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Abstract—Due to the extreme scarcity of customer failure
data, it is challenging to reliably screen out those rare defects
within a high-dimensional input feature space formed by the
relevant parametric test measurements. In this paper, we study
several unsupervised learning techniques based on six industrial
test datasets, and propose to train a more robust unsupervised
learning model by self-labeling the training data via a set of
transformations. Using the labeled data we train a multi-class
classifier through supervised training. The goodness of the multi-
class classification decisions with respect to an unseen input data
is used as a normality score to defect anomalies. Furthermore,
we propose to use reversible information lossless transformations
to retain the data information and boost the performance and
robustness of the proposed self-labeling approach.

Keywords—unsupervised learning, outlier detection,
labeling, post-silicon testing.

self-

[. INTRODUCTION

Screening out all potentially defective parts before shipping
to customers is crucial for minimizing the risk of the products
failing in the customer line or field [1]. Typically, test process
consists of wafer probe test, burn-in test with packaged parts,
and final test, as shown in Fig. 1. During both the wafer
probe and final test phases, a large number of parametric tests
are performed to extract the part performance values. Outlier
detection is applied using the results from the parametric tests
to identify abnormal parts. Such parametric tests and outlier
detection are especially important to test analog and mixed-
signal circuits, as a defect in those circuits is more likely to
cause a parametric shift rather than a hard functional failure.

The typical measure of design quality is DPPM, i.e., number
of Defective Parts which fail after shipping to the customer
(also known as customer failures) Per Million parts shipped.
The target quality level for chips that are deployed in mission-
critical applications, e.g. automotive electrics, can be very
stringent. As the complexity of semiconductor products keeps
increasing, it is increasingly challenging for post-silicon test-
ing to screen out all defects without any escape to customers.
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Fig. 1: Post-silicon production test flow.
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While it is critical to learn from extremely rare (in DPPM
level) customer failures to improve outlier defect detection
to reach the Zero Defect (or zero customer failure) quality,
there remain major challenges in this learning process. 1)
Customer failures are rare, as they are escapes from a rather
comprehensive test process. As nearly-all of the defective
parts have been screened out, data on customer failures are
extremely scarce, typically at several parts per million (PPM)
level at most. 2) It can be difficult to identify a subset of
parametric tests that expose potential failures. Alternatively,
outlier detection may be performed over a high-dimensional
input feature space formed by a large number of parametric
test measurements. 3) It is difficult to catch latent reliability
faults by comparing with the normal chip data distribution,
leading to defect escapes.

As one illustrative example, Fig. 2a shows different types
of defects around parallel wires (in gray) on a particular metal
layer, and Fig. 2b gives the corresponding distribution of
two parametric test results. The small green defects have no
impact on the circuit performance, which also locate in the
center of the distribution of the parametric test data. The large
blue defect can cause catastrophic short-circuit fault and are
typically far away from the center of the distribution, making
it easy to screen it out. The red defects, the so-called latent
reliability defects, might not be caught by post-silicon testing,
however, can evolve into early life failures in the customer
field due to aging. Such latent defects are extremely hard to
be detected unless a large combination of different parametric
tests is analyzed in detail to distinguish them from normal
circuit behaviors or inconsequential defects during post-silicon
testing.

(b) Defect distribution

(a) Defect illustration

Fig. 2: Tllustration of potential defects types.
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Fig. 3: Advanced outlier detection evolution.

Due to the scarcity of failure data, typically there are insuf-
ficient defective samples to validate unsupervised models for
outlier detection [2]. As shown in Fig. 3, most early works in
this field applied yield based screening strategies like statistical
bin limits (SBL) and below minimum yield (BMY) [3], [4]. In
order to more efficiently and effectively screen out outlier parts
and reduce the corresponding yield loss, several univariate
outlier detection methods such as static/dynamic part average
test (S/DPAT) [5]-[8], and nearest neighbor residual (NNR)
[9]-[11], and location average [9], [12] were proposed and
are commonly employed in the industry. Multivariate outlier
detection methods were also proposed for screening rare
defects and customer returns [13], [14]. However, with recent
advances in the machine learning field, it remains interesting
to study how advanced machine learning techniques can be
helpful for outlier detection in test.

This paper aims to study modern machine learning tech-
niques on outlier detection in view of screening defect escapes
to customers. The purposes of this paper are two-fold. First,
we assess the application of the advancements in anomaly
detection [15], [16] from the field of machine learning to
the targeted testing problem and observe their limitations.
We consider several popular unsupervised anomaly detection
methods trained using normal data and proposed in machine
learning. Tree-based methods such as isolation forest [17] flag
a detected anomaly when the average path length to the leaves
in the forest falls below a threshold. One-class support vector
machine (OCSVM) [18]-[20] bounds the normal training data
within a tight boundary, which is used to separate normal data
from abnormal data. Autoencoders [21], [22] or generative
adversarial networks (GAN) [23], [24] are among the most
successful methods where any observed large reconstruction
error signifies anomaly.

While demonstrating certain degrees of success in other
anomaly detection problems, we show that the aforementioned
methods do not work well for the challenging problem of
identifying extremely-rare customer failures so as to minimize
defect escape to customers. Hence, the second purpose of this
paper is to bring a new perspective to post-silicon testing by
adapting the geometric transformation based deep anomaly
image detection approach [25], which leverages supervising
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learning for solving the unsupervised learning problem. More
specifically, [25] creates a set of self-labeled images by trans-
forming each example in the given raw training dataset using a
number of geometric transformations. Each transformed image
is labeled using the index of the transformation applied. A
multi-class classifier is trained using the self-labeled training
data. During inference, an unseen image is first transformed
using the same set of geometric transformations. The resulting
transformed images are classified by the trained multi-class
classifier. The goodness of the classification decisions is con-
sidered as a normality score, which is used to signify detection
of abnormality when the normality score drops to a low
value. We introduce two key modifications to make this self-
labeling approach viable for the intended extremely-rare cus-
tomer failure detection problem. First, we replace geometric
transformations used for images by nonlinear transformations
suitable for processing test data. Second, we introduce a family
of reversible information lossless transformations to boost
the performance and robustness of the self-labeling methods.
Experimentally, we demonstrate that the proposed self-labeling
approach significantly outperforms the other methods in terms
of prediction accuracy and robustness using a large set of
public datasets and real industrial post-silicon test data.

II. UNSUPERVISED OUTLIER DETECTION
A. Problem Formulation

Consider a D-dimensional input space X C R” containing
all potential inputs, e.g. parametric post-silicon test results. Let
Xy € X and X4 C X represent normal and abnormal inputs,
e.g. the test results of good vs. failing (outlier) chips, with
XNNX, = () and XyUX 4 = X. To classify an input x € X as
normal or abnormal, an unsupervised learning method learns
a binary classification function f : X — {0,1}, where “0”
indicates normality (true negative example), i.e., x € Xn; “1”
represents outlier (true positive example), i.e., x € X4.

Without labeled outlier data due to its scarcity, well de-
veloped supervised learning cannot be applied. Instead, as
shown in Fig. 4, one learns a score function s : X — R
through certain unsupervised learning algorithm to assess the
normality of the seen normal data. During inference phase,
the larger value of s(x), the more likely the unseen data is
normal. With a specified decision threshold srj, the binary
classification model f trained without supervision is

frn (X):{ (1)

Note that the input features may not fully reveal the outlier
information in practice, implying X N X4 # (. However,
the score function definition still works properly under this
case, indicating how likely the given input x appears to be an
outlier.

5(x) > s
s(x) < s

6]

B. Performance Metric of Machine Learning Models

The choice of the decision threshold spj in (1) has a
large impact on the quality of outlier detection. It is unfair
to select specific thresholds when comparing different outlier
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detection methods since the scale and the distribution of the
score function value vary widely from methods to methods.
We apply the widely adopted Area Under Receiver Operation
Characteristic (ROC) curve (AUROC) to compare different
models without relying on specific thresholds.

As shown in Fig. 5, the ROC curve characterizes the true
positive rate (TPR) and false positive rate (FPR) of a model as
the threshold sy, is swept. If sp, exceeds the maximum score
function value of a testing dataset, all data will be considered
as outliers, making both TPR and FPR 1.0; the other way
around will make both TPR and FPR 0. The ROC curve is
monotonically increasing between (0,0) and (1, 1). Improved
outlier detection performance leads to larger TPR and lower
FPR values. Correspondingly, the ROC curve would be pushed
towards the top left corner as shown in Fig. 5a, with the best
possible AUROC value of 1.0. For example, there is only one
customer failure in the industrial automotive microcontroller
datasets we use. Correspondingly, there is a sharp transition
in the ROC as shown in Fig. 5b, where the green area (1 —
AUROC where only one failure exists) can be interpreted as
the yield loss when no defect escape occurs.

Compared to other metrics like Area Under Precision-Recall
(AUPR), AUROC takes a more balanced consideration over
both abnormal and normal data, which efficiently captures
outliers and minimizes yield loss.

C. Review of Traditional Unsupervised Learning Models

Here gives a brief review of 4 different unsupervised
anomaly detection methods: Gaussian model, One-class SVM,
Isolation forest and Autoencoder.

1) Gaussian Model: One typical category of anomaly de-
tection methods is to estimate the data distribution given the
training samples, and then mark low-probability instances as
anomaly. Gaussian model [26] is one of the most popular
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assumptions for the data distribution, which especially suits
for the post-silicon test, as most of data follows a Gaussian
distribution. Specifically, given N normal training samples
{xM, ... x(M)} the mean and covariance matrix are esti-
mated as follows.

i = x(® 2)

@) o

Thus, clearly, the score function is defined as the probability
distribution of the estimated Gaussian distribution as below.

s () =N (%3, €) )

2) One-class SVM: One-class support vector machine
(OCSVM) proposed in [18] separates all the data from the ori-
gin with maximum margin in the feature space corresponding
to the kernel function. In general, instead of directly looking at
the probability distribution of the normal sample occurrence,
one-class SVM attempts to map the data into a feature space
and enclose the normal data into a small region. This results
in a binary function which captures regions in the input space
where most of the normal data live. The training process
of one-class SVM is governed by a quadratic programming
minimization problem as stated below.

C =

1N
v
1N
v

1 1 Y
. 2 .
TR LR W ST
stowe o (x0) = p— g ©)
& >0, (7)

where ¢ (-) specifies the kernel function to be used for which
radial basis function (RBF) is a common choice, v is a
hyperparameter characterizing the solution by setting the upper
bound of the outliers inside the training dataset and the
lower bound for the number of support vectors. According
to the distance to the decision boundary in the feature space,
represented by p, the score function can be depicted using

s(x)=w-¢ (x(i)) —p (8)

Note that the signed version of the previous function is used
to give a binary classification of the anomaly detection in [18].

3) Isolation forest: In addition to the distribution estimation
and data separation in the feature space, a tree-based method
called isolation forest [17] takes a disparate approach to
distinguish the anomaly from the normal data. The isolation
forest consists of an ensemble of isolation trees (iTrees). More
formally, for each node 7" in an iTree, 7" is either an external
node with no child or an internal node with one test and
exactly two children (77,,Tg). The test at node T consists
of an attribute ¢ and a split value p, and based on whether
q < p it will traverse the data point to either 77, or Tg.
In order to build such an iTree, a subset of entire dataset
X' c {xW, ... x(M} is randomly selected. The iTree
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is generated by recursively partitioning, and then a training
algorithm recursively partitions X’ by randomly selecting an
attribute ¢ and a split value p until there is only one data point
in the node or all the data share the same value.

The underlying principle of anomaly detection for isolation
forest is that the anomaly data is more likely to reach an
external node with a smaller height (distance to the iTree root),
as all the iTrees are generated randomly. Therefore, its score
function is characterized by the average height to reach the
external nodes in the ensemble of iTrees as follow.

s(x) = —9~Eh()/e(N) )

where ¢ (NN) is a constant normalization factor related to the
sample size N. The negative sign is added to be consistent
with the definition of score function in this paper.

4) Autoencoder: There exists another popular anomaly
detection method which is reconstruction-based enabled by an
autoencoder. Similar ideas using reconstruction for anomaly
detection are widely used in recent work [16], [21], [22].
First, the original data x € X C RP is encoded (compressed)
into a latent variable z = F (x) € Z C R? with d < D
typically, and then decoded (reconstructed) into the original
space with x' = Fp (z), as illustrated in Fig. 6. The encoder
and the decoder are usually fully-connected neural networks
for numerical data processing or convolutional neural networks
for image processing. The entire autoencoder is trained to min-
imize the overall reconstruction error (loss function for training
as shown below) so that a good embedding representation of
the normal data can be learnt in the low-dimensional latent

space Z.
N
=% me —x/@
i=1

With an outlier data, since it doesn’t follow the normal
data embedding representation, it is expected to observe a
large reconstruction error, which is used to defined the score
function for the autoencoder.

s(x) = =[x = Fp (Fp (%))

2

(10)

(11)
III. SELF-LABELING UNSUPERVISED OUTLIER
DETECTION

A. Self-Labeling via Transformation

Based on the discussions in the Section II, we aim to learn
a robust and reliable score function s : X — R using normal
training data only. Unsupervised learning for extremely-rare
failure detection is challenging. Motivated by the self-labeling

Fig. 6: Autoencoder illustration.
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approach for anomaly image detection of [25], we convert this
unsupervised learning problem to one that is based on multi-
class classification with self-labeled training data.

Consider K distinct  transformation functions
TW, 73 ... 7)) each defining a mapping to a m-
dimensional feature space: () R — R™, where
i € [1, K]. For a given training dataset X with N examples,
we apply all K transformations to each sample, resulting
in a transformed training dataset with KN examples. Each
newly transformed example is labeled by its corresponding
transformation applied. Formally, the resulting labeled training
dataset is

{(T@ (x[ﬂ) ,T(”) lie[1,K],je [1,N]}

Note that each label is given by the type of the transformation
performed without involving any actual labeling effort nor
abnormal data. The adopted transformations can be regarded
as an approach for nonlinear feature extraction through which
the original input space X C R" is mapped into a feature
space F C R™.

(12)

B. Proposed Self-labeling Unsupervised Outlier Detection

Fig. 7 highlights the proposed self-labeling outlier detec-
tion approach. During training, self-labeling is executed first
per (12) to generate the transformed training dataset over
which a multi-class classifier is trained to well classify each
example to the corresponding label (transformation). During
inference, similarly, given an input x, K transformed inputs
{TW (x), T® (x),--- ,T5) (x)} are obtained by apply-
ing the K transformation functions. For each transformed
T (x), the classifier outputs a K-dimensional probability
vector p (T(i) (x)) with each k-th element specifying the
predicted likelihood for T (x) to fall under class k, i.e.
transformed by k-th transformation.

When the classifier is well trained using the normal data, it
would classify a new unseen normal input x by outputting:
Pi (T(i) (x)) ~ 1 and p; (T("') (x)) ~ 0,1 # k as the
transformed unseen normal data is likely to locate within the
transformed normal training data distribution. However, for an
abnormal input, it is likely that p; (T(i) (x)) is significantly
lower than 1.0 as the transform outlier data may deviate
from the transformed normal data distribution. Accordingly,
we select the following score function

s(x) = i p: (70 ()

Transformation Functions

(13)

Supervised Classification

b
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Fig. 7: Self-labeling unsupervised outlier detection framework.
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An input is detected as an outlier if s(x) < K. This self-
labeling outlier detection is illustrated in Fig. 8.

I'V. DESIGN OF TRANSFORMATION FUNCTIONS

One major challenge in the proposed self-labeling approach
is to select proper transformation functions. For example, if
T® = TG the classifier cannot distinguish between the i-
th and j-th class as they correspond to identical transformed
input data location. Our key idea is to select a set of distinct
information lossless transformation functions to retain suffi-
cient statistics for the original data. Consider that our original
data x, the transformed data 7" (x), and the final score function
s (x) formulate a Markov chain s (x) «— T (x) +— x. Ac-
cording to the data processing inequality, we have the mutual
information follows I (s(x);7T (x)) < I (s(x);x). In order
to maximize the mutual information after the transformation,
our method is to make the transformed data fully recoverable,
without information loss, after the transformation.

Inspired by the recent developments in reversible neural
networks [27], [28], we propose an reversible architecture for
the transformation functions to fully retain the original data
information. Suppose x = (x1,x2, - - ,xD)T has D features,
we partition the indices of the D features into two sets p;
and po with equal size (add one artificial feature if D is odd),
where p; Npy = 0 and p; Upy = [1, D] N N. With that, we
can obtain two new vectors with the corresponding features
as X,1 and X,5. Then the transformed data y (combining two
parts y,1 and y,2) is given by the reversible transformation
as follows.

(14)
15)

Xpl + G (YpQ)
Xp2 + F (Xp1)

ypl
Yp2 =

where F' and G are two arbitrary functions. Through solving
the previous equations, the original input x can be fully
recovered with knowing the output y, showing the information
lossloss property of the reversible transformation block. In
order to easily generate a large number of distinct transforma-
tions, the transformation function should be flexible enough
to be configured. We considered three different approaches
to increase the flexibility of the transformation: 1) function
choices for the reversible block; 2) feature permutation; 3)
cascade architecture.
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Fig. 9: Reversible lossless transformation block.

A. Function Choices for the Reversible Block

The arbitrariness of the two functions F' and G provides
a lot of freedom to be designed. Without adding additional
training and computational cost for ' and G, which are usu-
ally two neural networks, from our empirical experience, we
suggest to apply two simple univariate nonlinear functions f
and g for each element of the input vector. Therefore, we have
F(x) = (f(@:07),f(@2:0p),- f (vp/2:67))" and
G(x) = (9(21:6y).9(x2:0y) .- g (acD/z;Gg))T, where
ff € © and 6, € O are the parameters for the two univariate
functions from a parameter space ©. Hence, we can create a
pool of function choices, for each reversible block, we can
randomly assign two functions to f and ¢ and sample the
parameters ¢y and 6, from © to generate a large number of
distinct transformations before training phase.

In particular, for our experimental settings, a pool of three
different polynomial functions with randomized order param-
eter # uniformly chosen from © = [2,6,,.] N N is applied,
including: power polynomial functions,

p9 (z) = 2 (16)

Legendre polynomial functions,

0 (2) = 1 (17)
V() = z (18)
1) (2) %W*U (z) - %N’*” (@) (19)

and Chebyshev polynomial functions,

D@y =1 (20)
M (z) = = (21)
() = 2297 (2) — 072 (2). (22)

B. Feature Permutation

Beyond the function choice for each reversible block, we
also add one more permutation block, as shown in Fig.
9, to boost the feature mixing and increase flexibility for
distinct function generation. For the input of each reversible
block, a random feature permutation (partition) is generated
before training process and then fixed during the training and
inference phase to produce two groups of data.

This technique boosts the diversity among different re-
versible blocks. Furthermore, with the help of the cascade
architecture (introduced in the next section), this permutation
will also boost feature mixing among multiple features, which
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TABLE I: Public anomaly detection datasets.

Public # Samples ~ # Features  # Anomaly
thyroid 3772 6 93 (2.5%)
glass 214 9 9 (4.2%)
Satimage-2 5803 36 71 (1.2%)
shuttle 49097 9 3511 (7%)
smtp 95156 3 30 (0.03%)
speech 3686 400 61 (1.65%)

serves a nonlinear feature extraction process providing a
distinct view of the normal data for each transformation.

C. Overall Cascade Reversible Architecture

The overall reversible lossless transformation architecture
is illustrated in Fig. 10. Each reversible block is marked in
different color to indicate they are all distinct. We apply
both techniques: function choices and feature permutation,
described in Section IV-A and IV-B, to generate a large
number of distinct reversible blocks.

Here, a cascade architecture is applied. Note that the re-
versible lossless tranformation block can be repeated multiple
times to get a single tranformation. Hence, the data will
go through R reversible blocks to acquire 70+ (x) from
T® (x). In order to generate K different transformations,
this computation is performed K — 1 times, assuming the
first transformation is the original data point T (x) = x,
which is already available. Thus, there exists (K —1)R
different reversible blocks in the entire architecture, providing
a large number of distinct transformations without losing any
information.

V. EXPERIMENTAL RESULTS
A. Methods and Datasets

Using six public outlier detection datasets [29], [30]
and post-silicon testing datasets for six real customer fail-
ures/returns of an advanced industrial automotive microcon-
troller, We demonstrate and compare the performances of
several unsupervised learning methods: Gaussian model [26],
one-class SVM [18], isolation forest [17], autoencoder [16],
and four configurations of the proposed self-labeling outlier
detection method.

For the industrial cases, the six customer failures were
from several millions of parts shipped, showcasing the real-
life challenges in extremely-rare defect detection. We pulled
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TABLE II: Industrial automotive microcontroller datasets.

Datasets Entire tests “Critical” tests
Chip Insert # Samples # Features # Samples # Features
A 47006 104 50101 6
B 45617 1134 45658 103
Chip 1 C 41828 989 42694 28
D 38940 769 42396 28
E 42293 1054 42293 31
A 44579 104 50498 6
B 46529 1135 46563 103
Chip 2 C 44833 989 45472 28
D 42905 780 44843 28
E 44586 1051 44586 31
A 38897 102 39840 6
B 37826 695 37831 327
Chip 3 C 34544 369 34544 181
D 34245 352 34246 153
E 34228 1377 34228 690
A 16115 184 17356 6
B 14892 379 15238 24
Chip 4 C 13581 2558 13692 128
D 13169 2587 13169 58
E 13272 2396 13272 47
F 7889 5592 7888 59
A 44282 105 50029 6
B 47257 1151 47350 117
Chip 5 C 43007 982 44862 32
D 43893 800 44522 32
E 44036 1108 44036 37
A 16591 241 18403 6
B 16514 1521 16530 255
Chip 6 C 15268 3009 16157 129
D 15916 2645 16081 60
E 16068 4224 16068 47
F 16054 5526 16054 63

out the post-silicon testing data for the wafer lot containing
the customer failure to be learned. There were around tens of
thousands of parts in a wafer lot which were all manufactured
around the same time with similar tools as the customer
failure chip, thus providing relevant data for statistical outlier
analysis. Parts in a wafer lot went through wafer test and final
test at different temperatures, which we call test inserts. Each
dataset (with one customer failure chip) consists of five to
six test inserts. In total, we had 32 test inserts corresponding
to the 6 datasets for the 6 customer failure chips. Each test
insert contains up to a few thousands of parametric tests for
tens of thousands of parts from the wafer lot which contains
the single customer failure part. In addition, we also generate
6 additional datasets using the test inserts containing only
the “critical” parametric tests (features) suggested by expert
engineers empirically based on the customer failure modes,
which we call “critical” tests (inserts). Hence, the number of
parametric tests (features) varied from 6 to 5,592 in the test
inserts. The detailed numbers of features and examples of the
public and industrial datasets are listed in Table I and Table II,
respectively. Furthermore, the samples with missing or invalid
test values are discarded here. Therefore, For each test insert,
the number of samples in the “critical” tests are larger than or
equal to the one for the entire tests.

Fig. 11 provides the visualization of the data distribution of
one example test insert (Chip 6 with the “critical” test insert
A), with the single customer failure marked in orange. As we

INTERNATIONAL TEST CONFERENCE 6
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Fig. 11: Dataset example visualization.

can see, the outlier point almost locates at the center of the
data distribution in every dimension, which makes it extremely
challenging to separate the anomaly from the normal data by
only checking each single parameter or test feature.

B. Experimented method settings

For each test insert, we trained a machine learning model
based on each method to screen out the customer failure
part. 90% of the normal data were randomly sampled using
a uniform distribution as the training dataset, and remaining
10% of normal data and the single customer failure were used
as testing data.

We compared our proposed self-labeling method with sev-
eral popular families of existing outlier detection techniques
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as reviewed in Section II. Under the category of input-
distribution-based approaches, we applied a Gaussian distri-
bution model [26] to capture the mean vector and covariance
matrix of normal data, and employed the probability density
function as the score function. Furthermore, we adopted one-
class support vector machine (OCSVM) [18] which utilized
the radial basis function (RBF) kernel and its decision func-
tion as its score function. The isolation forest method [17]
generated a forest of 250 trees with a resampling size of
1024, the average path length metric suggested in [17] was
regarded as the score function. Moreover, we also investigated
the popular reconstruction-based method, autoencoder [16].
An autoencoder with a latent size of 32 and a hidden layer of
size 64 was trained over 100 epochs with a batch size of 64,
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and the reconstruction error of the autoencoder was selected
as its corresponding score function.

For the proposed self-labeling outlier detection method,
we experimented four variants of the proposed self-labeling
outlier detection method. This first one, marked as PolyTrans
later, directly used the polynomial functions as the transfor-
mation functions, and the other three adopted the reversible
lossless transformation blocks. As mentioned in Section IV,
the function pool for reversible block consists of three fami-
lies of univariate polynomial functions including polynomial
functions, Legendre functions and Chebyshev functions. The
detailed configurations for the three reversible transformations
are listed: 1) 0,,,. = 4 and R = 1 for RevTransA; 2)
Omaz =5 and R = 1 for RevTransB; 3) 0,4 = 5 and R = 2
for RevTransC. In order to obtain a fair number of distinct
transformations, all the experimented variants used K = 22
transformations. The classifier used was an artificial neural
network with two hidden layers of size 64 and 16 trained
over 20 epochs using a batch size of 64. The same settings
were used for all the public datasets and all the real industrial
automotive microcontroller datasets. Furthermore, we applied
L2 regularization with a weight decay factor of 0.0005 for the
classifier training to avoid overfitting and improve the overall
performance.

C. Public Dataset Performance

Table III provided a detailed comparison of different meth-
ods for all the public datasets. As discussed in Section II-B, we
use AUROC as a measure of performance for fair comparison
between different methods. Although the public datasets in I
don’t have extremely rare outliers compared to the industrial
post-silicon testing datasets, they still serve as good basis for
general outlier detection method comparison. Among all the 8
methods considered, RevTransC gives the best AUROC results
on average. Although the other three variants of the proposed
methods didn’t outperform isolation forest in terms of average
AUROC, they are still comparable (within 1%) to it, which is
the best reference method, and surpass other three reference
methods a lot, demonstrating that the proposed methods can be
applied as a robust general-purpose outlier detection method
as well.

D. Industrial Dataset Performance

The performance comparison for the the industrial auto-
motive microcontroller datasets are reported in Table IV, V
and VI. Each industrial dataset (chip) contains multiple test
inserts with a single customer failure, and we learnt a machine
learning model for each test insert to screen out the particular
customer failure based on each method or setting.

During the advanced outlier detection phase performed at
the very end of the testing process, as shown in Fig. 1,
experienced engineers may determine whether it is worthwhile
to discard a certain number of chips, i.e. at a given yield loss
level, in order to screen out the customer failure based on
outlier detection results collected from all test inserts. As long
as the outlier detection results from one of the test inserts can

Regular Paper

screen out the customer failure, the outlier detection perfor-
mance based on other test inserts doesn’t matter. Therefore,
we report the best performance value among all the test inserts
for each method in these three tables.

Beyond AUROC introduced in Section II-B, we also used
another performance metric, estimated yield, to evaluate dif-
ferent methods for the industrial datasets in Table V and VI.
We define the estimated yield of each outlier detection method
as one minus the percentage of normal chips we will reject
together with the customer failure from the corresponding
wafer lot. Recall that the proposed machine learning based
advanced outlier detection takes place after the preceding
wafer/package/final test steps (Fig. 1) in which each test insert
will reject a certain number of chips based on functional tests
and hard limits in parametric tests. The normal chips that we
will reject together with the customer failure by performing
the outlier detection at a specific test insert (e.g. wafer test)
might have already failed in a subsequent test insert (e.g.
final test). Hence, the estimated yield of each outlier detect
method is calculated excluding those chips which already
failed in subsequent test inserts. As stated before, the final
decision of advanced outlier detection process is largely based
on engineering experience. The estimated yield, in some sense,
reflects the minimum over-reject we can expect in order to
remove the particular customer failure in the advanced outlier
detection phase.

Note that the adopted industrial datasets only have a single
customer failure for each dataset. For each dataset, the reported
AUROC and estimated yield value varies for different methods
and different datasets, manifesting the real life challenges
in extremely-rare defect detection. On average, the reference
Gaussian method produces the worst AUROC and estimated
yield performance, which mispredicts examples close to the
center of the normal data distribution to be abnormal. This
suggests that directly characterizing normal data using a Gaus-
sian distribution is not effective in separating out hard latent
defects. As for the other reference methods, isolation forest
and autoencoder tend to give a relatively good performance
among all the reference methods, as shown in Table IV to VL.

In general, the four variants of the proposed self-labeling
outlier detection method are among the very best of all the
experimented methods. Specifically, the variant RevTransC
reports best performance values in Table IV and V, and the
variant PolyTrans reports the best estimated yield in Table
VI. Under this extremely-rare outlier detection context, the
proposed self-labeling approach is able to expose the unique-
ness of the hard-to-detect outliers and maximize the chance of
detecting such extremely-rare (latent) defects (e.g. the targeted
customer failure part) as well as minimize the overkill (false
positive) rate.

In practice, for cost reason, test engineers may set a min-
imum yield goal for an outlier detection method to screen
out potential customer failures or returns. In Table V and VI,
the number of customer failures out of the total six that can
be screened out under a yield goal of 93% by each method
is reported under the row “# Y>93%”. In other words, “#
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TABLE III: Comparison of outlier detection performance using AUROC for public datasets.

Datasets ] Reference Methods Proposed Methods
Gaussian  OCSVM  IsoForest AE PolyTrans  RevTransA  RevTransB  RevTransC
thyroid 0.974 0.937 0.989 0.946 0.955 0.962 0.971 0.94
glass 0.683 0.513 0.794 0.624 0.899 0.825 0.767 0.815
satimage-2 0.995 0.981 0.996 0.93 0.995 0.991 0.992 0.985
shuttle 0.994 0.983 0.998 0.998 1 0.995 0.992 0.999
smtp 0.815 0.773 0.921 0.859 0.729 0.86 0.866 0.963
speech 0.515 0.461 0.45 0.482 0.542 0.508 0.505 0.525
Avg. AUROC 0.829 0.775 0.858 0.807 0.853 0.857 0.849 0.871
TABLE IV: Comparison of outlier detection performance using AUROC for industrial datasets.
Datasets Reference Methods Proposed Methods
Gaussian  OCSVM  IsoForest AE PolyTrans  RevTransA  RevTransB  RevTransC
Chip 1 0.685 0.872 0.882 0.902 0.461 0.889 0.938 0.949
Chip 2 0.823 0.964 0.984 0.979 0.898 0.928 0.939 0.895
Chip 3 0.882 0.94 0.937 0.977 0.928 0.934 0.954 0.973
Chip 4 0.921 0.788 0.838 0.931 0.826 0.828 0.814 0.843
Chip 5 0.972 0.907 0.978 0.959 0.986 0.865 0.966 0.985
Chip 6 0.929 0.738 0.758 0.888 0.916 0.891 0.967 0.999
Chip 1 (“Critical”) 0.858 0.753 0.885 0.759 0.839 0.818 0.922 0.647
Chip 2 (“Critical”) 0.846 0.858 0.853 0.845 0.917 0.977 0.952 0.925
Chip 3 (“Critical”) 0.587 0.874 0.932 0.733 0.992 0.815 0.826 0.986
Chip 4 (“Critical”) 0.81 0.77 0.586 0.944 0.778 0.809 0.529 0.762
Chip 5 (“Critical”) 0.841 0.99 0.984 0.671 0.942 0.96 0.936 0.941
Chip 6 (“Critical”) 0.89 0.861 0.963 0.818 0.935 0.929 0.899 0.896
Avg. AUROC 0.837 0.860 0.882 0.867 0.868 0.887 0.887 0.900

TABLE V: Comparison of outlier detection performance using estimated yield for industrial datasets containing the entire

parametric tests.

Datasets ] Reference Methods Proposed Methods
Gaussian  OCSVM  IsoForest AE PolyTrans  RevTransA  RevTransB  RevTransC
Chip 1 0.779 0.917 0.904 0.921 0.543 0.907 0.948 0.961
Chip 2 0.853 0.971 0.987 0.982 0914 0.944 0.953 0.919
Chip 3 0.886 0.941 0.939 0.978 0.943 0.937 0.96 0.974
Chip 4 0.978 0.914 0.912 0.978 0.932 091 0.915 0.933
Chip 5 0.984 0.934 0.99 0.971 0.989 0.894 0.974 0.99
Chip 6 0.947 0.792 0.787 0.916 0.931 0.904 0.974 0.999
Avg. Yield 0.905 0.912 0.920 0.958 0.875 0.916 0.954 0.963
#Y>93% 3 3 3 4 4 2 5 5

TABLE VI: Comparison of outlier detection performance using estimated yield for industrial datasets containing the “critical”

parametric tests.

Datasets (“Critical”) Reference Methods Proposed Methods

T Gaussian OCSVM  IsoForest AE PolyTrans  RevTransA  RevTransB  RevTransC
Chip 1 0.902 0.795 0.921 0.797 0.893 0.865 0.934 0.728
Chip 2 0.897 0.899 0.881 0.891 0.933 0.982 0.969 0.95
Chip 3 0.632 0.878 0.934 0.743 0.993 0.821 0.832 0.989
Chip 4 0.867 0.922 0.858 0.965 0.888 0.897 0.811 0.915
Chip 5 0.872 0.994 0.99 0.76 0.966 0.965 0.951 0.953
Chip 6 0.919 0.897 0.976 0.852 0.958 0.934 0.925 0.914

Avg. Yield 0.848 0.898 0.927 0.835 0.939 0.911 0.904 0.908

#Y>93% 0 1 3 1 4 3 3 3

Y>93%” counts all the chips with the estimated yield no less
than the yield goal (93%) for each method. Given the fact
that the customer failures under this study escaped from the
original production testing on several millions of parts shipped,
robustly screening out even one or two of these customer
failures is already challenging. Among all the methods, our
proposed self-labeling outlier detection methods screen out the
most number of customer failures under the given yield goal.
In particular, in Table V RevTransB and RevTransC can catch
five customer failures out of the total six, and in Table VI
PolyTrans can catch four customer failures while meeting the
minimum 93% yield goal.

As we can observe from Table V and VI, the overall
estimated yield and the number of customer failures captured

Regular Paper

INTERNATIONAL TEST CONFERENCE

under the given yield goal reduce as we only consider the
“critical” parametric tests. This may suggest that manual se-
lection of critical test features based on empirical experiences
can lead to sub-optimal outcomes and exploiting powerful
machine learning techniques capable of considering a large
number of features may be advantageous. Even with less infor-
mation (parametric tests) about the failure part, the proposed
methods still retain a high estimated yield and surpass most
of the reference methods as shown in Table VI. Specifically,
PolyTrans gives the best average estimated yield of 93.9%
among all the experimented methods.

We compare the four variants of the proposed method
based on the results from Table III to V. The three variants
of self-labeling method based on reversible transformations



achieve a better average AUROC and estimated yield on
average compared to PolyTrans, suggesting that maintaining
the raw feature information is critical to achieve good outlier
detection performance when designing the transformations for
the self-labeling method. Furthermore, RevTransC achieves the
best performance among all three reversible transformation
variants, demonstrating that more distinct transformations with
higher order and more complex transformations tend to work
better. There exists one exception. Table VI reports that
PolyTrans gives the best yield among all methods while not all
available parametric tests are considered. We expect that the
the test inserts included in those datasets may not contain all
information relevant to the particular customer failure, making
the reversible transformations less effective.

VI. CONCLUSION

We presented a machine learning enabled outlier detection
methodology in order to facilitate the screening of extremely-
rare failures that have escaped from the standard post-silicon
testing flow. We proposed a self-labeling technique for un-
supervised outlier detection through transformations of avail-
able test data, effectively exposing the abnormal behaviour
of extremely-rare chip failures in a high-dimensional test
feature space. Based on public-domain outlier detection and
challenging industrial automotive microcontroller test datasets,
we demonstrated through extensive experimental studies that
our proposed method consistently outperforms other popular
outlier detection algorithms in terms of accuracy and robust-
ness, leading to reduction of yield loss and test escape.
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