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Jean-Christophe Ono-dit-Biot,a Pierre Soulard,b Solomon Barkley,a Eric R. Weeks,c

Thomas Salez,d,e Elie Raphaël,b and Kari Dalnoki-Veress∗a,b

We investigate the elastic and yielding properties of two dimensional defect-free mono-crystals made

of highly monodisperse droplets. Crystals are compressed between two parallel boundaries of which

one acts as a force sensor. As the available space between boundaries is reduced, the crystal goes

through successive row-reduction transitions. For small compression forces, the crystal responds

elastically until a critical force is reached and the assembly fractures in a single catastrophic global

event. Correspondingly there is a peak in the force measurement associated with each row-reduction.

The elastic properties of ideal mono-crystal samples are fully captured by a simple analytical model

consisting of an assembly of individual capillary springs. The yielding properties of the crystal are

captured with a minimal bond breaking model.

1 Introduction

Historically, foams have often been used as model materials, with

an especially inspiring example being the use of bubble rafts to

model the behaviour of a metallic structure proposed by Bragg

and Nye1. Using bubbles instead of atoms, dislocations and

grain boundaries were imaged directly and mechanical proper-

ties of the assembly were studied2. The use of foams, emul-

sions, and colloids has become a powerful tool to study funda-

mental questions such as the glass transition3–8, formation and

melting of crystals9–12, the order-to-disorder transition13–18 and

jamming19–24. Complex biological systems can also be modeled

using foams and emulsions25–28. One of the important character-

istics of these model systems is their mechanical response to ex-

ternal stress such as compression or shear. The mechanical prop-

erties of such systems depend strongly on the volume fraction of

suspended particles29,30 as well as the interaction between parti-

cles31–34. Above a critical volume fraction, foams and emulsions

behave as soft solids33,35–38. For small applied stress, the assem-

bly deforms elastically2,30. When the magnitude of the applied

stress exceeds a critical value, given by the yield stress, plastic

deformations occur and the material flows as a liquid. Several
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theoretical39–42 and simulation43–46 works have studied the con-

nection between local plastic events and macroscopic flow. As the

particles constituting the foam or the emulsion can be resolved

individually4, studies linking microscopic plastic events to flow

properties can also be conducted experimentally34,46–51.

In foams and emulsions, the nature of the constituting particles

is also a key parameter in understanding the properties of the as-

sembly. For example, the relevant scale for the elastic modulus of

an assembly of oil droplets is set by the Laplace pressure30. Thus

changing the size of the droplets or the interfacial tension modi-

fies the elastic properties of the structure. The size distribution of

the particles is also particularly important. Indeed, monodisperse

particles can assemble into a crystal while polydispersity prevents

crystallization52,53. Due to their perfect arrangement and period-

icity, defect-free monodisperse crystals are well understood the-

oretically29. However, these mono-crystals are more challenging

to study experimentally, as perfect monodispersity and crystalline

order are difficult to achieve. Most experimental studies on col-

loidal crystals have focused on the study of polycrystals34,35,51,54

and in particular plastic deformations resulting from shear im-

posed on structurally disordered materials55,56. For crystals, it is

known that the mechanical properties, and in particular the yield

stress, is dictated by dislocations or local structural disorder57. To

date, only a small number of experimental studies have been able

to produce ideal defect-free mono-crystals58,59 and the study of

their elastic and yielding properties warrants further attention.

In this study we use lightly attractive oil droplets in water

with low polydispersity to create mono-crystals made of tens of

droplets. Due to the droplets being monodisperse combined with

a small sample size, the aggregates are defect-free crystals. In

the experiments we simultaneously measure the mechanical re-

sponse of these ideal mono-crystals under compression between
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two glass capillaries and image the rearrangements that cause

yielding and plastic deformation of the structure. We find that

crystals behave elastically until a critical force is applied and the

crystal fractures. The bonds between droplets are broken in a

coordinated manner, after which the aggregate can no longer

sustain any stress. Upon further compression the structure re-

arranges into a new crystal with one less row of droplets. The

elastic response and the yield properties are fully captured by a

simple analytical model.

2 Experimental Methods

The experimental chamber (55 × 30 mm2), shown in Fig. 1, is

made of two glass slides separated by a 3D-printed spacer of

2.5 mm (not shown). This gap between the glass slides is 103

times larger than the size of the droplets. The chamber is filled

with an aqueous solution with 3% (w/w) sodium dodecyl sul-

fate (SDS) and 1.5% (w/w) NaCl. The 3D-printed wall reduces

evaporation of the solution and ensures a concentration that is ap-

proximately constant over the course of the experiments. At this

concentration, the surfactant, SDS, assembles into micelles acting

as a depletant resulting in a short-range attraction between the

droplets60. Glass capillaries (World Precision Instruments, USA)

are pulled to a diameter of about 10 µm over several centimeters

in length using a pipette puller (Narishige, Japan). One of these

pipettes, the “droplet pipette” is used to produce highly monodis-

perse droplets of mineral oil, with size proportional to the tip ra-

dius of the pipette, using the snap-off instability61. The droplets

used in this experiment have a radius R = 18.9±0.3 µm. The un-

certainty on the radius corresponds to the precision on the mea-

surement of the droplet size. As droplets are produced using the

snap-off instability, the droplet polydispersity is less than 0.7%61.

Droplets are buoyant and accumulate under the top glass slide.

Aggregates of oil droplets are assembled droplet-by-droplet into

2D crystals with arbitrary shapes (see Movie M1 in Supplemen-

tal Material). The crystals are made up of p rows and q droplets

per row, with the initial aggregate defined as p = pini and q = qini

[see Fig. 1 (c)]. Under compression, the crystal rearranges with

corresponding values of p and q, while keeping the total num-

ber of droplets, Ntot, constant. Aggregates are compressed be-

tween two micropipettes: the “pushing pipette” and the “force-

sensing pipette”. The “pushing pipette” is a short and stiff pipette

used to compress the aggregates. The pushing pipette is affixed

to a motorized translation stage and moved at a constant speed,

v = 0.3 µm.s−1, for all experiments. The “force-sensing pipette”

is a long compliant pipette. Its deflection is used to measure the

forces applied to the aggregate as it is compressed62. The pipette

is pulled to a diameter of ∼ 10 µm over a length of ∼ 3 cm to be

sensitive to forces as small as ∼ 100 pN. The thin section of the

pipette is locally and temporarily heated to soften the glass such

that the pipette can be bent into a shape that fits in the small

chamber while maximizing its total length [see pipette (iii) in

Fig. 1 (a)]. The pushing and force-sensing pipettes are aligned to

be as parallel as possible in order to compress the aggregate uni-

formly. A misalignment would result in one side of the aggregate

breaking earlier than the other. The chamber is placed atop of an

inverted optical microscope for imaging while the aggregates are

(a)

(b) (c)

q

p

(ii)

(i)
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Fig. 1 (a) Schematic top view of the experimental chamber. The typical

dimensions of the wall (dark grey) are 55× 30× 2.5 mm3. The “droplet

pipette", “pushing pipette", and “force-sensing pipette" are labelled as

(i), (ii) and (iii) respectively. (b) Schematic side view (not to scale).

The buoyant droplets are assembled into a quasi 2D crystal under the

top glass plate. The pushing pipette (black circle) is moved at speed

v = 0.3 µm.s−1 to compress the aggregate and the force-sensing pipette

(red circle) is used to measure forces. Both pipettes are placed near the

equatorial plane of the droplets so forces are applied horizontally. (c)

Optical microscopy image of a typical crystal (scale bar is 50 µm). p

refers to the number of rows of droplets and q the number of droplets

per row. In this example p = q = 5.

compressed and images are collected at a frame rate of 1.8 Hz.

The distance between the pushing pipette and the force-sensing

pipette, δ , is measured using cross-correlation analysis between

images. This analysis leads to a sub-pixel resolution and in

this study a precision of ∼ 0.1 µm62. The deflection of the

pipette is measured using the cross-correlation analysis and con-

verted into a force using the calibrated spring constant kp =

1.3± 0.1 nN.µm−1 of the force-sensing pipette62. The crystal is

fractured and rearranges under compression by breaking adhe-

sive bonds between droplets. Using the optical microscopy im-

ages, fracture events observed directly can be linked to features

in the measured force-distance curves.

3 Results and Discussion

3.1 Compression of colloidal crystals

Figure 2 (a) shows the measured force as a function of the dis-

tance between the pipettes, δ , for a crystal with initial geometry

(pini = 7; qini = 7). As the crystal is compressed, the distance δ

decreases over time; thus, in the plots the experiment progresses

from right to left as indicated by the time arrow in Fig. 2 (a).

The trace shows six distinct peaks corresponding to six fracture

events (see movie M2 in Supplemental Material). To accommo-

date for the decreasing space between the pipettes, the number

of rows of droplets, p, must be reduced. These breaking events

are referred to as row-reduction transitions: from p = 7 to p = 6

rows of droplets [designated as 7 → 6 in Fig. 2 (a)], followed by

6 → 5, 5 → 4, etc, until the last transition 2 → 1. A zoom of the

second transition (6 → 5) is shown in Fig. 2 (b) along with an op-

tical image sequence corresponding to this specific transition. To
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deformation, the restoring force can indeed be modelled as that

of a capillary spring with a spring constant k1 =G γ (see discussion

in the appendix) directly proportional to the interfacial tension γ

between oil and the SDS aqueous solution66. The proportionality

constant G depends on the exact contact geometry between the

droplets. The aggregates are thus made of q springs in parallel

(along the same row) and p rows of springs in series. The result-

ing crystal can thus be represented by an equivalent spring with

constant:

keq = k1q/p . (1)

Under compression, the restoring force is linear with slope keq.

To validate this model, we measure the evolution of the equiva-

lent spring constant of a crystal for the different transitions as the

aspect ratio q/p changes from one transition to another.
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Fig. 3 (a) Force as a function of the compression ∆x of the aggregate for

the six different transitions. The part of the force shown is the rising one,

that corresponds to the force between the black and blue dot in Fig. 2 (b),

from onset to peak. The compression is defined to be equal to zero at

the onset. The black dashed lines are linear best fits to the data. Each

dashed line is only fitted to the elastic part of the compression. The

slopes of these lines are the equivalent spring constants of the cluster,

keq. (b) Evolution of keq with the aspect ratio q/p. The black dashed

line is the best fit to Eq. 1. The error bars correspond to the uncertainty

on the slopes of the linear fits in panel (a). Indeed, these linear fits are

sensitive to the first and last data points included in the fit.

Figure 3 (a) shows the rise of the force peaks as a function of

the compression of the crystal for the six p → (p−1) transitions.

For each peak, the compression is defined as ∆x = δ
p

0 −δ with δ
p
0

the onset of compression for each transition, corresponding to the

black dot in Fig. 2 (b). Within the resolution of the experiment,

the force is linear with the compression. The peaks flatten and

deviate from the early linear behaviour for larger values of ∆x.

This is particularly noticeable on the curve corresponding to the

2 → 1 transition and can be explained by a slight misalignment

of the pushing and force-sensing pipette. The misalignment re-

sults in parts of the crystal breaking earlier than the rest (movie

M2 in Supplemental Material). The experiment is more sensitive

to misalignment for the later transitions as the lateral extent of

the crystal is larger (increasing number q of droplets per rows).

The part of the curve that deviates from the linear behaviour is

excluded from the linear fit as the model is only valid in the limit

where all droplets are in contact and prior to the onset of frac-

ture events. The slope of each force curve keq is extracted and

plotted against the ratio q/p as suggested by Eq. 1 and shown in

Fig. 3 (b). The equivalent spring constant keq is found to scale

linearly with q/p, as predicted by Eq. 1, with a slope correspond-

ing to k1 ≈ 1.46 mN/m. The value of surface tension extracted for

the relation k1 = G γ depends on the geometrical factor G . Liter-

ature values for the interfacial tension are in the ∼ 5−10 mN/m

range30,67, which is consistent with what we find for a geometri-

cal pre-factor, G , on the order of 1. The assembly of droplets thus

behaves like a perfect 2D Hookean solid, where the 2D-equivalent

applied stress σ = F/(2qR) is equal to the strain ε ∼ ∆x/(2pR)

times a 2D-equivalent Young’s modulus E ∼ G γ.

In the equivalent spring model, it is assumed that the droplets

can store elastic energy under compression and the stretching of

adhesive bonds is neglected. Indeed, the adhesion comes from

the depletion forces induced by the SDS micelles and can be de-

scribed by the Asakura-Oosawa potential68. This potential has

a negative curvature which means that as soon as the adhesive

force is overcome, the bond between droplets breaks completely.

The range of the depletion forces is set by the nanometric size of

the SDS micelles and is thus short-ranged compared to the elastic

deformation of the droplets.

Having validated the equivalent spring model, if the aggregate

maintains a compressed hexagonal configuration the droplets de-

form, and the stored elastic energy increases with compression as

Es = keq∆x2/2. In order for the cluster to fracture, bonds between

droplets must be broken. As mentioned above, the minimum

number of bonds that must break for a 2D hexagonal crystal to

rearrange is b = 2q. As a result, crystals fracture when the stored

elastic energy, keq∆x2
c/2, reaches the threshold 2qE1, where E1 is

the depletion-induced adhesive energy associated with breaking

a single bond. This criterion corresponds to a critical yield force

Fc = keq∆xc, which is equal to:

Fc = 2Ntot

√

k1E1

p3
. (2)

The model developed in this study assumes an ideal experiment

where the pushing and the force-sensing pipettes are strictly par-

allel and the b bonds are broken simultaneously for every transi-

tion. As such, Eq. 2 represents an upper bound for the measured

real force. It can be tested experimentally by recording Fc, for

each transition p→ (p−1), and with aggregates of different initial

geometries (pini, qini). For example, the compression experiment
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shown in Fig. 2 (a) for droplets with radius R = 18.9± 0.3 µm,

leads to six values of Fc for p = 7 to p = 2. After a compression

experiment is completed, the same droplets can be reassembled

into a new crystal with a different initial geometry. By using the

same droplets from one experiment to another, we ensure that

the energy per bond E1 and spring constant k1 remain constant.
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Fig. 4 (a) Evolution of the peak force, Fc normalized by Ntot, as a function

of p−3/2 for five different compression experiments with different initial

geometries. The size of the droplets is kept constant to R= 18.9±0.3 µm.

The initial geometries are: ( ) 7 alternating rows of 6 and 5 droplets;

( ) pini=5; qini=8; ( ) 8 alternating rows of 6 and 5 droplets; ( ) pini=5;

qini=9; ( ) pini=7; qini=7. The dash-dot line corresponds to the best fit

of Eq. 2 to all the data with the energy per bond E1 = 0.096 fJ, while the

dashed line ensures all measured maximal forces fall below the line with

E1 ≈ 0.2 fJ. (b) Measured force as a function of the distance between

pipettes for a (pini=7; qini=7) crystal. The blue data points correspond

to the maximal forces, predicted from Eq. 2 with E1 ≈ 0.2 fJ, which would

be expected for an ideal experiment. The black dashed lines correspond

to the theoretical predictions from Eq. 1 with k1 ≈ 1.46 mN/m.

In Fig. 4 (a), we plot the experimentally measured force at fail-

ure normalized by Ntot as a function of p−3/2 for five different ex-

periments with different initial geometries, as suggested by Eq. 2.

The best fit of Eq. 2 to all the data (dot-dash line) corresponds

to a bond energy of E1 = 0.096 fJ. The depletion energy per unit

area that must be overcome to break an adhesive bond can be

expressed as W = ρkTa69, with ρ ∼ 5.1023 m−3 the number con-

centration of SDS micelles, a ∼ 5 nm the radius of a micelle and

k the Boltzmann constant. With an estimate of the contact patch

to be Rp ∼ 0.1R, one can obtain the order of the energy per unit

bond to be E1 =WπR2
p ∼ ρkTaπR2

p ∼ 0.13 fJ, an approximate value

that is consistent with the best fit value. However, any imperfec-

tions in the experiment or thermal fluctuations, ensure that one

can never measure a force greater than that corresponding to the

ideal crystal. For comparison we also show Eq. 2 with E1 = 0.2 fJ

(dashed line) corresponding to a bond energy adjusted such that

all the data lies below the upper bound given by the theory. Us-

ing the experimental estimated value of E1 ≈ 0.2 fJ, and the spring

constant k1 ≈ 1.46 nN/m of individual droplets, one can construct

the theoretical force curve for an ideal system through the vari-

ous transitions. Figure 4(b) shows the force trace for a (pini=7;

qini=7) crystal (red curve). Equation 2 predicts the upper-bound

values of the force peaks which are shown with the blue dots.

Additionally, from Eq. 1 we have that upon compression the force

rises linearly with slope keq ≈ (1.46q/p) mN/m, which is shown

with the black dashed lines for the various transitions. We find

good agreement between the simple analytical model proposed in

this study and the experimental results. The discrepancy between

the measured and the predicted maximum forces is larger for the

later transitions (for example 2 → 1). This is expected since the

experiment is more sensitive to imperfections as the lateral extent

of the crystal becomes larger (increasing q).

4 Conclusions

In summary, we prepared 2D defect-free colloidal mono-crystals

by assembling highly monodisperse droplets into small size ag-

gregates. The force trace measured during compression shows

a well defined number of peaks corresponding to row-reduction

transitions. Using our experimental apparatus, we are able to

measure macroscopic mechanical properties while monitoring in-

dividual droplets. Under small applied forces, crystals respond

elastically. A simple assembly of capillary springs, representing

individual droplets, captures the elastic properties of the crystal.

As the aggregate is further compressed and a critical yield force

is reached, the crystal fails catastrophically, but in a coordinated

manner. Plastic T1 events occur simultaneously along 60◦ fracture

lines, resulting in equilateral triangles of droplets which slide past

each other. The droplets eventually reassemble into a new crystal

with one less row. An analytical model balancing the stored elas-

tic energy upon compression with the released depletion-induced

adhesion energy during bond breaking, allows us to predict the

yield point. While here the attraction between droplets is caused

by depletion forces, the model is expected to remain valid for

other sources of adhesion. The low-polydispersity droplet system

with controllable adhesion strength provides an ideal platform

for investigating material properties while individual constituents

can be directly imaged.
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65 J. Brujić, S. F. Edwards, D. V. Grinev, I. Hopkinson, D. Brujić
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