
Computational Materials Science 192 (2021) 110356

Available online 7 March 2021
0927-0256/© 2021 Elsevier B.V. All rights reserved.

Recurrent localization networks applied to the 
Lippmann-Schwinger equation 
Conlain Kelly a, Surya R. Kalidindi a,* 

a Georgia Institute of Technology, Atlanta, Georgia 30332, USA   

A R T I C L E  I N F O   

Keywords: 
Machine learning 
Learned optimization 
Localization 
Convolutional neural networks 

A B S T R A C T   

The bulk of computational approaches for modeling physical systems in materials science derive from either 
analytical (i.e., physics based) or data-driven (i.e., machine-learning based) origins. In order to combine the 
strengths of these two approaches, we advance a novel machine learning approach for solving equations of the 
generalized Lippmann-Schwinger (L-S) type. In this paradigm, a given problem is converted into an equivalent L- 
S equation and solved as an optimization problem, where the optimization procedure is calibrated to the problem 
at hand. As part of a learning-based loop unrolling, we use a recurrent convolutional neural network to itera-
tively solve the governing equations for a field of interest. This architecture leverages the generalizability and 
computational efficiency of machine learning approaches, but also permits a physics-based interpretation. We 
demonstrate our learning approach on the two-phase elastic localization problem, where it achieves excellent 
accuracy on the predictions of the local (i.e., voxel-level) elastic strains. Since numerous governing equations can 
be converted into an equivalent L-S form, the proposed architecture has potential applications across a range of 
multiscale materials phenomena.   

1. Introduction 

Most problems in materials science and engineering require the 
exploration of linkages between materials processing history, materials 
structure, and materials properties. Generally referred as Process- 
Structure-Property linkages [1], they constitute the core materials 
knowledge needed to drive materials innovation supporting advances in 
technology [2]. Traditional physics-based numerical methods have long 
been the standard for solving the governing field equations underpin-
ning these linkages. For mechanical problems, these have included 
ubiquitous finite element methods [3–6] as well as FFT-based spectral 
methods [7–9]. However, standard solvers can constitute a major per-
formance bottleneck in problems which require repeated solution over 
varied inputs, such as inverse problems [10–12] and multi-scale mate-
rials design [13–15]. 

As an alternative, machine learning (ML) provides tools to approxi-
mate unknown linkages in a parametrized fashion, with great success in 
many domains [16]. One of the most successful classes of ML models is 
neural networks [17], which have been applied with excellent results 
both in general applications [16,18–20], and within materials science 
[15,21–23]. Unfortunately, ML models tend to act as “black boxes” 

whose inner workings do not permit the depth of analysis provided by 
purely physics-based models [24]. There is a clear demand for ap-
proaches that leverage the advantages of both methodologies in order to 
build reliable, scalable, and interpretable reduced-order models. 

One example of such an effort is the Materials Knowledge Systems 
(MKS) framework [25,26]. Aimed at multiscale materials design 
[27,28], MKS formulates the governing field equations for heteroge-
neous materials in a Lippmann-Schwinger (L-S) form [7,29]. Using 
regression techniques to calibrate the first-order terms of a series 
expansion to the L-S equation, MKS presents a generalized approach for 
solving a broad class of scale-bridging problems in materials design and 
optimization [30,31]. However, improving the accuracy of these models 
requires higher-order L-S terms, which rapidly become more computa-
tionally expensive. 

As an alternative, we propose an approach inspired by the in-
tersections between iterative spectral methods [32] and recent advances 
in inverse imaging [19,33]; we cast the recurrent L-S equation as an 
optimization problem. Rather than employing a predefined optimization 
strategy, such as gradient descent or conjugate gradients [34], the 
optimizer is posed as a recurrent collection of convolutional neural 
networks. After being calibrated to available curated data (e.g., results 

* Corresponding author. 
E-mail addresses: ckelly84@gatech.edu (C. Kelly), surya.kalidindi@me.gatech.edu (S.R. Kalidindi).  

Contents lists available at ScienceDirect 

Computational Materials Science 
journal homepage: www.elsevier.com/locate/commatsci 

https://doi.org/10.1016/j.commatsci.2021.110356 
Received 20 December 2020; Received in revised form 28 January 2021; Accepted 29 January 2021   

mailto:ckelly84@gatech.edu
mailto:surya.kalidindi@me.gatech.edu
www.sciencedirect.com/science/journal/09270256
https://www.elsevier.com/locate/commatsci
https://doi.org/10.1016/j.commatsci.2021.110356
https://doi.org/10.1016/j.commatsci.2021.110356


Computational Materials Science 192 (2021) 110356

2

of FEA simulations, phase field models), these networks act as proximal 
(or “update”) operators which take in a candidate solution and output an 
improved version. This iterative methodology emphasizes the underly-
ing physics to permit greater model robustness and deeper analysis. 

In this paper, we begin with a brief analysis of the L-S equation and 
its application to the linear elasticity problem, followed by discussion on 
the general L-S equation. Using this analysis, we then demonstrate how 
the L-S equation can be naturally posed as a machine learning problem, 
and how a neural network can learn proximal operations which mini-
mize a physical quantity (e.g., stress field divergence) within a solution 
field. By exploring the interplay between the physical and computa-
tional interpretations of the L-S equation, we provide insight into a new 
class of ML models for materials science. We then analyze which aspects 
of our approach provide the greatest gains by exploring various model 
configurations, reinforcing the value of an iterative (rather than feed- 
forward) approach. Finally, we evaluate our methodology on the prob-
lem of elastic localization and compare it to a previous machine learning 
model. 

2. Background 

2.1. Linear elasticity and L-S 

Originally developed in the context of quantum mechanics [29], the 
L-S equation – or class of equations – is an implicit integral form that can 
represent a fairly general space of physical phenomena. The L-S equa-
tion is especially useful in the context of physics of heterogeneous media 
with spatially-varying physical parameters: stiffness, conductivity, 
density, etc. We defer discussion of the general Lippmann-Schwinger 
form until Section 2.2. 

As a case study, we consider the problem of computing the internal 
elastic strain field of a composite material undergoing bulk stresses or 
strains [7,32,35]. The composite microstructure is assumed to be 
composed of two or more distinct phases (i.e., thermodynamic material 
constituents), each exhibiting its own constitutive laws. This problem is 
herein referred to as elastic localization. An example two-phase micro-
structure and corresponding elastic strain field are presented in Fig. 1. 

Physically, elastic localization is governed by a generalized Hooke’s 
law relating the variation in stress σ(x), strain ε(x), and stiffness C(x)
over some volume V, along with the demand that the equilibrium stress 
field be divergence-free: 
σ = Cε, (1)  

∇⋅σ = 0. (2) 
We consider constant periodic boundary conditions that correspond 

to the imposed volume-averaged strain, ε. With these choices, one can 
model the internal mechanical response of a representative volume 

element (RVE) of the material. In these models, the RVE often serves as a 
statistical unit cell of a larger material structure. We note that the 
problem statement expressed here serves as a simple illustration of the L- 
S methodology, which has been successfully applied to more complex 
material systems and/or boundary conditions [32,30]. 

Following the work of Kröner [36], this system is converted into an 
equivalent form (the elastic L-S equation) by splitting the local elastic 
stiffness C into a selected (constant) reference value CR and a pertur-
bation value C′ . Substituting these stiffness tensors into Eqs. (1) and (2) 
provides a partitioned version of the governing field equations: 
∇⋅
(
CRε

)
= −∇⋅

(
C

′

ε
) (3) 

Observe that the left-hand side of this equation is a linear operator, 
denoted as A, which acts on ε: 
Aε ≡ ∇⋅

(
CRε

)
= CR∇⋅ε (4) 

Clearly Aε is linear in ε; therefore, it will have a corresponding 
Green’s function G(x, s) [37]. Since divergence is uniform in space, we 
make the simplification G(x, s) = G(x−s). This function represents the 
system’s response to an impulse inhomogeneity 
AG(x − s) = δ(x − s) (5)  

where δ denotes the Dirac-delta function. 
We also partition the strain field as ε = εR + ε

′ , where εR represents a 
(constant) reference strain determined by boundary conditions (this is 
also equal to the internal average strain ε), and ε′ is the corresponding 
perturbation strain. Both CR and εR are constant, so ∇⋅(CRεR) = 0 and 
thus εR is the homogeneous solution to A. For a given inhomogeniety 
b(x), we can use the Green’s function to solve for the particular solution 
ε
′
(x): 

Aε(x) = b(x) (6)  

⇒ε

(
x

)
= εR +

∫

V

G

(
x− s

)
b

(
s

)
ds (7) 

Now we formally treat the right-hand side of Eq. (3) as the in-
homogeneity b to obtain the elastic Lippmann-Schwinger Equation: 

ε
′

(
x

)
= −

∫

V

G

(
x− s

)
(∇⋅[C

′

(s)ε(s)] )ds. (8)  

or 

ε(x) = ε −

∫

V

G(x − s)(∇⋅[C’(s)ε(s) ] )ds (9) 

Since many governing equations can be converted into a similar 
structure, we refer to their transformed version as an “L-S form”; that is, 
Eq. (9) is the Lippmann-Schwinger equation corresponding to the elastic 
governing equations. A Lippmann-Schwinger derivation corresponding 
to a general governing equation is presented in Section 2.2. The reader is 
referred to Refs. [38,39] for more background on Green’s functions. 

Using insights from previous work [22,27,35], we modify this 
equation to make it amenable to a learning paradigm. First, we 
integrate-by-parts to shift the derivative onto G and absorb it into a new 
operator, Ĝ. Using * to concisely denote a convolution, we obtain 

ε(x) = ε −

∫

V

Ĝ(x − s)C’(s)ε(s)ds = ε − Ĝ ∗ (C’ε) (10) 

Next, we define a binary microstructure representation mh(x) that 
equals 1 if the material at point x is of phase (or material type) h, and 
0 otherwise. Since each phase has its own stiffness, we can project the 
stiffness tensor C onto each phase: C =

∑
hChmh and likewise C

′

=
∑

hCh
′

mh. Finally, we combine the Green’s function terms with the Ch ′

expression to obtain yet another operator Γ(x − s)h ≡ Ĝ(x − s)Ch ’. 
Fig. 1. Example microstructure-strain field pair for two-phase elastic localiza-
tion. Yellow is high-stiffness phase; purple is low-stiffness phase; contrast be-
tween elastic moduli is CR = 50. 

C. Kelly and S.R. Kalidindi                                                                                                                                                                                                                   



Computational Materials Science 192 (2021) 110356

3

Applying all of these modifications, the elastic L-S form becomes 
ε(x) = ε −

∑

h

Γ
h*(mhε

) (11) 

The problem of elastic localization has thus been reduced to a single 
convolutional integral containing the microstructure mh, candidate 
strain field ε, and a physics-determined stencil Γh. Curiously, the first 
two terms appear solely as an element-wise product between mh and ε. 
This is due to the fact that the strain field is constrained indirectly by the 
divergence-free condition on σ. One also observes that all effects of C 

have been absorbed into Γh. This corresponds to the fact that Γh is not 
unique: infinitely many choices of CR could result in this equation. 
Although mathematically equivalent to the original physics (and visu-
ally more complicated), Eq. (11) provides significant advantages for 
solution over large heterogeneous volumes. Several solution strategies 
have been explored to address elastic localization in heterogeneous 
material systems, resulting from different interpretations of the L-S 
equation. 

Mathematically, Γh is a set of convolutional kernels – one for each 
phase – encoding the underlying physics of the problem. Given a strain 
field, it computes the corresponding stresses and peels off the strain 
perturbation field required to minimize the stress divergence. Using this 
perspective, many existing models view the L-S equation as a fixed-point 
equation and solve it via root-finding [7]. The rate of convergence of 
these methods tends to depend heavily on the variation in material 
properties and the choice of CR [32]. All of these physics-based ap-
proaches require a quantitative knowledge of the Green’s function G. 

From a computer science perspective, the term mhε simply represents 
the strain field segmented by phase (since mh is a binary indicator 
function). Given a collection of true structure-strain pairs, one could 
either learn Γh, or some approximation, to best conserve the equality. 
Following this view, several ML-based elastic localization models 
[22,35] have been applied to learn (non-iterative) linkages between mh 

and ε by either approximating a series expansion of Γh, or using a neural 
network to map mh to ε directly, bypassing Γh completely. The disad-
vantage of these models is that they either truncate or ignore the un-
derlying physics, trying to re-learn it from data. The tension between 
these two perspectives leaves room for a hybrid method which retains 
the iterative L-S structure, but uses ML to deduce the internal details of 
the Γh operator. 

2.2. General L-S equation 

This section presents a derivation for the general L-S equation. from a 
generic governing equation, drawing on the work of Moulinec [7] and 
Kröner [36]. This is provided for two reasons: to provide greater intui-
tion and background for the L-S equation, and to motivate its compati-
bility with ML solvers. First, we write (in conservation form) a governing 
differential equation controlling a field y which varies over space x 

spanning some volume V: 
H (y(x); ​ x ) = 0. (12) 

Observe that any governing equation can be partitioned into two 
coupled subequations, each governing their own subsystems. First 
define an operator A which captures all linear (and spatially homoge-
neous) components of some general operator H . Now define a second 
(possibly nonlinear) operator B containing the rest of H . One obtains 
the earlier example of elastic localization with the substitutions y ≡ ε,

Aε ≡ ∇⋅
(
CRε

), and B(ε) ≡ ∇⋅(C’ε). Although not explicitly denoted, 
both A and B may contain implicit information about the solution do-
main’s structure (terms such as C or m). 

Using these operators we can rewrite the original equation as: 
H (y; ​ x) = Ay + B(y; ​ x) = 0 (13a)  

or 
Ay = −B(y; ​ x). (13b) 

This partitions the governing equation into two coupled systems: a 
linear homogeneous system permitting only “simple” solutions, and a 
nonlinear, heterogeneous system where the solution is more compli-
cated. Before solving the complete equation, we consider the auxiliary 
system 
Ay(x) = b(x) (14)  

for some inhomogeneity b. We define the homogeneous solution to this 
system as yR, so that AyR = 0. Note that in general, yR is determined by 
both A and the relevant boundary conditions, and for some problems 
there may be more than one suitable yR. For problems with a constant 
solution field on the boundary, one finds that yR = y, i.e., the reference 
field is the average solution everywhere. 

The choice of yR induces a corresponding perturbation (or “particular 
solution”) y′

= y−yR. Because yR is annihilated by A, note that Ay = Ay’. 
Since A is linear, it will have a Green’s function G(x, s), which captures 
the system’s impulse response [38]. Using this we write the particular 
solution to the auxiliary equation as a convolution between G and b and 
reconstruct the complete solution: 

AG(x, s) = δ(x − s)⇒y’(x) =

∫

V

G(x, s)b(s)ds (15)  

or 

y

(
x

)
= yR +

∫

V

G

(
x, s

)
b

(
s

)
ds. (16) 

Now we return to Eq. (13b) and apply the auxiliary approach, this 
time treating the entire B term as our homogeneity b (and noting the 
attached minus sign). Plugging this into the perturbation expression for 
y gives us: 

y = yR −

∫

V

G(x, s)B(y(s); ​ s )ds. (17) 

This is the general Lippmann-Schwinger equation; since this deri-
vation holds for any operator H , we use the term “L-S form” for a given 
H to describe the result of partitioning and substituting that H into Eq. 
(17). Referring back to the example of elastic localization, Eq. (9) is the 
equivalent L-S form for Hooke’s law (Eq. (2)). 

Note that the linear system A only enters the L-S equation through 
the definitions of yR and G. For example, if one used the trivial choice of 
the identity for A, the corresponding Green’s function would just be the 
Dirac delta function, and Eq. (17) would simplify to the original gov-
erning equation. 

For the L-S form to be advantageous over H , A must capture a non- 
trivial amount of the underlying equation. There are three primary 
factors which make the L-S equation useful. First, it is partitioned: the 
original system is broken into two coupled physical systems. This makes 
it similar to a traditional “splitting method” where the linear and 
nonlinear components are separated, allowing the solution of the 
nonlinear components to be informed by the homogeneous, linear so-
lution. The coupling between systems means that the L-S equation is also 
recursive: the presence of y in the inhomogeneity term leads to its 
appearance on both sides of the equation. If one desires to solve the 
problem analytically, the L-S form is likely no more useful than the 
original governing equation. However, the implicit structure is very 
suitable for iterative and optimization-based solvers [9,40]. Finally, the 
L-S equation is convolutional: the integral is actually a convolution be-
tween the B term and a (possibly-unknown) Green’s function G. Roughly 
speaking, Eq. (17) presents the solution field y(x) as a balance between 
the global homogeneous “pull” (yR) and the localized “tug” (y′

(x)) of the 
solution values in a neighborhood near x. In situations where B is a 

C. Kelly and S.R. Kalidindi                                                                                                                                                                                                                   



Computational Materials Science 192 (2021) 110356

4

purely differential operator (such as elastic localization), and with 
appropriate boundary conditions, Eq. (17) can be integrated-by-parts to 
shift part of B onto G. This can simplify the integral term so that all of the 
physics is contained in a single convolutional stencil. 

2.3. Neural networks background 

As one of the most popular ML tools in use, neural networks are a 
class of parametrized function approximators that can be calibrated to 
curated data [17]. At a high level, an artificial neural network (ANN) 
operates as an alternating sequence of tunable linear transforms and 
nonlinear activation functions – mimicking the operation of physical 
neurons in the brain [41,42]. Under certain conditions, a sufficiently 
large neural network can be shown to act as a universal function 
approximator [43,44], motivating their use in a myriad of disciplines. 

Two relevant specializations are the convolutional neural network 
(CNN), which uses convolution with a fixed-width stencil as its trans-
form operation [45,18], and the recurrent neural network (RNN), which 
operates on sequential data and considers latent information carried 
across input iterations [46]. These tools can be combined to model the 
underlying structure of various problems. A well-designed ML model 
trained on sufficient data can be significantly faster than an analytical 
equivalent and still provide reasonable accuracy [47]. This comes at the 
expense of interpretability – they return a “black-box” model which is 
difficult to understand and analyze [24]. Additionally, the topology of 
these networks (e.g., number of layers, nodes per layer, activation 
functions) strongly determines their success [48], and the “best” 

configuration is problem-dependent and often constructed ad hoc. 
Recently there has been tremendous interest in the application of 

neural networks to mathematical problems [16]. Specifically, variations 
of recurrent CNNs have been explored [49] to learn Bayesian priors for 
image denoising [33] or proximal operators for medical imaging [19]. 
These image analysis methods pose the problem such that the desired 
output is obtained via a learned optimization procedure, where the 
optimizer itself is formulated as a neural network. Surprisingly, these 
methods often employ very simple network designs, especially 
compared to deeper and more elaborate structures found in mainstream 
ML [20,50]. 

3. Methodology 

3.1. L-S as learned optimization 

We now explore how the perturbation expansion and L-S form allow 
a governing equation to be interpreted naturally as a machine learning 
problem. We first define a new operator Φ representing the entire right- 
hand side of Eq. (17). We also use m to represent a problem domain’s 
underlying microstructure, which influences the inhomogeneity B. 
Given a sample microstructure m∗, we obtain the corresponding strain y* 

by minimizing the error (or loss) L between y and Φ(y,m*) over all y. 

Φ(y,m) ≡ yR −

∫

V

G(x, s)B(y(s); ​ s )ds (18)  

y* = Φ

(
y*; m*

)
= argmin

y

L (y,Φ(y; m*)) (19) 

Although Φ may not be linear itself, linear analysis methods provide 
a useful interpretation: for a given microstructure m*, Φ has a (possibly 
non-unique) generalized eigenfunction y* with unit eigenvalue. Issues 
regarding the solution’s uniqueness and existence can arise from the 
original governing equation’s nonlinearity. In the case of the elasticity 
problem, the governing equation is linear, so a unique solution will exist. 

Now the original problem of solving the governing equation H has 
been reduced to that of minimizing the scalar loss L given a particular 
microstructure via a learned optimization strategy. To do this, we define 

a parametrized learner F θ that performs a sequence of proximal oper-
ations which progressively improve the solution field to match the 
governing physics. Here θ represents all possible parameters of this 
learner. The optimal set of parameters θopt is obtained by minimizing the 
expected error produced by F θ w.r.t. θ; in the case of a CNN this rep-
resents the optimal network weights, and can be obtained via standard 
backpropagation [51]. Given a microstructure and initial guess y0, we 
want F θ to provide a solution field which is approximately the true 
solution field y*: 
F θ(y0,m*) = ŷ ≈ y* (20) 

This is accomplished by a sequence of updates 
yi = yR + fi

(
yi−1,m

h
) (21)  

where fi represents the perturbation proximal operator used at iteration 
i; given a microstructure and candidate strain field, it outputs the 
perturbation component corresponding to an improved estimate of the 
true strain field. A pseudocode and visual representation of the approach 
developed in this work are presented in Fig. 2. Ideally, after the model is 
trained, F θ and Φ have the same eigenfunctions (i.e., F θ(y

*,m*) = y*). 
The optimization strategy employed by the F θ model is directly 

determined by the choice of fi. To explore what this might look like for 
the elastic problem, consider an L2 loss function and plug in the elastic 
LS formula (Eq. (11)): 

Φ

(
y; mh

)
= yR −

∑

h

Γ
h*(mhy

) (22)  

L
(
y,Φ

(
y; mh

))
≡

1

2

(
y − Φ

(
y; mh

))2
=

1

2

(
y − yR +

∑

h

Γ
h*
(

mhy

))2

(23) 
The original fixed-point approach of Moulinec [7] corresponds to the 

choice 

Fig. 2. Pseudocode and visualization for optimization-based solution of the L- 
S equation. 

C. Kelly and S.R. Kalidindi                                                                                                                                                                                                                   



Computational Materials Science 192 (2021) 110356

5

f M
i

(
yi−1,m

h
)
= −

∑

h

Γ
h*
(

mhyi−1

)
∀i (24) 

As an alternative, we can obtain a “steepest descent” formula by 
taking the gradient [34] of Eq. (23): 

f G
i

(
yi−1,m

h

)
= yi−1 − yR − γi

∂

∂yi−1

L

(
yi−1,Φ

(
yi−1; mh

))
(25)  

or 

f G
i

(
yi−1,m

h
)
= yi−1 − yR − γi

(
I +

∂

∂yi−1

∑

h

Γ
h*(mhyi−1

)
)

(
yi−1 − yR +

∑

h

Γ
h*(mhyi−1

)
) (26)  

where γi denotes the step size at iteration i and I represents the identity 
operator. By flattening everything into vectors and representing the 
convolution with an equivalent Toeplitz matrix [52], one can convert 
the product term in Eq. (26) into a single linear operator H acting on 
yi−1. The linearity of H comes from the fact that the 

(
I+ ∂

∂yi−1
…

)
term is 

actually independent of yi−1. Using a constant λi to collect remaining 
terms of yR, the steepest descent rule becomes: 
f G

i

(
yi−1,m

h
)
=
(
1− γi

)(
yi−1 − yR

)
+ γiHyi−1 + λiy

R (27) 
Effectively, the gradient descent rule says that the new perturbation 

field is obtained by correcting the previous perturbation field (y
i−1

’ =

yi−1 − yR) using a set of convolutional operations involving Γh and mh, 
then subtracting off a factor of yR such that the output perturbation field 
is zero-mean. 

A variety of more complicated update rules have been proposed to 
accelerate the solution of different forms of the L-S equation [32]. From 
the examples above one sees that any update rule will involve various 
terms of Γh, which itself contains both physical properties (such as Ch ′ ) 
as well as derivatives of the Green’s function (such as Ĝ); more 
complicated update rules will simply require higher-order combina-
tions. Therefore, if we hope to learn fi, it must be parametrized in a way 
such that it can capture global convolutional stencils, as well as various 
derivatives thereof. Finally, we note that although most analytical ap-
proaches employ the same operator for each iteration, the F θ formu-
lation permits varying fi across iterations. 

3.2. CNNs for Lippmann-Schwinger 

Most analytical minimization procedures are (by design) problem- 
agnostic; this means that they can be expected to work reasonably 
well for many problems, but may not be optimal for the problem at hand. 
Rather than using a predefined optimization strategy, we formulate each 
fi as a CNN that learns a proximal operator mapping a given micro-
structure and candidate solution field to an improved perturbation field. 
The central motivation behind using a CNN proximal operator is that 
given sufficient parameterization, it can emulate almost any optimiza-
tion strategy; furthermore, that strategy will be customized to the 
problem at hand during training. Of course, this comes with the 
immense caveat that, absent any advances in theoretical ML, a learned 
optimizer will not have any provable convergence guarantees. The 
means that even as N→∞, our learned model may not converge to the 
true solution field for a given microstructure. In practice, however, the 
model can be tuned and trained until it consistently produces solutions 
within acceptable error tolerances. 

We define the F θ optimization model imbued with a CNN fi as a 
recurrent localization network (RLN), which performs the following 
operations during both training and evaluation phases: given a micro-
structure m and initial guess yR, estimate the true solution field by 

refining it over N iterations. At iteration i, the microstructure is com-
bined with candidate solutions from previous iterations and passed 
through CNN fi. Note that fi outputs a perturbation field y′

i; the reference 
solution yR is already known, so there is no need to learn that. In order to 
simulate a multi-step solver [3,53] and estimate higher-order derivative 
terms, fi considers the last k solutions via multiple input channels (rather 
than just yi−1). One could potentially achieve this property, and perhaps 
obtain better results, by using GRU or LSTM modules [33] which learn a 
“latent” state to pass between iterations; however, 3D convolutional 
implementations for these operations were not part of major ML li-
braries at the time of writing. 

Specifically for elastic localization, m and y are combined via 
element-wise multiplication following Eq. (11). To enforce computa-
tional stability, all strains are normalized by the average strain ε. 
Moreover, the output of each fi network has its average subtracted to 
enforce the constraint that the perturbation strain field is always zero- 
mean. 

Following prior work [19], we define a full RLN as using a different fi 
for each iteration (although we use the same CNN structure for each), for 
a total of N distinct networks. The idea behind this is to allow the 
network capture different properties at each iteration, akin to terms in a 
series expansion. Having significantly more tunable parameters, this 
configuration provides the most expressive model. By allowing different 
operators to be employed at different iterations, this approach also de-
viates the most from standard analytical optimization procedures. 

Alternatively, one may wish to reuse the same intermediate network 
across iterations (fi = f ∀i). This approach is denoted as RLN-t since the 
weights are tied between iterations. This means that the same operator 
will be employed at each iteration; however, since a time series is fed 
into each fi (rather than a single data point), the RLN-t is still able to 
learn higher-order derivatives. It has the primary advantage of 
simplicity and efficiency, since it uses a factor of N fewer parameters 
than the full RLN. 

Finally, we test the importance of the iterative and recurrent nature 
by considering a single fi network, i.e., choosing N = 1. We call this a 
feed-forward localization network (FLN) and use it as a control to 
quantify the benefits of iteration vs. network design. Although the RLN-t 
and the FLN have the same number of parameters, the RLN-t uses each 
parameter N times, effectively simulating a deeper network. 

For N > 1, the proximal CNNs are all calibrated simultaneously via 
backpropagation. During training a batch of true structure-strain pairs 
are fed through F θ in its entirety, and all proximal networks are 
updated simultaneously to minimize a calibration loss function L

(cal)

(which is not necessarily the same as the solution field loss L above). 
Rather than only consider the loss of the final output, we use a weighted 
sum of the loss of individual iterates: L

(cal) =
∑

iwiL
(cal)
i for some 

weights wi. The goal is to encourage the network to progress between 
iterations, while also finding the best possible solution. 

Following the analysis of Andrychowicz et al. [49] we interpret the 
use of L (cal) as a variant of Backpropogation Through Time [54]. The 
choice of weights wi could theoretically act as a form of stabilization or 
even regularization. By requiring that each iteration output a reasonable 
candidate solution, each proximal operator is constrained to behave 
somewhat physically, which might help prevent overfitting. However, 
this means that the network is encouraged to make larger changes in 
early iterations, potentially reducing its final-iterate accuracy. 
Conversely, if only the final result is important, then intermediate iter-
ations could explore the loss curve more. However, only updating based 
on the last iteration will slow the model’s training, and possibly increase 
the chances of the network weights converging to a poor local minimum. 
Clearly further experiments are required to explore these hypotheses. 

Following similar works [33] we chose the uniform weighting wi =

1 ∀i. This induces the network to make larger corrections in early iter-
ations (to avoid carrying costly errors through several iterations) and 
relatively smaller corrections in later iterations. However, our numerical 

C. Kelly and S.R. Kalidindi                                                                                                                                                                                                                   



Computational Materials Science 192 (2021) 110356

6

experiments (Section 4) indicate that perhaps a different weighting 
might help the network capture fine-scale microstructure features. The 
appropriate number of iterations depends on the specific problem; for 
elasticity N = 5 proved sufficient in both the RLN and the RLN-t, and 
more iterations yielded little benefit. For the number of previous itera-
tions to track, the value k = 2 was chosen. The above choices of 
hyperparameter were largely heuristic and made for simplicity, but they 
worked well for elasticity; for a more intensive problem a cross- 
validation procedure would be a better method for their selection. 

3.3. Proximal operator design 

Various network topologies for fi [19,33,55] were tested with one 
goal in mind: use convolutional kernels to effectively capture local in-
teractions. The architecture that proved most successful for elasticity 
was based roughly on a V-Net [55] and is presented in Fig. 3. By 
combining information across length scales through the use of up- and 
down-sampling operations, this architecture is able to encode and 
combine both fine- and coarse-grained features. Notably, even a simple 
sequence of 3 convolutional layers (similar to that of Adler [19]) worked 
reasonably well. As with the hyperparameters above, a cross-validation 
procedure could aid in picking a superior network topology for a given 
problem; for this work, we intentionally avoided hyperparameter opti-
mization to emphasize the mathematical analysis and iterative 
approach. 

For this study, most convolutional kernels are 3 × 3 × 3, with 1 × 1 
× 1 kernels used for channel reduction and 2 × 2 × 2 for up/down- 
sampling, summing to ≈ 160,000 learnable parameters for each prox-
imal network fi. A parametric rectified linear unit (PReLU) activation 
function [56] was used after the 3 × 3 × 3 convolutions. This activation 
is similar to the regular ReLU, but has a non-zero slope α for negative 
inputs; α is trained with all the other network weights during back-
propogation. In our experiments this improved the model’s stability 
during training and accuracy during testing. Effectively, it allows the 
network to be much more expressive with only a few extra parameters – 

changing one α scales the entire output of a channel, rather than 3 × 3 ×

3 = 27 weights representing each voxel in that channel’s filter. 

4. Linear elasticity experiments 

We now present results from the application of RLN-type models to 
the elastic localization problem in two-phase composites. A synthetic 
dataset of 20,480 31 × 31 × 31 microstructure/strain field pairs was 
generated and randomly split 40%/ 20 %/ 40% into disjoint train/ 
validation/test sets, respectively. The train set was used to calibrate F θ, 
the validation set served to measure its quality while training, and the 
test set was used to compute error metrics. 

The microstructures were generated via PyMKS [25] by creating a 
uniform random field, applying a set of Gaussian filters, and thresh-
olding the result. In this microstructure generation process, the filter’s 
width in each direction controls the characteristic size and shape of the 
material grains, and the threshold controls the relative volume fraction 
of each phase. 

Combinations of these four parameters were generated via a Latin 
hypercube sampling procedure to generate 4096 design points for 
microstructure generation. For each design point, 5 random micro-
structures were generated in order to produce statistically similar inputs, 
so that the datasets had some statistical redundancy. A random sample 
of 8 training microstructures is displayed in Fig. 4. By varying these 
design parameters, one can cover a vast subspace of all possible mi-
crostructures, although we note that the space of all microstructures in 
intractably large – ignoring circular symmetries there are O(2S) possible 
different microstructures with S voxels. By selecting our training and 
testing sets using the same procedure, we demonstrate the RLN’s ability 
to interpolate between “familiar” microstructure samples, but not to 
extrapolate to microstructures which lie outside the closure of the 
training set. 

It is important to note that these microstructures do not necessarily 
correspond to thermodynamically favorable structures (i.e., they might 
appear in nature). However, this is a limitation only in data and not 
methodology – by using a fully-convolutional structure [57] the RLN can 
handle any voxelized input, including experimental data. 

The elastic strain fields in each microstructure were obtained from 
previously-built finite element models [22]. One major simplification is 
that even though the imposed 3D strain field is actually a second-order 
tensor (and the elastic stiffness field a fourth-order tensor), the linear 
nature of the problem allows us to solve for each component individu-
ally and superimpose their solutions as needed [35]. As such we apply an 
overall displacement to a material RVE along only the x-axis and we 
focus solely on the ∊xx term. For these simulations, a total strain of 0.1% 
was applied via periodic boundary conditions. 

The relevant material parameters to be prescribed are thus the elastic 
moduli E1, E2 and Poisson ratios ν1, ν2 of the two phases. To roughly 
match most common metals, we chose ν1 = ν2 = 0.3. With these se-
lections, the contrast ratio CR ≡ E2

E1 has the most dominant role on the 
final strain field. With the choice E2 ≥ E1, one observes that CR ≥ 1. In 
general, as the contrast in stiffnesses increases, the problem becomes 
harder to solve with both iterative and data-driven methods [32]. 
Following prior work [22], we tested the RLN on contrast ratios of 10 
and 50. 

Each RLN model was implemented in PyTorch [58] and trained 
independently for 60 epochs on an NVIDIA V100 GPU [59], which took 
approximately 8 hours. The RLN models were all calibrated using the 
Adam optimizer, a Mean Square Error loss, and a Cosine annealing 
learning rate decay [60]. The last choice proved especially important 
since the models demonstrated great sensitivity to learning rate; intro-
ducing the cosine decay helped the model converge smoothly and 
quickly. After training, the epoch with the lowest validation loss was 
chosen as the “optimal”. In reality, the training and validation losses 
were tightly coupled as demonstrated in Fig. 5. Note that training losses 
are aggregated during the epoch, whereas validation losses are 
computed after the epoch is complete, which causes the validation loss 
to occasionally appear lower. 

Fig. 3. Architecture for internal fi networks.  

C. Kelly and S.R. Kalidindi                                                                                                                                                                                                                   



Computational Materials Science 192 (2021) 110356

7

4.1. Results 

Following Yang et al. [22], the accuracy of the model was evaluated 
for each instance using the mean absolute strain error (MASE) over all S 
voxels: 

MASE

(
ypred, ytrue

)
= 100 ×

1

S

∑S

i=1

⃒⃒
⃒⃒ypred

[
i
]
− ytrue

[
i
]

yR

⃒⃒
⃒⃒. (28) 

Fig. 6 presents the MASE distribution across each microstructure/ 
strain pair in the test set. Note that the MASE is an aggregate measure 
which measures RVE-wide error; the pointwise error variation within a 
microstructure is explored below. The mean and standard deviation of 
the MASE distribution are collected in Table 1 for the RLN-type models. 
For comparison we also present results from a recent study [22] using a 
feed-forward deep learning (DL) model to predict the strain fields; note 
that the DL model was trained and tested on its own dataset prior to this 
effort. 

It is important to note that the DL model had a fundamentally 
different architecture: it was designed to work on 213 voxel structures 
(whereas ours was tested on 313), and it predicted the strain one voxel at 
a time (whereas ours predicts strain across the entire microstructure 
simultaneously). The dataset for the DL model employed large amounts 
of data augmentation using circular permutations, and contained 

significantly more input-output pairs. Finally, the DL model employed 
linear layers (to collapse to a single output); the size of these layers 
implies that the DL model used substantially more network weights than 

Fig. 4. Random sample of 8 training microstructures sliced along (y, z) axis. Yellow is high-stiffness phase, purple is low-stiffness.  

Fig. 5. Learning curve containing calibration losses for each model and contrast ratio.  

Fig. 6. MASE distribution for RLN, CR = 50.  

C. Kelly and S.R. Kalidindi                                                                                                                                                                                                                   



Computational Materials Science 192 (2021) 110356

8

the RLN. As a result, it is difficult to compare the DL dataset and results 
with ours. We emphasize that the DL model represents a strong com-
parison model for ML elastic localization, but that objective ranking of 
relative performance is difficult. Nevertheless, the RLN architecture is 
able to produce significantly more accurate strain field estimates on the 
RLN dataset than the DL architecture produces on the DL dataset. 
Keeping these caveats in mind, the following analysis explores the dif-
ference between RLN configurations. 

Looking at the aggregate statistics, the FLN performs worst of all 
models analyzed; it is vastly outperformed by the RLN-t even though 
they have the same number of parameters. This is also reflected in the 
learning curve in Fig. 5: the RLN-t trained faster than the FLN and 
converged to a more accurate model simply by applying the proximal 
operator repeatedly across multiple iterations. Intriguingly, the FLN 
results are somewhat worse than the DL results. This implies that our 
simple network topology and relative lack of hyperparameter tuning 
produced a less-powerful model than the DL. However, the RLN-t did 
much better, producing less error on average (and significantly less 
variance) than the DL control for both contrast ratios. The disparity in 
performance indicates that dataset and network topology alone cannot 
explain the improved MASE relative to the DL model – the iterative 
methodology produces a more powerful model. 

The full RLN is the most accurate model, producing roughly half as 
much error and variability as the DL model for both contrast ratios. The 
improvement over the RLN-t has a number of possible origins: the RLN 
uses a factor of N more parameters, and in turn it uses a different 
operator at each iteration. We note that after training, the full RLN in-
creases the memory overhead but not the prediction time: up to GPU 
memory details, each iteration has the same computational costs 
regardless of weight tying. Excluding data I/O overhead, the RLN-t and 
the full RLN take only ≈ 87 seconds to predict strain fields for the entire 
testing set (8,192 microstructures), or roughly 11 ms per microstructure 
(c.f. ≈ 5 s per microstructure for FEA). 

Fig. 7 presents the worst (by voxel) test-set slice for the RLN model 

compared to the FEA-generated fields. The RLN appears to perform 
poorest near extreme strain peaks, especially in a 3-voxel wide cube 
around these peaks. This is caused by two issues. First, the microstruc-
ture is effectively undersampled in these areas. Referring back to Fig. 4, 
one sees that many microstructures have spatial features that are only 
one or two voxels wide. Furthermore, the output of the RLN is effectively 
‘smeared’ near these peaks due to the usage of a 3x3x3 filter. A deeper 
network, or one using multiple filter sizes, might be able to better cap-
ture these features. 

Finally, we explore how the predicted strain field yi evolves across 
iterations, as well as its difference Δi ≡ yi −yi−1. This is presented in 
Fig. 8 for the FLN, Fig. 9 for the RLN-t, and Fig. 10 for the full RLN. The 
greyscale coloring is the same scale as Fig. 7 and has its maximum at the 
true strain response’s maximum. The redscale coloring represents a 
negative strain update (y decreasing between iterations). 

The FLN appears to handle low-strain areas fairly well, but misses the 
strain peaks in the center. Note that it does not apply the same operation 
as the first iteration of the RLN-t; the FLN is trained to make the best 
possible answer within a single jump. In comparison, the RLN-t does a 
better job of capturing strain peaks, likely since it can build them up over 
several iterations. What is less clear is that it fails to capture the central 
strain peak as well as the full RLN – the differences between the two are 
evidently rather fine-scale, so we focus our analysis on the full RLN. 

After the first iteration the RLN has picked up most of the relative 
troughs and peaks, and finer tweaks are handled by the later iterations. 
For example, most of the high-strain regions (greyscale deltas) appear to 
be captured in the first two iterations, whereas low-strain regions 

Table 1 
Test-set MASE metrics for RLN and control models, for both CR = 10 and CR =

50  
Model MASE (mean ± std. dev.)      

Contrast-10     
Comparison DL model [22] 3.07%±1.22%      
FLN 4.98%±1.49%      
RLN-t 1.81%±0.58%      
RLN 1.21%±0.37%       

Contrast-50     
Comparison DL model 5.71%±2.46%      
FLN 9.23%±3.29%      
RLN-t 4.26%±1.65%      
RLN 2.92%±1.17%       

Fig. 7. Slices of RLN predicted strain, true (FEA) strain, and ASE for worst test-set instance, CR = 50.  

Fig. 8. FLN predictions and differences between iterations for selected test-set 
instance, CR = 50. 

C. Kelly and S.R. Kalidindi                                                                                                                                                                                                                   



Computational Materials Science 192 (2021) 110356

9

(redscale deltas) continue to be refined in later iterations. 
This is due to the RLN’s ability to learn different, and nonlinear, 

operators at each iteration – the MSE loss function tends to magnify 
high-magnitude errors, even if they are very localized (i.e., strain peaks 
and troughs). The model is therefore encouraged to estimate these 
outlier areas first (corresponding to Δ1 having much more magnitude). 
Of course, this puts a lot of weight on the first proximal network to 
capture the strain outliers correctly. One possible solution would be to 
adjust the loss function weighting so that early iterations are encouraged 
to converge gradually towards a good solution, rather than quickly to-
wards a decent one. In other words, by allowing earlier iterations to 
mispredict strain peaks somewhat, the model may be more likely to 
escape local minima and actually obtain higher final-iteration accuracy. 

This approach differs from traditional finite-element based ap-
proaches in that it seeks a solution by learning Green’s functions (and 
derivatives thereof) of the governing equation, rather than solving the 
governing equation numerically. This provides an advantage in predic-
tion speed by requiring a rather costly (but one-time) training overhead. 
The computational complexity of convolving a 3D field containing S 
voxels with a 3D stencil containing k voxels is O(Sk) (since each voxel in 
the first field must be multiplied by each voxel in the stencil). For a fixed 
network topology, k is a constant; therefore the prediction runtime will 
increase linearly with the number of microstructure voxels. A spectral 
method using the Fast Fourier Transform will cost at least O(SlogS), and 

any numerical methods (finite element or otherwise) employing linear 
solvers will likely be even more expensive. We reiterate that using GPU 
parallelization, the RLN requires on average 11 ms to predict the strain 
field for a given microstructure, compared to several seconds for the 
finite element solver. This makes it very valuable for inverse problems, 
where the localization problem must be solved thousands or even mil-
lions of times in order to solve a higher-level metaproblem [15]. Once 
trained for a specific governing equation (e.g. linear elasticity) and set of 
material properties (e.g., contrast ratio), the RLN methodology can be 
applied to any voxelized microstructure. Although we only tested a 313 

structure, in principle a model could be trained on one structure size and 
used on another (possibly with reduced accuracy); this is the subject of 
ongoing work. Note that the model must be trained anew to predict 
strains for a different contrast ratio. 

5. Conclusions 

In this paper, we describe a new learning-based methodology for 
addressing Lippmann-Schwinger type physics problems. Embedding 
recurrent CNNs into a learned optimization procedure provides for a 
flexible, but interpretable, ML model. The design of proximal networks 
is informed by problem-specific domain knowledge; that knowledge also 
provides a physical interpretation of what the model is learning. 
Furthermore, the partitioned and convolutional structure of this 

Fig. 9. RLN-t predictions and differences between iterations for selected test-set instance, CR = 50.  

Fig. 10. RLN predictions and differences between iterations for selected test-set instance, CR = 50.  

C. Kelly and S.R. Kalidindi                                                                                                                                                                                                                   



Computational Materials Science 192 (2021) 110356

10

approach acts as a regularizer by enforcing underlying physical prop-
erties such as mean field values and spatial invariance. The iterative 
scheme allows for emulation of a deeper network, vastly increasing 
model robustness without increasing the parameterization space. If 
space allows, using a different network for each iteration further im-
proves the model’s expressiveness and accuracy. 

When applied to the elasticity localization problem and using our 
dataset, our model produced much more accurate and interpretable 
results than previous deep learning models produced on similar datasets, 
while being much faster than analytical approaches. The CNN archi-
tecture used here was designed for simplicity, but could be improved 
with more advanced techniques such as inception modules [61], 
perceptual losses [62], Fourier layers [63], or variational layers [64]. 
Moreover, many hyperparameters, such as number of iterations and loss 
function weighting, can be tuned on a problem-specific basis. 

CRediT authorship contribution statement 

Conlain Kelly: Conceptualization, Methodology, Software, Data 
curation, Investigation, Writing - original draft, Writing - review & 
editing. Surya R. Kalidindi: Supervision, Writing - original draft, 
Writing - review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This work was supported by NSF Graduate Research Fellowship 
DGE-1650044, and SK acknowledges support from NSF 2027105. We 
used the Hive cluster supported by NSF 1828187 and managed by PACE 
at Georgia Institute of Technology, USA. The authors thank Anne Hanna, 
Andreas Robertson, Nic Olsen, and Mady Veith for insightful discussions 
that helped shape this work. Data and Software Availability The raw and 
processed data required to reproduce these findings are available to 
download from [dataset]https://doi.org/10.17632/v6dt8dwrh8.2 [65]. 
The implementation and training code for each RLN configuration, as 
well as trained models, are available under an open source license on 
Github (see Ref. [66]). 

References 
[1] S. Kalidindi, Hierarchical Materials Informatics: Novel Analytics for Materials Data, 

Butterworth-Heinemann, Boston, 2015.https://doi.org/10.1016/B978-0-12-410 
394-8.00001-1. URL: http://www.sciencedirect.com/science/article/pii 
/B9780124103948000011. 

[2] NIST, Materials Genome Initiative Stragetic Plan, 2014. URL: https://www.nist.go 
v/system/files/documents/2018/06/26/mgi_strategic_plan_-_dec_2014.pdf. 

[3] K.W. Morton, D.F. Mayers, Numerical Solution of Partial Differential Equations: An 
Introduction, second ed., Cambridge University Press, 2005, 10.1017/ 
CBO9780511812248. 

[4] F. Roters, P. Eisenlohr, L. Hantcherli, D. Tjahjanto, T. Bieler, D. Raabe, Overview of 
constitutive laws, kinematics, homogenization and multiscale methods in crystal 
plasticity finite-element modeling: theory, experiments, applications, Acta Mater. 
58 (4) (2010) 1152–1211, https://doi.org/10.1016/j.actamat.2009.10.058. URL: 
http://www.sciencedirect.com/science/article/pii/S1359645409007617. 

[5] M. Cheng, J. Warren, Controlling the accuracy of unconditionally stable algorithms 
in the cahn-hilliard equation, Phys. Rev. E 75 (2007), 017702, https://doi.org/ 
10.1103/PhysRevE.75.017702. 

[6] D. McDowell, J. Panchal, H.-J. Choi, C. Seepersad, J. Allen, F. Mistree, Integrated 
Design of Multiscale, Multifunctional Materials and Products, 2009.https://doi. 
org/10.1016/C2009-0-20058-4. 

[7] H. Moulinec, P. Suquet, A numerical method for computing the overall response of 
nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. 
Eng. 157 (1) (1998) 69–94, https://doi.org/10.1016/S0045-7825(97)00218-1. 
URL: http://www.sciencedirect.com/science/article/pii/S0045782597002181. 

[8] T. de Geus, J. Vondřejc, J. Zeman, R. Peerlings, M. Geers, Finite strain fft-based 
non-linear solvers made simple, Comput. Methods Appl. Mech. Eng. 318 (2017) 
412–430, https://doi.org/10.1016/j.cma.2016.12.032. 

[9] J.C. Michel, H. Moulinec, P. Suquet, A computational scheme for linear and non- 
linear composites with arbitrary phase contrast, Int. J. Numer. Methods Eng. 52 
(12) (2001) 139–160, https://doi.org/10.1002/nme.275. 

[10] R. Snieder, Inverse problems in geophysics, in: Signal Recovery and Synthesis, 
Optical Society of America, 2001, p. SMA2. doi:10.1364/SRS.2001.SMA2. URL: 
http://www.osapublishing.org/abstract.cfm?URI=SRS-2001-SMA2. 

[11] X. Wu, G. Proust, M. Knezevic, S. Kalidindi, Elastic-plastic property closures for 
hexagonal close-packed polycrystalline metals using first-order bounding theories, 
Acta Mater. 55 (8) (2007) 2729–2737, https://doi.org/10.1016/j. 
actamat.2006.12.010. URL: http://www.sciencedirect.com/science/article/pii/ 
S1359645407000171. 

[12] A. Jain, J. Bollinger, T. Truskett, Inverse methods for material design, AIChE J. 60. 
https://doi.org/10.1002/aic.14491. 

[13] M. Parno, T. Moselhy, Y. Marzouk, A multiscale strategy for bayesian inference 
using transport maps, SIAM/ASA J. Uncertainty Quantification 4 (1) (2016) 
1160–1190, https://doi.org/10.1137/15M1032478. 

[14] M. Horstemeyer, Multiscale Modeling: A Review, 2009, pp. 87–135.https://doi.or 
g/10.1007/978-90-481-2687-3_4. 

[15] C.-T. Chen, G.X. Gu, Generative deep neural networks for inverse materials design 
using backpropagation and active learning, Adv. Sci. 7 (5) (2020) 1902607, 
https://doi.org/10.1002/advs.201902607. 

[16] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, 
L. Zdeborová, Machine learning and the physical sciences, Rev. Mod. Phys. 91 
(2019), 045002, https://doi.org/10.1103/RevModPhys.91.045002. 

[17] J. Schmidhuber, Deep learning in neural networks: an overview, Neural Netw. 61 
(2015) 85–117, https://doi.org/10.1016/j.neunet.2014.09.003. 

[18] A. Krizhevsky, I. Sutskever, G. Hinton, Imagenet classification with deep 
convolutional neural networks, Neural Inf. Process. Syst. 25.https://doi.org/10. 
1145/3065386. 

[19] J. Adler, O. Oktem, Learned primal-dual reconstruction, IEEE Trans. Med. Imaging 
37 (6) (2018) 1322–1332, https://doi.org/10.1109/TMI.2018.2799231. 

[20] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, CoRR 
abs/1512.03385. arXiv:1512.03385. URL: http://arxiv.org/abs/1512.03385. 

[21] Z. Yang, Y.C. Yabansu, R. Al-Bahrani, W. keng Liao, A.N. Choudhary, S.R. 
Kalidindi, A. Agrawal, Deep learning approaches for mining structure-property 
linkages in high contrast composites from simulation datasets, Comput. Mater. Sci. 
151 (2018) 278–287.https://doi.org/10.1016/j.commatsci.2018.05.014. URL: 
http://www.sciencedirect.com/science/article/pii/S0927025618303215. 

[22] Z. Yang, Y.C. Yabansu, D. Jha, W. keng Liao, A.N. Choudhary, S.R. Kalidindi, 
A. Agrawal, Establishing structure-property localization linkages for elastic 
deformation of three-dimensional high contrast composites using deep learning 
approaches, Acta Mater. 166 (2019) 335–345, https://doi.org/10.1016/j. 
actamat.2018.12.045. 

[23] J. Schmidt, M.R.G. Marques, S. Botti, M.A.L. Marques, Recent advances and 
applications of machine learning in solid-state materials science, NPJ Comput. 
Mater. 5 (2019) 1–36. 

[24] V. Buhrmester, D. Münch, M. Arens, Analysis of explainers of black box deep neural 
networks for computer vision: a survey (2019). arXiv:1911.12116. 

[25] D. Brough, D. Wheeler, S. Kalidindi, Materials knowledge systems in python – a 
data science framework for accelerated development of hierarchical materials, 
Integr. Mater. Manuf. Innov. 6 (2016) 1–18, https://doi.org/10.1007/s40192-017- 
0089-0. 

[26] M.I. Latypov, L.S. Toth, S.R. Kalidindi, Materials knowledge system for nonlinear 
composites, Comput. Methods Appl. Mech. Eng. 346 (2018) 180–196. 

[27] S.R. Kalidindi, A bayesian framework for materials knowledge systems, MRS 
Commun. 9 (2) (2019) 518–531, https://doi.org/10.1557/mrc.2019.56. 

[28] S. Kalidindi, A. Khosravani, B. Yucel, A. Shanker, A. Blekh, Data infrastructure 
elements in support of accelerated materials innovation: Ela, pymks, and matin, 
Integr. Mater. Manuf. Innov. (2019) 1–14, https://doi.org/10.1007/s40192-019- 
00156-1. 

[29] B.A. Lippmann, J. Schwinger, Variational principles for scattering processes. i, 
Phys. Rev. 79 (1950) 469–480, https://doi.org/10.1103/PhysRev.79.469. 

[30] D.B. Brough, D. Wheeler, J.A. Warren, S.R. Kalidindi, Microstructure-based 
knowledge systems for capturing process-structure evolution linkages, Curr. Opin. 
Solid State Mater. Sci. 21(3) (2017) 129–140, materials Informatics: Insights, 
Infrastructure, and Methods.https://doi.org/10.1016/j.cossms.2016.05.002. URL: 
http://www.sciencedirect.com/science/article/pii/S1359028616300298. 

[31] M.W. Priddy, N.H. Paulson, S.R. Kalidindi, D.L. McDowell, Strategies for rapid 
parametric assessment of microstructure-sensitive fatigue for hcp polycrystals, Int. 
J. Fatigue 104 (2017) 231–242, https://doi.org/10.1016/j.ijfatigue.2017.07.015. 
URL: http://www.sciencedirect.com/science/article/pii/S0142112317303055. 

[32] R.A. Lebensohn, A.D. Rollett, Spectral methods for full-field micromechanical 
modelling of polycrystalline materials, Comput. Mater. Sci. 173 (2020), 109336, 
https://doi.org/10.1016/j.commatsci.2019.109336. URL: http://www.sciencedi 
rect.com/science/article/pii/S0927025619306354. 

[33] P. Putzky, M. Welling, Recurrent inference machines for solving inverse problems 
(2017). arXiv:1706.04008. 

[34] M. Stein, Gradient methods in the solution of systems of linear equations, J. Res. 
Natl. Bureau Standards 48 (1952) 407. 

[35] G. Landi, S.R. Niezgoda, S.R. Kalidindi, Multi-scale modeling of elastic response of 
three-dimensional voxel-based microstructure datasets using novel dft-based 
knowledge systems, Acta Mater. 58 (7) (2010) 2716–2725, https://doi.org/ 
10.1016/j.actamat.2010.01.007. URL: http://www.sciencedirect.com/science/ 
article/pii/S1359645410000108. 

[36] E. Kröner, Statistical continuum mechanics: course held...October 1971, Springer, 
1972. 

C. Kelly and S.R. Kalidindi                                                                                                                                                                                                                   

https://doi.org/10.17632/v6dt8dwrh8.2
https://doi.org/10.1016/B978-0-12-410394-8.00001-1
https://doi.org/10.1016/B978-0-12-410394-8.00001-1
http://www.sciencedirect.com/science/article/pii/B9780124103948000011
http://www.sciencedirect.com/science/article/pii/B9780124103948000011
https://www.nist.gov/system/files/documents/2018/06/26/mgi_strategic_plan_-_dec_2014.pdf
https://www.nist.gov/system/files/documents/2018/06/26/mgi_strategic_plan_-_dec_2014.pdf
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0015
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0015
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0015
https://doi.org/10.1016/j.actamat.2009.10.058
http://www.sciencedirect.com/science/article/pii/S1359645409007617
https://doi.org/10.1103/PhysRevE.75.017702
https://doi.org/10.1103/PhysRevE.75.017702
https://doi.org/10.1016/C2009-0-20058-4
https://doi.org/10.1016/C2009-0-20058-4
https://doi.org/10.1016/S0045-7825(97)00218-1
http://www.sciencedirect.com/science/article/pii/S0045782597002181
https://doi.org/10.1016/j.cma.2016.12.032
https://doi.org/10.1002/nme.275
http://www.osapublishing.org/abstract.cfm?URI=SRS-2001-SMA2
https://doi.org/10.1016/j.actamat.2006.12.010
https://doi.org/10.1016/j.actamat.2006.12.010
http://www.sciencedirect.com/science/article/pii/S1359645407000171
http://www.sciencedirect.com/science/article/pii/S1359645407000171
https://doi.org/10.1002/aic.14491
https://doi.org/10.1137/15M1032478
https://doi.org/10.1007/978-90-481-2687-3_4
https://doi.org/10.1007/978-90-481-2687-3_4
https://doi.org/10.1002/advs.201902607
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1109/TMI.2018.2799231
http://arxiv.org/abs/1512.03385
https://doi.org/10.1016/j.commatsci.2018.05.014
http://www.sciencedirect.com/science/article/pii/S0927025618303215
https://doi.org/10.1016/j.actamat.2018.12.045
https://doi.org/10.1016/j.actamat.2018.12.045
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0115
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0115
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0115
https://doi.org/10.1007/s40192-017-0089-0
https://doi.org/10.1007/s40192-017-0089-0
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0130
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0130
https://doi.org/10.1557/mrc.2019.56
https://doi.org/10.1007/s40192-019-00156-1
https://doi.org/10.1007/s40192-019-00156-1
https://doi.org/10.1103/PhysRev.79.469
https://doi.org/10.1016/j.cossms.2016.05.002
http://www.sciencedirect.com/science/article/pii/S1359028616300298
https://doi.org/10.1016/j.ijfatigue.2017.07.015
http://www.sciencedirect.com/science/article/pii/S0142112317303055
https://doi.org/10.1016/j.commatsci.2019.109336
http://www.sciencedirect.com/science/article/pii/S0927025619306354
http://www.sciencedirect.com/science/article/pii/S0927025619306354
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0170
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0170
https://doi.org/10.1016/j.actamat.2010.01.007
https://doi.org/10.1016/j.actamat.2010.01.007
http://www.sciencedirect.com/science/article/pii/S1359645410000108
http://www.sciencedirect.com/science/article/pii/S1359645410000108
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0180
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0180


Computational Materials Science 192 (2021) 110356

11

[37] G. Green, An essay on the application of mathematical analysis to the theories of 
electricity and magnetism (1828). arXiv:0807.0088. 

[38] T. Eisler, An introduction to Green’s functions, 1969. 
[39] Wikipedia,https://en.wikipedia.org/w/index.php?title=Green%27s_functi 

on&oldid=966577686 (Jul 2020). 
[40] R.A. Lebensohn, J.P. Escobedo, E.K. Cerreta, D. Dennis-Koller, C.A. Bronkhorst, J. 

F. Bingert, Modeling void growth in polycrystalline materials, Acta Mater. 61 (18) 
(2013) 6918–6932, https://doi.org/10.1016/j.actamat.2013.08.004. URL: http:// 
www.sciencedirect.com/science/article/pii/S1359645413005909. 

[41] W.S. McCulloch, W. Pitts, A Logical Calculus of the Ideas Immanent in Nervous 
Activity, MIT Press, Cambridge, MA, USA, 1988, pp. 15–27. 

[42] F. Rosenblatt, The Perceptron, A Perceiving and Recognizing Automaton Project 
Para, Report: Cornell Aeronautical Laboratory, Cornell Aeronautical Laboratory, 
1957. 

[43] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. 
Control Signals Syst. 2 (1989) 303–314. 

[44] A. Pinkus, Approximation theory of the mlp model in neural networks, Acta 
Numerica 8 (1999) 143–195. 

[45] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to 
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324. 

[46] Z.C. Lipton, J. Berkowitz, C. Elkan, A critical review of recurrent neural networks 
for sequence learning (2015). arXiv:1506.00019. 

[47] F. Emmert-Streib, Z. Yang, H. Feng, S. Tripathi, M. Dehmer, An introductory 
review of deep learning for prediction models with big data, in: Frontiers in 
Artificial Intelligence, 2020. 

[48] V.K. Ojha, A. Abraham, V. Snásel, Metaheuristic design of feedforward neural 
networks: a review of two decades of research, CoRR abs/1705.05584. arXiv: 
1705.05584. http://arxiv.org/abs/1705.05584. 

[49] M. Andrychowicz, M. Denil, S. Gomez, M.W. Hoffman, D. Pfau, T. Schaul, B. 
Shillingford, N. de Freitas, Learning to learn by gradient descent by gradient 
descent (2016). arXiv:1606.04474. 

[50] F.N. Iandola, M.W. Moskewicz, K. Ashraf, S. Han, W.J. Dally, K. Keutzer, 
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model 
size, CoRR abs/1602.07360. arXiv:1602.07360. http://arxiv.org/abs/1602.07360. 

[51] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning Representations by Back- 
Propagating Errors, MIT Press, Cambridge, MA, USA, 1988, pp. 696–699. 

[52] R.M. Gray, 2006. doi:10.1561/0100000006. 
[53] M.Z. Ullah, S. Serra-Capizzano, F. Ahmad, An efficient multi-step iterative method 

for computing the numerical solution of systems of nonlinear equations associated 

with odes, Appl. Math. Comput. 250 (2015) 249–259, https://doi.org/10.1016/j. 
amc.2014.10.103. URL: http://www.sciencedirect.com/science/article/pii/S00 
96300314014787. 

[54] M. Mozer, A focused backpropagation algorithm for temporal pattern recognition, 
Complex Syst. 3. 

[55] F. Milletari, N. Navab, S.-A. Ahmadi, V-net: Fully convolutional neural networks 
for volumetric medical image segmentation (2016). arXiv:1606.04797. 

[56] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human- 
level performance on imagenet classification (2015). arXiv:1502.01852. 

[57] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic 
segmentation (2015). arXiv:1411.4038. 

[58] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. 
Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. 
Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An 
imperative style, high-performance deep learning library, in: H. Wallach, H. 
Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, R. Garnett (Eds.), Advances in 
Neural Information Processing Systems 32, Curran Associates Inc, 2019, pp. 
8024–8035.http://papers.neurips.cc/paper/9015-pytorch-an-imperative- 
style-high-performance-deep-learning-library.pdf. 

[59] PACE, Partnership for an Advanced Computing Environment (PACE) (2017). 
[60] I. Loshchilov, F. Hutter, Sgdr: Stochastic gradient descent with warm restarts 

(2017). arXiv:1608.03983. 
[61] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.E. Reed, D. Anguelov, D. Erhan, V. 

Vanhoucke, A. Rabinovich, Going deeper with convolutions, CoRR abs/1409.4842. 
arXiv:1409.4842. http://arxiv.org/abs/1409.4842. 

[62] J. Johnson, A. Alahi, F. Li, Perceptual losses for real-time style transfer and super- 
resolution, CoRR abs/1603.08155. arXiv:1603.08155. http://arxiv.org/abs/ 
1603.08155. 

[63] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. 
Anandkumar, Fourier neural operator for parametric partial differential Eqs. 
(2020). arXiv:2010.08895. 

[64] K. Shridhar, F. Laumann, M. Liwicki, A comprehensive guide to bayesian 
convolutional neural network with variational inference (2019). arXiv: 
1901.02731. 

[65] C. Kelly, RLN_Elasticity_Localization. Mendeley Data, V2, https://doi.org/10 
.17632/v6dt8dwrh8.2. 

[66] C. Kelly, Rln_elasticity. URL: https://github.com/conlain-k/RLN_elasticity (2020). 

C. Kelly and S.R. Kalidindi                                                                                                                                                                                                                   

https://en.wikipedia.org/w/index.php?title=Green%27s_function&amp;oldid=966577686
https://en.wikipedia.org/w/index.php?title=Green%27s_function&amp;oldid=966577686
https://doi.org/10.1016/j.actamat.2013.08.004
http://www.sciencedirect.com/science/article/pii/S1359645413005909
http://www.sciencedirect.com/science/article/pii/S1359645413005909
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0205
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0205
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0210
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0210
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0210
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0215
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0215
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0220
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0220
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0225
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0225
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0255
http://refhub.elsevier.com/S0927-0256(21)00081-1/h0255
https://doi.org/10.1016/j.amc.2014.10.103
https://doi.org/10.1016/j.amc.2014.10.103
http://www.sciencedirect.com/science/article/pii/S0096300314014787
http://www.sciencedirect.com/science/article/pii/S0096300314014787
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.17632/v6dt8dwrh8.2
https://doi.org/10.17632/v6dt8dwrh8.2
https://github.com/conlain-k/RLN_elasticity

	Recurrent localization networks applied to the Lippmann-Schwinger equation
	1 Introduction
	2 Background
	2.1 Linear elasticity and L-S
	2.2 General L-S equation
	2.3 Neural networks background

	3 Methodology
	3.1 L-S as learned optimization
	3.2 CNNs for Lippmann-Schwinger
	3.3 Proximal operator design

	4 Linear elasticity experiments
	4.1 Results

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


