicting Workloads for Improved Resource Management in
Large Cloud Platforms. In Proceedings of the 26th Symposium on Oper-
ating Systems Principles (SOSP ’17). https://doi.org/10.1145/3132747.
3132772

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified
Data Processing on Large Clusters. Commun. ACM 51, 1 (Jan. 2008).
https://doi.org/10.1145/1327452.1327492

John Demian. 2018. Companies using serverless in production. Re-
trieved Sep 18, 2019 from https://dashbird.io/blog/companies-using-
serverless-in-production/

Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W.
Dean. 1991. Using Continuations to Implement Thread Management
and Communication in Operating Systems. In Proceedings of the Thir-
teenth ACM Symposium on Operating Systems Principles (SOSP ’91).
https://doi.org/10.1145/121132.121155

L. Feng, P. Kudva, D. Da Silva, and J. Hu. 2018. Exploring Serverless
Computing for Neural Network Training. In 2018 IEEE 11th Inter-
national Conference on Cloud Computing (CLOUD). 334-341. https:
//doi.org/10.1109/CLOUD.2018.00049

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chat-
terjee, Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019.
From Laptop to Lambda: Outsourcing Everyday Jobs to Thousands
of Transient Functional Containers. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). https://www.usenix.org/conference/
atc19/presentation/fouladi

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman,
George Porter, and Keith Winstein. 2017. Encoding, Fast and Slow:
Low-Latency Video Processing Using Thousands of Tiny Threads. In
14th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 17). https://www.usenix.org/conference/nsdil7/technical-
sessions/presentation/fouladi

Stefan Funfrocken. 1998. Transparent migration of Java-based mo-
bile agents: Capturing and re-establishing the state of Java programs.
Personal Technologies 2, 2 (01 Jun 1998). https://doi.org/10.1007/
BF01324941

Xiang Gao. 2020. Next Generation Datacenter Architecture. Ph.D. Dis-
sertation. EECS Department, University of California, Berkeley. http:
/[www?2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-30.html
Goncalves] and WSilveiraNZ. 2018. Logic App Geo-Replication
/ Disaster-Recovery. Retrieved September 19, 2019 from https:
//social. msdn.microsoft.com/Forums/azure/en-US/b2fd4ad3-2566-
42f6-a0d0-8374b868eaf7/logic-app-georeplicationdisasterrecovery
Ryan Gonzalez, Philip House, Ivan Levkivskyi, Lisa Roach, and Guido
van Rossum. 2016. PEP 526—Syntax for Variable Annotations. Retrieved
Apr 19, 2019 from https://www.python.org/dev/peps/pep-0526/
Google. 2019. Cloud Functions—Event-driven Serverless Comput-
ing | Cloud Functions | Google Cloud. https://cloud.google.com/
functions/

Vipul Gupta, Dominic Carrano, Yaoqing Yang, Vaishaal Shankar,
Thomas A. Courtade, and Kannan Ramchandran. 2020. Serverless
Straggler Mitigation using Local Error-Correcting Codes. (2020).
arXiv:2001.07490 https://arxiv.org/abs/2001.07490

Vipul Gupta, Swanand Kadhe, Thomas A. Courtade, Michael W. Ma-
honey, and Kannan Ramchandran. 2019. OverSketched Newton: Fast
Convex Optimization for Serverless Systems. (2019). arXiv:1903.08857
http://arxiv.org/abs/1903.08857

https://doi.org/10.1145/3276488
https://doi.org/10.1145/3276488
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-create-iterate-pattern-section.html
https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-create-iterate-pattern-section.html
https://doi.org/10.1109/IPDPS.2009.5161063
https://doi.org/10.1109/IPDPS.2009.5161063
https://doi.org/10.1145/3267809.3267815
https://doi.org/10.1145/2723372.2742797
https://arxiv.org/abs/1901.03161
http://arxiv.org/abs/1901.03161
https://doi.org/10.1145/3192366.3192370
https://doi.org/10.1145/3357223.3362711
https://github.com/ray-project/ray/pull/3839
https://github.com/ray-project/ray/pull/3839
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/3132747.3132772
https://doi.org/10.1145/1327452.1327492
https://dashbird.io/blog/companies-using-serverless-in-production/
https://dashbird.io/blog/companies-using-serverless-in-production/
https://doi.org/10.1145/121132.121155
https://doi.org/10.1109/CLOUD.2018.00049
https://doi.org/10.1109/CLOUD.2018.00049
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://doi.org/10.1007/BF01324941
https://doi.org/10.1007/BF01324941
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-30.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-30.html
https://social.msdn.microsoft.com/Forums/azure/en-US/b2fd4ad3-2566-42f6-a0d0-8374b868eaf7/logic-app-georeplicationdisasterrecovery
https://social.msdn.microsoft.com/Forums/azure/en-US/b2fd4ad3-2566-42f6-a0d0-8374b868eaf7/logic-app-georeplicationdisasterrecovery
https://social.msdn.microsoft.com/Forums/azure/en-US/b2fd4ad3-2566-42f6-a0d0-8374b868eaf7/logic-app-georeplicationdisasterrecovery
https://www.python.org/dev/peps/pep-0526/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://arxiv.org/abs/2001.07490
https://arxiv.org/abs/2001.07490
https://arxiv.org/abs/1903.08857
http://arxiv.org/abs/1903.08857

Kappa: A Programming Framework for Serverless Computing

[35] Paul H Hargrove and Jason C Duell. 2006. Berkeley lab check-
point/restart (BLCR) for Linux clusters. Journal of Physics: Conference
Series 46 (sep 2006). https://doi.org/10.1088/1742-6596/46/1/067

[36] Joseph M. Hellerstein, Jose M. Faleiro, Joseph E. Gonzalez, Johann

Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang

Wu. 2019. Serverless Computing: One Step Forward, Two Steps Back.

In Conference on Innovative Data Systems Research (CIDR ’19). https:

//arxiv.org/abs/1812.03651

Erik Hendriks. 2002. BProc: The Beowulf Distributed Process Space.

In Proceedings of the 16th International Conference on Supercomputing

(ICS °02). https://doi.org/10.1145/514191.514212

IBM. 2019. Cloud Functions—Overview [IBM. https://www.ibm.com/

cloud/functions

Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. 2018.

Serving Deep Learning Models in a Serverless Platform. In 2018 IEEE

International Conference on Cloud Engineering, IC2E 2018. https://doi.

org/10.1109/IC2E.2018.00052

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-

jamin Recht. 2017. Occupy the Cloud: Distributed Computing for the

99%. In Proceedings of the 2017 Symposium on Cloud Computing (SoCC

’17).

Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,

Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Car-

reira, Karl Krauth, Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada

Popa, Ion Stoica, and David A. Patterson. 2019. Cloud Programming

Simplified: A Berkeley View on Serverless Computing. Technical Re-

port UCB/EECS-2019-3. EECS Department, University of California,

Berkeley.

Kostis Kaffes, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2019.

Centralized Core-Granular Scheduling for Serverless Functions. In

Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz,

CA, USA) (SoCC ’19). https://doi.org/10.1145/3357223.3362709

Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas

Pfefferle, and Animesh Trivedi. 2018. Understanding Ephemeral Stor-

age for Serverless Analytics. In Proceedings of the 2018 USENIX Confer-

ence on Usenix Annual Technical Conference (USENLX ATC ’18).

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas

Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Stor-

age for Serverless Analytics. In 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18). https://www.usenix.

(37

—

(38

=

(39

[

[40

=

(41

—

[42

—

(43

[t

[44

=

org/conference/osdi18/presentation/klimovic

Neil Klingensmith and Suman Banerjee. 2018. Hermes: A Real Time

Hypervisor for Mobile and IoT Systems. In Proceedings of the 19th

International Workshop on Mobile Computing Systems & Applications

(HotMobile ’18). https://doi.org/10.1145/3177102.3177103

[46] Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek. 2007. Events

Can Make Sense. In Proceedings of the USENIX Annual Technical Con-

ference (ATC ’07).

Anselm Kruis. 2019. Home e stackless-dev/stackless Wiki. Retrieved

Sep 9, 2019 from https://github.com/stackless-dev/stackless/wiki

[48] Lightbend. 2019. Akka. https://akka.io/

[49] Ping-Min Lin and Alex Glikson. 2019. Mitigating Cold Starts in Server-
less Platforms: A Pool-Based Approach. (2019). arXiv:1903.12221
http://arxiv.org/abs/1903.12221

[50] B.Liskov and L. Shrira. 1988. Promises: Linguistic Support for Efficient

Asynchronous Procedure Calls in Distributed Systems. In Proceedings

of the ACM SIGPLAN 1988 Conference on Programming Language Design

and Implementation (Atlanta, Georgia, USA) (PLDI °88). https://doi.
org/10.1145/53990.54016

Florian Loitsch. 2007. Exceptional Continuations in JavaScript. In 2007

Workshop on Scheme and Functional Programming (Freiburg, Germany).

http://www.schemeworkshop.org/2007/procPaper4.pdf

[45

=

[47

—

(51

—

342

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

SoCC ’20, October 19-21, 2020, Virtual Event, USA

Kiwan Maeng and Brandon Lucia. 2018. Adaptive Dynamic Check-
pointing for Safe Efficient Intermittent Computing. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18). https://www.usenix.org/conference/osdi18/presentation/maeng
Wes McKinney. 2010. Data Structures for Statistical Computing in
Python. In Proceedings of the 9th Python in Science Conference, Stéfan
van der Walt and Jarrod Millman (Eds.). 51 — 56.

James Mickens. 2014. Pivot: Fast, Synchronous Mashup Isolation
Using Generator Chains. In Proceedings of the 2014 IEEE Symposium
on Security and Privacy (SP ’14). https://doi.org/10.1109/SP.2014.24
Microsoft. 2019. Azure Functions—Develop Faster With Serverless Com-
pute | Microsoft Azure. https://azure.microsoft.com/en-us/services/
functions/

Microsoft. 2019. Logic App Services. https://azure.microsoft.com/en-
us/services/logic-apps/

Microsoft. 2019. Orchestrator function code constraints. Retrieved Sep-
tember 19, 2019 from https://docs.microsoft.com/en-us/azure/azure-
functions/durable/durable-functions-code-constraints

Microsoft. 2019. What are Durable Functions? https:
//docs.microsoft.com/en-us/azure/azure-functions/durable/durable-
functions-overview

Microsoft. 2020. Azure Functions Premium Plan. Retrieved September
14, 2020 from https://docs.microsoft.com/en-us/azure/azure-functions/
functions-premium-plan

Microsoft. 2020. host.json reference for Azure Functions 2.x and later.
Retrieved September 14, 2020 from https://docs.microsoft.com/en-us/
azure/azure-functions/functions-host-json#functiontimeout

Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,
Naren Nayak, and Vadim Sukhomlinov. 2019. Agile Cold Starts for Scal-
able Serverless. In 11th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 19). https://www.usenix.org/conference/hotcloud19/
presentation/mohan

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael L Jordan, and Ion Stoica. 2018. Ray: A Distributed Framework
for Emerging Al Applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). https://www.usenix.
org/conference/osdi18/presentation/moritz

Stefan C. Miiller, Gustavo Alonso, Adam Amara, and André Csillaghy.
2014. Pydron: Semi-Automatic Parallelization for Multi-Core and the
Cloud. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/muller

Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven
Smith, Anil Madhavapeddy, and Steven Hand. 2011. CIEL: A Universal
Execution Engine for Distributed Data-flow Computing. In Proceedings
of the 8th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI °11). https://www.usenix.org/conference/nsdil1/ciel-
universal-execution-engine-distributed-data-flow-computing
Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
2018 USENIX Annual Technical Conference (USENLX ATC 18). https:
/[www.usenix.org/conference/atc18/presentation/oakes

Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishnamurthi,
and Matthias Felleisen. 2005. Continuations from Generalized Stack
Inspection. In Proceedings of the Tenth ACM SIGPLAN International
Conference on Functional Programming (ICFP °05). https://doi.org/10.
1145/1086365.1086393

James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. 1995. Libckpt:
Transparent Checkpointing Under Unix. In Proceedings of the USENLX
1995 Technical Conference Proceedings (TCON ’95).

https://doi.org/10.1088/1742-6596/46/1/067
https://arxiv.org/abs/1812.03651
https://arxiv.org/abs/1812.03651
https://doi.org/10.1145/514191.514212
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://doi.org/10.1109/IC2E.2018.00052
https://doi.org/10.1109/IC2E.2018.00052
https://doi.org/10.1145/3357223.3362709
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://www.usenix.org/conference/osdi18/presentation/klimovic
https://doi.org/10.1145/3177102.3177103
https://github.com/stackless-dev/stackless/wiki
https://akka.io/
https://arxiv.org/abs/1903.12221
http://arxiv.org/abs/1903.12221
https://doi.org/10.1145/53990.54016
https://doi.org/10.1145/53990.54016
http://www.schemeworkshop.org/2007/procPaper4.pdf
https://www.usenix.org/conference/osdi18/presentation/maeng
https://doi.org/10.1109/SP.2014.24
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/logic-apps/
https://azure.microsoft.com/en-us/services/logic-apps/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-code-constraints
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-code-constraints
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-premium-plan
https://docs.microsoft.com/en-us/azure/azure-functions/functions-premium-plan
https://docs.microsoft.com/en-us/azure/azure-functions/functions-host-json#functiontimeout
https://docs.microsoft.com/en-us/azure/azure-functions/functions-host-json#functiontimeout
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://www.usenix.org/conference/hotcloud19/presentation/mohan
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/muller
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/muller
https://www.usenix.org/conference/nsdi11/ciel-universal-execution-engine-distributed-data-flow-computing
https://www.usenix.org/conference/nsdi11/ciel-universal-execution-engine-distributed-data-flow-computing
https://www.usenix.org/conference/atc18/presentation/oakes
https://www.usenix.org/conference/atc18/presentation/oakes
https://doi.org/10.1145/1086365.1086393
https://doi.org/10.1145/1086365.1086393

SoCC 20, October 19-21, 2020, Virtual Event, USA

[68] Project Gutenberg [n.d.]. Project Gutenberg. Retrieved Aug 2018 from
http://www.gutenberg.org

Qifan Pu. 2018. PyWren TPC-DS scripts. Retrieved April 17, 2018 from
https://github.com/ooq/tpcds-pywren-scripts

Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,
Fast and Slow: Scalable Analytics on Serverless Infrastructure. In 16th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). https://www.usenix.org/conference/nsdi19/presentation/
pu

Python Software Foundation. 2019. Design and History FAQ. Retrieved
April 15, 2019 from https://docs.python.org/3.6/fag/design.html
Python Software Foundation. 2019. dis—Disassembler for Python
bytecode. Retrieved Sep 9, 2019 from https://docs.python.org/3/library/
dis.html

Python Software Foundation. 2019. pickle—Python object serialization.
Retrieved Sep 9, 2019 from https://docs.python.org/3/library/pickle.
html

John C. Reynolds. 1993. The Discoveries of Continuations. Lisp
Symb. Comput. 6, 3-4 (Nov. 1993), 233-248. https://doi.org/10.1007/
BF01019459

Adam Ruprecht, Danny Jones, Dmitry Shiraev, Greg Harmon, Maya
Spivak, Michael Krebs, Miche Baker-Harvey, and Tyler Sanderson.
2018. VM Live Migration At Scale. In Proceedings of the 14th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (VEE ’18). https://doi.org/10.1145/3186411.3186415

Josep Sampé, Gil Vernik, Marc Sanchez-Artigas, and Pedro Garcia-
Lopez. 2018. Serverless Data Analytics in the IBM Cloud. In Proceedings
of the 19th International Middleware Conference Industry (Middleware
’18). https://doi.org/10.1145/3284028.3284029

Kay Schluehr. 2009. generator_tools. Retrieved Sep 9, 2019 from http:
//www.fiber-space.de/generator_tools/doc/generator_tools.html
Tatsurou Sekiguchi, Hidehiko Masuhara, and Akinori Yonezawa. 1999.
A Simple Extension of Java Language for Controllable Transparent
Migration and Its Portable Implementation. In Proceedings of the Third
International Conference on Coordination Languages and Models (CO-
ORDINATION *99).

Tatsurou Sekiguchi, Takahiro Sakamoto, and Akinori Yonezawa. 2001.
Portable Implementation of Continuation Operators in Imperative Lan-
guages by Exception Handling. Springer Berlin Heidelberg, Berlin,
Heidelberg, 217-233. https://doi.org/10.1007/3-540-45407-1_14
Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild: Char-
acterizing and Optimizing the Serverless Workload at a Large Cloud
Provider. In 2020 USENIX Annual Technical Conference (USENLX ATC
20). https://www.usenix.org/conference/atc20/presentation/shahrad
Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram
Venkataraman, Ion Stoica, Benjamin Recht, and Jonathan Ragan-
Kelley. 2018. numpywren: serverless linear algebra. Master’s the-
sis. EECS Department, University of California, Berkeley. http:
/[www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-137.html
Simon Shillaker and Peter R. Pietzuch. 2020. Faasm: Lightweight
Isolation for Efficient Stateful Serverless Computing. In 2020 USENIX
Annual Technical Conference, USENIX ATC 2020, July 15-17, 2020. https:
/[www.usenix.org/conference/atc20/presentation/shillaker

Vikram Sreekanti, Harikaran Subbaraj, Chenggang Wu, Joseph E. Gon-
zalez, and Joseph M. Hellerstein. 2020. Optimizing Prediction Serv-
ing on Low-Latency Serverless Dataflow. (2020). arXiv:2007.05832
https://arxiv.org/abs/2007.05832

(69

—

[70

[t

[71

—

(72

—

(73

—_

(74

[l

[75]

[76

[l

(77

—

(78

[t

(79

—

(80]

(81

—

82

—

(83

—_

343

Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker

[84] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E.
Gonzalez, Joseph M. Hellerstein, and Jose M. Faleiro. 2020. A Fault-
Tolerance Shim for Serverless Computing. In Proceedings of the Fif-
teenth European Conference on Computer Systems (EuroSys "20). https:
//doi.org/10.1145/3342195.3387535

Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Joseph Gonzalez, Joseph M. Hellerstein, and Alexey
Tumanov. 2020. Cloudburst: Stateful Functions-as-a-Service. Proc.
VLDB Endow. 13, 11 (2020), 2438-2452. http://www.vldb.org/pvldb/
vol13/p2438-sreekanti.pdf

Sriram Srinivasan and Alan Mycroft. 2008. Kilim: Isolation-Typed
Actors for Java. In Proceedings of the 22nd European Conference on
Object-Oriented Programming (ECOOP 08). https://doi.org/10.1007/
978-3-540-70592-5_6

Volker Strumpen and Balkrishna Ramkumar. 1998. Portable Check-
pointing for Heterogeneous Architectures. Springer US, Boston, MA,
73-91. https://doi.org/10.1007/978-1-4615-5449-3_4

Wei Tao. 2001. A Portable Mechanism for Thread Persistence and Migra-
tion (Mobile Agent). Ph.D. Dissertation. Advisor(s) Lindstrom, Gary.
AAI3005121.

The Internet Archive. 2015. Archive Team JSON Download of Twit-
ter Stream 2015-05. https://archive.org/details/archiveteam-twitter-
stream-2015-05

Transaction Processing Performance Council. 2018.
mark™ DS Standard Specification Version 2.8.0.

Joel Van Der Woude and Matthew Hicks. 2016. Intermittent Com-
putation without Hardware Support or Programmer Intervention. In
12th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 16). https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/vanderwoude

Guido van Rossum, Jukka Lehtosalo, and Lukasz Langa. 2014. PEP
484—Type Hints. Retrieved Apr 19, 2019 from https://www.python.
org/dev/peps/pep-0484/

Scott Van Woudenberg. 2016. Lessons learned from a year of using live
migration in production on Google Cloud. Retrieved Sep 10, 2019 from
https://bit.ly/36M7T3c

Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. 2019. Replayable
Execution Optimized for Page Sharing for a Managed Runtime En-
vironment. In Proceedings of the Fourteenth EuroSys Conference 2019
(EuroSys °19). https://doi.org/10.1145/3302424.3303978

Matt Welsh, David Culler, and Eric Brewer. 2001. SEDA: An Architec-
ture for Well-Conditioned, Scalable Internet Services. In Proceedings of
the Eighteenth ACM Symposium on Operating Systems Principles (SOSP
’01). https://doi.org/10.1145/502034.502057

Sebastian Werner, Jorn Kuhlenkamp, Markus Klems, Johannes Miiller,
and Stefan Tai. 2018. Serverless Big Data Processing using Matrix
Multiplication as Example. In IEEE International Conference on Big
Data, Big Data 2018. https://doi.org/10.1109/BigData.2018.8622362
Chenggang Wu, Vikram Sreekanti, and Joseph M. Hellerstein. 2020.
Transactional Causal Consistency for Serverless Computing. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD °20). https://doi.org/10.1145/3318464.3389710
Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with Work-
ing Sets. In Proceedings of the 2nd USENLX Conference on Hot Topics
in Cloud Computing (HotCloud’10). https://www.usenix.org/legacy/
events/hotcloud10/tech/full_papers/Zaharia.pdf

Hua Zhong and Jason Nieh. 2001. CRAK: Linux Checkpoint/Restart
As a Kernel Module. Technical Report CUCS-014-01. Department of
Computer Science, Columbia University.

[85]

[86]

[87]

[88]

[89]

[90] TPC Bench-

[o1]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

http://www.gutenberg.org
https://github.com/ooq/tpcds-pywren-scripts
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
https://docs.python.org/3.6/faq/design.html
https://docs.python.org/3/library/dis.html
https://docs.python.org/3/library/dis.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://doi.org/10.1007/BF01019459
https://doi.org/10.1007/BF01019459
https://doi.org/10.1145/3186411.3186415
https://doi.org/10.1145/3284028.3284029
http://www.fiber-space.de/generator_tools/doc/generator_tools.html
http://www.fiber-space.de/generator_tools/doc/generator_tools.html
https://doi.org/10.1007/3-540-45407-1_14
https://www.usenix.org/conference/atc20/presentation/shahrad
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-137.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-137.html
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://arxiv.org/abs/2007.05832
https://arxiv.org/abs/2007.05832
https://doi.org/10.1145/3342195.3387535
https://doi.org/10.1145/3342195.3387535
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf
http://www.vldb.org/pvldb/vol13/p2438-sreekanti.pdf
https://doi.org/10.1007/978-3-540-70592-5_6
https://doi.org/10.1007/978-3-540-70592-5_6
https://doi.org/10.1007/978-1-4615-5449-3_4
https://archive.org/details/archiveteam-twitter-stream-2015-05
https://archive.org/details/archiveteam-twitter-stream-2015-05
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/vanderwoude
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/vanderwoude
https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
https://bit.ly/36M7T3c
https://doi.org/10.1145/3302424.3303978
https://doi.org/10.1145/502034.502057
https://doi.org/10.1109/BigData.2018.8622362
https://doi.org/10.1145/3318464.3389710
https://www.usenix.org/legacy/events/hotcloud10/tech/full_papers/Zaharia.pdf
https://www.usenix.org/legacy/events/hotcloud10/tech/full_papers/Zaharia.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Comparison to Existing Frameworks
	2.2 Lambda Function Time Limit

	3 Kappa Design
	3.1 Coordinator
	3.2 Checkpointing
	3.3 Concurrency API
	3.4 External Services

	4 Implementation
	5 Evaluation
	5.1 Checkpointing Overhead
	5.2 Performance of Kappa Library
	5.3 Applications

	6 Limitations and Future Work
	7 Related Work
	7.1 Serverless Programming Frameworks
	7.2 Other Related Work

	8 Conclusion
	Acknowledgments
	References

