Computational Materials Science 192 (2021) 110356

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

ELSEVIER

Check for

Recurrent localization networks applied to the i
Lippmann-Schwinger equation

Conlain Kelly?, Surya R. Kalidindi *

@ Georgia Institute of Technology, Atlanta, Georgia 30332, USA

ARTICLE INFO ABSTRACT

Keywords:

Machine learning

Learned optimization
Localization

Convolutional neural networks

The bulk of computational approaches for modeling physical systems in materials science derive from either
analytical (i.e., physics based) or data-driven (i.e., machine-learning based) origins. In order to combine the
strengths of these two approaches, we advance a novel machine learning approach for solving equations of the
generalized Lippmann-Schwinger (L-S) type. In this paradigm, a given problem is converted into an equivalent L-
S equation and solved as an optimization problem, where the optimization procedure is calibrated to the problem
at hand. As part of a learning-based loop unrolling, we use a recurrent convolutional neural network to itera-
tively solve the governing equations for a field of interest. This architecture leverages the generalizability and
computational efficiency of machine learning approaches, but also permits a physics-based interpretation. We
demonstrate our learning approach on the two-phase elastic localization problem, where it achieves excellent
accuracy on the predictions of the local (i.e., voxel-level) elastic strains. Since numerous governing equations can
be converted into an equivalent L-S form, the proposed architecture has potential applications across a range of

multiscale materials phenomena.

1. Introduction

Most problems in materials science and engineering require the
exploration of linkages between materials processing history, materials
structure, and materials properties. Generally referred as Process-
Structure-Property linkages [1], they constitute the core materials
knowledge needed to drive materials innovation supporting advances in
technology [2]. Traditional physics-based numerical methods have long
been the standard for solving the governing field equations underpin-
ning these linkages. For mechanical problems, these have included
ubiquitous finite element methods [3-6] as well as FFT-based spectral
methods [7-9]. However, standard solvers can constitute a major per-
formance bottleneck in problems which require repeated solution over
varied inputs, such as inverse problems [10-12] and multi-scale mate-
rials design [13-15].

As an alternative, machine learning (ML) provides tools to approxi-
mate unknown linkages in a parametrized fashion, with great success in
many domains [16]. One of the most successful classes of ML models is
neural networks [17], which have been applied with excellent results
both in general applications [16,18-20], and within materials science
[15,21-23]. Unfortunately, ML models tend to act as “black boxes”

* Corresponding author.

whose inner workings do not permit the depth of analysis provided by
purely physics-based models [24]. There is a clear demand for ap-
proaches that leverage the advantages of both methodologies in order to
build reliable, scalable, and interpretable reduced-order models.

One example of such an effort is the Materials Knowledge Systems
(MKS) framework [25,26]. Aimed at multiscale materials design
[27,28], MKS formulates the governing field equations for heteroge-
neous materials in a Lippmann-Schwinger (L-S) form [7,29]. Using
regression techniques to calibrate the first-order terms of a series
expansion to the L-S equation, MKS presents a generalized approach for
solving a broad class of scale-bridging problems in materials design and
optimization [30,31]. However, improving the accuracy of these models
requires higher-order L-S terms, which rapidly become more computa-
tionally expensive.

As an alternative, we propose an approach inspired by the in-
tersections between iterative spectral methods [32] and recent advances
in inverse imaging [19,33]; we cast the recurrent L-S equation as an
optimization problem. Rather than employing a predefined optimization
strategy, such as gradient descent or conjugate gradients [34], the
optimizer is posed as a recurrent collection of convolutional neural
networks. After being calibrated to available curated data (e.g., results

E-mail addresses: ckelly84@gatech.edu (C. Kelly), surya.kalidindi@me.gatech.edu (S.R. Kalidindi).

https://doi.org/10.1016/j.commatsci.2021.110356

Received 20 December 2020; Received in revised form 28 January 2021; Accepted 29 January 2021

Available online 7 March 2021
0927-0256/© 2021 Elsevier B.V. All rights reserved.

mailto:ckelly84@gatech.edu
mailto:surya.kalidindi@me.gatech.edu
www.sciencedirect.com/science/journal/09270256
https://www.elsevier.com/locate/commatsci
https://doi.org/10.1016/j.commatsci.2021.110356
https://doi.org/10.1016/j.commatsci.2021.110356

C. Kelly and S.R. Kalidindi

of FEA simulations, phase field models), these networks act as proximal
(or “update”) operators which take in a candidate solution and output an
improved version. This iterative methodology emphasizes the underly-
ing physics to permit greater model robustness and deeper analysis.

In this paper, we begin with a brief analysis of the L-S equation and
its application to the linear elasticity problem, followed by discussion on
the general L-S equation. Using this analysis, we then demonstrate how
the L-S equation can be naturally posed as a machine learning problem,
and how a neural network can learn proximal operations which mini-
mize a physical quantity (e.g., stress field divergence) within a solution
field. By exploring the interplay between the physical and computa-
tional interpretations of the L-S equation, we provide insight into a new
class of ML models for materials science. We then analyze which aspects
of our approach provide the greatest gains by exploring various model
configurations, reinforcing the value of an iterative (rather than feed-
forward) approach. Finally, we evaluate our methodology on the prob-
lem of elastic localization and compare it to a previous machine learning
model.

2. Background
2.1. Linear elasticity and L-S

Originally developed in the context of quantum mechanics [29], the
L-S equation — or class of equations — is an implicit integral form that can
represent a fairly general space of physical phenomena. The L-S equa-
tion is especially useful in the context of physics of heterogeneous media
with spatially-varying physical parameters: stiffness, conductivity,
density, etc. We defer discussion of the general Lippmann-Schwinger
form until Section 2.2.

As a case study, we consider the problem of computing the internal
elastic strain field of a composite material undergoing bulk stresses or
strains [7,32,35]. The composite microstructure is assumed to be
composed of two or more distinct phases (i.e., thermodynamic material
constituents), each exhibiting its own constitutive laws. This problem is
herein referred to as elastic localization. An example two-phase micro-
structure and corresponding elastic strain field are presented in Fig. 1.

Physically, elastic localization is governed by a generalized Hooke’s
law relating the variation in stress ¢(x), strain €(x), and stiffness C(x)
over some volume V, along with the demand that the equilibrium stress
field be divergence-free:

6 =Ce, (@]

V-6 =0. 2

We consider constant periodic boundary conditions that correspond
to the imposed volume-averaged strain, €. With these choices, one can
model the internal mechanical response of a representative volume

Microstructure

Response

] u

10 20 30
X X

Fig. 1. Example microstructure-strain field pair for two-phase elastic localiza-

tion. Yellow is high-stiffness phase; purple is low-stiffness phase; contrast be-

tween elastic moduli is CR = 50.

Computational Materials Science 192 (2021) 110356

element (RVE) of the material. In these models, the RVE often serves as a
statistical unit cell of a larger material structure. We note that the
problem statement expressed here serves as a simple illustration of the L-
S methodology, which has been successfully applied to more complex
material systems and/or boundary conditions [32,30].

Following the work of Kroner [36], this system is converted into an
equivalent form (the elastic L-S equation) by splitting the local elastic
stiffness C into a selected (constant) reference value C® and a pertur-
bation value C'. Substituting these stiffness tensors into Egs. (1) and (2)
provides a partitioned version of the governing field equations:

V-(Cfe) = —V-(Ce) 3

Observe that the left-hand side of this equation is a linear operator,
denoted as A, which acts on &:

Ae =V-(C®) = C*Ve C))

Clearly Aeg is linear in ¢; therefore, it will have a corresponding
Green’s function G(x,s) [37]. Since divergence is uniform in space, we
make the simplification G(x,s) = G(x —s). This function represents the
system’s response to an impulse inhomogeneity

AG(x —s) = 8(x —s) (5)

where § denotes the Dirac-delta function.

We also partition the strain field ase =¢® + €', where R represents a
(constant) reference strain determined by boundary conditions (this is
also equal to the internal average strain &), and € is the corresponding
perturbation strain. Both C* and R are constant, so V-(C%eF) = 0 and
thus eR is the homogeneous solution to A. For a given inhomogeniety
b(x), we can use the Green’s function to solve for the particular solution

Ae(x) = b(x) (6)

se(x) =es [G(xs)o(s)as @)

Now we formally treat the right-hand side of Eq. (3) as the in-
homogeneity b to obtain the elastic Lippmann-Schwinger Equation:

€ (x) = —/VG<x—s) (V-[C (s)e(s)])ds. ®

or
e(x)=¢€— /VG(x —5)(V-[C (s)e(s)])ds (©)]

Since many governing equations can be converted into a similar
structure, we refer to their transformed version as an “L-S form”; that is,
Eq. (9) is the Lippmann-Schwinger equation corresponding to the elastic
governing equations. A Lippmann-Schwinger derivation corresponding
to a general governing equation is presented in Section 2.2. The reader is
referred to Refs. [38,39] for more background on Green’s functions.

Using insights from previous work [22,27,35], we modify this
equation to make it amenable to a learning paradigm. First, we
integrate-by-parts to shift the derivative onto G and absorb it into a new

operator, G. Using * to concisely denote a convolution, we obtain
£(x) :E—/&(x—s)c’(s)e(s)ds =£-G*(Ce) 10)
\4

Next, we define a binary microstructure representation m"(x) that
equals 1 if the material at point x is of phase (or material type) h, and
0 otherwise. Since each phase has its own stiffness, we can project the
stiffness tensor C onto each phase: C = Y,C"m" and likewise C' =
3°,C" m". Finally, we combine the Green’s function terms with the et

expression to obtain yet another operator I'(x —s)" Ea(x—s)C"y.

C. Kelly and S.R. Kalidindi

Applying all of these modifications, the elastic L-S form becomes
e(x) =€ — Y T"*(m"e) an
h

The problem of elastic localization has thus been reduced to a single
convolutional integral containing the microstructure m", candidate
strain field &, and a physics-determined stencil I'*. Curiously, the first
two terms appear solely as an element-wise product between m" and e.
This is due to the fact that the strain field is constrained indirectly by the
divergence-free condition on 6. One also observes that all effects of C
have been absorbed into I'*. This corresponds to the fact that I' is not
unique: infinitely many choices of C* could result in this equation.
Although mathematically equivalent to the original physics (and visu-
ally more complicated), Eq. (11) provides significant advantages for
solution over large heterogeneous volumes. Several solution strategies
have been explored to address elastic localization in heterogeneous
material systems, resulting from different interpretations of the L-S
equation.

Mathematically, I'"* is a set of convolutional kernels — one for each
phase — encoding the underlying physics of the problem. Given a strain
field, it computes the corresponding stresses and peels off the strain
perturbation field required to minimize the stress divergence. Using this
perspective, many existing models view the L-S equation as a fixed-point
equation and solve it via root-finding [7]. The rate of convergence of
these methods tends to depend heavily on the variation in material
properties and the choice of C® [32]. All of these physics-based ap-
proaches require a quantitative knowledge of the Green’s function G.

From a computer science perspective, the term m"e simply represents
the strain field segmented by phase (since m” is a binary indicator
function). Given a collection of true structure-strain pairs, one could
either learn I'", or some approximation, to best conserve the equality.
Following this view, several ML-based elastic localization models
[22,35] have been applied to learn (non-iterative) linkages between m”"
and ¢ by either approximating a series expansion of I', or using a neural
network to map m" to ¢ directly, bypassing I'" completely. The disad-
vantage of these models is that they either truncate or ignore the un-
derlying physics, trying to re-learn it from data. The tension between
these two perspectives leaves room for a hybrid method which retains
the iterative L-S structure, but uses ML to deduce the internal details of
the I'" operator.

2.2. General L-S equation

This section presents a derivation for the general L-S equation. from a
generic governing equation, drawing on the work of Moulinec [7] and
Kroner [36]. This is provided for two reasons: to provide greater intui-
tion and background for the L-S equation, and to motivate its compati-
bility with ML solvers. First, we write (in conservation form) a governing
differential equation controlling a field y which varies over space x
spanning some volume V:

T (y(x); x)=0. (12)

Observe that any governing equation can be partitioned into two
coupled subequations, each governing their own subsystems. First
define an operator A which captures all linear (and spatially homoge-
neous) components of some general operator /7. Now define a second
(possibly nonlinear) operator B containing the rest of /7. One obtains
the earlier example of elastic localization with the substitutions y = €,
Ae = V-(C®), and B(e) = V-(C'e). Although not explicitly denoted,
both A and B may contain implicit information about the solution do-
main’s structure (terms such as C or m).

Using these operators we can rewrite the original equation as:

H(y; x) =Ay+B(y; x) =0 (13a)

Computational Materials Science 192 (2021) 110356

or
Ay = —B(y; x).

This partitions the governing equation into two coupled systems: a
linear homogeneous system permitting only “simple” solutions, and a
nonlinear, heterogeneous system where the solution is more compli-
cated. Before solving the complete equation, we consider the auxiliary
system

Ay(x) =b(x) a4

(13b)

for some inhomogeneity b. We define the homogeneous solution to this
system as yR, so that Ay® = 0. Note that in general, y® is determined by
both A and the relevant boundary conditions, and for some problems
there may be more than one suitable y®. For problems with a constant
solution field on the boundary, one finds that y® =¥, i.e., the reference
field is the average solution everywhere.

The choice of y® induces a corresponding perturbation (or “particular
solution™)y’ =y —yR. Because y® is annihilated by A, note that Ay =Ay'.
Since A is linear, it will have a Green’s function G(x,s), which captures
the system’s impulse response [38]. Using this we write the particular
solution to the auxiliary equation as a convolution between G and b and
reconstruct the complete solution:

AG(x,s) = 5(x —s)=y (x) = /G(x,s)b(s)ds (15)

or

o) foloe

Now we return to Eq. (13b) and apply the auxiliary approach, this
time treating the entire B term as our homogeneity » (and noting the
attached minus sign). Plugging this into the perturbation expression for
y gives us:

y=y"~ /VG(x,s)B(y(s); s)ds. a7

This is the general Lippmann-Schwinger equation; since this deri-
vation holds for any operator .7, we use the term “L-S form” for a given
to describe the result of partitioning and substituting that /7 into Eq.
(17). Referring back to the example of elastic localization, Eq. (9) is the
equivalent L-S form for Hooke’s law (Eq. (2)).

Note that the linear system A only enters the L-S equation through
the definitions of y® and G. For example, if one used the trivial choice of
the identity for A, the corresponding Green’s function would just be the
Dirac delta function, and Eq. (17) would simplify to the original gov-
erning equation.

For the L-S form to be advantageous over .7/, A must capture a non-
trivial amount of the underlying equation. There are three primary
factors which make the L-S equation useful. First, it is partitioned: the
original system is broken into two coupled physical systems. This makes
it similar to a traditional “splitting method” where the linear and
nonlinear components are separated, allowing the solution of the
nonlinear components to be informed by the homogeneous, linear so-
lution. The coupling between systems means that the L-S equation is also
recursive: the presence of y in the inhomogeneity term leads to its
appearance on both sides of the equation. If one desires to solve the
problem analytically, the L-S form is likely no more useful than the
original governing equation. However, the implicit structure is very
suitable for iterative and optimization-based solvers [9,40]. Finally, the
L-S equation is convolutional: the integral is actually a convolution be-
tween the B term and a (possibly-unknown) Green’s function G. Roughly
speaking, Eq. (17) presents the solution field y(x) as a balance between
the global homogeneous “pull” (y*) and the localized “tug” (¥ (x)) of the
solution values in a neighborhood near x. In situations where B is a

C. Kelly and S.R. Kalidindi

purely differential operator (such as elastic localization), and with
appropriate boundary conditions, Eq. (17) can be integrated-by-parts to
shift part of B onto G. This can simplify the integral term so that all of the
physics is contained in a single convolutional stencil.

2.3. Neural networks background

As one of the most popular ML tools in use, neural networks are a
class of parametrized function approximators that can be calibrated to
curated data [17]. At a high level, an artificial neural network (ANN)
operates as an alternating sequence of tunable linear transforms and
nonlinear activation functions — mimicking the operation of physical
neurons in the brain [41,42]. Under certain conditions, a sufficiently
large neural network can be shown to act as a universal function
approximator [43,44], motivating their use in a myriad of disciplines.

Two relevant specializations are the convolutional neural network
(CNN), which uses convolution with a fixed-width stencil as its trans-
form operation [45,18], and the recurrent neural network (RNN), which
operates on sequential data and considers latent information carried
across input iterations [46]. These tools can be combined to model the
underlying structure of various problems. A well-designed ML model
trained on sufficient data can be significantly faster than an analytical
equivalent and still provide reasonable accuracy [47]. This comes at the
expense of interpretability — they return a “black-box” model which is
difficult to understand and analyze [24]. Additionally, the topology of
these networks (e.g., number of layers, nodes per layer, activation
functions) strongly determines their success [48], and the “best”
configuration is problem-dependent and often constructed ad hoc.

Recently there has been tremendous interest in the application of
neural networks to mathematical problems [16]. Specifically, variations
of recurrent CNNs have been explored [49] to learn Bayesian priors for
image denoising [33] or proximal operators for medical imaging [19].
These image analysis methods pose the problem such that the desired
output is obtained via a learned optimization procedure, where the
optimizer itself is formulated as a neural network. Surprisingly, these
methods often employ very simple network designs, especially
compared to deeper and more elaborate structures found in mainstream
ML [20,50].

3. Methodology
3.1. L-S as learned optimization

We now explore how the perturbation expansion and L-S form allow
a governing equation to be interpreted naturally as a machine learning
problem. We first define a new operator @ representing the entire right-
hand side of Eq. (17). We also use m to represent a problem domain’s
underlying microstructure, which influences the inhomogeneity B.
Given a sample microstructure m*, we obtain the corresponding strain y”
by minimizing the error (or loss) -~ between y and ®(y,m") over all y.

O(y,m) =y* — /VG(x7s)B(y(s); s)ds 18)

y = <I><y“;m*> = argmin £ (y, ®(y;m")) (19)
y

Although ® may not be linear itself, linear analysis methods provide
a useful interpretation: for a given microstructure m”, ® has a (possibly
non-unique) generalized eigenfunction y* with unit eigenvalue. Issues
regarding the solution’s uniqueness and existence can arise from the
original governing equation’s nonlinearity. In the case of the elasticity
problem, the governing equation is linear, so a unique solution will exist.

Now the original problem of solving the governing equation /7 has
been reduced to that of minimizing the scalar loss .~ given a particular
microstructure via a learned optimization strategy. To do this, we define

Computational Materials Science 192 (2021) 110356

a parametrized learner .7 4 that performs a sequence of proximal oper-
ations which progressively improve the solution field to match the
governing physics. Here 0 represents all possible parameters of this
learner. The optimal set of parameters 6, is obtained by minimizing the
expected error produced by .7 w.r.t. 6; in the case of a CNN this rep-
resents the optimal network weights, and can be obtained via standard
backpropagation [51]. Given a microstructure and initial guess y,, we
want .74 to provide a solution field which is approximately the true
solution field y*:

Foyo,m’) =5~y (20)
This is accomplished by a sequence of updates
yi =y 4+ fi(yi,m") @1

where f; represents the perturbation proximal operator used at iteration
i; given a microstructure and candidate strain field, it outputs the
perturbation component corresponding to an improved estimate of the
true strain field. A pseudocode and visual representation of the approach
developed in this work are presented in Fig. 2. Ideally, after the model is
trained, .7 » and ® have the same eigenfunctions (i.e., .7 4(y",m") =y").

The optimization strategy employed by the .7, model is directly
determined by the choice of f;. To explore what this might look like for
the elastic problem, consider an L2 loss function and plug in the elastic
LS formula (Eq. (11)):

(I><y;mh> =y ZI‘"* (m"y) (22)
7

N~

Z(y,@(y;m")) = >(y - <I>(y;m"))2 —%(y —yR 4 Xh:r"* (m"y>>z

(23)

The original fixed-point approach of Moulinec [7] corresponds to the
choice

def Fp(y®,m):
yo=y"
for i=1 to N:
yi =y + filyi-1,m)
return yy

(a) Pseudocode for optimization procedure

2 L .m
-8

Legend:

yR: reference solution

yi: iterates (i-k) through (i)
(last k candidate solutions)
®: data combination

@: element-wise sum I 9

(b) Visualization of data flow through optimization procedure

Fig. 2. Pseudocode and visualization for optimization-based solution of the L-
S equation.

C. Kelly and S.R. Kalidindi

fiw (yi—jsmh) = - Zrh* <mhyz'1> Vi 24)

h

As an alternative, we can obtain a “steepest descent” formula by
taking the gradient [34] of Eq. (23):

; J _,
f:’ <y,'717mh> =DYi -y _Viay—J (yi—lﬂ(l)(yl—l;mh)) (25)
i1

or
0

f,g(y,;nmh) =y =Y -1 <I+ ay Zr‘h*(mhyil)>
i-1 p

<y,'1 -+ Zrh*(mhyz'd))
W

(26)

where y; denotes the step size at iteration i and I represents the identity
operator. By flattening everything into vectors and representing the
convolution with an equivalent Toeplitz matrix [52], one can convert
the product term in Eq. (26) into a single linear operator H acting on

¥i_1- The linearity of H comes from the fact that the (I +ay.i,,“-> term is

actually independent of y;_;. Using a constant 4; to collect remaining
terms of y®, the steepest descent rule becomes:

sz (yi—l smh) = (1 - }’i) (yi—l _yR) +7:Hy; ; + 4y® 27)

Effectively, the gradient descent rule says that the new perturbation
field is obtained by correcting the previous perturbation field (y,_," =
¥i_1 —¥®) using a set of convolutional operations involving I' and m",
then subtracting off a factor of y® such that the output perturbation field
is zero-mean.

A variety of more complicated update rules have been proposed to
accelerate the solution of different forms of the L-S equation [32]. From
the examples above one sees that any update rule will involve various

terms of I'™, which itself contains both physical properties (such as C",)

as well as derivatives of the Green’s function (such as 6); more
complicated update rules will simply require higher-order combina-
tions. Therefore, if we hope to learn f;, it must be parametrized in a way
such that it can capture global convolutional stencils, as well as various
derivatives thereof. Finally, we note that although most analytical ap-
proaches employ the same operator for each iteration, the .7, formu-
lation permits varying f; across iterations.

3.2. CNNs for Lippmann-Schwinger

Most analytical minimization procedures are (by design) problem-
agnostic; this means that they can be expected to work reasonably
well for many problems, but may not be optimal for the problem at hand.
Rather than using a predefined optimization strategy, we formulate each
f; as a CNN that learns a proximal operator mapping a given micro-
structure and candidate solution field to an improved perturbation field.
The central motivation behind using a CNN proximal operator is that
given sufficient parameterization, it can emulate almost any optimiza-
tion strategy; furthermore, that strategy will be customized to the
problem at hand during training. Of course, this comes with the
immense caveat that, absent any advances in theoretical ML, a learned
optimizer will not have any provable convergence guarantees. The
means that even as N—oo, our learned model may not converge to the
true solution field for a given microstructure. In practice, however, the
model can be tuned and trained until it consistently produces solutions
within acceptable error tolerances.

We define the .7, optimization model imbued with a CNN f; as a
recurrent localization network (RLN), which performs the following
operations during both training and evaluation phases: given a micro-
structure m and initial guess yR, estimate the true solution field by

Computational Materials Science 192 (2021) 110356

refining it over N iterations. At iteration i, the microstructure is com-
bined with candidate solutions from previous iterations and passed
through CNN f;. Note that f; outputs a perturbation field y;; the reference
solution yR is already known, so there is no need to learn that. In order to
simulate a multi-step solver [3,53] and estimate higher-order derivative
terms, f; considers the last k solutions via multiple input channels (rather
than just y;_1). One could potentially achieve this property, and perhaps
obtain better results, by using GRU or LSTM modules [33] which learn a
“latent” state to pass between iterations; however, 3D convolutional
implementations for these operations were not part of major ML li-
braries at the time of writing.

Specifically for elastic localization, m and y are combined via
element-wise multiplication following Eq. (11). To enforce computa-
tional stability, all strains are normalized by the average strain &.
Moreover, the output of each f; network has its average subtracted to
enforce the constraint that the perturbation strain field is always zero-
mean.

Following prior work [19], we define a full RLN as using a different f;
for each iteration (although we use the same CNN structure for each), for
a total of N distinct networks. The idea behind this is to allow the
network capture different properties at each iteration, akin to terms in a
series expansion. Having significantly more tunable parameters, this
configuration provides the most expressive model. By allowing different
operators to be employed at different iterations, this approach also de-
viates the most from standard analytical optimization procedures.

Alternatively, one may wish to reuse the same intermediate network
across iterations (f; = f Vi). This approach is denoted as RLN-t since the
weights are tied between iterations. This means that the same operator
will be employed at each iteration; however, since a time series is fed
into each f; (rather than a single data point), the RLN-t is still able to
learn higher-order derivatives. It has the primary advantage of
simplicity and efficiency, since it uses a factor of N fewer parameters
than the full RLN.

Finally, we test the importance of the iterative and recurrent nature
by considering a single f; network, i.e., choosing N = 1. We call this a
feed-forward localization network (FLN) and use it as a control to
quantify the benefits of iteration vs. network design. Although the RLN-t
and the FLN have the same number of parameters, the RLN-t uses each
parameter N times, effectively simulating a deeper network.

For N > 1, the proximal CNNs are all calibrated simultaneously via
backpropagation. During training a batch of true structure-strain pairs
are fed through .7, in its entirety, and all proximal networks are
updated simultaneously to minimize a calibration loss function .#®
(which is not necessarily the same as the solution field loss #” above).
Rather than only consider the loss of the final output, we use a weighted

sum of the loss of individual iterates: <@ = " w; 7\““) for some
weights w;. The goal is to encourage the network to progress between
iterations, while also finding the best possible solution.

Following the analysis of Andrychowicz et al. [49] we interpret the
use of Z“¥ as a variant of Backpropogation Through Time [54]. The
choice of weights w; could theoretically act as a form of stabilization or
even regularization. By requiring that each iteration output a reasonable
candidate solution, each proximal operator is constrained to behave
somewhat physically, which might help prevent overfitting. However,
this means that the network is encouraged to make larger changes in
early iterations, potentially reducing its final-iterate accuracy.
Conversely, if only the final result is important, then intermediate iter-
ations could explore the loss curve more. However, only updating based
on the last iteration will slow the model’s training, and possibly increase
the chances of the network weights converging to a poor local minimum.
Clearly further experiments are required to explore these hypotheses.

Following similar works [33] we chose the uniform weighting w; =
1 Vi. This induces the network to make larger corrections in early iter-
ations (to avoid carrying costly errors through several iterations) and
relatively smaller corrections in later iterations. However, our numerical

C. Kelly and S.R. Kalidindi

experiments (Section 4) indicate that perhaps a different weighting
might help the network capture fine-scale microstructure features. The
appropriate number of iterations depends on the specific problem; for
elasticity N = 5 proved sufficient in both the RLN and the RLN-t, and
more iterations yielded little benefit. For the number of previous itera-
tions to track, the value k =2 was chosen. The above choices of
hyperparameter were largely heuristic and made for simplicity, but they
worked well for elasticity; for a more intensive problem a cross-
validation procedure would be a better method for their selection.

3.3. Proximal operator design

Various network topologies for f; [19,33,55] were tested with one
goal in mind: use convolutional kernels to effectively capture local in-
teractions. The architecture that proved most successful for elasticity
was based roughly on a V-Net [55] and is presented in Fig. 3. By
combining information across length scales through the use of up- and
down-sampling operations, this architecture is able to encode and
combine both fine- and coarse-grained features. Notably, even a simple
sequence of 3 convolutional layers (similar to that of Adler [19]) worked
reasonably well. As with the hyperparameters above, a cross-validation
procedure could aid in picking a superior network topology for a given
problem; for this work, we intentionally avoided hyperparameter opti-
mization to emphasize the mathematical analysis and iterative
approach.

For this study, most convolutional kernels are 3 x 3 x 3, with 1 x 1
x 1 kernels used for channel reduction and 2 x 2 x 2 for up/down-
sampling, summing to ~ 160,000 learnable parameters for each prox-
imal network f;. A parametric rectified linear unit (PReLU) activation
function [56] was used after the 3 x 3 x 3 convolutions. This activation
is similar to the regular ReLU, but has a non-zero slope « for negative
inputs; a is trained with all the other network weights during back-
propogation. In our experiments this improved the model’s stability
during training and accuracy during testing. Effectively, it allows the
network to be much more expressive with only a few extra parameters —
changing one « scales the entire output of a channel, rather than 3 x 3 x
3 = 27 weights representing each voxel in that channel’s filter.

Input
v
Conv 3x3x3 @16

PReLU
\A

Conv 3x3x3 @16

Conv 2x2x2 PReLU
rPRsLU* @32/2 B —

Legend:

¢ N «<M: M? kerne
Conv 3x3x3 @32 Conv MxMxM: M? kernel
@X: X output channels
‘PRCLU
/Y: downsample by Y

Conv 3x3x3 @32

ConvT 2x2x2
—PReLU—

@32*2

*Z: upsample by Z
PReLU: Parametric ReLU

Conv 3x3x3 @32
PReLU
v
Conv 3x3x3 @16
PReLU
v

Conv 1x1x1 @1

v

Output .
l

Fig. 3. Architecture for internal f; networks.

Computational Materials Science 192 (2021) 110356

4. Linear elasticity experiments

We now present results from the application of RLN-type models to
the elastic localization problem in two-phase composites. A synthetic
dataset of 20,480 31 x 31 x 31 microstructure/strain field pairs was
generated and randomly split 40%/ 20 %/ 40% into disjoint train/
validation/test sets, respectively. The train set was used to calibrate .7,
the validation set served to measure its quality while training, and the
test set was used to compute error metrics.

The microstructures were generated via PyMKS [25] by creating a
uniform random field, applying a set of Gaussian filters, and thresh-
olding the result. In this microstructure generation process, the filter’s
width in each direction controls the characteristic size and shape of the
material grains, and the threshold controls the relative volume fraction
of each phase.

Combinations of these four parameters were generated via a Latin
hypercube sampling procedure to generate 4096 design points for
microstructure generation. For each design point, 5 random micro-
structures were generated in order to produce statistically similar inputs,
so that the datasets had some statistical redundancy. A random sample
of 8 training microstructures is displayed in Fig. 4. By varying these
design parameters, one can cover a vast subspace of all possible mi-
crostructures, although we note that the space of all microstructures in
intractably large — ignoring circular symmetries there are O(25) possible
different microstructures with S voxels. By selecting our training and
testing sets using the same procedure, we demonstrate the RLN’s ability
to interpolate between “familiar” microstructure samples, but not to
extrapolate to microstructures which lie outside the closure of the
training set.

It is important to note that these microstructures do not necessarily
correspond to thermodynamically favorable structures (i.e., they might
appear in nature). However, this is a limitation only in data and not
methodology - by using a fully-convolutional structure [57] the RLN can
handle any voxelized input, including experimental data.

The elastic strain fields in each microstructure were obtained from
previously-built finite element models [22]. One major simplification is
that even though the imposed 3D strain field is actually a second-order
tensor (and the elastic stiffness field a fourth-order tensor), the linear
nature of the problem allows us to solve for each component individu-
ally and superimpose their solutions as needed [35]. As such we apply an
overall displacement to a material RVE along only the x-axis and we
focus solely on the <, term. For these simulations, a total strain of 0.1%
was applied via periodic boundary conditions.

The relevant material parameters to be prescribed are thus the elastic
moduli E;,E; and Poisson ratios vq,v2 of the two phases. To roughly
match most common metals, we chose v1 = v = 0.3. With these se-
lections, the contrast ratio CR = % has the most dominant role on the

final strain field. With the choice E; > E;, one observes that CR > 1. In
general, as the contrast in stiffnesses increases, the problem becomes
harder to solve with both iterative and data-driven methods [32].
Following prior work [22], we tested the RLN on contrast ratios of 10
and 50.

Each RLN model was implemented in PyTorch [58] and trained
independently for 60 epochs on an NVIDIA V100 GPU [59], which took
approximately 8 hours. The RLN models were all calibrated using the
Adam optimizer, a Mean Square Error loss, and a Cosine annealing
learning rate decay [60]. The last choice proved especially important
since the models demonstrated great sensitivity to learning rate; intro-
ducing the cosine decay helped the model converge smoothly and
quickly. After training, the epoch with the lowest validation loss was
chosen as the “optimal”. In reality, the training and validation losses
were tightly coupled as demonstrated in Fig. 5. Note that training losses
are aggregated during the epoch, whereas validation losses are
computed after the epoch is complete, which causes the validation loss
to occasionally appear lower.

C. Kelly and S.R. Kalidindi

Computational Materials Science 192 (2021) 110356

==

'rl'

o

Fig. 4. Random sample of 8 training microstructures sliced along (y, z) axis. Yellow is high-stiffness phase, purple is low-stiffness.

Learning curve for FLN

Learning curve for RLN-t

Learning curve for RLN

35 q q
—— FLN, CR =10 training loss —— RLN-t, CR =10 training loss —— RLN, CR =10 training loss
FLN, CR =10 validation loss RLN-t, CR =10 validation loss RLN, CR =10 validation loss
30 —— FLN, CR =50 training loss 7 —— RLN-t, CR =50 training loss 7 —— RLN, CR =50 training loss
—— FLN, CR =50 validation loss —— RLN-t, CR =50 validation loss —— RLN, CR =50 validation loss
25 1
0 «
@ a
S 204 &
w w
£ g
154 q
104 B
54]
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Epoch Epoch Epoch
Fig. 5. Learning curve containing calibration losses for each model and contrast ratio.
4.1. Results

Following Yang et al. [22], the accuracy of the model was evaluated
for each instance using the mean absolute strain error (MASE) over all S
voxels:

1 N
MASE (ypredvyrrue> =100 x 3 ;

Fig. 6 presents the MASE distribution across each microstructure/
strain pair in the test set. Note that the MASE is an aggregate measure
which measures RVE-wide error; the pointwise error variation within a
microstructure is explored below. The mean and standard deviation of
the MASE distribution are collected in Table 1 for the RLN-type models.
For comparison we also present results from a recent study [22] using a
feed-forward deep learning (DL) model to predict the strain fields; note
that the DL model was trained and tested on its own dataset prior to this
effort.

It is important to note that the DL model had a fundamentally
different architecture: it was designed to work on 212 voxel structures

Y preai] = Vi [1] ym [{]

(28)

(whereas ours was tested on 312), and it predicted the strain one voxel at
a time (whereas ours predicts strain across the entire microstructure
simultaneously). The dataset for the DL model employed large amounts
of data augmentation using circular permutations, and contained

MASE histogram across test set

0.35

0.301

0.254

Frequency
o
N
o

=]
=
v

0.104

0.051

0.00-
3 4 7

Percent MASE
Fig. 6. MASE distribution for RLN, CR = 50.
significantly more input-output pairs. Finally, the DL model employed

linear layers (to collapse to a single output); the size of these layers
implies that the DL model used substantially more network weights than

C. Kelly and S.R. Kalidindi

Table 1
Test-set MASE metrics for RLN and control models, for both CR = 10 and CR =
50

Model MASE (mean =+ std. dev.)
Contrast-10
Comparison DL model [22] 3.07%+1.22%
FLN 4.98%+1.49%
RLN-t 1.81%+0.58%
RLN 1.21%+0.37%
Contrast-50
Comparison DL model 5.71%+2.46%
FLN 9.23%+3.29%
RLN-t 4.26%+1.65%
RLN 2.92%+1.17%

the RLN. As a result, it is difficult to compare the DL dataset and results
with ours. We emphasize that the DL model represents a strong com-
parison model for ML elastic localization, but that objective ranking of
relative performance is difficult. Nevertheless, the RLN architecture is
able to produce significantly more accurate strain field estimates on the
RLN dataset than the DL architecture produces on the DL dataset.
Keeping these caveats in mind, the following analysis explores the dif-
ference between RLN configurations.

Looking at the aggregate statistics, the FLN performs worst of all
models analyzed; it is vastly outperformed by the RLN-t even though
they have the same number of parameters. This is also reflected in the
learning curve in Fig. 5: the RLN-t trained faster than the FLN and
converged to a more accurate model simply by applying the proximal
operator repeatedly across multiple iterations. Intriguingly, the FLN
results are somewhat worse than the DL results. This implies that our
simple network topology and relative lack of hyperparameter tuning
produced a less-powerful model than the DL. However, the RLN-t did
much better, producing less error on average (and significantly less
variance) than the DL control for both contrast ratios. The disparity in
performance indicates that dataset and network topology alone cannot
explain the improved MASE relative to the DL model - the iterative
methodology produces a more powerful model.

The full RLN is the most accurate model, producing roughly half as
much error and variability as the DL model for both contrast ratios. The
improvement over the RLN-t has a number of possible origins: the RLN
uses a factor of N more parameters, and in turn it uses a different
operator at each iteration. We note that after training, the full RLN in-
creases the memory overhead but not the prediction time: up to GPU
memory details, each iteration has the same computational costs
regardless of weight tying. Excluding data I/0 overhead, the RLN-t and
the full RLN take only ~ 87 seconds to predict strain fields for the entire
testing set (8,192 microstructures), or roughly 11 ms per microstructure
(c.f. = 5 s per microstructure for FEA).

Fig. 7 presents the worst (by voxel) test-set slice for the RLN model

Predicted Strain Response

| || 8 U
=
6'@
]
el
48
= g
o
22
0

FEA Strain Response

Computational Materials Science 192 (2021) 110356

compared to the FEA-generated fields. The RLN appears to perform
poorest near extreme strain peaks, especially in a 3-voxel wide cube
around these peaks. This is caused by two issues. First, the microstruc-
ture is effectively undersampled in these areas. Referring back to Fig. 4,
one sees that many microstructures have spatial features that are only
one or two voxels wide. Furthermore, the output of the RLN is effectively
‘smeared’ near these peaks due to the usage of a 3x3x3 filter. A deeper
network, or one using multiple filter sizes, might be able to better cap-
ture these features.

Finally, we explore how the predicted strain field y; evolves across
iterations, as well as its difference A; =y; —y; ;. This is presented in
Fig. 8 for the FLN, Fig. 9 for the RLN-t, and Fig. 10 for the full RLN. The
greyscale coloring is the same scale as Fig. 7 and has its maximum at the
true strain response’s maximum. The redscale coloring represents a
negative strain update (y decreasing between iterations).

The FLN appears to handle low-strain areas fairly well, but misses the
strain peaks in the center. Note that it does not apply the same operation
as the first iteration of the RLN-t; the FLN is trained to make the best
possible answer within a single jump. In comparison, the RLN-t does a
better job of capturing strain peaks, likely since it can build them up over
several iterations. What is less clear is that it fails to capture the central
strain peak as well as the full RLN - the differences between the two are
evidently rather fine-scale, so we focus our analysis on the full RLN.

After the first iteration the RLN has picked up most of the relative
troughs and peaks, and finer tweaks are handled by the later iterations.
For example, most of the high-strain regions (greyscale deltas) appear to
be captured in the first two iterations, whereas low-strain regions

FLN Evolution

)41
@] 8
Yo - 6
c
©
n
-4
N
g I
- " I
L) |]] ‘6
L] z
-2
E T
i .
.
-] I * ‘0
Aq —

Fig. 8. FLN predictions and differences between iterations for selected test-set
instance, CR = 50.

Local Strain Error

i g [1.75
1.50
= =
6 1.25
] <
T 1.00 5
4N 5
. © r0.75
£ T
5 2 - 0.50 {3
'0.25
0 0.00

Fig. 7. Slices of RLN predicted strain, true (FEA) strain, and ASE for worst test-set instance, CR = 50.

C. Kelly and S.R. Kalidindi

RLN-t Evolution

Computational Materials Science 192 (2021) 110356

Y1 Y2 Y3 Ya Ys
]]] 7]] 7] 8
Yo i B u & = B e B 6
C
@
&
L4 8
N
. ©
-_F £
'y 8
1 |
g gene Lo
Al Az A3 A4 AS -
Fig. 9. RLN-t predictions and differences between iterations for selected test-set instance, CR = 50.
RLN Evolution
Y1 Y2 Y3 Ya Y5
| i | i | |] i | 8
Yo
- s - N - N - - ‘- N 6
]
-4 3
N
" ©
: 2
B+ 2
] i ro
Al Az A3 A4 AS -

Fig. 10. RLN predictions and differences between iterations for selected test-set instance, CR = 50.

(redscale deltas) continue to be refined in later iterations.

This is due to the RLN’s ability to learn different, and nonlinear,
operators at each iteration — the MSE loss function tends to magnify
high-magnitude errors, even if they are very localized (i.e., strain peaks
and troughs). The model is therefore encouraged to estimate these
outlier areas first (corresponding to A; having much more magnitude).
Of course, this puts a lot of weight on the first proximal network to
capture the strain outliers correctly. One possible solution would be to
adjust the loss function weighting so that early iterations are encouraged
to converge gradually towards a good solution, rather than quickly to-
wards a decent one. In other words, by allowing earlier iterations to
mispredict strain peaks somewhat, the model may be more likely to
escape local minima and actually obtain higher final-iteration accuracy.

This approach differs from traditional finite-element based ap-
proaches in that it seeks a solution by learning Green’s functions (and
derivatives thereof) of the governing equation, rather than solving the
governing equation numerically. This provides an advantage in predic-
tion speed by requiring a rather costly (but one-time) training overhead.
The computational complexity of convolving a 3D field containing S
voxels with a 3D stencil containing k voxels is O(Sk) (since each voxel in
the first field must be multiplied by each voxel in the stencil). For a fixed
network topology, k is a constant; therefore the prediction runtime will
increase linearly with the number of microstructure voxels. A spectral
method using the Fast Fourier Transform will cost at least O(SlogS), and

any numerical methods (finite element or otherwise) employing linear
solvers will likely be even more expensive. We reiterate that using GPU
parallelization, the RLN requires on average 11 ms to predict the strain
field for a given microstructure, compared to several seconds for the
finite element solver. This makes it very valuable for inverse problems,
where the localization problem must be solved thousands or even mil-
lions of times in order to solve a higher-level metaproblem [15]. Once
trained for a specific governing equation (e.g. linear elasticity) and set of
material properties (e.g., contrast ratio), the RLN methodology can be
applied to any voxelized microstructure. Although we only tested a 313
structure, in principle a model could be trained on one structure size and
used on another (possibly with reduced accuracy); this is the subject of
ongoing work. Note that the model must be trained anew to predict
strains for a different contrast ratio.

5. Conclusions

In this paper, we describe a new learning-based methodology for
addressing Lippmann-Schwinger type physics problems. Embedding
recurrent CNNs into a learned optimization procedure provides for a
flexible, but interpretable, ML model. The design of proximal networks
is informed by problem-specific domain knowledge; that knowledge also
provides a physical interpretation of what the model is learning.
Furthermore, the partitioned and convolutional structure of this

C. Kelly and S.R. Kalidindi

approach acts as a regularizer by enforcing underlying physical prop-
erties such as mean field values and spatial invariance. The iterative
scheme allows for emulation of a deeper network, vastly increasing
model robustness without increasing the parameterization space. If
space allows, using a different network for each iteration further im-
proves the model’s expressiveness and accuracy.

When applied to the elasticity localization problem and using our
dataset, our model produced much more accurate and interpretable
results than previous deep learning models produced on similar datasets,
while being much faster than analytical approaches. The CNN archi-
tecture used here was designed for simplicity, but could be improved
with more advanced techniques such as inception modules [61],
perceptual losses [62], Fourier layers [63], or variational layers [64].
Moreover, many hyperparameters, such as number of iterations and loss
function weighting, can be tuned on a problem-specific basis.

CRediT authorship contribution statement

Conlain Kelly: Conceptualization, Methodology, Software, Data
curation, Investigation, Writing - original draft, Writing - review &
editing. Surya R. Kalidindi: Supervision, Writing - original draft,
Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was supported by NSF Graduate Research Fellowship
DGE-1650044, and SK acknowledges support from NSF 2027105. We
used the Hive cluster supported by NSF 1828187 and managed by PACE
at Georgia Institute of Technology, USA. The authors thank Anne Hanna,
Andreas Robertson, Nic Olsen, and Mady Veith for insightful discussions
that helped shape this work. Data and Software Availability The raw and
processed data required to reproduce these findings are available to
download from [dataset]https://doi.org/10.17632/v6dt8dwrh8.2 [65].
The implementation and training code for each RLN configuration, as
well as trained models, are available under an open source license on
Github (see Ref. [66]).

References

[1] S.Kalidindi, Hierarchical Materials Informatics: Novel Analytics for Materials Data,
Butterworth-Heinemann, Boston, 2015.https://doi.org/10.1016/B978-0-12-410
394-8.00001-1. URL: http://www.sciencedirect.com/science/article/pii
/B9780124103948000011.

NIST, Materials Genome Initiative Stragetic Plan, 2014. URL: https://www.nist.go
v/system/files/documents/2018/06,/26/mgi _strategic_plan_-_dec_2014.pdf.

K.W. Morton, D.F. Mayers, Numerical Solution of Partial Differential Equations: An
Introduction, second ed., Cambridge University Press, 2005, 10.1017/
CB09780511812248.

F. Roters, P. Eisenlohr, L. Hantcherli, D. Tjahjanto, T. Bieler, D. Raabe, Overview of
constitutive laws, kinematics, homogenization and multiscale methods in crystal
plasticity finite-element modeling: theory, experiments, applications, Acta Mater.
58 (4) (2010) 1152-1211, https://doi.org/10.1016/j.actamat.2009.10.058. URL:
http://www.sciencedirect.com/science/article/pii/S1359645409007617.

M. Cheng, J. Warren, Controlling the accuracy of unconditionally stable algorithms
in the cahn-hilliard equation, Phys. Rev. E 75 (2007), 017702, https://doi.org/
10.1103/PhysRevE.75.017702.

D. McDowell, J. Panchal, H.-J. Choi, C. Seepersad, J. Allen, F. Mistree, Integrated
Design of Multiscale, Multifunctional Materials and Products, 2009.https://doi.
org/10.1016/C2009-0-20058-4.

H. Moulinec, P. Suquet, A numerical method for computing the overall response of
nonlinear composites with complex microstructure, Comput. Methods Appl. Mech.
Eng. 157 (1) (1998) 69-94, https://doi.org/10.1016/50045-7825(97)00218-1.
URL: http://www.sciencedirect.com/science/article/pii/S0045782597002181.
T. de Geus, J. Vondfejc, J. Zeman, R. Peerlings, M. Geers, Finite strain fft-based
non-linear solvers made simple, Comput. Methods Appl. Mech. Eng. 318 (2017)
412-430, https://doi.org/10.1016/j.cma.2016.12.032.

[2

—

[3]

[4]

[5]

[6]

[7]

[8]

10

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Computational Materials Science 192 (2021) 110356

J.C. Michel, H. Moulinec, P. Suquet, A computational scheme for linear and non-
linear composites with arbitrary phase contrast, Int. J. Numer. Methods Eng. 52
(12) (2001) 139-160, https://doi.org/10.1002/nme.275.

R. Snieder, Inverse problems in geophysics, in: Signal Recovery and Synthesis,
Optical Society of America, 2001, p. SMA2. doi:10.1364/SRS.2001.SMA2. URL:
http://www.osapublishing.org/abstract.cfm?URI=SRS-2001-SMA2.

X. Wu, G. Proust, M. Knezevic, S. Kalidindi, Elastic-plastic property closures for
hexagonal close-packed polycrystalline metals using first-order bounding theories,
Acta Mater. 55 (8) (2007) 2729-2737, https://doi.org/10.1016/j.
actamat.2006.12.010. URL: http://www.sciencedirect.com/science/article/pii/
$1359645407000171.

A. Jain, J. Bollinger, T. Truskett, Inverse methods for material design, AIChE J. 60.
https://doi.org/10.1002/aic.14491.

M. Parno, T. Moselhy, Y. Marzouk, A multiscale strategy for bayesian inference
using transport maps, SIAM/ASA J. Uncertainty Quantification 4 (1) (2016)
1160-1190, https://doi.org/10.1137/15M1032478.

M. Horstemeyer, Multiscale Modeling: A Review, 2009, pp. 87-135.https://doi.or
g/10.1007/978-90-481-2687-3_4.

C.-T. Chen, G.X. Gu, Generative deep neural networks for inverse materials design
using backpropagation and active learning, Adv. Sci. 7 (5) (2020) 1902607,
https://doi.org/10.1002/advs.201902607.

G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto,
L. Zdeborovd, Machine learning and the physical sciences, Rev. Mod. Phys. 91
(2019), 045002, https://doi.org/10.1103/RevModPhys.91.045002.

J. Schmidhuber, Deep learning in neural networks: an overview, Neural Netw. 61
(2015) 85-117, https://doi.org/10.1016/j.neunet.2014.09.003.

A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep
convolutional neural networks, Neural Inf. Process. Syst. 25.https://doi.org/10.
1145/3065386.

J. Adler, O. Oktem, Learned primal-dual reconstruction, IEEE Trans. Med. Imaging
37 (6) (2018) 1322-1332, https://doi.org/10.1109/TMI1.2018.2799231.

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, CORR
abs/1512.03385. arXiv:1512.03385. URL: http://arxiv.org/abs/1512.03385.

Z. Yang, Y.C. Yabansu, R. Al-Bahrani, W. keng Liao, A.N. Choudhary, S.R.
Kalidindi, A. Agrawal, Deep learning approaches for mining structure-property
linkages in high contrast composites from simulation datasets, Comput. Mater. Sci.
151 (2018) 278-287.https://doi.org/10.1016/j.commatsci.2018.05.014. URL:
http://www.sciencedirect.com/science/article/pii/S0927025618303215.

Z. Yang, Y.C. Yabansu, D. Jha, W. keng Liao, A.N. Choudhary, S.R. Kalidindi,

A. Agrawal, Establishing structure-property localization linkages for elastic
deformation of three-dimensional high contrast composites using deep learning
approaches, Acta Mater. 166 (2019) 335-345, https://doi.org/10.1016/j.
actamat.2018.12.045.

J. Schmidt, M.R.G. Marques, S. Botti, M.A.L. Marques, Recent advances and
applications of machine learning in solid-state materials science, NPJ Comput.
Mater. 5 (2019) 1-36.

V. Buhrmester, D. Miinch, M. Arens, Analysis of explainers of black box deep neural
networks for computer vision: a survey (2019). arXiv:1911.12116.

D. Brough, D. Wheeler, S. Kalidindi, Materials knowledge systems in python — a
data science framework for accelerated development of hierarchical materials,
Integr. Mater. Manuf. Innov. 6 (2016) 1-18, https://doi.org/10.1007/s40192-017-
0089-0.

M.L Latypov, L.S. Toth, S.R. Kalidindi, Materials knowledge system for nonlinear
composites, Comput. Methods Appl. Mech. Eng. 346 (2018) 180-196.

S.R. Kalidindi, A bayesian framework for materials knowledge systems, MRS
Commun. 9 (2) (2019) 518-531, https://doi.org/10.1557 /mrc.2019.56.

S. Kalidindi, A. Khosravani, B. Yucel, A. Shanker, A. Blekh, Data infrastructure
elements in support of accelerated materials innovation: Ela, pymks, and matin,
Integr. Mater. Manuf. Innov. (2019) 1-14, https://doi.org/10.1007/540192-019-
00156-1.

B.A. Lippmann, J. Schwinger, Variational principles for scattering processes. i,
Phys. Rev. 79 (1950) 469-480, https://doi.org/10.1103/PhysRev.79.469.

D.B. Brough, D. Wheeler, J.A. Warren, S.R. Kalidindi, Microstructure-based
knowledge systems for capturing process-structure evolution linkages, Curr. Opin.
Solid State Mater. Sci. 21(3) (2017) 129-140, materials Informatics: Insights,
Infrastructure, and Methods.https://doi.org/10.1016/j.cossms.2016.05.002. URL:
http://www.sciencedirect.com/science/article/pii/S1359028616300298.

M.W. Priddy, N.H. Paulson, S.R. Kalidindi, D.L. McDowell, Strategies for rapid
parametric assessment of microstructure-sensitive fatigue for hep polycrystals, Int.
J. Fatigue 104 (2017) 231-242, https://doi.org/10.1016/j.ijfatigue.2017.07.015.
URL: http://www.sciencedirect.com/science/article/pii/S0142112317303055.
R.A. Lebensohn, A.D. Rollett, Spectral methods for full-field micromechanical
modelling of polycrystalline materials, Comput. Mater. Sci. 173 (2020), 109336,
https://doi.org/10.1016/j.commatsci.2019.109336. URL: http://www.sciencedi
rect.com/science/article/pii/S0927025619306354.

P. Putzky, M. Welling, Recurrent inference machines for solving inverse problems
(2017). arXiv:1706.04008.

M. Stein, Gradient methods in the solution of systems of linear equations, J. Res.
Natl. Bureau Standards 48 (1952) 407.

G. Landi, S.R. Niezgoda, S.R. Kalidindi, Multi-scale modeling of elastic response of
three-dimensional voxel-based microstructure datasets using novel dft-based
knowledge systems, Acta Mater. 58 (7) (2010) 2716-2725, https://doi.org/
10.1016/j.actamat.2010.01.007. URL: http://www.sciencedirect.com/science/
article/pii/S1359645410000108.

E. Kroner, Statistical continuum mechanics: course held...October 1971, Springer,
1972.

https://doi.org/10.17632/v6dt8dwrh8.2
https://doi.org/10.1016/B978-0-12-410394-8.00001-1
https://doi.org/10.1016/B978-0-12-410394-8.00001-1
http://www.sciencedirect.com/science/article/pii/B9780124103948000011
http://www.sciencedirect.com/science/article/pii/B9780124103948000011
https://www.nist.gov/system/files/documents/2018/06/26/mgi_strategic_plan_-_dec_2014.pdf
https://www.nist.gov/system/files/documents/2018/06/26/mgi_strategic_plan_-_dec_2014.pdf
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0015
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0015
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0015
https://doi.org/10.1016/j.actamat.2009.10.058
http://www.sciencedirect.com/science/article/pii/S1359645409007617
https://doi.org/10.1103/PhysRevE.75.017702
https://doi.org/10.1103/PhysRevE.75.017702
https://doi.org/10.1016/C2009-0-20058-4
https://doi.org/10.1016/C2009-0-20058-4
https://doi.org/10.1016/S0045-7825(97)00218-1
http://www.sciencedirect.com/science/article/pii/S0045782597002181
https://doi.org/10.1016/j.cma.2016.12.032
https://doi.org/10.1002/nme.275
http://www.osapublishing.org/abstract.cfm?URI=SRS-2001-SMA2
https://doi.org/10.1016/j.actamat.2006.12.010
https://doi.org/10.1016/j.actamat.2006.12.010
http://www.sciencedirect.com/science/article/pii/S1359645407000171
http://www.sciencedirect.com/science/article/pii/S1359645407000171
https://doi.org/10.1002/aic.14491
https://doi.org/10.1137/15M1032478
https://doi.org/10.1007/978-90-481-2687-3_4
https://doi.org/10.1007/978-90-481-2687-3_4
https://doi.org/10.1002/advs.201902607
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1109/TMI.2018.2799231
http://arxiv.org/abs/1512.03385
https://doi.org/10.1016/j.commatsci.2018.05.014
http://www.sciencedirect.com/science/article/pii/S0927025618303215
https://doi.org/10.1016/j.actamat.2018.12.045
https://doi.org/10.1016/j.actamat.2018.12.045
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0115
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0115
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0115
https://doi.org/10.1007/s40192-017-0089-0
https://doi.org/10.1007/s40192-017-0089-0
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0130
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0130
https://doi.org/10.1557/mrc.2019.56
https://doi.org/10.1007/s40192-019-00156-1
https://doi.org/10.1007/s40192-019-00156-1
https://doi.org/10.1103/PhysRev.79.469
https://doi.org/10.1016/j.cossms.2016.05.002
http://www.sciencedirect.com/science/article/pii/S1359028616300298
https://doi.org/10.1016/j.ijfatigue.2017.07.015
http://www.sciencedirect.com/science/article/pii/S0142112317303055
https://doi.org/10.1016/j.commatsci.2019.109336
http://www.sciencedirect.com/science/article/pii/S0927025619306354
http://www.sciencedirect.com/science/article/pii/S0927025619306354
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0170
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0170
https://doi.org/10.1016/j.actamat.2010.01.007
https://doi.org/10.1016/j.actamat.2010.01.007
http://www.sciencedirect.com/science/article/pii/S1359645410000108
http://www.sciencedirect.com/science/article/pii/S1359645410000108
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0180
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0180

C. Kelly and S.R. Kalidindi

[37]

[38]
[39]

[40]

[41]

[42]

[43]
[44]
[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]

G. Green, An essay on the application of mathematical analysis to the theories of
electricity and magnetism (1828). arXiv:0807.0088.

T. Eisler, An introduction to Green’s functions, 1969.
Wikipedia,https://en.wikipedia.org/w/index.php?title=Green%27s_functi
on&oldid=966577686 (Jul 2020).

R.A. Lebensohn, J.P. Escobedo, E.K. Cerreta, D. Dennis-Koller, C.A. Bronkhorst, J.
F. Bingert, Modeling void growth in polycrystalline materials, Acta Mater. 61 (18)
(2013) 6918-6932, https://doi.org/10.1016/j.actamat.2013.08.004. URL: http://
www.sciencedirect.com/science/article/pii/S1359645413005909.

W.S. McCulloch, W. Pitts, A Logical Calculus of the Ideas Immanent in Nervous
Activity, MIT Press, Cambridge, MA, USA, 1988, pp. 15-27.

F. Rosenblatt, The Perceptron, A Perceiving and Recognizing Automaton Project
Para, Report: Cornell Aeronautical Laboratory, Cornell Aeronautical Laboratory,
1957.

G. Cybenko, Approximation by superpositions of a sigmoidal function, Math.
Control Signals Syst. 2 (1989) 303-314.

A. Pinkus, Approximation theory of the mlp model in neural networks, Acta
Numerica 8 (1999) 143-195.

Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278-2324.

Z.C. Lipton, J. Berkowitz, C. Elkan, A critical review of recurrent neural networks
for sequence learning (2015). arXiv:1506.00019.

F. Emmert-Streib, Z. Yang, H. Feng, S. Tripathi, M. Dehmer, An introductory
review of deep learning for prediction models with big data, in: Frontiers in
Artificial Intelligence, 2020.

V.K. Ojha, A. Abraham, V. Snasel, Metaheuristic design of feedforward neural
networks: a review of two decades of research, CoRR abs/1705.05584. arXiv:
1705.05584. http://arxiv.org/abs/1705.05584.

M. Andrychowicz, M. Denil, S. Gomez, M.W. Hoffman, D. Pfau, T. Schaul, B.
Shillingford, N. de Freitas, Learning to learn by gradient descent by gradient
descent (2016). arXiv:1606.04474.

F.N. Iandola, M.W. Moskewicz, K. Ashraf, S. Han, W.J. Dally, K. Keutzer,
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model
size, CoRR abs/1602.07360. arXiv:1602.07360. http://arxiv.org/abs/1602.07360.
D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning Representations by Back-
Propagating Errors, MIT Press, Cambridge, MA, USA, 1988, pp. 696-699.

R.M. Gray, 2006. doi:10.1561,/0100000006.

M.Z. Ullah, S. Serra-Capizzano, F. Ahmad, An efficient multi-step iterative method
for computing the numerical solution of systems of nonlinear equations associated

11

[54]
[55]
[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Computational Materials Science 192 (2021) 110356

with odes, Appl. Math. Comput. 250 (2015) 249-259, https://doi.org/10.1016/j.
amc.2014.10.103. URL: http://www.sciencedirect.com/science/article/pii/S00
96300314014787.

M. Mozer, A focused backpropagation algorithm for temporal pattern recognition,
Complex Syst. 3.

F. Milletari, N. Navab, S.-A. Ahmadi, V-net: Fully convolutional neural networks
for volumetric medical image segmentation (2016). arXiv:1606.04797.

K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification (2015). arXiv:1502.01852.

J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic
segmentation (2015). arXiv:1411.4038.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A.
Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An
imperative style, high-performance deep learning library, in: H. Wallach, H.
Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, R. Garnett (Eds.), Advances in
Neural Information Processing Systems 32, Curran Associates Inc, 2019, pp.
8024-8035.http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf.

PACE, Partnership for an Advanced Computing Environment (PACE) (2017).

1. Loshchilov, F. Hutter, Sgdr: Stochastic gradient descent with warm restarts
(2017). arXiv:1608.03983.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.E. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, A. Rabinovich, Going deeper with convolutions, CoRR abs/1409.4842.
arXiv:1409.4842. http://arxiv.org/abs/1409.4842.

J. Johnson, A. Alahi, F. Li, Perceptual losses for real-time style transfer and super-
resolution, CoRR abs/1603.08155. arXiv:1603.08155. http://arxiv.org/abs/
1603.08155.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A.
Anandkumar, Fourier neural operator for parametric partial differential Egs.
(2020). arXiv:2010.08895.

K. Shridhar, F. Laumann, M. Liwicki, A comprehensive guide to bayesian
convolutional neural network with variational inference (2019). arXiv:
1901.02731.

C. Kelly, RLN _Flasticity_Localization. Mendeley Data, V2, https://doi.org/10
.17632/v6dt8dwrh8.2.

C. Kelly, Rln_elasticity. URL: https://github.com/conlain-k/RLN elasticity (2020).

https://en.wikipedia.org/w/index.php?title=Green%27s_function&oldid=966577686
https://en.wikipedia.org/w/index.php?title=Green%27s_function&oldid=966577686
https://doi.org/10.1016/j.actamat.2013.08.004
http://www.sciencedirect.com/science/article/pii/S1359645413005909
http://www.sciencedirect.com/science/article/pii/S1359645413005909
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0205
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0205
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0210
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0210
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0210
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0215
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0215
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0220
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0220
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0225
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0225
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0255
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0255
https://doi.org/10.1016/j.amc.2014.10.103
https://doi.org/10.1016/j.amc.2014.10.103
http://www.sciencedirect.com/science/article/pii/S0096300314014787
http://www.sciencedirect.com/science/article/pii/S0096300314014787
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.17632/v6dt8dwrh8.2
https://doi.org/10.17632/v6dt8dwrh8.2
https://github.com/conlain-k/RLN_elasticity

	Recurrent localization networks applied to the Lippmann-Schwinger equation
	1 Introduction
	2 Background
	2.1 Linear elasticity and L-S
	2.2 General L-S equation
	2.3 Neural networks background

	3 Methodology
	3.1 L-S as learned optimization
	3.2 CNNs for Lippmann-Schwinger
	3.3 Proximal operator design

	4 Linear elasticity experiments
	4.1 Results

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

