
Advanced Outlier Detection Using Unsupervised
Learning for Screening Potential Customer Returns

Hanbin Hu
Department of ECE

University of California
Santa Barbara, CA 93105

hanbinhu@ucsb.edu

Nguyen Nguyen
NXP Semiconductors
Austin, TX 78735

nguyen.nguyen@nxp.com

Chen He
NXP Semiconductors
Austin, TX 78735

chen.he@nxp.com

Peng Li
Department of ECE

University of California
Santa Barbara, CA 93105

lip@ucsb.edu

Abstract—Due to the extreme scarcity of customer failure
data, it is challenging to reliably screen out those rare defects
within a high-dimensional input feature space formed by the
relevant parametric test measurements. In this paper, we study
several unsupervised learning techniques based on six industrial
test datasets, and propose to train a more robust unsupervised
learning model by self-labeling the training data via a set of
transformations. Using the labeled data we train a multi-class
classifier through supervised training. The goodness of the multi-
class classification decisions with respect to an unseen input data
is used as a normality score to defect anomalies. Furthermore,
we propose to use reversible information lossless transformations
to retain the data information and boost the performance and
robustness of the proposed self-labeling approach.

Keywords—unsupervised learning, outlier detection, self-
labeling, post-silicon testing.

I. INTRODUCTION

Screening out all potentially defective parts before shipping

to customers is crucial for minimizing the risk of the products

failing in the customer line or field [1]. Typically, test process

consists of wafer probe test, burn-in test with packaged parts,

and final test, as shown in Fig. 1. During both the wafer

probe and final test phases, a large number of parametric tests

are performed to extract the part performance values. Outlier

detection is applied using the results from the parametric tests

to identify abnormal parts. Such parametric tests and outlier

detection are especially important to test analog and mixed-

signal circuits, as a defect in those circuits is more likely to

cause a parametric shift rather than a hard functional failure.

The typical measure of design quality is DPPM, i.e., number

of Defective Parts which fail after shipping to the customer

(also known as customer failures) Per Million parts shipped.

The target quality level for chips that are deployed in mission-

critical applications, e.g. automotive electrics, can be very

stringent. As the complexity of semiconductor products keeps

increasing, it is increasingly challenging for post-silicon test-

ing to screen out all defects without any escape to customers.

Wafer
Fab

Wafer
Stress/Tests Assembly Final

Test

Advanced
Outlier

Detection

Fig. 1: Post-silicon production test flow.

While it is critical to learn from extremely rare (in DPPM

level) customer failures to improve outlier defect detection

to reach the Zero Defect (or zero customer failure) quality,

there remain major challenges in this learning process. 1)
Customer failures are rare, as they are escapes from a rather

comprehensive test process. As nearly-all of the defective

parts have been screened out, data on customer failures are

extremely scarce, typically at several parts per million (PPM)

level at most. 2) It can be difficult to identify a subset of

parametric tests that expose potential failures. Alternatively,

outlier detection may be performed over a high-dimensional

input feature space formed by a large number of parametric

test measurements. 3) It is difficult to catch latent reliability

faults by comparing with the normal chip data distribution,

leading to defect escapes.

As one illustrative example, Fig. 2a shows different types

of defects around parallel wires (in gray) on a particular metal

layer, and Fig. 2b gives the corresponding distribution of

two parametric test results. The small green defects have no

impact on the circuit performance, which also locate in the

center of the distribution of the parametric test data. The large

blue defect can cause catastrophic short-circuit fault and are

typically far away from the center of the distribution, making

it easy to screen it out. The red defects, the so-called latent

reliability defects, might not be caught by post-silicon testing,

however, can evolve into early life failures in the customer

field due to aging. Such latent defects are extremely hard to

be detected unless a large combination of different parametric

tests is analyzed in detail to distinguish them from normal

circuit behaviors or inconsequential defects during post-silicon

testing.

(a) Defect illustration

1x

2x
(b) Defect distribution

Fig. 2: Illustration of potential defects types.

Regular Paper
978-1-7281-9113-3/20/$31.00 ©2020 IEEE

INTERNATIONAL TEST CONFERENCE 1

Ef
fe
ct
iv
en

es
s

Efficiency

Weak at
detecting

poorer parts

Very good at
detecting

poorer parts

Good part is also
screened out with the

poorer material

Very little good part is
screened out with the

poorer material

Fig. 3: Advanced outlier detection evolution.

Due to the scarcity of failure data, typically there are insuf-

ficient defective samples to validate unsupervised models for

outlier detection [2]. As shown in Fig. 3, most early works in

this field applied yield based screening strategies like statistical

bin limits (SBL) and below minimum yield (BMY) [3], [4]. In

order to more efficiently and effectively screen out outlier parts

and reduce the corresponding yield loss, several univariate

outlier detection methods such as static/dynamic part average

test (S/DPAT) [5]–[8], and nearest neighbor residual (NNR)

[9]–[11], and location average [9], [12] were proposed and

are commonly employed in the industry. Multivariate outlier

detection methods were also proposed for screening rare

defects and customer returns [13], [14]. However, with recent

advances in the machine learning field, it remains interesting

to study how advanced machine learning techniques can be

helpful for outlier detection in test.

This paper aims to study modern machine learning tech-

niques on outlier detection in view of screening defect escapes

to customers. The purposes of this paper are two-fold. First,

we assess the application of the advancements in anomaly

detection [15], [16] from the field of machine learning to

the targeted testing problem and observe their limitations.

We consider several popular unsupervised anomaly detection

methods trained using normal data and proposed in machine

learning. Tree-based methods such as isolation forest [17] flag

a detected anomaly when the average path length to the leaves

in the forest falls below a threshold. One-class support vector

machine (OCSVM) [18]–[20] bounds the normal training data

within a tight boundary, which is used to separate normal data

from abnormal data. Autoencoders [21], [22] or generative

adversarial networks (GAN) [23], [24] are among the most

successful methods where any observed large reconstruction

error signifies anomaly.

While demonstrating certain degrees of success in other

anomaly detection problems, we show that the aforementioned

methods do not work well for the challenging problem of

identifying extremely-rare customer failures so as to minimize

defect escape to customers. Hence, the second purpose of this

paper is to bring a new perspective to post-silicon testing by

adapting the geometric transformation based deep anomaly

image detection approach [25], which leverages supervising

learning for solving the unsupervised learning problem. More

specifically, [25] creates a set of self-labeled images by trans-

forming each example in the given raw training dataset using a

number of geometric transformations. Each transformed image

is labeled using the index of the transformation applied. A

multi-class classifier is trained using the self-labeled training

data. During inference, an unseen image is first transformed

using the same set of geometric transformations. The resulting

transformed images are classified by the trained multi-class

classifier. The goodness of the classification decisions is con-

sidered as a normality score, which is used to signify detection

of abnormality when the normality score drops to a low

value. We introduce two key modifications to make this self-

labeling approach viable for the intended extremely-rare cus-

tomer failure detection problem. First, we replace geometric

transformations used for images by nonlinear transformations

suitable for processing test data. Second, we introduce a family

of reversible information lossless transformations to boost

the performance and robustness of the self-labeling methods.

Experimentally, we demonstrate that the proposed self-labeling

approach significantly outperforms the other methods in terms

of prediction accuracy and robustness using a large set of

public datasets and real industrial post-silicon test data.

II. UNSUPERVISED OUTLIER DETECTION

A. Problem Formulation

Consider a D-dimensional input space X ⊆ R
D containing

all potential inputs, e.g. parametric post-silicon test results. Let

XN ⊆ X and XA ⊆ X represent normal and abnormal inputs,

e.g. the test results of good vs. failing (outlier) chips, with

XN∩XA = ∅ and XN∪XA = X . To classify an input x ∈ X as

normal or abnormal, an unsupervised learning method learns

a binary classification function f : X → {0, 1}, where “0”

indicates normality (true negative example), i.e., x ∈ XN ; “1”

represents outlier (true positive example), i.e., x ∈ XA.

Without labeled outlier data due to its scarcity, well de-

veloped supervised learning cannot be applied. Instead, as

shown in Fig. 4, one learns a score function s : X → R

through certain unsupervised learning algorithm to assess the

normality of the seen normal data. During inference phase,

the larger value of s (x), the more likely the unseen data is

normal. With a specified decision threshold sTh, the binary

classification model f trained without supervision is

fTh (x) =

{
0 s (x) ≥ sTh

1 s (x) < sTh
(1)

Note that the input features may not fully reveal the outlier

information in practice, implying XN ∩ XA 	= ∅. However,

the score function definition still works properly under this

case, indicating how likely the given input x appears to be an

outlier.

B. Performance Metric of Machine Learning Models

The choice of the decision threshold sTh in (1) has a

large impact on the quality of outlier detection. It is unfair

to select specific thresholds when comparing different outlier

Regular Paper INTERNATIONAL TEST CONFERENCE 2

Fig. 4: Unsupervised outlier detection illustration.

TP

TP FN

nTPR
n n

FP

FP TN

nFPR
n n

0 1

1

(a) General case.

TPR

FPR0 1

1

(b) Single outlier case

Fig. 5: ROC curve and AUROC.

detection methods since the scale and the distribution of the

score function value vary widely from methods to methods.

We apply the widely adopted Area Under Receiver Operation

Characteristic (ROC) curve (AUROC) to compare different

models without relying on specific thresholds.

As shown in Fig. 5, the ROC curve characterizes the true

positive rate (TPR) and false positive rate (FPR) of a model as

the threshold sTh is swept. If sTh exceeds the maximum score

function value of a testing dataset, all data will be considered

as outliers, making both TPR and FPR 1.0; the other way

around will make both TPR and FPR 0. The ROC curve is

monotonically increasing between (0, 0) and (1, 1). Improved

outlier detection performance leads to larger TPR and lower

FPR values. Correspondingly, the ROC curve would be pushed

towards the top left corner as shown in Fig. 5a, with the best

possible AUROC value of 1.0. For example, there is only one

customer failure in the industrial automotive microcontroller

datasets we use. Correspondingly, there is a sharp transition

in the ROC as shown in Fig. 5b, where the green area (1 −
AUROC where only one failure exists) can be interpreted as

the yield loss when no defect escape occurs.

Compared to other metrics like Area Under Precision-Recall

(AUPR), AUROC takes a more balanced consideration over

both abnormal and normal data, which efficiently captures

outliers and minimizes yield loss.

C. Review of Traditional Unsupervised Learning Models

Here gives a brief review of 4 different unsupervised

anomaly detection methods: Gaussian model, One-class SVM,

Isolation forest and Autoencoder.

1) Gaussian Model: One typical category of anomaly de-

tection methods is to estimate the data distribution given the

training samples, and then mark low-probability instances as

anomaly. Gaussian model [26] is one of the most popular

assumptions for the data distribution, which especially suits

for the post-silicon test, as most of data follows a Gaussian

distribution. Specifically, given N normal training samples{
x(1), · · · ,x(N)

}
, the mean and covariance matrix are esti-

mated as follows.

μ̂ =
1

N

N∑
i=1

x(i) (2)

Ĉ =
1

N

N∑
i=1

(
x(i) − μ̂

)(
x(i) − μ̂

)T

(3)

Thus, clearly, the score function is defined as the probability

distribution of the estimated Gaussian distribution as below.

s (x) = N
(
x; μ̂, Ĉ

)
(4)

2) One-class SVM: One-class support vector machine

(OCSVM) proposed in [18] separates all the data from the ori-

gin with maximum margin in the feature space corresponding

to the kernel function. In general, instead of directly looking at

the probability distribution of the normal sample occurrence,

one-class SVM attempts to map the data into a feature space

and enclose the normal data into a small region. This results

in a binary function which captures regions in the input space

where most of the normal data live. The training process

of one-class SVM is governed by a quadratic programming

minimization problem as stated below.

min
ω,ξi,ρ

1

2
‖ω‖2 + 1

νN

N∑
i=1

ξi − ρ; (5)

s.t. ω · φ
(
x(i)

)
≥ ρ− ξi; (6)

ξi ≥ 0, (7)

where φ (·) specifies the kernel function to be used for which

radial basis function (RBF) is a common choice, ν is a

hyperparameter characterizing the solution by setting the upper

bound of the outliers inside the training dataset and the

lower bound for the number of support vectors. According

to the distance to the decision boundary in the feature space,

represented by ρ, the score function can be depicted using

s (x) = ω · φ
(
x(i)

)
− ρ (8)

Note that the signed version of the previous function is used

to give a binary classification of the anomaly detection in [18].

3) Isolation forest: In addition to the distribution estimation

and data separation in the feature space, a tree-based method

called isolation forest [17] takes a disparate approach to

distinguish the anomaly from the normal data. The isolation

forest consists of an ensemble of isolation trees (iTrees). More

formally, for each node T in an iTree, T is either an external

node with no child or an internal node with one test and

exactly two children (TL, TR). The test at node T consists

of an attribute q and a split value p, and based on whether

q < p it will traverse the data point to either TL or TR.

In order to build such an iTree, a subset of entire dataset

X′ ⊂ {
x(1), · · · ,x(N)

}
is randomly selected. The iTree

Regular Paper INTERNATIONAL TEST CONFERENCE 3

is generated by recursively partitioning, and then a training

algorithm recursively partitions X′ by randomly selecting an

attribute q and a split value p until there is only one data point

in the node or all the data share the same value.

The underlying principle of anomaly detection for isolation

forest is that the anomaly data is more likely to reach an

external node with a smaller height (distance to the iTree root),

as all the iTrees are generated randomly. Therefore, its score

function is characterized by the average height to reach the

external nodes in the ensemble of iTrees as follow.

s (x) = −2−Eh(x)/c(N), (9)

where c (N) is a constant normalization factor related to the

sample size N . The negative sign is added to be consistent

with the definition of score function in this paper.

4) Autoencoder: There exists another popular anomaly

detection method which is reconstruction-based enabled by an

autoencoder. Similar ideas using reconstruction for anomaly

detection are widely used in recent work [16], [21], [22].

First, the original data x ∈ X ⊆ R
D is encoded (compressed)

into a latent variable z = FE (x) ∈ Z ⊆ R
d with d � D

typically, and then decoded (reconstructed) into the original

space with x′ = FD (z), as illustrated in Fig. 6. The encoder

and the decoder are usually fully-connected neural networks

for numerical data processing or convolutional neural networks

for image processing. The entire autoencoder is trained to min-

imize the overall reconstruction error (loss function for training

as shown below) so that a good embedding representation of

the normal data can be learnt in the low-dimensional latent

space Z .

L =

N∑
i=1

∥∥∥x(i) − x′(i)
∥∥∥2 (10)

With an outlier data, since it doesn’t follow the normal

data embedding representation, it is expected to observe a

large reconstruction error, which is used to defined the score

function for the autoencoder.

s (x) = −‖x− FD (FE (x))‖2 (11)

III. SELF-LABELING UNSUPERVISED OUTLIER

DETECTION

A. Self-Labeling via Transformation

Based on the discussions in the Section II, we aim to learn

a robust and reliable score function s : X → R using normal

training data only. Unsupervised learning for extremely-rare

failure detection is challenging. Motivated by the self-labeling

x

z

xEncoder DecoderEF DF

Reconstruction Error

Fig. 6: Autoencoder illustration.

approach for anomaly image detection of [25], we convert this

unsupervised learning problem to one that is based on multi-

class classification with self-labeled training data.

Consider K distinct transformation functions

T (1), T (2), · · · , T (K), each defining a mapping to a m-

dimensional feature space: T (i) : R
n → R

m, where

i ∈ [1,K]. For a given training dataset X with N examples,

we apply all K transformations to each sample, resulting

in a transformed training dataset with KN examples. Each

newly transformed example is labeled by its corresponding

transformation applied. Formally, the resulting labeled training

dataset is{(
T (i)

(
x[j]

)
, T (i)

)
|i ∈ [1,K] , j ∈ [1, N]

}
(12)

Note that each label is given by the type of the transformation

performed without involving any actual labeling effort nor

abnormal data. The adopted transformations can be regarded

as an approach for nonlinear feature extraction through which

the original input space X ⊆ R
n is mapped into a feature

space F ⊆ R
m.

B. Proposed Self-labeling Unsupervised Outlier Detection

Fig. 7 highlights the proposed self-labeling outlier detec-

tion approach. During training, self-labeling is executed first

per (12) to generate the transformed training dataset over

which a multi-class classifier is trained to well classify each

example to the corresponding label (transformation). During

inference, similarly, given an input x, K transformed inputs{
T (1) (x) , T (2) (x) , · · · , T (K) (x)

}
are obtained by apply-

ing the K transformation functions. For each transformed

T (i) (x), the classifier outputs a K-dimensional probability

vector p
(
T (i) (x)

)
with each k-th element specifying the

predicted likelihood for T (i) (x) to fall under class k, i.e.

transformed by k-th transformation.

When the classifier is well trained using the normal data, it

would classify a new unseen normal input x by outputting:

pi

(
T (i) (x)

) ≈ 1 and pi

(
T (k) (x)

) ≈ 0, i 	= k as the

transformed unseen normal data is likely to locate within the

transformed normal training data distribution. However, for an

abnormal input, it is likely that pi

(
T (i) (x)

)
is significantly

lower than 1.0 as the transform outlier data may deviate

from the transformed normal data distribution. Accordingly,

we select the following score function

s (x) =
K∑
i=1

pi

(
T (i) (x)

)
(13)

Transformed Data

Transformed Data

Transformation Functions

Input X

1T
1T X

2T X
2T

KT Transformed Data KT X

Supervised Classification

1p

2p

np

s X

Fig. 7: Self-labeling unsupervised outlier detection framework.

Regular Paper INTERNATIONAL TEST CONFERENCE 4

Transform T1

Transform T2

Transform
T3

Original Input Space Mapped Input Space

Class 1
Class 3

Class 2

Fig. 8: Outlier detection via 3 transformations. Gray points:

normal data; Red/pink points: outliers. Yellow arrows: mis-

classification of mapped outliers signifies anomaly detection.

An input is detected as an outlier if s (x) � K. This self-

labeling outlier detection is illustrated in Fig. 8.

IV. DESIGN OF TRANSFORMATION FUNCTIONS

One major challenge in the proposed self-labeling approach

is to select proper transformation functions. For example, if

T (i) = T (j), the classifier cannot distinguish between the i-
th and j-th class as they correspond to identical transformed

input data location. Our key idea is to select a set of distinct

information lossless transformation functions to retain suffi-

cient statistics for the original data. Consider that our original

data x, the transformed data T (x), and the final score function

s (x) formulate a Markov chain s (x) ←→ T (x) ←→ x. Ac-

cording to the data processing inequality, we have the mutual

information follows I (s (x) ;T (x)) ≤ I (s (x) ;x). In order

to maximize the mutual information after the transformation,

our method is to make the transformed data fully recoverable,

without information loss, after the transformation.

Inspired by the recent developments in reversible neural

networks [27], [28], we propose an reversible architecture for

the transformation functions to fully retain the original data

information. Suppose x = (x1, x2, · · · , xD)
T

has D features,

we partition the indices of the D features into two sets p1
and p2 with equal size (add one artificial feature if D is odd),

where p1 ∩ p2 = ∅ and p1 ∪ p2 = [1, D] ∩ N. With that, we

can obtain two new vectors with the corresponding features

as xp1 and xp2. Then the transformed data y (combining two

parts yp1 and yp2) is given by the reversible transformation

as follows.

yp1 = xp1 +G (yp2) (14)

yp2 = xp2 + F (xp1) (15)

where F and G are two arbitrary functions. Through solving

the previous equations, the original input x can be fully

recovered with knowing the output y, showing the information

lossloss property of the reversible transformation block. In

order to easily generate a large number of distinct transforma-

tions, the transformation function should be flexible enough

to be configured. We considered three different approaches

to increase the flexibility of the transformation: 1) function

choices for the reversible block; 2) feature permutation; 3)

cascade architecture.

1px

2px

x

1py

2py

y

Fig. 9: Reversible lossless transformation block.

A. Function Choices for the Reversible Block

The arbitrariness of the two functions F and G provides

a lot of freedom to be designed. Without adding additional

training and computational cost for F and G, which are usu-

ally two neural networks, from our empirical experience, we

suggest to apply two simple univariate nonlinear functions f
and g for each element of the input vector. Therefore, we have

F (x) =
(
f (x1; θf) , f (x2; θf) , · · · , f

(
xD/2; θf

))T
and

G (x) =
(
g (x1; θg) , g (x2; θg) , · · · , g

(
xD/2; θg

))T
, where

θf ∈ Θ and θg ∈ Θ are the parameters for the two univariate

functions from a parameter space Θ. Hence, we can create a

pool of function choices, for each reversible block, we can

randomly assign two functions to f and g and sample the

parameters θf and θg from Θ to generate a large number of

distinct transformations before training phase.

In particular, for our experimental settings, a pool of three

different polynomial functions with randomized order param-

eter θ uniformly chosen from Θ = [2, θmax] ∩ N is applied,

including: power polynomial functions,

p(θ) (x) = xθ (16)

Legendre polynomial functions,

l(0) (x) = 1 (17)

l(1) (x) = x (18)

l(θ) (x) =
2θ − 1

θ
xl(θ−1) (x)− θ − 1

θ
l(θ−2) (x) (19)

and Chebyshev polynomial functions,

c(0) (x) = 1 (20)

c(1) (x) = x (21)

c(θ) (x) = 2xc(θ−1) (x)− c(θ−2) (x) . (22)

B. Feature Permutation

Beyond the function choice for each reversible block, we

also add one more permutation block, as shown in Fig.

9, to boost the feature mixing and increase flexibility for

distinct function generation. For the input of each reversible

block, a random feature permutation (partition) is generated

before training process and then fixed during the training and

inference phase to produce two groups of data.

This technique boosts the diversity among different re-

versible blocks. Furthermore, with the help of the cascade

architecture (introduced in the next section), this permutation

will also boost feature mixing among multiple features, which

Regular Paper INTERNATIONAL TEST CONFERENCE 5

1T x

2T x

1KT x
KT x

Fig. 10: Reversible transformation architecture.

TABLE I: Public anomaly detection datasets.

Public # Samples # Features # Anomaly
thyroid 3772 6 93 (2.5%)
glass 214 9 9 (4.2%)

Satimage-2 5803 36 71 (1.2%)
shuttle 49097 9 3511 (7%)
smtp 95156 3 30 (0.03%)

speech 3686 400 61 (1.65%)

serves a nonlinear feature extraction process providing a

distinct view of the normal data for each transformation.

C. Overall Cascade Reversible Architecture

The overall reversible lossless transformation architecture

is illustrated in Fig. 10. Each reversible block is marked in

different color to indicate they are all distinct. We apply

both techniques: function choices and feature permutation,

described in Section IV-A and IV-B, to generate a large

number of distinct reversible blocks.

Here, a cascade architecture is applied. Note that the re-

versible lossless tranformation block can be repeated multiple

times to get a single tranformation. Hence, the data will

go through R reversible blocks to acquire T (i+1) (x) from

T (i) (x). In order to generate K different transformations,

this computation is performed K − 1 times, assuming the

first transformation is the original data point T (1) (x) = x,

which is already available. Thus, there exists (K − 1)R
different reversible blocks in the entire architecture, providing

a large number of distinct transformations without losing any

information.

V. EXPERIMENTAL RESULTS

A. Methods and Datasets

Using six public outlier detection datasets [29], [30]

and post-silicon testing datasets for six real customer fail-

ures/returns of an advanced industrial automotive microcon-

troller, We demonstrate and compare the performances of

several unsupervised learning methods: Gaussian model [26],

one-class SVM [18], isolation forest [17], autoencoder [16],

and four configurations of the proposed self-labeling outlier

detection method.

For the industrial cases, the six customer failures were

from several millions of parts shipped, showcasing the real-

life challenges in extremely-rare defect detection. We pulled

TABLE II: Industrial automotive microcontroller datasets.

Datasets Entire tests “Critical” tests
Chip Insert # Samples # Features # Samples # Features

Chip 1

A 47006 104 50101 6
B 45617 1134 45658 103
C 41828 989 42694 28
D 38940 769 42396 28
E 42293 1054 42293 31

Chip 2

A 44579 104 50498 6
B 46529 1135 46563 103
C 44833 989 45472 28
D 42905 780 44843 28
E 44586 1051 44586 31

Chip 3

A 38897 102 39840 6
B 37826 695 37831 327
C 34544 369 34544 181
D 34245 352 34246 153
E 34228 1377 34228 690

Chip 4

A 16115 184 17356 6
B 14892 379 15238 24
C 13581 2558 13692 128
D 13169 2587 13169 58
E 13272 2396 13272 47
F 7889 5592 7888 59

Chip 5

A 44282 105 50029 6
B 47257 1151 47350 117
C 43007 982 44862 32
D 43893 800 44522 32
E 44036 1108 44036 37

Chip 6

A 16591 241 18403 6
B 16514 1521 16530 255
C 15268 3009 16157 129
D 15916 2645 16081 60
E 16068 4224 16068 47
F 16054 5526 16054 63

out the post-silicon testing data for the wafer lot containing

the customer failure to be learned. There were around tens of

thousands of parts in a wafer lot which were all manufactured

around the same time with similar tools as the customer

failure chip, thus providing relevant data for statistical outlier

analysis. Parts in a wafer lot went through wafer test and final

test at different temperatures, which we call test inserts. Each

dataset (with one customer failure chip) consists of five to

six test inserts. In total, we had 32 test inserts corresponding

to the 6 datasets for the 6 customer failure chips. Each test

insert contains up to a few thousands of parametric tests for

tens of thousands of parts from the wafer lot which contains

the single customer failure part. In addition, we also generate

6 additional datasets using the test inserts containing only

the “critical” parametric tests (features) suggested by expert

engineers empirically based on the customer failure modes,

which we call “critical” tests (inserts). Hence, the number of

parametric tests (features) varied from 6 to 5,592 in the test

inserts. The detailed numbers of features and examples of the

public and industrial datasets are listed in Table I and Table II,

respectively. Furthermore, the samples with missing or invalid

test values are discarded here. Therefore, For each test insert,

the number of samples in the “critical” tests are larger than or

equal to the one for the entire tests.

Fig. 11 provides the visualization of the data distribution of

one example test insert (Chip 6 with the “critical” test insert

A), with the single customer failure marked in orange. As we

Regular Paper INTERNATIONAL TEST CONFERENCE 6

Fig. 11: Dataset example visualization.

can see, the outlier point almost locates at the center of the

data distribution in every dimension, which makes it extremely

challenging to separate the anomaly from the normal data by

only checking each single parameter or test feature.

B. Experimented method settings

For each test insert, we trained a machine learning model

based on each method to screen out the customer failure

part. 90% of the normal data were randomly sampled using

a uniform distribution as the training dataset, and remaining

10% of normal data and the single customer failure were used

as testing data.

We compared our proposed self-labeling method with sev-

eral popular families of existing outlier detection techniques

as reviewed in Section II. Under the category of input-

distribution-based approaches, we applied a Gaussian distri-

bution model [26] to capture the mean vector and covariance

matrix of normal data, and employed the probability density

function as the score function. Furthermore, we adopted one-

class support vector machine (OCSVM) [18] which utilized

the radial basis function (RBF) kernel and its decision func-

tion as its score function. The isolation forest method [17]

generated a forest of 250 trees with a resampling size of

1024, the average path length metric suggested in [17] was

regarded as the score function. Moreover, we also investigated

the popular reconstruction-based method, autoencoder [16].

An autoencoder with a latent size of 32 and a hidden layer of

size 64 was trained over 100 epochs with a batch size of 64,

Regular Paper INTERNATIONAL TEST CONFERENCE 7

and the reconstruction error of the autoencoder was selected

as its corresponding score function.

For the proposed self-labeling outlier detection method,

we experimented four variants of the proposed self-labeling

outlier detection method. This first one, marked as PolyTrans
later, directly used the polynomial functions as the transfor-

mation functions, and the other three adopted the reversible

lossless transformation blocks. As mentioned in Section IV,

the function pool for reversible block consists of three fami-

lies of univariate polynomial functions including polynomial

functions, Legendre functions and Chebyshev functions. The

detailed configurations for the three reversible transformations

are listed: 1) θmax = 4 and R = 1 for RevTransA; 2)

θmax = 5 and R = 1 for RevTransB; 3) θmax = 5 and R = 2
for RevTransC. In order to obtain a fair number of distinct

transformations, all the experimented variants used K = 22
transformations. The classifier used was an artificial neural

network with two hidden layers of size 64 and 16 trained

over 20 epochs using a batch size of 64. The same settings

were used for all the public datasets and all the real industrial

automotive microcontroller datasets. Furthermore, we applied

L2 regularization with a weight decay factor of 0.0005 for the

classifier training to avoid overfitting and improve the overall

performance.

C. Public Dataset Performance

Table III provided a detailed comparison of different meth-

ods for all the public datasets. As discussed in Section II-B, we

use AUROC as a measure of performance for fair comparison

between different methods. Although the public datasets in I

don’t have extremely rare outliers compared to the industrial

post-silicon testing datasets, they still serve as good basis for

general outlier detection method comparison. Among all the 8

methods considered, RevTransC gives the best AUROC results

on average. Although the other three variants of the proposed

methods didn’t outperform isolation forest in terms of average

AUROC, they are still comparable (within 1%) to it, which is

the best reference method, and surpass other three reference

methods a lot, demonstrating that the proposed methods can be

applied as a robust general-purpose outlier detection method

as well.

D. Industrial Dataset Performance

The performance comparison for the the industrial auto-

motive microcontroller datasets are reported in Table IV, V

and VI. Each industrial dataset (chip) contains multiple test

inserts with a single customer failure, and we learnt a machine

learning model for each test insert to screen out the particular

customer failure based on each method or setting.

During the advanced outlier detection phase performed at

the very end of the testing process, as shown in Fig. 1,

experienced engineers may determine whether it is worthwhile

to discard a certain number of chips, i.e. at a given yield loss

level, in order to screen out the customer failure based on

outlier detection results collected from all test inserts. As long

as the outlier detection results from one of the test inserts can

screen out the customer failure, the outlier detection perfor-

mance based on other test inserts doesn’t matter. Therefore,

we report the best performance value among all the test inserts

for each method in these three tables.

Beyond AUROC introduced in Section II-B, we also used

another performance metric, estimated yield, to evaluate dif-

ferent methods for the industrial datasets in Table V and VI.

We define the estimated yield of each outlier detection method

as one minus the percentage of normal chips we will reject

together with the customer failure from the corresponding

wafer lot. Recall that the proposed machine learning based

advanced outlier detection takes place after the preceding

wafer/package/final test steps (Fig. 1) in which each test insert

will reject a certain number of chips based on functional tests

and hard limits in parametric tests. The normal chips that we

will reject together with the customer failure by performing

the outlier detection at a specific test insert (e.g. wafer test)

might have already failed in a subsequent test insert (e.g.

final test). Hence, the estimated yield of each outlier detect

method is calculated excluding those chips which already

failed in subsequent test inserts. As stated before, the final

decision of advanced outlier detection process is largely based

on engineering experience. The estimated yield, in some sense,

reflects the minimum over-reject we can expect in order to

remove the particular customer failure in the advanced outlier

detection phase.

Note that the adopted industrial datasets only have a single

customer failure for each dataset. For each dataset, the reported

AUROC and estimated yield value varies for different methods

and different datasets, manifesting the real life challenges

in extremely-rare defect detection. On average, the reference

Gaussian method produces the worst AUROC and estimated

yield performance, which mispredicts examples close to the

center of the normal data distribution to be abnormal. This

suggests that directly characterizing normal data using a Gaus-

sian distribution is not effective in separating out hard latent

defects. As for the other reference methods, isolation forest

and autoencoder tend to give a relatively good performance

among all the reference methods, as shown in Table IV to VI.

In general, the four variants of the proposed self-labeling

outlier detection method are among the very best of all the

experimented methods. Specifically, the variant RevTransC
reports best performance values in Table IV and V, and the

variant PolyTrans reports the best estimated yield in Table

VI. Under this extremely-rare outlier detection context, the

proposed self-labeling approach is able to expose the unique-

ness of the hard-to-detect outliers and maximize the chance of

detecting such extremely-rare (latent) defects (e.g. the targeted

customer failure part) as well as minimize the overkill (false

positive) rate.

In practice, for cost reason, test engineers may set a min-

imum yield goal for an outlier detection method to screen

out potential customer failures or returns. In Table V and VI,

the number of customer failures out of the total six that can

be screened out under a yield goal of 93% by each method

is reported under the row “# Y≥93%”. In other words, “#

Regular Paper INTERNATIONAL TEST CONFERENCE 8

TABLE III: Comparison of outlier detection performance using AUROC for public datasets.

Datasets
Reference Methods Proposed Methods

Gaussian OCSVM IsoForest AE PolyTrans RevTransA RevTransB RevTransC
thyroid 0.974 0.937 0.989 0.946 0.955 0.962 0.971 0.94
glass 0.683 0.513 0.794 0.624 0.899 0.825 0.767 0.815

satimage-2 0.995 0.981 0.996 0.93 0.995 0.991 0.992 0.985
shuttle 0.994 0.983 0.998 0.998 1 0.995 0.992 0.999
smtp 0.815 0.773 0.921 0.859 0.729 0.86 0.866 0.963

speech 0.515 0.461 0.45 0.482 0.542 0.508 0.505 0.525
Avg. AUROC 0.829 0.775 0.858 0.807 0.853 0.857 0.849 0.871

TABLE IV: Comparison of outlier detection performance using AUROC for industrial datasets.

Datasets
Reference Methods Proposed Methods

Gaussian OCSVM IsoForest AE PolyTrans RevTransA RevTransB RevTransC
Chip 1 0.685 0.872 0.882 0.902 0.461 0.889 0.938 0.949
Chip 2 0.823 0.964 0.984 0.979 0.898 0.928 0.939 0.895
Chip 3 0.882 0.94 0.937 0.977 0.928 0.934 0.954 0.973
Chip 4 0.921 0.788 0.838 0.931 0.826 0.828 0.814 0.843
Chip 5 0.972 0.907 0.978 0.959 0.986 0.865 0.966 0.985
Chip 6 0.929 0.738 0.758 0.888 0.916 0.891 0.967 0.999

Chip 1 (“Critical”) 0.858 0.753 0.885 0.759 0.839 0.818 0.922 0.647
Chip 2 (“Critical”) 0.846 0.858 0.853 0.845 0.917 0.977 0.952 0.925
Chip 3 (“Critical”) 0.587 0.874 0.932 0.733 0.992 0.815 0.826 0.986
Chip 4 (“Critical”) 0.81 0.77 0.586 0.944 0.778 0.809 0.529 0.762
Chip 5 (“Critical”) 0.841 0.99 0.984 0.671 0.942 0.96 0.936 0.941
Chip 6 (“Critical”) 0.89 0.861 0.963 0.818 0.935 0.929 0.899 0.896

Avg. AUROC 0.837 0.860 0.882 0.867 0.868 0.887 0.887 0.900

TABLE V: Comparison of outlier detection performance using estimated yield for industrial datasets containing the entire

parametric tests.

Datasets
Reference Methods Proposed Methods

Gaussian OCSVM IsoForest AE PolyTrans RevTransA RevTransB RevTransC
Chip 1 0.779 0.917 0.904 0.921 0.543 0.907 0.948 0.961
Chip 2 0.853 0.971 0.987 0.982 0.914 0.944 0.953 0.919
Chip 3 0.886 0.941 0.939 0.978 0.943 0.937 0.96 0.974
Chip 4 0.978 0.914 0.912 0.978 0.932 0.91 0.915 0.933
Chip 5 0.984 0.934 0.99 0.971 0.989 0.894 0.974 0.99
Chip 6 0.947 0.792 0.787 0.916 0.931 0.904 0.974 0.999

Avg. Yield 0.905 0.912 0.920 0.958 0.875 0.916 0.954 0.963
Y≥93% 3 3 3 4 4 2 5 5

TABLE VI: Comparison of outlier detection performance using estimated yield for industrial datasets containing the “critical”

parametric tests.

Datasets (“Critical”)
Reference Methods Proposed Methods

Gaussian OCSVM IsoForest AE PolyTrans RevTransA RevTransB RevTransC
Chip 1 0.902 0.795 0.921 0.797 0.893 0.865 0.934 0.728
Chip 2 0.897 0.899 0.881 0.891 0.933 0.982 0.969 0.95
Chip 3 0.632 0.878 0.934 0.743 0.993 0.821 0.832 0.989
Chip 4 0.867 0.922 0.858 0.965 0.888 0.897 0.811 0.915
Chip 5 0.872 0.994 0.99 0.76 0.966 0.965 0.951 0.953
Chip 6 0.919 0.897 0.976 0.852 0.958 0.934 0.925 0.914

Avg. Yield 0.848 0.898 0.927 0.835 0.939 0.911 0.904 0.908
Y≥93% 0 1 3 1 4 3 3 3

Y≥93%” counts all the chips with the estimated yield no less

than the yield goal (93%) for each method. Given the fact

that the customer failures under this study escaped from the

original production testing on several millions of parts shipped,

robustly screening out even one or two of these customer

failures is already challenging. Among all the methods, our

proposed self-labeling outlier detection methods screen out the

most number of customer failures under the given yield goal.

In particular, in Table V RevTransB and RevTransC can catch

five customer failures out of the total six, and in Table VI

PolyTrans can catch four customer failures while meeting the

minimum 93% yield goal.
As we can observe from Table V and VI, the overall

estimated yield and the number of customer failures captured

under the given yield goal reduce as we only consider the

“critical” parametric tests. This may suggest that manual se-

lection of critical test features based on empirical experiences

can lead to sub-optimal outcomes and exploiting powerful

machine learning techniques capable of considering a large

number of features may be advantageous. Even with less infor-

mation (parametric tests) about the failure part, the proposed

methods still retain a high estimated yield and surpass most

of the reference methods as shown in Table VI. Specifically,

PolyTrans gives the best average estimated yield of 93.9%
among all the experimented methods.

We compare the four variants of the proposed method

based on the results from Table III to V. The three variants

of self-labeling method based on reversible transformations

Regular Paper INTERNATIONAL TEST CONFERENCE 9

achieve a better average AUROC and estimated yield on

average compared to PolyTrans, suggesting that maintaining

the raw feature information is critical to achieve good outlier

detection performance when designing the transformations for

the self-labeling method. Furthermore, RevTransC achieves the

best performance among all three reversible transformation

variants, demonstrating that more distinct transformations with

higher order and more complex transformations tend to work

better. There exists one exception. Table VI reports that

PolyTrans gives the best yield among all methods while not all

available parametric tests are considered. We expect that the

the test inserts included in those datasets may not contain all

information relevant to the particular customer failure, making

the reversible transformations less effective.

VI. CONCLUSION

We presented a machine learning enabled outlier detection

methodology in order to facilitate the screening of extremely-

rare failures that have escaped from the standard post-silicon

testing flow. We proposed a self-labeling technique for un-

supervised outlier detection through transformations of avail-

able test data, effectively exposing the abnormal behaviour

of extremely-rare chip failures in a high-dimensional test

feature space. Based on public-domain outlier detection and

challenging industrial automotive microcontroller test datasets,

we demonstrated through extensive experimental studies that

our proposed method consistently outperforms other popular

outlier detection algorithms in terms of accuracy and robust-

ness, leading to reduction of yield loss and test escape.

ACKNOWLEDGEMENT

This material is based upon work supported by the Semi-

conductor Research Corporation (SRC) through Texas Analog

Center of Excellence at the University of Texas at Dallas (Task

ID: 2810.031) and by the National Science Foundation under

Grants No. 1956313.
The authors would like to thank NXP Semiconductors for

providing the experimental data, and University of California

Santa Barbara (UCSB) Center for Scientific Computing (CSC)

at California NanoSystems Institute (CNSI) for providing

computing support. Any opinions, findings, conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of SRC, NSF,

NXP Semiconductors, University of California, Santa Barbara,

and their contractors.

REFERENCES

[1] W. R. Mann, F. L. Taber, P. W. Seitzer, and J. J. Broz, “The leading
edge of production wafer probe test technology,” in Proceedings of
International Conference on Test, Oct 2004, pp. 1168–1195.

[2] S. S. Sabade and D. M. Walker, “Ic outlier identification using multiple
test metrics,” IEEE Design and Test of Computers, vol. 22, no. 6, pp.
586–595, Nov 2005.

[3] S. Illyes and D. A. G. Baglee, “Statistical bin limits-an approach to wafer
disposition in ic fabrication,” IEEE Transactions on Semiconductor
Manufacturing, vol. 5, no. 1, pp. 59–61, Feb 1992.

[4] M. J. Moreno Lizaranzu, “Computer integrated manufacturing in semi-
conductor industry. automation, electronic wafer mapping, defect reduc-
tion and equipment utilization improvement in probe and final test,”
Ph.D. dissertation, University of Seville, November 2012.

[5] “Guidelines for part average testing,” Automotive Electronic Council,
vol. AEC-Q001 Rev-D, Dec. 2011.

[6] T. Sakamoto, K. Yofu, and T. Kyuho, “New method of screening out
outlier; expanded part average testing during package level test,” IEEE
Transactions on Semiconductor Manufacturing, vol. 30, no. 4, pp. 351–
356, Nov 2017.

[7] W. Dobbelaere, R. Vanhooren, W. De Man, K. Matthijs, A. Coyette,
B. Esen, and G. Gielen, “Analog fault coverage improvement using final-
test dynamic part average testing,” in Proceedings of IEEE International
Test Conference (ITC), Nov 2016, pp. 1–9.

[8] M. J. Moreno-Lizaranzu and F. Cuesta, “Improving electronic sensor
reliability by robust outlier screening,” Sensors (Basel, Switzerland),
vol. 13, no. 10, pp. 13 521–13 542, 2013.

[9] K. M. Butler, S. Subramaniam, A. Nahar, J. M. Carulli, T. J. Anderson,
and W. R. Daasch, “Successful development and implementation of
statistical outlier techniques on 90nm and 65nm process driver devices,”
in IEEE Intl. Reliability Physics Symposium, 2006, pp. 552–559.

[10] W. R. Daasch, J. McNames, D. Bockelman, and K. Cota, “Variance
reduction using wafer patterns in i/sub ddq/ data,” in International Test
Conference, 2000, pp. 189–198.

[11] S. S. Sabade and D. M. H. Walker, “Comparison of wafer-level spatial
i/sub ddq/ estimation methods: Nnr versus ncr,” in IEEE Intl. Workshop
on Current and Defect Based Testing, Apr. 2004, pp. 17–22.

[12] W. R. Daasch, K. Cota, J. McNames, and R. Madge, “Neighbor selection
for variance reduction in iddq and other parametric data,” in IEEE
International Test Conference, USA, 2001, pp. 92–100.

[13] P. M. O’Neill, “Production multivariate outlier detection using principal
components,” in IEEE International Test Conference, 2008, pp. 1–10.

[14] N. Sumikawa, J. Tikkanen, L. Wang, L. Winemberg, and M. S. Abadir,
“Screening customer returns with multivariate test analysis,” in IEEE
International Test Conference, 2012, pp. 1–10.

[15] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Computing Surveys, vol. 41, no. 3, pp. 1–58, Jul. 2009.

[16] R. Chalapathy and S. Chawla, “Deep Learning for Anomaly Detection:
A Survey,” arXiv:1901.03407, Jan. 2019.

[17] F. T. Liu, K. M. Ting, and Z. Zhou, “Isolation forest,” in Proceedings of
IEEE International Conference on Data Mining, Dec 2008, pp. 413–422.

[18] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
Neural Computation, vol. 13, no. 7, pp. 1443–1471, 2001.

[19] D. M. Tax and R. P. Duin, “Support vector data description,” Machine
Learning, vol. 54, no. 1, pp. 45–66, Jan 2004.

[20] L. Ruff et al., “Deep One-Class Classification,” in International Con-
ference on Machine Learning, Jul. 2018, pp. 4393–4402.

[21] B. Zong et al., “Deep Autoencoding Gaussian Mixture Model for Unsu-
pervised Anomaly Detection,” in International Conference on Learning
Representations, Feb. 2018.

[22] S. Zhai, Y. Cheng, W. Lu, and Z. Zhang, “Deep Structured Energy
Based Models for Anomaly Detection,” in Proceedings of International
Conference on Machine Learning, Jun. 2016, pp. 1100–1109.

[23] F. Di Mattia, P. Galeone, M. De Simoni, and E. Ghelfi, “A Survey on
GANs for Anomaly Detection,” arXiv:1906.11632, Jun. 2019.

[24] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and
G. Langs, “Unsupervised Anomaly Detection with Generative Adver-
sarial Networks to Guide Marker Discovery,” in Information Processing
in Medical Imaging, Cham, 2017, vol. 10265, pp. 146–157.

[25] I. Golan and R. El-Yaniv, “Deep Anomaly Detection Using Geometric
Transformations,” in Proceedings of Advances in Neural Information
Processing Systems, 2018, pp. 9758–9769.

[26] P. J. Rousseeuw and K. V. Driessen, “A fast algorithm for the minimum
covariance determinant estimator,” Technometrics, vol. 41, no. 3, pp.
212–223, 1999.

[27] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse, “The reversible
residual network: backpropagation without storing activations,” in Ad-
vances in neural information processing systems, 2017, pp. 2214–2224.

[28] B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham,
“Reversible architectures for arbitrarily deep residual neural networks,”
in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[29] S. Rayana, “ODDS library,” 2016. [Online]. Available:
http://odds.cs.stonybrook.edu

[30] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

Regular Paper INTERNATIONAL TEST CONFERENCE 10

