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Abstract

Real-time electronic structure methods provide an unprecedented view of electron

dynamics and ultrafast spectroscopy on the atto and femtosecond timescale, with vast

potential to yield new insights into the electronic behavior of molecules and materials.

In this Review, we discuss the fundamental theory underlying various real-time elec-

tronic structure methods, as well as advantages and disadvantages of each. We give

an overview of the numerical techniques that are widely used for real-time propagation

of the quantum electron dynamics, with an emphasis on Gaussian basis set methods.

We also showcase many of the chemical applications and scientific advances made by

using real-time electronic structure calculations and provide an outlook of possible new

directions.

1 Introduction

Real-time electronic structure theory explicitly considers the time-dependence of a quantum

electronic system by evolving the time-dependent Schrödinger or Dirac equation, Eq. (1), in

the time domain,

i
∂Ψ(r, t)

∂t
= Ĥ(r, t)Ψ(r, t). (1)

In Eq. (1) and throughout this review, atomic units are used. The non-equilibrium condition

of the Hamiltonian under external perturbation gives rise to the time-evolution of the wave

function or the electron density that underlies all response properties of a quantum electronic

system. A complementary approach, not reviewed here, is frequency-domain response theory,

which has been widely applied to chemical systems with remarkable success. Instead, this

review focuses on the time-dependent electronic structure wave function or density, explicitly

propagated in the time domain.

Historically, the early work for explicitly time-dependent solutions of the time-dependent
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Schrödinger equation began in the late 70’s and early 80’s in the field of nuclear physics with

a mean-field time-dependent Hartree-Fock (TDHF) approximation for studies of nuclear col-

lisions and their scattering profiles.1–5 In 1990, Cederbaum and coworkers laid the ground

work for propagating correlated electronic wave functions in real time with the development

of the multi-configurational time-dependent Hartree (MCTDH) method.6 In 1994, Micha

and Runge used a density-matrix based real-time time-dependent Hartree-Fock (RT-TDHF)

approach with a traveling atomic orbital basis for describing electron rearrangement during

atomic collisions.7 However, despite these developments, real-time methods did not become

a practical computational tool for many years because the explicit time-propagation of cor-

related electronic wave functions remained computationally expensive and the Hartree-Fock

approach lacks important electron correlation effects.

In 1996, Bertsch and Yabana, for the first time, developed and applied the real-time

time-dependent density functional theory (RT-TDDFT) approach within the local density

approximation (LDA) for studies of dynamic response properties.8 Their efforts in explicitly

time-dependent electronic structure theory,9–11 combined with the advent of usable real-space

density functional theory (DFT) codes,12–14 have led to great interest in real-time methods

in the condensed matter physics community. However, the application of RT-TDDFT in

the quantum chemistry and spectroscopy communities remained limited due to the lack of

implementations of RT-TDDFT within the generalized gradient approximation (GGA) and

hybrid GGA approximations, the modern day workhorses for computational chemistry and

materials science. In 2005, Li and Schlegel introduced an efficient implementation of RT-

TDHF15 in a Gaussian-type atomic orbital basis, followed by an RT-TDDFT extension16

by Li and Isborn in 2007 that could use generalized hybrid density functionals which in-

clude exact exchange. The development of real-time electronic structure theory in an atomic

orbital basis, which allows for low-cost, accurate simulations of molecular spectroscopies

and electronic dynamics using GGA and generalized hybrid functionals, has led to many

Gaussian basis set based real-time implementations in widely used codes in the quantum
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chemistry community capable of handling both small and large molecular and finite clus-

ter systems.17–23 With the development of scalable plane-wave and real-space grid based

implementations,24–27 simulations of large-scale condensed phase systems have also become

possible.

With advancements in computing power and numerical algorithms, there has been re-

newed interest in explicit time-propagation of correlated methods such as multi-configurational

self-consistent-field (MCSCF),28–32 configuration interaction (CI),33–39 algebraic diagram-

matic construction,40–46 and coupled cluster (CC)22,35,37,47–51,51–55 theories. Although wave

function based real-time techniques scale poorly compared to RT-TDDFT, they afford sys-

tematically improvable accuracy and allow for accurate simulations of electronic dynam-

ics in strong fields. Alternatively, correlated electron dynamics can be modeled through

the time evolution of the one-electron reduced density matrix (RDM)56–60 or the two-

electron RDM,61,62 as opposed to the wave function, but such methods are plagued by

N -representability63 problems resulting from the truncation of the Bogoliubov-Born-Green-

Kirkwood-Yvon (BBGKY)64–67 hierarchy of equations of motion for the RDMs.61,62

Motivated by the need for an explicit and accurate description of electron spin interaction

with internal (e.g., spin-spin and spin-orbit) and external (e.g., magnetic field) perturbations,

there has been a growing interest in extending real-time methods beyond the framework of

the time-dependent Schrödinger equation. In 2014, Li and coworkers introduced a non-

relativistic real-time time-dependent two-component method to simulate electron spin dy-

namics.68 This work demonstrated that the ab initio simulation of electron spin dynamics

requires at least two components in the description of electronic degrees of freedom. In 2015,

Repisky and Ruud presented the first fully relativistic four-component RT-TDDFT (4c-RT-

TDDFT),69 followed by a formally equivalent relativistic two-component implementation

(2c-RT-TDDFT) by Li in 2016.70 The development of these real-time time-dependent Dirac

methods has enabled the computational investigation of magnetic and spin-orbit effects in

molecular spectroscopy and electronic dynamics.
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The non-relativistic Hamiltonian for an N -electron system interacting with a time-dependent

electromagnetic field is defined as

Ĥ(r, t) =
N∑
i

(
1

2
π2 − U(ri, t)

)
+

N∑
i<j

1

|ri − rj|
+ Vext, (2)

where the first term includes the electron kinetic energy and the coupling to the field, the

second term is the electron-electron repulsion term Vee, and Vext includes the electron-nuclear

attraction term and other external potentials, such as the system-bath interaction. The

external electromagnetic perturbation is usually treated classically and defined by a vector

potential A(r, t) and a scalar potential U(r, t). π = p + A is the generalized momentum

that includes the vector potential A along with linear momenta p. This term gives rise

to the electron kinetic energy and electron-field coupling. Note that in some cases, the

electron-field interaction is included in the Vext term but here we include this coupling by

incorporating the vector and scalar potentials in Eq. (2). The majority of this review focuses

on approximate solutions to the time-dependent Schrödinger equation and their scientific

applications. Development of practical real-time methods within the time-dependent Dirac

framework is an emerging direction and some aspects will be discussed in Sec. 2.5.

Equation (2) is the general form of the non-relativistic Hamiltonian that drives electronic

dynamics via the time-dependent Schrödinger equation. Real-time methods, like other ab ini-

tio methods, must numerically solve the underlying Schrödinger or Dirac equation (Eq. (1))

through mean-field approximations, such as Hartree-Fock (HF) and DFT, or wave function

based techniques, such as CC and CI. For treating large systems, low-cost semiempirical

approaches, continuum models, or molecular mechanics can be used to simulate responses

from the complex environment. The fundamental theory and mathematical ansatz of these

techniques will be reviewed in Secs. 2.1 to 2.6. In addition, real-time methods must also rely

on robust numerical techniques and representations (Sec. 3) to explicitly integrate the quan-

tum system in time and resolve quantum observables from time-signals without introducing
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nonphysical behavior.

Most scientific applications of real-time methods concern electronic responses to external

perturbations, such as an electromagnetic field [A(r, t) and U(r, t)], electron-nuclear coupling

(VNe), and system-bath coupling (Vb). These perturbations give rise to the spectroscopic

signatures, population transfer, and energetic decay of an electronic system. In the absence

of these driving forces, time-evolution of an electronic wave function will exhibit either

coherent oscillations that travel through phase space in the case of a pure coherent wave

function, or remain stationary in the case of an eigenstate. Real-time electronic structure

theory is thus a powerful tool for simulating diverse chemical phenomena, many of which

will be reviewed in Sec. 4.

Applications of real-time methods span the field of spectroscopy, including valence-

electron UV/Vis and photoelectron,9,10,15,18,34,69–88 circular dichroism,89–94 core-electron X-

ray absorption,49,95–98 nonlinear optical response,14,99,100 photoionization,71,101–115 and mag-

netization dynamics.68,116,117 Real-time electronic structure methods have also found utility

in studies of molecular electronics,118–127 optimal control,117,128–131 as well as coherence and

charge-transfer dynamics.16,132–151 To probe chemical processes in complex environments,

real-time electronic dynamics have been coupled to polarizable32,152 and non-polarizable

molecular mechanical layers,74,153 implicit solvation models,138,139,154–157 quantum subsys-

tems,158 and thermal baths in an open quantum system formalism.20,150,159–165 Recently,

the coupling of a molecule to a quantized electromagnetic field166–174 — real-time quantum

electrodynamics (QED) — has led to first-principles studies of photon absorption and emis-

sion and simulations of cavity QED experiments. The focus of this review is on real-time

electronic structure; thus we do not focus on nuclear motion. However, because different elec-

tronic structure methods lend themselves to different ways of coupling with nuclear motion, it

is worth briefly mentioning some of these methods here. See extensive reviews such as175–180

and references therein for more in-depth discussions and an overview of mixed quantum-

classical dynamics methods. Exact electron-nuclear dynamics are obtainable via solution of
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the full time-dependent Schrödinger equation for the entire (electronic plus nuclear) system:

a computationally prohibitive prospect for all but the smallest of molecules with only a

few active electrons.181 Various approximate methods have been introduced with the aim of

achieving reliable results at lower costs.7,132,182–211 Two of the most widely used methods are

trajectory surface hopping and the Ehrenfest approach.184,189 These mixed quantum-classical

formalisms use the classical equation-of-motion for nuclear degrees of freedom and quantum

mechanical evolution of the time-dependent electronic wave function, such as RT-TDHF,

RT-TDDFT, TD-CC, TD-CI, etc., but differ in how the electronic potential energy surface

is computed. Trajectory surface hopping methods, introduced specifically to account for the

branching of trajectories due to electron-nuclear coupling, often use fitted potential surfaces

or compute electronic forces and couplings on-the-fly.184,189,212–225 Surface hopping there-

fore does not generally make use of real-time electronic structure. Analogous methods can

also be built from nuclear motion on the ground state electronic surface, which can provide

time-evolving ground state occupied and virtual orbitals to be used for time-domain surface

hopping methods, see for example Refs. 226,227; these techniques ignore feedback from the

excited state population to the nuclear motion as well as ignoring all electronic coherences

between states that are captured by real-time electronic structure methods.

In contrast, the Ehrenfest approach naturally couples to real-time electronic structure

methods, propagating the nuclei as classical particles subject to a force from a weighted aver-

age of all the electronic states of the system.16,128,129,135,175,188,201,210,228–237 The time-evolving

expansion coefficients of the electronic wave function, which are governed by the electronic

time-dependent Schrödinger equation, determine the weights in the average of the poten-

tial energy surfaces. This method can avoid explicit computations of the excited states by

representing the wave function as a superposition state, while still accounting for electronic

non-adiabaticity, making the Ehrenfest dynamics an excellent approach for simulating dense

manifolds of electronic states. Indeed, for methods based on real-time propagation of the

electron density, such RT-TDHF and RT-TDDFT, excited states and their respective popu-
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lations are ill-defined; evolving the classical nuclei on this electronic superposition state yields

Ehrenfest dynamics. The drawback of the Ehrenfest approach is the restriction to motion

on a single average potential energy surface, which can lead to nonphysical results, such as

over-coherence, particularly in the asymptotic limit.209,238–243 Recently, Fedorov and Levine

proposed a systematically improvable multiple cloning approach to mitigate issues arising

from long-time propagation of Ehrenfest dynamics on unphysical mean-field surfaces.237

In this review, we highlight the theory of various real-time electronic structure methods,

as well as advantages and disadvantages of each. We give an overview of the numerical

techniques that should be considered for real-time electron propagation, with a focus on

Gaussian basis set approaches, and we showcase many of the chemical applications for real-

time electronic structure calculations.

2 Theory of Real-Time Time-dependent Electronic Struc-

ture Methods

We use the following notations throughout the rest of this review:

• K,L, ... are Slater determinants.

• i, j, k, l, ... are occupied molecular orbitals.

• a, b, c, d, ... are virtual molecular orbitals.

• p, q, r, s, ... are general molecular orbitals.

• µ, ν, ... are atomic orbitals.

All equations use atomic units, with e2 = ~ = me = 1. Primed notations (e.g., F′,P′) are

used for matrices in the orthonormal basis and unprimed notations for matrices (e.g., F,P)

in the atomic orbital (AO) basis.
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2.1 Real-Time Time-Dependent Hartree-Fock and Density Func-

tional Theory

Many excellent articles, reviews, and books exist focusing on details of TDDFT within

both the linear response matrix formulation and within the real-time electronic propagation

formulation.146,244–252 We refer the reader to these works to gain a more detailed perspective

of the theoretical underpinnings of TDDFT, including details of the Runge-Gross253 and

the van Leeuwen254 proofs of mappings from the density to the potential that show that all

time-dependent properties can be extracted from the time-evolving electron density. Here,

we especially wish to highlight similarities and differences between RT-TD Hartree-Fock

(RT-TDHF) and RT-TDDFT. We therefore initially present these two methods on an equal

footing within a molecular orbital or Kohn-Sham (KS) picture, which is required by Hartree-

Fock and by generalized KS hybrid DFT methods due to the inclusion of exact exchange,

before focusing on some of the relevant issues specific to RT-TDDFT.

For both TDDFT and TDHF within an orbital basis, a set of time-dependent one-particle

equations is given by

i
∂

∂t
φi(r, t) = Ĥ(r, t)φi(r, t), (3)

where i runs over all N electrons and the time-dependent electron density is

n(r, t) =
N∑
i=1

|φi(r, t)|2. (4)

Although numerous theoretical differences exist between TDDFT and TDHF as discussed

in the citations listed above, the main, practical difference is the treatment of the electron-

electron repulsion term Vee in the Hamiltonian Ĥ(r, t) in Eq. (2). For both TDHF and

TDDFT, Vee depends on the time-dependent density or the time-dependent orbitals, and

therefore becomes a time-dependent operator.

For Hartree-Fock, Vee contains Coulomb and exchange operators that describe average

13



electron-electron interactions within the single particle picture

V HF
ee (r, t)φi(r, t) =

[ N∑
j

∫
dr′

φ∗j(r
′, t)φj(r

′, t)

|r− r′|

]
φi(r, t)−

[ N∑
j

∫
dr′

φ∗j(r
′, t)φj(r, t)

|r− r′|

]
φi(r

′, t),

(5)

where the first term provides an average Coulombic electron-electron interaction and the

second term describes the non-local exchange contribution to the energy that results from

the use of a Slater determinant for describing an anti-symmetric wave function. Both terms

depend only on the instantaneous orbitals at time t. The missing electron-electron interaction

energy in Hartree-Fock theory is called the correlation energy, the lack of which arises from

the mean-field single particle approximation.

For density functional theory, the electron-electron interaction term Vee contains the

same average Coulombic electron-electron interaction (often called the Hartree term in the

physics community), which can also be written in terms of the electron density n(r, t), and

an exchange-correlation term Vxc

V DFT
ee (r, t)φi(r, t) =

[ ∫
dr′

n(r′, t)

|r− r′|
+ Vxc[n; Ψ0,Φ0]

]
φi(r, t), (6)

where the unknown exchange-correlation potential Vxc is formally a function of: the electron

density n at all points in space and at all previous points in time, Ψ0 the initial many-body

wave function, and Φ0 the initial state to be used for the non-interacting Kohn-Sham wave

function. Unlike TDHF theory, TDDFT up to this point is formally exact. Although the

Coulomb/Hartree energy contains contributions from each electron in orbital φi interacting

with itself as part of the total density n, this erroneous self-interaction energy should be

exactly canceled in the exchange contribution of Vxc, as it is for the exact non-local exchange

in Hartree-Fock theory.

The Liouville equation generalizes the time-dependent Schrödinger equation to

i
∂ρ̂(t)

∂t
= [Ĥ(r, t), ρ̂(t)], (7)
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where ρ̂(t) is the density operator and Ĥ(r, t) is the time-dependent many-body Hamiltonian.

This expression is only valid for Hermitian Hamiltonians, i.e., without complex absorbing

potentials. The time-dependent molecular orbitals φi are often created from a linear com-

bination of basis functions {χµ} as φi =
∑

µ cµ,i(t)χµ, where cµ,i(t) are the time-dependent

coefficients. The elements of the Hartree-Fock or DFT density matrix P are then given in

this basis by

Pµν(t) =
∑
p

fpc
∗
µ,p(t)cν,p(t). (8)

where fp is the occupation of orbital p. Transforming the density matrix P to the orthonormal

basis and now writing it as P′ in this basis, we can then express the TDHF or TDDFT

equation as

i
∂P′(t)

∂t
=

[
H′(t),P′(t)

]
, (9)

where H′(t) is the Hamiltonian matrix (integrated over r), here the Fock matrix for TDHF

or the Kohn-Sham matrix for TDDFT, in the orthonormal basis.

This equation is a starting point for both solving for the density response in the frequency

domain via a matrix formulation, usually by keeping only the terms that are first order

in the perturbation to obtain the linear response,255–258 and for propagating the electron

density in the time domain by numerical integration.259 Real-time propagation reveals time-

resolved electron distributions responding to a perturbation, such as the electron density of

an acetylene molecule under the influence of an applied laser pulse as shown in Fig. 1.260

However, a key challenge with RT-TDHF and RT-TDDFT is that the Hamiltonian be-

comes time-dependent, not just from the time-dependent perturbation, but from the de-

pendence of the Hartree-Fock and DFT Hamiltonian on the time-dependent density in the

Coulomb/Hartree and exchange-correlation potentials. This time-dependence of Vee con-

trasts with correlated electronic dynamics methods wherein the exact form of Vee is used

and the only source of time dependence in the Hamiltonian is the external perturbation.

The time-dependence of the Hartree-Fock / DFT Hamiltonian creates a nonlinear equation,
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Figure 1: Snapshots of the time-dependent electron localization function of acetylene during
application of a laser pulse. The electronic transition is from a bonding π to an antibonding
π∗ state. Adapted with permission from Ref. 260. Copyright (2005) American Institute of
Physics.

which exhibits a host of inaccuracies for the RT-TDHF method and for the RT-TDDFT

method with the common approximations to Vxc. These inaccuracies include unphysical

peak-shifting,77,261–266 incorrect Rabi oscillations,84,267,268 and incorrect charge-transfer dy-

namics.140,252,269 Because TDDFT is formally exact, these inaccuracies derive from the prac-

tical implementation of TDDFT, which requires approximations in choosing the form of the

initial Kohn-Sham state Φ0 and in choosing the form of the exchange-correlation potential

Vxc. In practice, the initial Kohn-Sham state Φ0 is usually chosen to be a single Slater deter-

minant constructed from the single particle orbitals φi, as in Hartree-Fock theory. A recently

developed formulation where the number of Kohn-Sham orbitals and their occupations are

updated on the fly shows promise for alleviating some of the inaccuracies of RT-TDDFT.268

The most common approximation to Vxc is to ignore all previous time-dependence on the

electron density and to use the instantaneous electron density with a Vxc parametrized or

derived for the ground state: Vxc[n; Ψ0,Φ0](r, t) = Vxc[n(t)](r). This adiabatic approxi-

mation, which ignores all memory dependence of the electron density, is equivalent to a

frequency-independent kernel in linear response.
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2.1.1 The adiabatic approximation in TDDFT

Formally, RT-TDDFT electron density propagation is exact, assuming the use of the exact

time-dependent exchange-correlation potential. In contrast, RT-TDHF is inherently ap-

proximate because electron correlation effects are formally missing from the Hamiltonian

and therefore from the electron propagation. The phase information encoded in the orbitals

leads to some incorporation of memory via the exact exchange energy contribution in TDHF

or in orbital-dependent TDDFT, but these memory effects270,271 do not fix the dramatic er-

rors in the RT-TDHF and RT-TDDFT electron dynamics. The exact Vxc, which would yield

the exact electron density propagation, formally depends on the density at all points in time,

as well as the initial wave function and initial Kohn-Sham state.272,273 However, this memory

dependence of the potential at time t on the density at all previous points in time t′ < t is

not well-understood. As a result of this lack of knowledge, almost all TDDFT calculations

ignore the history dependence of the electron density completely, with some notable excep-

tions discussed below. The dependence of Vxc on the initial wave function and Kohn-Sham

state is usually ignored as well. Therefore, in almost all applications, RT-TDDFT is used

within the adiabatic application, in which Vxc, usually a ground state functional, only uses

input from the instantaneous electron density (see Fig. 2).

Figure 2: The commonly used adiabatic approximation in TDDFT uses only the instanta-
neous electron density n(r, t) as an input to the exchange-correlation potential, ignoring the
dependence on the electron density at all previous points in time.

Despite its widespread use for modeling charge transfer in complex systems, RT-TDDFT

as it is used in practice within the adiabatic approximation suffers from a number of deficien-

cies for small model systems. The RT-TDDFT method within the adiabatic approximation
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is not able to capture Rabi oscillations, where if an electric field of frequency resonant with

an allowed transition is applied to the system, single electron transitions occur between the

states.84,267 For RT-TDDFT, a field that is initially resonant with an energy gap will no

longer be resonant as soon as electron density transfers out of the ground state. As a re-

sult, the electron transfer into the excited state is not complete when the electric field is

applied, limiting RT-TDDFT’s applicability to model pump-probe spectroscopy and non-

equilibrium dynamics. Intricately connected with this issue is the incorrect extent and rate

of charge transfer within RT-TDDFT for the exactly solvable Hubbard dimer. For this sys-

tem, in addition to obtaining the exact dynamics, the dynamics were also simulated within

the adiabatically exact approximation, revealing that the error is in fact due to the adi-

abatic approximation rather than any errors in the exchange or correlation functional for

the instantaneous electron density.140,269 Note that using the adiabatically exact functional

is a non-trivial task, but recent progress in numerically constructing the exact Kohn-Sham

potential for a given density makes this possible for model systems with smooth potentials

(see Fig. 3).274–279 The lack of time-dependence within the adiabatic approximation, which

corresponds to a lack of frequency-dependence in the frequency domain used with linear

response theory, was shown by Maitra, Cave, and Burke in 2004 to be linked to the lack

double excitations within TDDFT.280 However, Li and Isborn in 2008 showed that although

RT-TDDFT cannot capture the response of two-electron excitations, it can recover the elec-

tron density of closed-shell doubly-excited states.77 Another related problem observed with

approximate RT-TDDFT is the phenomena of peak-shifting within the computed absorp-

tion spectra.77,261–266 Although the energy of the spectral peaks computed with RT-TDDFT

agree with the energy of the resonances computed from linear response theory within the

matrix formulation of TDDFT if a ground state electron density is used as a reference, as the

electron density evolves away from the ground state the peaks in the absorption spectrum

unphysically shift in energy. This spurious shift is due to the changing character of the evolv-

ing electron density. Both RT-TDDFT within the adiabatic approximation and RT-TDHF
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suffer from the problems of incorrect Rabi oscillations and peak-shifting; these problems are

due to the nonlinear nature of the potential, which depends on the time-dependent electron

density. Thus, a challenge in going beyond the adiabatic approximation requires that any

time-dependence built into Vxc repair this resonance condition.265,266

Figure 3: The density and corresponding correlation potential in atomic units created from
density-potential mapping. Adapted with permission from Ref. 277. Copyright (2013) Amer-
ican Physical Society.

Previous studies have attempted to explore the time-dependence of the Vxc, with some

progress in developing time-dependent potentials via the current TDDFT formalism.281–289

Very recent work by Maitra and co-workers has introduced a new class of nonadiabatic

approximations to Vxc that are functionals of the one-body reduced density-matrix and the

exchange-correlation hole.290,291 The dependence of the density evolution on the initial Kohn-

Sham state going beyond a single Slater determinant has also been recently explored. 292 All

efforts to go beyond the adiabatic approximation require careful attention to exact condi-
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tions.265,290,293–296

In contrast to RT-TDDFT and RT-TDHF, for correlated wave function based time-

dependent approaches there is no dependence of the Hamiltonian on the electron density,

and therefore no unphysical peak-shifting. Wave function based methods instead propagate

the time-dependent coefficients corresponding to different electronic states, rather than time-

dependent orbitals. The adiabatic approximation of RT-TDDFT becomes less justified as the

electron density is propagated away from the ground state, which is the case for many non-

equilibrium and pump-probe simulations. Although correlated wave function based methods

often have greater computational expense than RT-TDDFT for complex systems, they have

the potential to perform better at modeling these far-from-ground state phenomena.

To evolve the system from an excited state, an alternative to propagating the system

with a resonant laser pulse is to instead initialize the system in an excited state. This tech-

nique offers a way to partially bypass some of the problems with adiabatic TDHF/TDDFT

for resonant processes and allows for computation of excited state dynamics and nonlinear

properties. The accuracy of the technique, however, hinges on the preparation of an initial

state that yields physically meaningful dynamics and avoids undesirable broadband exci-

tation due to the rapid change in potential. Additionally, there are as-of-yet unaddressed

formal problems such as the initial-state dependence for TDDFT.273,297 The simplest ap-

proach for preparing an initial state close to an excited state is to directly manipulate the

orbital populations without relaxation, either by promoting an electron to an unoccupied

orbital,136 or by removing it to emulate valence or core-level ionization.298 An improvement

on this approach is to instead propagate from a state computed from the linear-response

eigenvectors.86,299 Another approach is to converge the system in the presence of a static

field, typically to create a charge separated state. Van Voorhis and coworkers showed that

using constrained DFT (cDFT),300 which minimizes the energy with the constraint that

particular fragments of a system have a particular charge. This gives an initial state with

improved intramolecular charge migration dynamics as compared to an orbital hole. This is
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due to reduced self-interaction errors with cDFT.301

2.1.2 Accuracy of TDHF and TDDFT

Many reviews,245,249,251,252,302 books,247,248 and benchmarking studies250,303–312 highlight the

accuracy and pitfalls of TDDFT for common approximations for Vxc for various excited state

properties. Although these reviews mostly focus on the more common linear response matrix

formulation of TDDFT rather than real-time TDDFT, the accuracy for real-time and linear

response formulations will be similar, assuming that the ground state electron density is used

as a reference in both cases. Thus, the use of these functionals for TDDFT calculations can

be expected to work well for the valence excited states of medium-sized organic molecules,

although qualitatively incorrect transitions are predicted for thiophene and thienoacenes. 313

TDDFT with standard approximate functionals has larger errors in modeling other kinds

of excited states, including those with charge-transfer, Rydberg, or double excitation char-

acter. Approximate local exchange in DFT leads to a lack of Coulombic attraction between

the excited electron and hole in TDDFT, so that charge-transfer transitions are generally

much too low in energy.245,314–316 These spuriously low-energy charge-transfer transitions are

particularly problematic when computing the excitation energies of a molecule in explicit

solvent.317–320 The charge-transfer problem can be remedied using exact exchange,316 with

long-range corrected hybrid functionals and optimally tuned functionals providing much im-

proved treatment of charge-transfer excitations.304,321–326 Rydberg transitions are also often

too low in energy using approximate TDDFT methods302,327–331 because the Vxc does not

exhibit the correct −1/r limit as the distance r between an electron to the nucleus becomes

large. Both TDHF and the usual adiabatic approximations for Vxc in TDDFT yield singly-

excited states, therefore give a very poor description for states that have doubly-excited

character. Such mixed states are often important for describing surface crossings, conical

intersections, and extended conjugated systems.280,302,332–337 For modeling core-electron exci-

tations, there is a consistent improvement in the absolute values of the calculated excitation
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energies with increasing Hartree-Fock exchange.95,338–340 Particularly, short-range exchange

has been shown to be an important component of hybrid functionals applied to core excita-

tions. Both TDHF and TDDFT should be used with extreme caution in modeling open-shell

systems such as transition metal complexes341–343 or systems with multi-reference character

where a single Slater determinant provides a poor starting reference.

2.2 Real-Time Time-Dependent Semi-Empirical Methods

Semiempirical methods have a long history.344 With the growing interest in excited state

properties and dynamics of large molecular systems, these methods have been revisited in

recent years. The first examples of semiempirical methods (i.e., the Hückel345 and Pariser-

Parr-Pople (PPP) methods), were limited to the description of π networks in organic sys-

tems. This treatment was later extended by Hoffman to both π and σ bonding.346 Subse-

quently, Pople and Segal developed a series of semiempirical Hamiltonians based on HF the-

ory, namely, the complete neglect of differential overlap (CNDO),347,348 intermediate neglect

of differential overlap (INDO),349 and neglect of diatomic differential overlap (NDDO).350

The INDO (INDO/S) Hamiltonian was further reparametrized by Zerner and co-workers in

order to evaluate UV/Vis spectra for organic systems within the frameworks of configuration

interaction with single excitations (CIS) and the random phase approximation (RPA), 351–355

respectively. Since then, this approach has been used for a broad range of systems including

organic electronics, organic dyes, conjugated polymers, biological molecules and nanopar-

ticles.356–368 INDO/S parameters are now available for transition metals, lanthanides, and

actinides.369–372 More recent improvements to the INDO/S method, INDO/X, have also been

reported by Voityuk.373 Other approximate methods include the modified neglect of diatomic

orbital (MNDO)374,375 and its parametrized model 3 (PM3) or MNDO-PM3 methods.376,377

The semipirical density functional tight binding (DFTB) method,378–380 which is formally

based on DFT, has also been extensively developed over the last two decades.

Despite this long history, real-time formulations of semi-empirical methods have only been
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reported within the last two decades. The PPP Hamiltonian, which includes the important

Coulomb interaction among π electrons, is particularly useful for studies of electronic prop-

erties of conjugated molecules. Mukamel and co-workers have successfully developed and

employed real-time PPP Hamiltonian for studies of spectroscopic signals and electron dy-

namics of conjugated organic molecules.381–385 Bartell et. al.386 and Ghosh et. al.387 have

reported real-time time-dependent implementations of the PM3 and INDO/S methods using

the Liouville superoperator approach and Chebyshev time propagation framework to study

the time-dependent response to a weak pulse. They studied the UV/Vis spectra of a range

of molecules, including large systems like the tyrosine chromophore in the ubiquitin protein

(Fig. 4), the betanin dye molecule in the presence of methanol and water, and the Nile

Red chromophore in a variety of solvents (acetone, ethanol, toluene and n-hexane). Both

approaches yield spectra that are comparable in quality to those obtained from RT-TDDFT

simulations or experiment. Large scale real-time DFTB simulations have also been used to

model electron dynamics in complex systems such as solvated nanodroplets,148 plasmonic

nanoantennas,388,389 and dye TiO2 nanoparticle hybrids for charge injection,390,391 such as

those shown in Fig. 5.

2.3 Real-Time Time-Dependent Configuration-Interaction Meth-

ods

Time-evolved multiconfigurational wave functions are ideally suited for modeling time-resolved

spectroscopies or excited-state properties in strong perturbations, in part, because they do

not exhibit the deficiencies of RT-TDDFT that result from the use of approximate adiabatic

exchange-correlation functionals of the density.

The conceptually simplest multiconfigurational wave function approach is time-dependent

configuration interaction (TD-CI), wherein the wave function Ψ(t) is expressed as a linear
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Figure 4: RT-INDO/S spectra of tyrosine in the gas phase and in the ubiquitin protein
environment. The experimentally observed small red shift within the protein environment
is qualitatively reproduced. Adapted with permission from Ref. 387. Copyright (2017)
American Chemical Society.

combination of electron configurations {ΦK}:

Ψ(t) =
∑
K

CK(t)ΦK . (10)

Here, {CK(t)} are time-dependent CI expansion coefficients, and {ΦK} represent electronic

configurations (Slater determinants or configuration state functions). If all configurations are

included in the wave function expansion, TD-CI gives the exact description of the dynamics

of a many-electron system,

iĊ(t) = H(t)C(t). (11)

The total number of configurations in the determinant-based full CI framework is

Ndet =

(
Norb

ne

)
(12)

where Norb and ne are the total number of orbitals and electrons, respectively, in the system.

Since the full TD-CI method is exponentially complex, the CI expansion is often trun-
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Figure 5: Population evolution of dyes involved in both direct (type-I) and indirect (type-II)
photoinjection into TiO2 were studied with real-time DFTB. Adapted with permission from
Ref. 390. Copyright (2012) American Chemical Society.

cated in terms of either the excitation operator (e.g., singles and doubles)33,35–39,106,392,393

or the space used to construct the full CI basis (e.g., the complete active space (CAS) ap-

proach).28–30,32,107,110,394–396 As the size of the truncated space increases, the time-evolution

of the approximate wave function approaches the asymptotic limit of the full TD-CI solution.

As an example, the CAS Hamiltonian is given in the determinant basis as

HKL(t) = 〈K|
∑
tu

(htu +
∑
i

(2(tu|ii)− (ti|iu)) |L〉

+ 〈K| 1
2

∑
tuvw

(tu|vw)(ÊtuÊvw − δuvÊtw) |L〉 (13)

where t,u,v,w label the orbitals of the active space, and hpq and (pq|rs) represent one- and

two-electron integrals, respectively. Êpq is a spin-adapted excitation operator

Êpq = â†pαâqα + â†pβâqβ, (14)

defined in terms of the creation (â†) and annihilation (â) operators of second quantization,

respectively.

The TD-CI wave function can be propagated in the basis of eigenstates of the CI Hamil-

tonian, in which case the time-evolution operator can be expressed as a unitary matrix.

However, this approach requires that the Hamiltonian be fully diagonalized to obtain all CI

states; the transition dipoles between all states must then also be computed. This approach
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is computationally expensive and generally infeasible, with the exception of very small sys-

tems or small CAS problems. On the other hand, the time-consuming matrix-vector product

in Eq. (11) can be computed within the determinant basis on-the-fly,32,396,397 which reduces

memory requirements and allows for the consideration of more complete CI expansions and

the study of larger systems.

The CI wave function can be expanded in terms of excited determinants derived from

restricted, unrestricted, or noncollinear mean-field reference functions. When a truncated

CI expansion is used with a Slater determinant basis, the CI wave functions inherits any

broken symmetries associated with the reference configuration. In a variational treatment,

symmetry breaking can be advantageous in that it may lower the energy of the system.

However, unphysical bright transitions to different spin states may arise from the broken

symmetry wave function, and these features should be removed from calculated spectra and

electric properties. Given a reference that is an eigenfunction of both Ŝz and Ŝ2, spin-adapted

configuration state functions (CSFs), which are also eigenfunctions of these operators, are

an appealing alternative to excited determinants when expanding the CI wave function.

Within a CSF basis, the CI wave function will also be an eigenfunction of Ŝz and Ŝ2, and

the effective CI space will be smaller because the Hamiltonian can be block-diagonalized

according to spin state.33,38,39

TD-CI electron dynamics have been used to model photoionization,28,106–108,110,112–115,393,398,399

linear spectroscopies,32,35,39,392,394,400 and nonlinear optical responses.29,30,37,38,107,392,393 Time-

dependent configuration interaction singles (TD-CIS) is the most commonly used multicon-

figurational approach. TD-CIS is particularly useful when the underlying chemical processes

are mostly driven by single-electron dynamics, such those in linear optical response and

photoionization. Unfortunately, TD-CIS tends to overestimate both static and dynamic

hyperpolarizabilities due to a lack of electron correlation in the description of the ground

state.37,38,392,393

In the nonlinear and nonperturbative regime, it is important that the wave function
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include configurations which are multiply substituted, relative to the reference configura-

tion. As such, the use of a complete-active-space CI (CASCI) formalism becomes advanta-

geous. TD-CASCI has been used to investigate population dynamics and simulate spectro-

scopies.32,396 This active-space approach has been generalized to the restricted active space

(RAS) CI formalism which allows treatment of larger systems but possesses the drawback of

a loss of size extensivity.108 In TD-CASCI, the choice of initial orbitals is of key importance.

This has recently been highlighted by Liu et. al.,32 who investigated the effect of different

initial orbitals in the TD-CASCI calculation of absorption spectra.32 Similarly, in the nu-

merical grid implementation of the time-dependent truncated CI approach, pseudo-orbitals

based on HF orbitals have been demonstrated to be a decent orbital basis for the study of

strong-field ionization, photoionization, and X-ray IR pump probe ionization.108

Recent years have also seen the development of TD-CASSCF where the wave function

obeys the time-dependent variational principle by allowing variations in both the CI coef-

ficients and the orbitals;28,31,394,399,401 this approach contrasts with TD-CASCI wherein the

orbitals remain fixed. This technique has also been extended to the RAS partitioning, allow-

ing a detailed analysis of the role that multi-electron excitations play in the description of

nonlinear properties, as well as the study of high harmonic generation spectra and ionization

of carbon and beryllium atoms.29,30

2.4 Real-Time Time-Dependent Coupled-Cluster Methods

As discussed in Sec. 2.3, wave function-based time-domain approaches do not exhibit many

of the well-known failures of RT-TDDFT, making them desirable candidates for modeling

strong or long-time light-matter interactions. However, real-time methods built upon the

configuration interaction expansion of the wave function suffer from their own problems.

For example, the lack of correlation effects in TD-CIS often renders it unreliable (e.g., for

estimating dynamic and static hyperpolarizabilities37,38,392,393). A truncated CI scheme such

as CI with single and double excitations (CISD) is neither size extensive nor is it particularly
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accurate, and multiconfigurational CI is exponentially complex. On the other hand, coupled-

cluster (CC)-based approaches are highly accurate, rigorously size extensive when truncated

at any excitation order, and can be realized in polynomial time.

The ground-state (CC) coupled-cluster wave function is given by

|ΨCC〉 = eT̂ |Φ0〉 (15)

where |Φ0〉 represents a single-determinant reference function, and T̂ is the cluster operator,

defined in second-quantized notation as

T̂ =
∑
ia

tai â
†
aâi +

1

4

∑
ijab

tabij â
†
aâ
†
bâj âi + . . . . (16)

If the cluster operator is not truncated, full CC theory is numerically equivalent to the full

CI. Further, as mentioned above, CC theory has the useful property that it is rigorously size

extensive should Eq. (16) be truncated to any excitation order (i.e., at the level of single and

double excitations, as in CCSD402). The CC ground-state energy and cluster amplitudes are

determined using a projection approach that is nonvariational and which slightly complicates

the evaluation of properties because the Hellman-Feynmann theorem cannot be applied. The

complete parametrization of the ground state thus requires a generalized Hellman-Feynmann

theorem and a stationary Lagrangian function of the form

L = 〈Ψ̃CC|Ĥ|ΨCC〉, (17)

where

〈Ψ̃CC| = 〈Φ0|e−T̂ (1 + Λ̂), (18)
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and Λ̂ represents a de-excitation operator, defined as

Λ̂ =
∑
ia

λiaâ
†
i âa +

1

4

∑
ijab

λijabâ
†
i â
†
j âbâa + . . . . (19)

The non-Hermiticity of this formalism and the fact that both right- and left-hand CC wave

functions are required to define ground-state properties play important roles in the extension

of CC theory to the time domain.

Given a time-dependent Hamiltonian operator, Ĥ(t), the simplest way to achieve a time-

dependent CC (TD-CC) theory is to build time-dependence into the right-hand CC wave

function [T̂ → T̂ (t)] while ignoring the non-Hermiticity of the theory and assuming that

the underlying molecular orbitals are independent of time. Under these assumptions, which

define the TD-CC formalism of Huber and Klamroth,47 the time-dependent Schrödinger

equation can be left-multiplied by e−T̂ (t) to obtain

i~ e−T̂ (t) ∂

∂t
eT̂ (t)|Φ0〉 = e−T̂ (t)Ĥ(t)eT̂ (t)|Φ0〉, (20)

and programmable expressions for the time derivatives of the cluster amplitudes can then be

obtained upon considering the Baker-Campbell-Hausdorff expansions of both the similarity-

transformed Hamiltonian and time derivative operators that arise in Eq. (20). 403 Few groups

follow this precise scheme, though, for two reasons. First, a correct description of time-

dependent properties (e.g., the energy, dipole moment, etc.) requires knowledge of the time-

evolution of both the right- and left-hand CC wave functions. Indeed, the CC wave functions

should satisfy a time-dependent bivariational principle,404 and the complete specification

of the time evolution of the system requires the integration of both the time-dependent

Schrödinger equation and its complex conjugate. Second, Huber and Klamroth47 observed

that, in practical computations at the time-dependent CCSD (TD-CCSD) level of theory,

the lack of time-dependence of the orbitals apparently leads to numerical instabilities that

emerge when considering either large basis sets or intense external electric fields. Pedersen
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and Kvaal405 later confirmed intense-field-induced instabilities within a more sophisticated

TD-CCSD formalism that evolved both the t- and λ-amplitudes.

Regarding the time-evolution of the molecular orbitals, in the 1970s, Hoodbhoy and

Negele403,406 and Schönhammer and Gunnarsson407 separately proposed that the molecular

orbitals should evolve in time, with the former authors suggesting that the CC amplitudes

could be evolved within the orbital basis defined by the equations of motion of TDHF theory.

In 2012, Kvaal404 refined these ideas with his orbital adaptive TD-CC (OATDCC) heirarchy,

which employs time-varying biorthogonal orbitals and interpolates between the MCTDHF

and TDHF approaches when the cluster operator is chosen to include all excitation levels or

none, respectively. A similar treatment, based upon time-varying orthonormal orbitals, can

be found in the time-dependent orbital-optimized CC (TD-OCC) method of Sato et al.,50

although it should be noted that, for systems with more than two electrons, orbital-optimized

CC theory does not converge to the full CI limit.408

Some aspects of the structure of both the OATDCC with double excitations (OATDCCD)

and TD-OCC with double excitations (TD-OCCD) approximations resemble those of Huber

and Klamroth’s TD-CCSD, with two significant exceptions. First, OATDCC and TD-OCC

ignore single-particle transitions in the cluster operator, as they are rendered redundant

through the time dependence of the orbitals. Second, and more significantly, the TD-CC

scheme of Huber and Klamroth considers only the time evolution of the t-amplitudes (that

define the right-hand CC wave function), whereas OATDCC and TD-OCC evolve both the

t- and λ-amplitudes (as does the TD-CCSD approach of Pedersen and Kvaal405). Huber and

Klamroth attempted to circumvent the need to consider the time evolution of λ-amplitudes

by defining time-dependent quantities in terms of an approximate CISD wave function, con-

structed from TD-CCSD amplitudes. However, observables computed in this way incorrectly

assume complex values upon interaction of the system with an oscillating electric field. On

the other hand, Pedersen and Kvaal405 demonstrated that a time-dependent formalism that

respects the non-Hermiticity of CC theory will retain physically meaningful (i.e., real) ob-
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servables; small imaginary contributions to quantities such as the energy are purely numerical

artifacts that can be removed through the use of a suitable integrator.

The nonlinear nature of the cluster operator leads to complicated equations for the time-

evolution of the cluster amplitudes. The complexity of these equations and any related

potential numerical issues can be avoided by keeping the cluster amplitudes fixed at their

time-independent, ground-state values and considering time-evolution of the system only at

the equation-of-motion CC409–411 (EOM-CC) level of theory.22,35,37,49,52,53 Within the con-

ventional EOM-CC framework, the I th electronic state is represented by

R̂I |ΨCC〉 = (r0 +
∑
ia

rai â
†
aâi +

1

4

∑
ijab

rabij â
†
aâ
†
bâj âi + . . . )eT̂ |Φ0〉, (21)

where the expansion coefficients r0, rai , etc., comprise the (right-hand) eigenvectors of the

normal-ordered similarity-transformed Hamiltonian,

H̄N = e−T̂ ĤeT̂ − ECC. (22)

Here, ECC represents the energy associated with the ground-state CC wave function, which is

recovered in the EOM framework with R̂0 = 1. The non-Hermitian nature of the similarity-

transformed Hamiltonian implies that these right-hand eigenfunctions comprise one half of

a biorthogonal set of functions; the complementary left-hand eigenfunctions are

〈Ψ̃CC| = 〈Φ0|e−T̂ (l0 +
∑
ia

liaâ
†
i âa +

1

4

∑
ijab

labij â
†
i â
†
j âbâa + . . . ). (23)

In this representation, a general time-dependent wave function can be represented by right-

and left-hand states

|Ψ(t)〉 = R̂(t)eT̂ |Φ0〉, (24)
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and

〈Ψ̃(t)| = 〈Φ0|e−T̂ L̂(t), (25)

whose time evolution are governed by the time-dependent Schrödinger equation and its

complex conjugate, respectively.

We are only aware of two examples of laser-driven electron dynamics described by time-

dependent EOM-CC (TD-EOM-CC). In 2011 Sonk et al.35 used TD-EOM-CC with single

and double excitations (TD-EOM-CCSD) to explore the response of butadiene to short,

intense laser pulses, and in 2012 Luppi and Head-Gordon37 applied TD-EOM-CCSD to

model high harmonic generation in H2 and N2. In both cases, the time-dependent wave

function was expanded in the basis of field-free eigenstates of the similarity-transformed

Hamiltonian. In this basis, the transition dipole matrix that comprises the field interaction is

not Hermitian, which could potentially lead to dynamics that do not conserve the norm of the

wave function. The similarity-transformed Hamiltonian is also not strictly Hermitian, even

though it is diagonal in this basis. In both Refs. 35 and 37 the non-Hermitian components of

the matrices are disregarded. The largest difference between the two formalisms described in

these papers is that Sonk et al., having Hermitized the similarity-transformed dipole matrix,

employed a propagation scheme suitable for a Hermitian theory (that is, the time-dependent

state is characterized by only a single wave function), whereas Luppi and Head-Gordon

retained distinct left- and right-hand time-dependent wave functions.

Nascimento and DePrince22,49 have also developed a TD-EOM-CC formalism with a

slightly more limited scope than those discussed above. In their work, the linear absorption

lineshape function given by Fermi’s Golden Rule is obtained from the Fourier transform

of a dipole autocorrelation function. This treatment is similar to that employed decades

earlier in the context of fluorescence and Raman spectroscopy412–414 and in the vibrational

coupled-cluster approach proposed by Prasad in 1988.415

It can be shown22,49 that each Cartesian component of a linear absorption lineshape

function can be expressed as the Fourier transform of a dipole autocorrelation function
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defined as

Iξ(ω) =

∫ ∞
−∞

dt e−iωt〈M̃ξ(t)|Mξ(0)〉. (26)

Here, 〈M̃ξ(0)| and |Mξ(0)〉 are left- and right-hand dipole functions defined at time t = 0 by

〈M̃ξ(0)| = 〈Φ0|(1 + Λ̂)µ̄ξ (27)

and

|Mξ(0)〉 = µ̄ξ|Φ0〉, (28)

respectively, and µ̄ξ represents the ξth component (ξ ∈ x, y, z) of the similarity-transformed

dipole operator (µ̄ξ = e−T̂ µ̂ξe
T̂ ). A dipole strength function, S(ω), which is formally equiv-

alent to the oscillator strengths which arise within conventional EOM-CC theory, can then

be obtained from the real part of this lineshape as

S(ω) =
2

3
ω
∑
ξ

Re{Iξ(ω)}. (29)

Nascimento and DePrince applied this formalism to the evaluation of UV/Vis absorption

spectra22 at the TD-EOM approximate second order coupled-cluster (CC2)416 level of the-

ory and X-ray absorption fine structure49 at the TD-EOM-CCSD level of theory. As with

other real-time approaches, one of the benefits of TD-EOM-CC is that broad-band absorp-

tion spectra can be generated from a single time-domain simulation (for each Cartesian

component of the absorption lineshape function). For example, Fig. 6 illustrates a TD-

EOM-CCSD absorption spectrum for carbon monoxide that spans 600 eV. More recently,

Nascimento and DePrince have generalized this moment-based TD-EOM-CC formalism to

other linear electronic spectroscopies, demonstrating, for example, the numerical equiva-

lence of electronic circular dichroism spectra generated at the TD-EOM-CC and conven-

tional EOM-CC levels of theory.52 Further, DePrince, Li, and their coworkers53 have also

recently extended TD-EOM-CC theory to the description of relativistic effects within the
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Figure 6: Broadband absorption spectrum for carbon monoxide computed at the TD-EOM-
CCSD/aug-cc-pVTZ level of theory. Adapted with permission from Ref. 49. Copyright
(2017) American Chemical Society.

exact two-component98,417–431 framework.

Closely related to time-dependent CC theory is the time-dependent algebraic diagram-

matic construction (ADC) approach,40–46,432 which has been applied to a variety of problems,

including ultrafast charge40,45 and energy43,44 migration, metastable states,41,42 and X-ray

absorption spectroscopy.46 The ADC formalism is Hermitian and its extension to the time

domain is thus slightly less complicated than that of CC theory.

2.5 Real-Time Time-Dependent Two-Component and Relativistic

Methods

Conventional electronic structure methods are incapable of simulating time-dependent spin

precession. The reason for this shortcoming is the common choice to align electronic spins

(anti-)parallel with respect to each other within the electron configuration. In single-reference

techniques, such as unrestricted Hartree-Fock and spin-density density functional theories,

this choice leads to spin orbitals that are eigenfunctions of the spin operator Ŝz. As a result,

the number of spin-up and spin-down electrons will be conserved throughout any dynamical

process.
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In order to obtain a proper description of spin precession, one must consider the full vector

form of the time-dependent magnetization m(r). The dynamics of m(r), which corresponds

to the spin quantization axis, requires a non-collinear spin electronic structure framework,

such as that provided by two-component or generalized Hartree-Fock/Kohn-Sham meth-

ods.68,433–450 Smooth transitions between various spin configurations are enabled through

the spinor basis,

ψk(x, t) =

φαk (r, t)

φβk(r, t)

 , (30)

where the spatial functions {φαk (r, t)}, {φβk(r, t)} are expanded in terms of a common set of

basis functions {χµ(r)}

φαk (r, t) =
∑
µ

cαµk(t)χµ(r), (31)

φβk(r, t) =
∑
µ

cβµk(t)χµ(r). (32)

The first example of ab initio non-collinear real-time electronic dynamics was reported in

2014.68 In that work, Ding, et al. derived and utilized a density-matrix based two-component

Liouville-von-Neumann equation in the orthonormal basis:68,70

i
∂

∂t

P
′αα(t) P

′αβ(t)

P
′βα(t) P

′ββ(t)

 =


F

′αα(t) F
′αβ(t)

F
′βα(t) F

′ββ(t)

 ,

P
′αα(t) P

′αβ(t)

P
′βα(t) P

′ββ(t)


 , (33)

where P
′αα(t) and F

′αβ(t) are the density and Fock/Kohn-Sham matrices in an orthonormal
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basis, which are transformed from AO-basis quantities in with a spin-blocked structure,

P στ
µν (t) =

N∑
i

cσµi(t) · cτ∗νi (t), σ, τ ∈ {α, β} (34)

Fστ (t) = hστ (t) + δστ
[
Jαα(t) + Jββ(t)

]
− (1− ζ)Vστ

xc + ζKστ (t), (35)

The magnetization densities P
′αβ and P

′βα give rise to the non-collinear spin projection on

the x and y rotational axes. The off-diagonal Fock/Kohn-Sham matrices, F
′αβ and F

′βα,

arise from the spin coupling with external (e.g., magnetic field) and internal (e.g. spin-orbit

coupling) perturbations. For hybrid DFT, the HF exchange integral K takes on a fractional

value scaled by a non-zero scaling factor ζ, whereas ζ = 0 for pure DFT kernels.

The non-relativistic Hamiltonian ignores interactions explicitly associated with the spin

degrees of freedom, such as the spin-spin interactions, spin-orbit couplings, and spin-magnetic

field interactions. Although it seems the extension of the non-relativistic time-dependent

many-electron methods to the relativistic case is straightforward, incorporation of special

relativity introduces new conceptual difficulties. First, the theory of special relativity as-

sumes the equivalence of all inertial reference frames under Lorentz transformation of the

space-time coordinates. A relativistic quantum mechanical description of a molecular sys-

tem requires a definition of a Lorentz invariant molecular Hamiltonian, which is not readily

established. As a result, separation of the space-time coordinates must be performed in

a particular reference frame and will only be valid in this reference frame. For molecular

systems, the most convenient reference frame is the Born-Oppenheimer frame where the

nuclei are at rest, and the electromagnetic potential created by the nuclei is simply a scalar

potential.

The time-dependent two-component framework [Eq. (33)] is well-suited for the inclu-

sion of scalar relativistic or spin-coupling effects, subject to an appropriate transformation

from the bi-spinor or four-component representation of the Dirac equation, such as the

Douglas-Kroll-Hess,451–453 the normalized elimination of the small components454,455 or the
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zeroth order regular approximation (ZORA)456,457 and the the exact two-component (X2C)

method.98,417–431 Because relativistic methods are not the focus of this review, we refer read-

ers to Refs. 458, 459, and 430 for a more thorough review of the subject matter. Applications

of the relativistic real-time four-component method were first reported by Repisky, et al.69

and more recently by De Santis, et al.460 for computing absorption spectra. In 2016, a

real-time relativistic two-component method was developed by Goings, et al.70 to study

spin-forbidden excitations; this approach was then extended to the description of nonlinear

optical properties by Repisky, et al.100

2.6 Real-Time Methods in Complex and Non-Equilibrium Envi-

ronments

Chemical properties, including nuclear conformation, spectroscopy, and chemical reactiv-

ity, can often be dramatically modified by interaction with the surrounding medium (e.g.,

through solvation).461–464 These environmental interactions could be steric465,466 or specific

electronic perturbations such as hydrogen bonding, dipole-dipole, or non-covalent interac-

tions.467–469 Unfortunately, treating the system and its surrounding environment with high

levels of theory is a computationally intractable.

Instead, practical theoretical models focus on capturing the most important aspects of

the system-environment interaction. One of the most computationally tractable approaches

is the polarizable continuum model (PCM) that replaces the explicit atomistic environ-

ment with an implicit solvent model.470–478 The real-time time-dependent formalism of the

equilibrium PCM (TDPCM) has been developed into the RT-TDHF/RT-TDDFT frame-

work.138,139,154 In the initial approach, the environment was kept in equilibrium with respect

to the polarization of the system by relaxing the solvent dielectric constant from the dy-

namic, high frequency (optical) value to the static, zero-frequency value according to an

empirical relaxation model. Later, a non-equilibrium TDPCM approach was introduced to

explicitly treat the evolution of the dielectric medium as it responds to the time-dependent
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system polarization.155,156

Although continuum models can provide an accurate description for systems with weak

interaction with the environment,474,479–481 an atomistic description of the environment be-

comes necessary for strong specific system-environment interactions (e.g., solute-solvent hy-

drogen bonding or protein active sites).482 Hybrid time-dependent models treat the high-level

time-dependent electronic dynamics quantum mechanically (QM), while the environmental

response is described at a classical molecular mechanics (MM) level.483–485 The most com-

mon example of these hybrid QM/MM models electrostatically embeds the QM system on

effective point charges to represent the environment atoms. Morzan et al. employed an elec-

trostatic embedding model in a real-time QM/MM method to capture the solvatochromic

shift of formamide in water.486 Marques et al. used an electrostatic embedding model to in-

vestigate the spectra of the green fluorescent protein (GFP) before and after protonation by

its protein environment.74 These results showed reasonably good agreement with experiment,

as seen in Fig. 7, demonstrating the utility of QM/MM models for simulating absorption

spectra in complex environments.

	-	� transition between the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular
orbital (LUMO) of both neutral and anionic forms. The
molecule is nearly transparent to visible light polarized
along the other two orthogonal directions. GFP turns out
to be a rather anisotropic molecule in the visible, property
that can be used to enhance the photodynamical pro-
cesses in well-oriented GFP samples for optoelectronic
devices. The differences between the LUMO and HOMO
eigenvalues, sometimes taken as an estimate for the
HOMO-LUMO excitation energy, are, respectively, 2.19
and 1.61 eV, for the neutral and anionic structures. It is
common practice to use these values as estimations of the
physical excitations. This leads, in the case of the GFP, to
a very bad agreement with experiment. However, in
TDDFT the difference of one-particle eigenvalues is re-
normalized by the Coulomb and exchange-correlation
terms [12]. Once these effects are included, the main
excitation peaks for the neutral and anionic forms move
to 3.01 and 2.67 eV. These values are now in really good
agreement with the measured excitation energies, located
at 3.05 and 2.63 eV [4]. The 	-	� excitations are no
longer pure HOMO-LUMO transitions and include con-
tributions from virtual particle-hole excitations involving
several occupied and unoccupied states. Some of the
relevant states are depicted in Fig. 3. The oscillator
strength of the 	-	� transition is larger in the anionic
than in the neutral GFP. It is, however, possible to obtain
a quantitative description of the spectra of the wt-GFP
by assuming a �4:1 ratio for the concentration of the
neutral/anionic forms. This ratio is very close to the
estimated experimental ratio of 80% neutral and 20%
anionic [3]. The measured peaks can be clearly assigned
to either the neutral or the anionic forms of the GFP.

The suggested three-state model of the wt-GFP photo-
physics contains the two thermodynamically stable
neutral and anionic configurations, and an unstable inter-
mediate state that apparently corresponds to the anionic
chromophore in a nonequilibrium protein environment
[5]. Other intermediate state relaxation processes through
cis-trans isomerization and a new protonated zwitter-
ionic form have also been proposed [9]. Our calcula-
tions give further support to the predominance of the
neutral and anionic forms in wt-GFP in agreement
with the analysis of the infrared spectra [10]. This sus-
tains the proposed proton-shuttle mechanism between the
protonated and deprotonated forms, through the corre-
sponding charged states of the Glu222 residue where the
proton-shuttle ends. Furthermore, the structural differ-
ences between the two anionic structures is very small
(changes the main absorption peak by �0:1 eV). We have
also computed the cationic conformation derived from
the neutral form by protonation on the heterocyclic free-
radical N. Its spectrum consists of a major peak at 2.6 eV
along with a shoulder at 3.05 eV in relative agreement
with the measured value for a slightly different model
chromophore in aqueous solution, 3.15 eV [22]. This
predictive power can prompt the use of TDDFT combined
with time-resolved optical spectroscopy to map the con-
centration of the different GFP forms in solution upon

FIG. 3 (color). Kohn-Sham wave functions of the neutral
(left) and anionic (right) GFP chromophores (red �, blue �).
These are the most important states involved in the main
collective excitation of Fig. 2, although the contribution of
several other occupied and unoccupied states is not negligible.
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FIG. 2. Computed photoabsorption cross section of the neu-
tral (thick solid line) and anionic (thick dashed line) chromo-
phores, along with experimental results taken from Refs. [4,8]
(thin solid line and crosses, respectively). For comparative
purposes, we divided the anionic results by 4 with respect to
the neutral results. Inset: decomposition of the computed
spectra of the neutral chromophore in the three directions,
showing the inherent anisotropy of the GFP molecule.
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a very bad agreement with experiment. However, in
TDDFT the difference of one-particle eigenvalues is re-
normalized by the Coulomb and exchange-correlation
terms [12]. Once these effects are included, the main
excitation peaks for the neutral and anionic forms move
to 3.01 and 2.67 eV. These values are now in really good
agreement with the measured excitation energies, located
at 3.05 and 2.63 eV [4]. The 	-	� excitations are no
longer pure HOMO-LUMO transitions and include con-
tributions from virtual particle-hole excitations involving
several occupied and unoccupied states. Some of the
relevant states are depicted in Fig. 3. The oscillator
strength of the 	-	� transition is larger in the anionic
than in the neutral GFP. It is, however, possible to obtain
a quantitative description of the spectra of the wt-GFP
by assuming a �4:1 ratio for the concentration of the
neutral/anionic forms. This ratio is very close to the
estimated experimental ratio of 80% neutral and 20%
anionic [3]. The measured peaks can be clearly assigned
to either the neutral or the anionic forms of the GFP.

The suggested three-state model of the wt-GFP photo-
physics contains the two thermodynamically stable
neutral and anionic configurations, and an unstable inter-
mediate state that apparently corresponds to the anionic
chromophore in a nonequilibrium protein environment
[5]. Other intermediate state relaxation processes through
cis-trans isomerization and a new protonated zwitter-
ionic form have also been proposed [9]. Our calcula-
tions give further support to the predominance of the
neutral and anionic forms in wt-GFP in agreement
with the analysis of the infrared spectra [10]. This sus-
tains the proposed proton-shuttle mechanism between the
protonated and deprotonated forms, through the corre-
sponding charged states of the Glu222 residue where the
proton-shuttle ends. Furthermore, the structural differ-
ences between the two anionic structures is very small
(changes the main absorption peak by �0:1 eV). We have
also computed the cationic conformation derived from
the neutral form by protonation on the heterocyclic free-
radical N. Its spectrum consists of a major peak at 2.6 eV
along with a shoulder at 3.05 eV in relative agreement
with the measured value for a slightly different model
chromophore in aqueous solution, 3.15 eV [22]. This
predictive power can prompt the use of TDDFT combined
with time-resolved optical spectroscopy to map the con-
centration of the different GFP forms in solution upon

FIG. 3 (color). Kohn-Sham wave functions of the neutral
(left) and anionic (right) GFP chromophores (red �, blue �).
These are the most important states involved in the main
collective excitation of Fig. 2, although the contribution of
several other occupied and unoccupied states is not negligible.
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FIG. 2. Computed photoabsorption cross section of the neu-
tral (thick solid line) and anionic (thick dashed line) chromo-
phores, along with experimental results taken from Refs. [4,8]
(thin solid line and crosses, respectively). For comparative
purposes, we divided the anionic results by 4 with respect to
the neutral results. Inset: decomposition of the computed
spectra of the neutral chromophore in the three directions,
showing the inherent anisotropy of the GFP molecule.
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Figure 7: (Left Panel) Computed absorption spectra of the neutral (thick solid line) and
anionic (thick dashed line) GFP chromophores, compared with two separate experiments
(thin solid line and crosses). The anionic spectrum was divided by a factor of four for com-
parative purposes. (Middle and Right Panels) Kohn-Sham orbitals of the neutral (left)
and anionic (right) GFP chromophores, corresponding to the most important orbtial tran-
sitions involved in the main excitations. Adapted with permission from Ref. 74. Copyright
(2003) American Physical Society.

The electrostatic embedding QM/MM approach can reproduce some solvent induced

spectral shifts, but it does not capture time-dependent mutual polarization between the sys-
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tem and its environment. Recently, many approaches for including the system-environment

mutual polarization have been explored, including“fluctuating charges”,487–490 “effective

fragment potentials”,491,492 “induced dipoles”,493–497 and Drude oscillator-based models.498

Li and Mennucci have extended the polarizable molecular mechanics (MMPol) based on

the induced dipole formalism493,494 to the real-time regime coupled with RT-TDHF/RT-

TDDFT152,499 and TD-CASSCF.32 In these approaches, the electronic degrees of freedom of

the environment, modeled by the induced dipoles with frequency independent polarizabilities

in the MMPol regime, respond instantaneously to the electric field at each polarizable site.

This approximation is reasonable and useful for cases where the electric field generated by

the QM region is oscillating much more slowly than the response in the MM region.499,500
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Figure 8: (Left) 11-cis retinal protonated Schiff base (RPSB) in a shell of residues from
bovine rhodopsin. The chromophore is covalently bonded to the Lys296 residue. The free
valency created on Cδ by the division of the QM (shown in a ball and stick representation)
and MM (shown in a line representation) regions was capped with a hydrogen link atom.
See Ref. 494 for details in the partitioning scheme. (Left) LR- and RT-TDDFT/MMPol
computed absorption spectrum of RPSB in bovine rhodopsin. Adapted with permission
from Ref. 152. Copyright (2017) American Chemical Society.

Studies coupling the polarizable embedding approach with real time electron dynamics

have been successful at predicting spectroscopic properties, such as solvatochromic shifts, as

well as providing unique insight into the responsive dynamics of the electronic degrees of free-
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dom in a classical environment. Wu et al. captured the solvatochromic effects of water on the

absorption spectrum of coumarin, a common solvatochromic dye; this study also investigated

the physical extent of the mutual polarization between dye and solvent after perturbation,

demonstrating the diminishing effects of polarizable solvent on the dynamics of the quantum

subsystem as a function of distance.501 Donati et al. explored spectroscopic properties of

a similar chromophore, coumarin-153, in methanol and in a covalently bound environment

that cannot be modeled with continuum embedding approaches.152 The calculated absorp-

tion spectrum of retinal protonated Schiff base (RPSB) in rhodopsin ( Fig. 8) demonstrated

the mutual polarization of electronic degrees of freedom in environments tightly coupled to

the quantum system.152

3 Numerical Techniques

3.1 Basis Set Representations

Over the years real-time time-dependent electronic structure approaches have been devel-

oped in a number of widely used electronic structure programs, with wave function or density

matrix representations ranging from Gaussian-type functions,15,17–23,33,502 numerical atomic

orbitals,14,503–505 real-space grids,27,506–508 planewaves,24,122,127,509–514 and mixed Gaussian-

type functions and planewaves.26 Other promising representations include Lagrange func-

tions,515–517 finite elements518,519 and maximally localized Wannier functions.520

Of the various real-time electronic structure approaches, RT-TDDFT has been explored

with all the above mentioned basis sets, while post-Hartree-Fock theories have only been

implemented with Gaussian orbitals, taking full advantage of their analytical properties. 521

This has allowed the development of ground-, excited-state and higher-order response prop-

erties based on electronic structure theories of increasing complexity over many decades. It

is also the mostly widely used basis set representation in quantum chemistry. Each of these

representations have their strengths and weaknesses and the specific choice depends on the
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system and phenomena being investigated, accuracy and algorithm requirements.

3.2 Time Propagation Methods

A key component in real-time schemes involves the time propagation of the wave function

or the density matrix. The correspondence between quantum Hamiltonians and unitary

time propagators (Stone’s theorem522) imposes strict requirements on time-propagation al-

gorithms. As a result, general purpose integrators like the Runge-Kutta method 523 are not

necessarily appropriate for evolving the TDSE as they can become unstable with increas-

ing system size, and stable propagation often necessitates the use of small time steps. On

the other hand, algorithms based on the Magnus expansion,15,259,524–527 which are unitary by

construction, and other symplectic integrators405,528–539 can be useful in this context. Beyond

this review, we refer the reader to the reviews of Kosloff540 and Castro and workers259,541 for

a more general overview of time propagation schemes.

The goal of any time-propagation method is to find a numerical solution of the time-

dependent Schrödinger or Dirac equation [Eq. (1)] or associated approximations. The Mag-

nus expansion achieves this via an exponential form of the propagator U(t, t0) that relates

wave functions or density matrices at different times as follows,

Ψ(t) = U(t, t0)Ψ(t0) (36)

U(t, t0) = exp (Ω(t, t0)) ; U(t0, t0) = I (37)

Given this propagator, Eq. (1) can be cast as,

∂

∂t
U(t, t0)Ψ(t0) = H̃(t)U(t, t0)Ψ(t0) (38)
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where H̃(t) ≡ −i
~ H(t). In the Magnus expansion, Ω(t, t0) is written as a power-series,

Ω(t, t0) =

t∫
t0

H̃1dt1 (39)

+
1

2

t∫
t0

dt1

t1∫
t0

dt2

[
H̃1, H̃2

]

+
1

6

t∫
t0

dt1

t1∫
t0

dt2

t2∫
t0

dt3

(
[H̃1, [H̃2, H̃3]] + [H̃3, [H̃2, H̃1]]

)
+ · · ·

where H̃k = H̃(tk). One can think of each order in this series as a correction accounting

for the proper time-ordering of the Hamiltonian. A higher order expansion allows for larger

time steps, but this benefit must be weighed against the subsequent requirement that more

Hamiltonian evaluations be carried out at every time step. One complication with the

Magnus propagation approach arises from requiring the knowledge of the Hamiltonian at a

future time, which, in the case of single-particle theories like RT-TDHF and RT-TDDFT,

is unknown.18 As a result, different predictor schemes have to be used, which also have to

conserve time-reversibility.

The simplest propagator based on the Magnus expansion just uses the first term in

Eq. (39),

Ω(t, t0) ≈
t∫

t0

H̃1dt1 (40)

Equation (40) can be numerically integrated with a forward-Euler-like time integrator but

more accurate approaches are based on second-order methods.

A popular second-order method approximates the first term in Eq. (39) by the midpoint

rule, leading to an O(∆t2) time integrator132,542

ψ(tk+1) = exp
(

∆tH̃(tk+1/2)
)
ψ(tk) (41)
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where ∆t is the time step and subscript k is the time index. Modifying the time index to

eliminate the need to evaluate the Hamiltonian at fractional time steps, by changing the time

step to 2∆t, leads to the modified midpoint unitary transformation (MMUT) method15,95,526

ψ(tk+1) = exp
(

2∆tH̃(tk)
)
ψ(tk−1) (42)

The MMUT method is a leapfrog-type unitary integrator that assumes H̃ is linear over the

time interval and that higher-order terms go to zero when this approximation is applied to

Eq. (39). Other integrators based on the Magnus expansion have also been developed. 259,527

These integrators are all symplectic and consequently practically energy conserving. The

Runge-Kutta class of methods, on the other hand, are non-symplectic and are thus subject

to energy drifts over the course of a long-time simulation. Real-time methods using Magnus

integrators require the evaluation of a matrix exponential, which is non-trivial and often the

most time consuming step. In matrix form, Equation (42) can be rewritten as

P′(tk+1) = U(tk) ·P′(tk−1) ·U†(tk) (43)

U(tk) = exp
[
−i2∆tH(tk)

]
(44)

The time-evolution matrix U(tk) can be constructed using various methods such as direct

diagonalization or power-series- or Lanczos-based approximations.

For small Hamiltonian matrices (i.e., those for which direct diagonalization at every time

step does not create a bottleneck), the time-evolution matrix can be constructed using the

eigenvectors C(tk) and eigenvalues ε(tk) of the matrix representation of the Hamiltonian at

time tk

C†(tk) ·H′(tk) ·C(tk) = ε(tk) (45)

U(tk) = C(tk) · exp
[
−i2∆tε(tk)

]
·C†(tk) (46)
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The Baker-Campbell-Hausdorff (BCH)543 and other polynomial expansions offer an at-

tractive alternative to matrix diagonalization as they only involve general matrix multiplica-

tion operations, which are more straight-forward to parallelize.18 Defining W = −i2∆tH(tk)

and writing Eq. (42) in matrix form,

P′(tk+1) = eWkP′(tk−1) (t) e−Wk , (47)

we can use the BCH expansion to evolve the density matrix as,

P′(tk+1) = P′(tk−1) +
1

1!
[Wk,P

′(tk−1)] +
1

2!
[Wk, [Wk,P

′(tk−1)]] +
1

3!
[Wk, [Wk, [Wk,P

′(tk−1)]]] + . . .

(48)

The BCH expansion has been shown to have superior convergence properties as compared

to a simple power series expansion.18

The Chebyshev expansion approach259,544–546 has also been explored as an alternative to

diagonalization in the construction of the time-evolution operator given by Eq. (44). 544,545,547–551

Since the Chebyshev expansion requires matrix eigenvalues within the spectral range of

[−1, 1], an approximate estimate of the upper and lower bounds of the eigenspectrum is used

to achieve this mapping of the Hamiltonian matrix.387,551

Propagation schemes for correlated wave functions (i.e., at the CI, CC, or ADC levels

of theory) are oftentimes based on simple procedures, such as the fourth-order Runge-Kutta

(RK4) integrator22,47,49,50 (or RK4 augmented by a variational splitting552 scheme404). How-

ever, the utility of more sophisticated integrators has also been explored in this context. For

example, for linear and Hermitian expansions of the wave function, the real and imaginary

parts of the wave function form a pair of conjugate variables that obey classical equations of

motion, a fact that has inspired the development of high-order explicit symplectic integrators

for general wave packet dynamics;536,538,539 explicit symplectic integrators of this form have

been applied to electron dynamics at the truncated CI level of theory.36 Pedersen and Kvaal
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have noted that the t- and λ amplitudes of CC theory form a pair of conjugate variables that

obey complex classical equations of motion and have developed an implicit symplectic inte-

grator tailored to that problem.405 In addition, many applications40,43–46 of time-dependent

ADC theory employ the short iterative Lanczos (SIL) scheme.553 In SIL, a tridiagonal sub-

space approximation to the Hamiltonian is constructed according to the Lanczos procedure,

and the system is evolved according to dynamical equations associated with this approxi-

mate Hamiltonian. This approximation is only valid for short time intervals, after which the

Lanczos procedure must be repeated to construct an updated approximation to the Hamilto-

nian. This SIL procedure has been extended to imaginary-time dynamics at the ADC level of

theory,432 where it has been demonstrated that imaginary time TD-ADC with SIL becomes

competitive, in terms of computational effort, with frequency-domain ADC calculations.

3.3 Signal Processing

Real-time methods can be very efficient for computing spectra in molecules and materials

with a high density of states as, in principle, an entire absorption spectrum can be computed

from a single real-time simulation (see Sec. 4.1). In a nutshell, this requires computing

the frequency-dependent response of the system via Fourier transforms (FT) of the dipole

moment following interaction with a laser pulse with sufficient bandwidth to cover a spectral

region of interest. In practice, a narrow-in-time pulse (or delta function) is typically used.

Real-time methods, however, suffer from two main drawbacks: first, the spectra generated

from the dipole moment do not contain any information about the molecular orbitals or

excited states involved in each transition, which is typically how spectra are interpreted.

Second, long simulation times are typically required to resolve the spectra via FTs, with

denser spectra requiring longer simulations.

Many approaches exist for interpreting spectra generated via real-time methods. The

simplest approach is to visualize each transition by exciting a particular mode with a narrow-

band quasi-monochromatic field and plotting the deviation of the charge density (or other
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observable) from the ground state.18,95 This process, however, involves a separate simulation

for each resonant peak, each of which requires a very long simulation times in order to

selectively excite a particular mode. This makes it unsuitable for spectra with multiple

nearby peaks. Alternatively, the FT of the deviation of the 3D time-dependent density from

the ground state can be used to characterize each peak,554 but this requires a FT at each

point in space and involves either 4D data (x, y, z, t→ x, y, z, ω) or reduction via integration

over particular directions. Another method to extract orbital-resolved information involves

projecting the wave function onto the ground-state molecular orbitals (MOs) in order to

deconvolute the dipole moment into a sum of transitions between MO pairs.69,555 In a density

matrix TDHF/TDDFT framework, this procedure requires the projection of the density

matrix and dipole operator onto the ground state MO basis:

PMO (t) = C†P (t) C (49)

DMO = C†DC, (50)

where C is the eigenvector matrix for the ground state Fock/Kohn-Sham matrix in the AO

basis. Using these quantities, the time-dependent MO dipole contributions can be defined

as

µia,d (t) = DMO
ia,d PMO

ai,d (t) + DMO
ai,d PMO

ia,d (t) , (51)

where d = x, y, z, and i, a are indices for the molecular orbitals, generally occupied and

virtual, respectively. The total dipole given by

µd (t) = µd,0 +
Nt∑
i=1

Nt∑
a=i+1

µia,d (t) , (52)

where Nt is the number of steps in the simulation. The static contribution to the dipole is

given by

µd,0 =
Nt∑
i=1

PMO
ii DMO

ii,d . (53)
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Note that here the matrices are assumed to be unitary (i.e., no complex absorbing potential)

and square (i.e., no linear dependencies in the overlap matrix). For the more general case

involving linear dependencies, see Ref. 555.

Since the FT is a linear operator, the total spectrum is simply the sum of the spectra for

each of these transition dipoles, i.e., in TDHF/TDDFT the spectrum is a sum of the con-

tributions from all combinations of occupied→virtual MO pairs. Accordingly, the spectrum

can be decomposed into orbital contributions, much like in linear response calculations (see

Fig. 9). Note that µia(ω), which are not physical observables, can contain negative peaks

Figure 9: L2,3 absorption edges for TiCl4 modeled with B3LYP and the aug-cc-pVTZ basis
set. The time evolving dipole was split into different spinor pairs and only contributions
from the 2p orbitals are included. Adapted with permission from Ref. 98. Copyright (2018)
American Chemical Society.

but the total dipole spectrum is guaranteed to be positive. The magnitudes of these features

can be used to construct numerical weights of each MO pair to the peak by integrating over

each peak (or via peak-fitting). These weights give a qualitative interpretation similar to

linear response coefficients, which makes RT methods an essentially complete replacement to

linear-response methods, albeit with more complicated and time-consuming data analysis.

There are two important caveats, however. First, only optically active excitations can be

measured, where as LR methods can capture selection or spin forbidden transitions. Sec-

ondly, this MO decomposition techniques are not valid for the case of strong-fields, where
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Stark shifting of the orbitals makes the projection onto the ground state in Eq. (51) invalid.

The main drawback of real-time approaches over frequency-domain (eigenspectrum-based)

methods is the long simulation times are often required to adequately converge a spectrum

via a Fourier transform, i.e., the Fourier “uncertainty principle”. This issue can be espe-

cially problematic for high energy spectra with high spectral densities, such as those relevant

to X-ray absorption. The simplest trick to improve spectral resolution is to preprocess the

signal by damping and padding with zeros:

µ̃(ω) =

∞∫
0

dt m(t)eiωt (54)

m(t) =


[µ(t)− 〈µ〉] e−t/τ , t ≤ tmax

0, t > tmax

(55)

where 〈µ〉 is either the dipole moment at t = 0 or the average, and τ is a damping parameter

that corresponds to a phenomenolgical lifetime (linewidth) in the spectrum. This lifetime

must be chosen to be small enough such that the discontinuity in Eq. (55) does not intro-

duce ringing artifacts in the spectrum, which in practice can blur nearby peaks in a dense

spectrum.

Fortunately, there are numerous alternatives to Fourier analysis that can be used to accel-

erate spectral convergence of time signals without resorting to broadending. Such harmonic

inversion methods556 include Prony’s method, filter diagonalization,557–559 Padé approxi-

mants,560–562 and linear predictors.563,564 These methods have applications in virtually all

types of time-domain simulations ranging from classical electrodynamics,561,562 to molecular

dynamics,564 to quantum dynamics.555,557,559,565 There are advantages and disadvantages to

each. As an example, filter diagonalization, fits the time signal to a sum of damped os-

cillations. This can rapidly converge spectra containing only a few dominant modes, but

may have convergence issues for highly dense spectra. Padé approximants (discussed be-

low) assume nothing about the line shape, but require a matrix inversion and can introduce
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artifacts into the spectrum if the time signal is too short. These techniques are especially

effective when used in conjunction with a dipole decomposition scheme, where each µia(ω)

is computed separately using an accelerated transform, and the total spectrum is computed

from the sum of these contributions. This strategy exploits the fact that each transition

dipole is spectrally sparser than the total, which facilitates convergence of the accelerated

transforms.

A good general purpose transform is the Padé approximant to the FT, which in a diagonal

form consists of writing the discrete FT as a ratio of power series expansions:

µ(z) =
M∑
k=0

ck(zk)
k =

M∑
k=0

akz
k

M∑
k=0

bkzk
, (56)

where M = Nt/2, and zk = e−iω∆t, and the coefficients {ck} = µ(tk) are the discrete values

of the input time signal. Thus, we have a linear system for the coefficients

M∑
k=0

ckz
k

M∑
m=0

bmz
m =

M∑
k=0

akz
k (57)

with a0 = c0 and b0 = 1 chosen by convention. The unknown coefficients {ak} and {bk} are

determined by solving the matrix equation:

Gb = d (58)

where G is a Nt ×Nt matrix with elements Gkm = cNt−m+k, d is a column vector of length

Nt with elements given by dk = −cNt+k, and b is a vector of length Nt. The elements of b

can be found via inversion of the G matrix, which has Toeplitz symmetry:

b = G−1d (59)
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The coefficients {ak} are then given by:

ak =
k∑

m=0

bmck−m, k = 1, . . . Nt (60)

Once these coefficients have been determined, the FT can be computed using Eq. (56). Crit-

ically, since these coefficients are independent of frequency, the spectrum can be generated

for an arbitrary spectral density. This is analogous to extrapolating the input signal to an

arbitrarily long time. Although this procedure requires the solution of a linear equation

[Eq. (57)] for each µia (t), the cost of this procedure is modest, and, in practice, one can

often compute a fully converged spectrum with 1/5 or less of a simulation time compared to

a traditional FT (see Fig. 10). This approach is especially well-suited to X-ray absorption,

since one needs only consider transitions from a limited set of occupied orbitals, much like

orbital windowed linear response.566
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Figure 10: Convergence of the valence absorption spectrum for water using a conventional
Fourier transform (FT; left) and Padé accelerated transition dipole scheme (PT; right) for
various simulation times. PT of the total dipole converges roughly 3 times faster than the
FT, and PT of the dipole contributions 7 times faster. Adapted with permission from Ref.
555. Copyright (2016) American Chemical Society.
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4 Application of Real-Time Time-dependent Electronic

Structure Methods

4.1 UV/Vis Spectroscopy

One of the biggest advantages of real-time electronic structure theory over solving for the

lowest energy eigenstates is the ability to simulate the linear (UV-Vis) absorption spectrum

of a system with a dense manifold of states. Using real-time electronic propagation, the

entire energy spectrum is obtained after Fourier transform of the dipole moment (Sec. 3.3),

providing the response of all electronic states that the system accesses via the applied per-

turbation. Real-time methods may be preferable over matrix eigenstate methods, and are

particularly advantageous for metallic systems and clusters, where collective oscillations of

the electrons are important for capturing plasmonic excitations.144,145,151,567 However, for

real-time propagation of the electron density with TDHF or TDDFT, the time-evolution of

the electron density may be more cost efficient than solving for hundreds of excited states

via a linear response matrix formulation that requires generating a matrix-vector product

for all occupied-virtual orbital combinations, see Fig. 11.85 The crossover point in computa-

tional cost will depend on the implementation, the requested number of states, the desired

resolution of the spectrum, and time-step for numerical propagation.

The UV-Vis linear absorption spectrum can be obtained from a real-time simulation

by Fourier transforming the field-free time-dependent dipole moment after perturbation by

a weak, off-resonant perturbation (often an electric field applied as a delta function). To

obtain oscillator strength values that are proportional to the linear response values, the

dipole strength function S(ω) should be used

S(ω) =
1

3
Tr[σ(ω)], (61)

where σ(ω) is the absorption cross section tensor with diagonal elements that can be com-
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Figure 11: Absorption spectrum of C72H38N20 (inset) calculated using the B3LYP functional
in combination with the 6-31G(d) basis set. The linear response TDDFT spectrum con-
tains 200 roots compared to the RT-TDDFT absorption spectrum from Fourier transform
of the dipole moment. Adapted with permission from Ref. 85. Copyright (2015) American
Chemical Society.

puted from the polarizability by

σii(ω) =
4πω

c
Im[αii(ω)], (62)

and

αii(ω) =
µi(ω)

Ei(ω)
. (63)

Here µi(ω) and Ei(ω) are the Fourier transforms of the dipole moment and electric field for

i = x, y, z, respectively.

Early applications of the real-time TDDFT method by Yabana and Bertsch computed

the optical spectra for the benzene molecule10 and for metallic lithium clusters.8 A few years

later, Ullrich and co-workers simulated the spectra and collision properties of sodium clus-

ters,230 with QM/MM UV-Vis spectral simulations of biological chromophores performed

by Rubio and co-workers following closely after these early studies.74,75 Real-time meth-

ods are now widely used for simulations of UV-Vis spectra for a variety of complex sys-

tems.15,18,34,69,70,76–80,82,84–88,568,569
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4.2 X-ray Absorption Spectroscopy

Recent advances in synchrotron technology have greatly improved the temporal and energy

resolution of X-ray photons, making X-ray absorption spectroscopy (XAS) an indispensable

experimental technique in materials and chemical sciences. Excitation of core electrons to

unoccupied bound orbitals or to the continuum allows XAS to probe element specific chemical

processes that provide insights into the local electronic and binding environment.570,571

XAS K-, L-, and M-edge spectra are generated from photoexcitations of electrons in

n = 1, n = 2, and n = 3 orbitals, respectively, where n is the principal quantum number.

Because core electrons move close to the speed of light, relativistic effects play an important

role in XAS. Scalar relativistic effects lead to contraction of core orbitals, which blue-shifts

the entire XAS spectrum relative to a spectrum calculated with a non-relativistic Hamil-

tonian.95,338,339,566,572–574 Spin-orbit coupling splits the degenerate 2p orbitals into 2p1/2 and

2p3/2 manifolds, giving rise to unique features in L-edge XAS spectra and a more complicated

spectra at the M-edge. Therefore, electronic structure methods that include relativistic ef-

fects are needed to accurately describe XAS spectra, especially at the L- and M-edges. A

uniform energy shift to spectra derived from non-relativistic calculations is often sufficient

for describing the K-edge.

Many ab initio methods have been developed to model core excitations, and the ma-

jority of these approaches operate within the frequency domain. K-edge spectra have been

obtained with linear response TDDFT (LR-TDDFT),95,338,566,574–577 algebraic-diagramatic

construction,578–580 linear-response density cumulant theory,581 coupled-cluster theory us-

ing both the complex polarization propagator582,583 and the EOM-CC formalisms,574 and

restricted active space (RAS) multiconfigurational methods.584,585 L-edge XAS spectra can

be computed using RAS with perturbative spin-orbit coupling586,587 and the more recently

developed relativistic two-component LR-TDDFT.340

In the time-domain, non-relativistic RT-TDDFT96 and time-dependent EOM-CC49 have

been applied to compute molecular K-edge XAS. Recently, time-dependent variational four-
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and two-component relativistic TDDFT methods were developed to model the XAS L-edge

spectra.97,98 Two-component variational relativistic real-time methods are an attractive al-

ternative to their four-component analogues due to the balance of the computational cost

and theoretical accuracy offered by the former. For example, in work by Kasper et al. the

L2,3 spectra of SiCl4, obtained using the real-time X2C method, were in excellent agreement

with experimentally obtained spectra (Fig. 12) and similar in quality to those calculated at

the four-component level.98

Figure 12: Two-component relativistic RT-TDDFT modeled L2,3 absorption edges for SiCl4,
compared to experimental spectrum.588 Adapted with permission from Ref. 98. Copyright
(2018) American Chemical Society.

Finally, simulations of X-ray absorption can be challenging for systems with a high density

of states, as finite basis set effects can introduce unphysical “intruder peaks” into XAS

spectra. These features arise from transitions from valence orbitals to very high lying virtual

orbitals, which should have zero lifetime since they reside within the continuum. Such peaks

are unlikely to occur for smaller molecules, but are unavoidable for larger systems. This

issue is avoided if using a large simulation box with a grid or planewave basis, provided an

appropriate boundary condition is used (e.g., complex absorbing potential). For more details

regarding open TDDFT systems, see review by Rubio and coworkers.589 For atom-centered

basis set methods, however, it is usually more efficient to instead give the virtual states a
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phenomenological lifetime109 to filter the intruder peaks from the spectrum. This technique

has been successfully applied to resolve the K-edge XAS spectrum of α-quartz (Fig. 13).96

Figure 13: Computed real-time TDDFT K-edge XAS of α-quartz with (orange) and without
(green) a complex absorbing potential, along with corresponding linear response TDDFT
(purple) and experimental data. Adapted with permission from Ref. 96. Copyright (2015)
American Chemical Society.

4.3 Excited State Absorption and Emission

There are numerous methods for probing excited state dynamics, such as transient absorption

spectroscopy where modulations in the absorption as a function of time delay between a pump

and a probe laser pulse encode the dynamics in the system.590 Although conceptually simple,

one of the main challenges with time-resolved experiments is the ability to characterize

overlapping transient spectral features within an energy range. This problem grows with

increases in system size and complexity of the electronic structure. From the standpoint

of theory, the ability to simulate the excited-state dynamics and extract the corresponding
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excited-state absorption (ESA) spectrum is of great value, allowing one to interpret and

predict experiments. The success of such a procedure obviously hinges on the accuracy of

the theoretical approach.

Currently, the primary approach to compute ESA is via response theory.591,592 Within

linear response (LR) theory, the poles of the response function yield the excitation energies of

the system, and transition moments between excited states can be obtained from the second-

order residues of the quadratic response function. Together, these quantities can be used to

evaluate the ESA of a molecular system. The first-order residues of the quadratic response

function can also be used to obtain the two-photon absorption. In spite of these advantages,

quadratic response theory is a numerically prohibitive approach for the computation of ESA

in large molecular systems with high densities of states as the excited states have to be treated

individually, which can become computationally infeasible when seeking the full spectrum

of the system. An alternative approach is to reformulate the problem by calculating the

linear response from an excited state reference. Formally, this approach is equivalent to the

quadratic response with respect to the ground state. However, this relationship only holds

within an exact treatment (namely, full CI591) and not for approximate theories.

RT-TDDFT has been shown to be an efficient and appealing method for computing

spectra of systems with high densities of states.83,85 It has also been intuitively used in the

context of pump-probe experiments by De Giovannini and co-workers,82 where an electric

field is first applied to pump the system to a target excited state and a second electric

field is used to probe the response of that excited state. The outstanding question with

this approach, however, is whether the probe pulse is actually interacting with the intended

target excited state, since resonant excitations are problematic and challenging to achieve

with RT-TDDFT.82,84,246,261–263,267,593,594

Fischer and co-workers86 have proposed an alternate approach that circumvents the RT-

TDDFT-specific challenges associated with resonant excitations but that still relies upon RT-

TDDFT to probe the response of the target excited state. One first performs a LR-TDDFT
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gradient595,596 calculation to compute the density matrix of the excited state of interest. This

serves as the initial superposition state for a subsequent RT-TDDFT calculation, which then

effectively yields the response of the excited state of interest. In order to preserve the exact

structure of this approach, an exact exchange-correlation kernel, which is a functional of the

initial state and complete history of the density, would be needed.597 However, in practice,

approximate exchange-correlation functionals within the adiabatic approximation have to be

used. Maitra and co-workers have formally analyzed the errors in the propagation of initial

states that derive from these two key approximations.297

Despite the use of exchange-correlation approximations that are, in general, designed

for the ground state, this strategy of seeding RT-TDDFT simulations with LR-TDDFT

densities has been shown to reproduce the ESA features in a number of molecular sys-

tems, including zinc phthalocyanine87 and tetrapyridyl porphyrins.299 Li and co-workers

have also combined RT-TDDFT with Ehrenfest dynamics simulations in order to inves-

tigate excited-state lifetimes.134,135 Parkhill and co-workers93 also developed a combined

RT-TDDFT/nonadiabatic-relaxation model20 to simulate the transient absorption spectra

of pyrazole and a GFP-chromphore derivative. Lopata and co-workers alternatively used a

constrained DFT initial state to compute transient X-ray absorption for pumped molecules,

which showed a decreased in absorption and a blue shift in the frequency with increasing

electron density around the absorbing atom.598 Recently, Ghosh and co-workers599 have also

reported simulations of ESA with the semiempirical RT-INDO/S approach (see Sec. 2.2)

that compares well with RT-TDDFT.

4.4 Charge Transfer, Plasmon Excitations, and Exciton Dynamics

Charge transfer, which we here consider as a process wherein electrons transfer between states

or between regions of space, has central importance in biochemistry, in photosynthesis, in

the generation and storage of electricity, as well as in electro-optic activity (i.e., photovoltaic

cells, fuel cells, organic chromophores for use in optical fibers and light-emission diodes etc.).

57



Real-time electronic structure methods can explicitly model time-resolved, nonperturbative

charge-transfer and exciton dynamics in donor-acceptor or dye molecules applicable to the de-

velopment of solar cells,18,81,136,142,148,390,391,600,601 molecular conductance,121 energy transfer

between chromophores,568 and plasmon behavior in noble metal nanowires and nanoparti-

cles.144,145,388 Here we first focus on simulations of charge transfer with fixed nuclei, then

highlight some applications where the nuclear motion is key to driving the charge-transfer

dynamics.

Within the RT-TDDFT method, inaccuracies in charge transfer can be traced both to

the approximate exchange-correlation functional and the adiabatic approximation. Errors

due to the approximate exchange-correlation functional affect excitation energies and charge

transfer rates. Local and semi-local density functionals yield a very poor description of

charge-transfer excitations, but improved excitation energies are often predicted with long-

range correction to the exchange functional.325,602,603 However, errors in charge transfer due

to the adiabatic approximation are much more challenging to remedy. When a resonant field

is applied to the ground state to induce charge transfer to the resonant excited state for

a model double-well potential for two electrons, RT-TDDFT within the adiabatic approxi-

mation qualitatively fails,140 see Fig. 14. However, another study suggests that the charge

transfer from an excited state to the ground state might be more accurately captured by

the adiabatic approximation.265 For a detailed explanation of the impact of the adiabatic

approximation on the charge-transfer dynamics of model systems, see work by Maitra as

discussed in references 140, 265, and 252.

Despite the poor behavior of RT-TDDFT within the adiabatic approximation simulating

the charge transfer of model systems, it is widely used for simulating the charge transfer of

more complex systems such as organic materials and metal nanoparticles. In 2011, Chap-

man et. al. simulated RT-TDDFT ultrafast charge-transfer dynamics in a photoexcited

fullerene complex.136 A charge-transfer event was observed following the photoexcitation

of C60:DMA (DMA=N,N-diethylamine) where the initial electron-hole pair is localized in
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Figure 14: Absolute values of dipole moments for the charge transfer from the ground
state between closed-shell fragments for exact propagation (solid black line), RT-TDDFT
with adiabatic exact exchange (dashed red line), and RT-TDDFT with the self-interaction-
corrected adiabatic local density approximation (dotted blue line). The calculations were
performed in the presence of a resonant field for a model double well potential with two
electrons in one dimension. Adapted with permission from Ref. 140. Copyright (2013)
American Chemical Society.

fullerene (Fig. 15). This charge transfer can potentially give rise to a long-lived photogener-

ated electron-hole pair. A subsequent study, using RT-TDDFT with a time-dependent po-

larizable model,138 has shown that solvated ligand-to-fullerene charge transfer is enhanced

relative to vacuum due to solvent reorganization of excited electronic states and solvent-

solute coupling.139 A follow up real-time time-dependent DFTB study was performed by

Oviedo and Wong on the same system using explicit toluene and water solvent molecules

but different system conditions.148

Using real-time time-dependent DFTB, Sanchez and co-workers have studied the nonequi-

librium charge injection mechanism from both catchetol and cresol dye molecules to a TiO2

nanoparticle (Fig. 16).390,391 The simulations of a Type II photo-injection mechanism showed

direct promotion of an electron from the dye to the first unoccupied level of the conduction

band of the nanoparticle during the application of the resonant field. The evolution of

the molecular orbital populations showed an exchange from the highest occupied molecular

orbital of the dye to a manifold of high-energy orbitals from the conduction band of the
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Figure 15: Time evolution of photogenerated electron (dotted line) and hole (dashed line) lo-
calized on C60, and an electron localized on the DMA ligand (solid line) following a fullerene-
localized excitation. Adapted with permission from Ref. 136. Copyright (2011) American
Chemical Society.

nanoparticle.

RT-TDDFT electronic dynamics has also been applied to study excitonic and plasmonic

dynamics in metal nanowires and metal nanoparticles. Ding et. al. illustrated the electronic

dynamic characteristics of a molecular plasmon in silver nanowires from the perspective of

a coherent multi-electron oscillation.144 This work was later extended to the investigation of

the exciton transfer rate and diffusion length driven by the pure dephasing mechanism in a

silver nanowire array (Fig. 17).145 The team of Ilawe, Oviedo, and Wong demonstrated that

highly long-range electronic couplings in a multiparticle plasmonic nanoantenna system were

responsible for electronic excitation transfer(Fig. 18),388 finding that the common nearest-

neighbor Förster resonance energy transfer model is inadequate for accurately characterizing

electronic excitation transfer. Real-time TDCI calculations have also been used to model

rapid dephasing of plasmon-like excitations in model systems36 that could be interpreted as

electron thermalization.604

Using RT-TDDFT with Ehrenfest dynamics, Meng and Kaxiras investigated electron and

hole dynamics upon photo-excitation in dye-sensitized solar cells made from three model
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Figure 16: Changes in Mulliken charges with respect to their ground state values as a function
of time for a dye chromophore and TiO2 nanoparticle together with the plots of the spatial
distribution of electrons involved in the optical excitation during the application of resonant
electric field. Adapted with permission from Ref. 391. Copyright (2012) American Chemical
Society.)

dyes interfaced with a TiO2 semiconductor surface.600 The amount of charge transfer was

determined by the integral of excited electron (hole) density projected onto the TiO2 orbitals.

They found that after excitation, the electron gradually delocalizes and is injected into

the semiconductor TiO2 region, on a time scale of 125-175 fs, whereas the hole does not

penetrate through the interface region. The hole injection time is much longer than the

time for electron injection, and hole injection only starts after the excited electron has been

completely injected into the TiO2(Fig. 19).600 Ehrenfest dynamics on the RT-TDDFT surface

has been used to simulate the charge transfer in a light-harvesting molecular triad with good

comparison with experimental time scales,141 as well as charge delocalization and transfer in

an organic polymer-fullerene photovoltaic system,143 with both studies showing that vibronic

motion is key to driving the charge transfer dynamics. When exciton-phonon coupling is

considered in RT-TDDFT Ehrenfest dynamics, molecular vibrations have been shown to

induce molecular plasmon decay and transfer.149,567 Petrone and co-workers have applied
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Figure 17: Time evolving dipole moments (Cartesian components) in the first (left) and
second (right) silver nanowire at an interchain separation distance of 10.0 Å. Adapted with
permission from Ref. 145. Copyright (2015) American Chemical Society.

RT-TDDFT to study the dynamics of photoexcited charge carriers in ladder-type donor-

acceptor block copolymers.142 Shortly after the formation of the exciton, the electron and hole

densities dissociate to yield a pseudo charge-separated state. Based on the observed orbital

pathways involved in the short-time dynamics, p and n type conductivity have been identified

in different block copolymers. When the charge carrier dynamics is coupled to molecular

vibrations, the dynamical evolution of the polaron pair can be observed. Donati and co-

workers have applied RT-TDDFT Ehrenfest dynamics and wavelet analysis to investigate

the formation of polaron pairs in a thiophene oligomer.605 The formation of a polaron pair is

modulated by the out-of-plane motion of the polymer backbone dynamics with an observed

lifetimes of ∼10 fs.

4.5 Nonlinear Properties and Multi-Dimensional Spectroscopy

One of the great advantages of real-time approaches is their ability to model the nonlinear

response of a system to electromagnetic radiation. These techniques allow one to consider

pulse shapes and field strengths representative of those applied in experimental settings.

Simulations thus go beyond the perturbative regime, capturing all orders of response si-

multaneously. As a result, real-time time-dependent approaches have emerged as the a key
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Figure 18: Time-dependent dipole moments induced in the four nanoparticles of a plasmonic
nanoantenna system upon optical excitation of nanoparticle 1 (NP1) with a sinusoidal electric
field perturbation. The induced dipole moments in the nanoparticles are indicative of the
electronic excitation transfer in the multiparticle plasmonic nanosystem. Adapted with
permission from Ref. 388. Copyright (2017) American Chemical Society.

method for describing highly nonlinear processes and properties.

High harmonic generation (HHG), arising from the interaction between molecular (hy-

per)polarizabilities and an external field, occurs at integer multiple frequencies of the driv-

ing frequency of the laser that illuminates the medium.606,607 As such, HHG can supply

high-energy attosecond pulses for ultrafast spectroscopy experiments.606–609 From the com-

putational point of view, the HHG power spectrum can, in principle, be extracted from the

time-evolution of the dipole moment,610 after the system is perturbed by a monochromatic

external field. One challenge in extracting such nonlinear response properties from real-time

electronic structure simulations is that all orders of response are combined in one time sig-
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Figure 19: Comparison of electron and hole dynamics of three model dyes of increasing
size, in intact and dissociated forms, representing the injection probability from the dye to
the TiO2 nanocrystal surface. Adapted with permission from Ref. 600. Copyright (2010)
American Chemical Society.

nal, which is apparent from the expansion of the dipole moment interacting with an external

monochromatic field, E(t) = A cos(ωt),

µi(t) = µ0
i +

∑
j

µ
(1)
ij (t)Aj +

∑
jk

µ
(2)
ijk(t)AjAk +

∑
jkl

µ
(3)
ijkl(t)AjAkAl + · · · (64)

µ
(1)
ij (t) = αij(−ω;ω) cos(ωt) (65)

µ
(2)
ijk(t) =

1

4

[
βijk(−2ω;ω, ω) cos(2ωt) + βijk(0;ω,−ω)

]
(66)

µ
(3)
ijkl(t) =

1

24

[
γijkl(−3ω;ω, ω, ω) cos(3ωt) + 3γ̄ijkl(−ω;ω, ω,−ω) cos(ωt)

]
(67)

Here, ω and A are the frequency and the amplitude vector of the field, respectively, and

α(−ω;ω), β(−2ω;ω, ω), and γ(−3ω;ω, ω, ω) are the frequency-dependent (hyper)polarizabilities,
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which give rise to the linear response and second- and third-harmonic generations. β(0;ω,−ω)

and γ(−ω;ω, ω,−ω) also appear in the dipole expansion; these terms are related to op-

tical rectification and degenerate four-wave mixing, respectively. Equation (64) suggests

that one can use some signal processing techniques to extract frequency-dependent (hy-

per)polarizabilities from the time-evolving dipole moment.

When the field strength is small, one can obtain linear and nonlinear molecular response

properties by ignoring the higher order contributions. Chen et al.611 used the filter diago-

nalization approach to extract the first hyperpolarizability tensor. Rehr et al.14 obtained

second-order response properties by applying the finite-field method in conjunction with a

quasimonochromatic approximation to RT-TDDFT, driven by a Gaussian-enveloped exter-

nal field. Bandrauk et al. resolved the high-order harmonic spectra of atomic hydrogen by

numerical solving the time-dependent Schrödinger equation, with a Hamiltonian augmented

by a linearly polarized laser pulse.612 TD-CI has also been applied to compute the (non)linear

properties of small molecules, and it has been shown that TD-CI based techniques outper-

form RT-TDDFT in the prediction of HHG spectra if higher order excitation operators are

included in the TD-CI expansion.29,30,37,38,392,393

The most general approach for computing frequency-dependent polarizabilities and hy-

perpolarizabilities via real-time simulations was developed by Ding et al.99 Individual orders

are separated into independent expressions which are free from higher order contributions

up to the fourth order. Using time-evolving dipole moments from just a few short simula-

tions, one can determine polarizabilities, and first and second hyperpolarizabilities in good

agreement with those calculated using response theory. For example, Fig. 20 shows the time-

evolutions of the linear and nonlinear properties of the paramagnetic BeH molecule computed

using TD-CI. The first- and second-order dipole responses show excellent agreement between

the real-time signals and analytical expressions, and there are noticeable deviations, arising

from the absence of higher-order corrections, of the real-time simulations from the truncated

analytical expression for the third-order dipole response.
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with the TD-CIS/6-31+G(d) level of theory. The fit curves and their R2 values overlay the
simulation data. Adapted with permission from Ref. 38. Copyright (2018) Elsevier.

The accuracy of calculated (hyper)polarizability tensors is sensitive to the approximate

field-matter interaction and the quality of basis set.393,613 The field-matter interaction is

usually treated within the electric-dipole approximation in the length gauge form. Some

have suggested the use of alternative gauges (i.e, the velocity or acceleration gauge) to

improve the description of the power spectrum in finite basis sets.614–616 Simple cos2 or sin2

pulse envelopes are often used to ‘dress’ the perturbing field,37,393 but even the field envelope

can be tailored to enhance or damp specific harmonics.617 Additional diffuse functions have

been shown to improve the quality of (hyper)polarizabilities extracted from the time-domain

approach.99 For TD-CI, recent work by Lestrange, et. al. suggests that accurate nonlinear

properties may require CI expansions that span most of the full CI configuration space.

Specifically, as much as 2/3 of the full CI space is needed to obtain nonlinear properties

accurate to within 5% of the exact (full CI) values.38

Work by Konecny et. al.100 has shown that nonlinear properties can be significantly

affected by relativistic effects. In calculations on a W(CO)5py complex, it was found that

the dominant component of the second harmonic generation tensor was shifted by about

35% compared to that obtained from a non-relativistic method. Importantly, this work also
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demonstrated that these higher-order properties can still be captured using approximate

relativistic methods such X2C, with almost no loss of accuracy compared to fully relativistic

4-component Dirac calculations.

Multidimensional nonlinear spectroscopy618–621 has become an indispensable tool for

probing molecular structure, structural/electronic dynamics, energy transfer, and chemical

reactions and the nature of excited state correlations. Useful information on the couplings

between molecular degrees of freedom (spin, vibrational, or electronic) can be obtained by

disentangling a congested one-dimensional spectrum into n-dimensions by scanning the in-

terpulse delays. Spreading the linear absorption spectrum in multidimensions allows one

to monitor and unravel the dynamics of, e. g., intermolecular energy transfer processes

in molecular aggregates. Intense ultrashort pulses are needed to monitor subfemtosecond

electronic processes. These signals are commonly simulated by the sum-over-states (SOS)

technique, in which the signal is calculated from electronic eigenstates and the coupling to

electric fields, which is treated perturbatively under the dipole approximation. Nonlinear

signals are calculated from corresponding transition dipoles, transition energies, and dephas-

ing rates. An alternative approach for computing multidimensional signals is to simulate the

electronic dynamics by propagating the one-electron reduced density matrix, driven by mul-

tiple electric fields. In this way, one avoids having to explicitly calculate many electronic

eigenstates. Nonlinear effects induced by intense external fields are automatically accounted

for because the incoming fields are treated in a non-perturbative way. These effects can,

in principle, be calculated with the wide range of real-time electronic structure methods

discussed in this review.

In a novel application of real-time electronic structure methods, Mukamel and co-workers

have recently used RT-TDDFT to implement a phase cycling622 scheme to extract desired

nonlinear signals from a finite set of RT-TDDFT simulations for multiple incoming fields

with variable phases. The scheme was implemented for four-wave mixing signals. RT-

TDDFT simulations were performed to compute XUV and X-ray nonlinear signals for the
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CO molecule and were found to be in qualitative agreement with CASSCF sum-over-states

(SOS) calculations.

In other recent nonlinear studies that have demonstrated the robustness of RT-TDDFT,

Bruner and co-workers298 reported a study of charge migration dynamics following nitro-

gen 1s ionization of nitrosobenzene comparable to that of post-Hartree-Fock wave function

based methods, Cho and co-workers623 simulated the electronic dynamics after a valence

or core ionization in the glycine-phenylalanine dipeptide and calculated the resulting time-

resolved X-ray diffraction signals, Bruner and co-workers624 computed the resonant X-ray

sum-frequency generation (SFG) signals of the oxygen and fluorine K-edges in acetyl fluo-

ride and, more recently, Nascimento and co-workers have explored how subtle changes can

be probed in nearly indistinguishable intramolecular chemical environments.625

In a nutshell, real-time propagation of the reduced single-particle density matrix, driven

by external fields, allows for the simulation of multidimensional nonlinear signals in a non-

perturbative manner, beyond perturbative response-based SOS methods. In addition, com-

plex ultrafast nonlinear dynamics can also be simulated sufficiently accurately.

4.6 Spin and Magnetization Dynamics

Model Hamiltonians parametrized by experimental or empirical data have historically been

the method of choice for modeling spin dynamics. These methods have succeeded in describ-

ing fundamental spin physics, but they are incapable of simulating the time-evolution of

the spin-dependent wave function or density matrix. A fully time-dependent first-principles

electronic structure description is needed to simulate spin dynamics driven by strong spin

non-collinearity, spin-orbit coupling, or by interactions with intense external electromagnetic

fields. In 2014, Ding et. al. reported the first fully ab initio real-time treatment of spin dy-

namics driven by an external magnetic field using a non-collinear two-component method.68
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The one-electron Pauli Hamiltonian including magnetic field effects can be expressed as

hPauli = ĥ0(r) +
1

2
(σ − ir×∇) ·B +

1

8
(B× r)2, (68)

where ĥ0(r) is the one-electron Hamiltonian in the absence of the external field. The sec-

ond term accounts for spin and orbital Zeeman interactions, and the third term, which is

quadratic in the strength of magnetic field, is the diamagnetic contribution. Figure 21 shows

that, with this treatment, the magnetization of each spin precesses about the magnetic field

at each lattice point.

Although the orbital Zeeman and the diamagnetic terms are relatively small and do not

directly affect the spin dynamics, they play an important role in diamagnetism, especially

in the presence of a strong magnetic field.68,626–630 In the initial work by Ding, only the

spin Zeeman term was considered in the spin-blocked core Hamiltonian in a real-time non-

relativistic two-component framework,

h′ =

h′αα h′αβ

h′βα h′ββ

 =

 h′0 + 1
2
BzS

1
2
(Bx − iBy)S

1
2
(Bx + iBy)S h′0 − 1

2
BzS

 (69)

The orbital Zeeman and the diamagnetic contribution were later included by Sun et. al. in

the two-component Hartree-Fock approach using the Pauli matrix representation. 631

The non-relativistic spin-field coupling developed in Refs. 68 and 631 relaxes the stan-

dard spin constraints, allowing electrons to respond to external magnetic fields. However,

the extension of real-time methods to the relativistic Dirac equation is critical for accurate

treatment of spin and magnetization dynamics of transition metal and heavy element com-

plexes. Spin-spin and spin-orbit couplings, which can connect different spin states, cause

spin-forbidden processes to become weakly allowed, leading to features in electronic absorp-

tion spectra that are absent in non-relativistic treatments. For example, the ns2 to ns1np1

transitions of group 12 atoms have been studied using relativistic RT-TDDFT at both the
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Figure 21: (a) the initial spin magnetization of an equilateral triangle formed by three Li
atoms, Li3, with an Li–Li bond length of 2.10 Å and (b) the time evolution of the spin
magnetization in a uniform magnetic field that is applied perpendicular to the plane of
the trimer (Bz = 8.5 × 10−5 a.u. [∼20 Tesla]). The time-evolution is represented as the
progression of coloration in units of picoseconds, and the magnetization vector is represented
in units of Bohr magneton. Adapted with permission from Ref. 68. Copyright (2014)
American Institute of Physics.

four-component and two-component levels of theory.70,100 The 3P1 state is weakly allowed

by the presence of the spin-orbit coupling operator and a nonzero transition moment is ob-

served. This effect becomes more important moving down the periodic table from Zn to Cd

to Hg, as the magnitude of the relativistic corrections grows more prominent.

4.7 Electronic Circular Dichroism and Magnetic Circular Dichro-

ism

Electronic circular dichroism (ECD) models the differential absorption of left- and right-

handed circularly polarized light, proving a useful tool for determining the absolute configu-

ration of chiral enantiomers.632 RT-TDDFT has been developed for computing ECD spectra

of molecules using grid-based89,90 and atomic-orbital-based92 simulation protocols. The ECD

signal is determined by the isotropic rotatory strength for the transition between states |ψn〉
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and |ψj〉, which is given by632

Rjn ≡ Tr [Im (〈ψn|µ|ψj〉〈ψj|m|ψn〉)] . (70)

where µ = r and m = −i
2c

(r ×∇) are the electric dipole and magnetic dipole operators,

respectively (in the length gauge), and c is the speed of light.

The most common methods for computing the ECD spectrum are based on the response

formalism,633–642 or the complex polarization propagator technique.643,644 In the time do-

main, if an electric dipole field is applied as a perturbation, the time-dependent magnetic

dipole obtained from the electronic dynamics is required for simulating ECD. The Fourier

transform of the time-dependent magnetic dipole gives the rotatory strength (Eq. (70)) 89,92

as

R(ω) =
∑
j 6=n

δ(ω − ωjn)Rjn = Tr

[
1

π
Re
mα (ω)

κβ

]
, (71)

where κ is the magnitude of the electric field, and the labels α and β denote Cartesian

coordinates. LR and RT-TDDFT methods have been shown to give essentially the same

results in the weak field limit (e.g., Fig. 22), though RT-TDDFT is able to compute the

whole ECD band spectrum with only three simulations of the electron dynamics.

The moment-based TD-EOM-CC approach22,49 described in Sec. 2.4 is applicable to any

type of linear electronic spectroscopy, including ECD.52 In this formalism, the ECD spec-

trum can be extracted from the Fourier transform of the electric-dipole–magnetic-dipole and

magnetic-dipole–electric-dipole correlation functions (for specific expressions, the reader is

referred to Ref. 52). One important distinction between the evaluation of linear absorption

and ECD spectra at the TD-EOM-CC level of theory is that, in the latter case, the compu-

tational effort is doubled, as both the electric-dipole–magnetic-dipole and magnetic-dipole–

electric-dipole correlation functions must be evaluated. This complication arises because the

similarity-transformation of the Hamiltonian and other operators destroys their hermiticity.

For spectroscopies like ECD that are defined by multiple operators (i.e., the electric and
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Figure 22: ECD spectra of 2,3-(S,S )-dimethyloxirane (DMO) computed at the PBEPBE/6-
311+G** level of theory. Adapted with permission from Ref. 92. Copyright (2016) American
Institute of Physics.

magnetic dipole operators), it is common645 to restore symmetry properties of the transition

amplitudes through an average. In this way, the rotatory strengths defined by Eq. (70) would

become

Rjn ≡
1

2

(
Tr [Im (〈ψn|µ|ψj〉〈ψj|m|ψn〉)] + Tr [Im (〈ψn|m|ψj〉〈ψj|µ|ψn〉)]

)
. (72)

As in the case of linear absorption spectra, ECD spectra generated via TD-EOM-CC are

numerically indistinguishable from those generated by conventional EOM-CC approaches,

in the limit that all roots are computed in the conventional calculation. Further, because

real-time simulations yield broadband spectra, one can easily quantify the degree to which

TD-EOM-CC violates the Condon sum rule,646 which states that the sum of all rotatory

strengths from a given initial state should equal zero. In other words, the integrated area

under a TD-EOM-CC-derived ECD spectrum should vanish. The analysis presented in Ref.

52 suggests that deviations from this rule are gauge dependent and are significantly more

severe in the velocity-gauge than in the length-gauge.

In magnetic circular dichroism (MCD) experiments, an external static magnetic field is

applied in addition to the circularly polarized probing light. The magnetic field breaks the
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spin and orbital degeneracies through the couplings of spin and orbital angular momenta to

the field. As a result, the optical selection rules are modified, giving rise to additional spec-

troscopic features that are otherwise inaccessible at zero field.647 Although the simulation of

an ECD spectrum only needs to treat electric field perturbations, both static magnetic and

probing electric fields are necessary for simulating MCD. Various perturbative approaches to

simulate magnetic field effects have been used with electronic structure methods for comput-

ing MCD spectra,648–664 however they are not applicable to the real-time formalism, which

requires a variational treatment of all external perturbations. This is particularly challeng-

ing for time-dependent electronic structure simulations using atomic orbitals; in the presence

of electromagnetic fields, physical observables depend on the origin of the electromagnetic

field.615,665–671

The MCD strength of excited state |ψj〉 can be defined as

Rj = − 1

3µB|B|
∑
αβγ

εαβγIm[〈ψ0 |µα|ψj〉γ 〈ψj |µβ|ψ0〉γ], (73)

where B is the external magnetic field, µB is Bohr magneton, and εαβγ is Levi-Civita symbol

(εxyz = εyzx = εzxy = 1, εyxz = εxzy = εzyx = −1, otherwise 0). The superscript γ explicitly

denotes the direction of the applied magnetic field. The MCD strength function Eq. (73) re-

quires the computation of the imaginary component of the quantity 〈ψ0 |µα|ψj〉γ 〈ψj |µβ|ψ0〉γ

from time-dependent electronic structure methods. However, this quantity cannot be eas-

ily extracted from Fourier transformation of time-dependent observables. Bertsch et. al 91

expanded Eq. (73) in the power of electric field perturbation and obtained the following

working expression for computing MCD spectra using real-time methods

Rj =
1

6π|B|
∑
αβγ

εαβγRe

(
µγα
κβ
−
µγβ
κα

)
. (74)

Li and coworkers later derived the same expression based on a close connection between

the real-time signal and the response function formalism, which leads to a more generalized
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approach to compute any type of spectrum.94

Bertsch and coworkers included the orbital Zeeman term in the electronic Hamiltonian

using a real-space local density approximation (LDA) to simulate effective A and B terms

of MCD spectra.91 More recently, Li and coworkers developed a RT-TDDFT approach to

MCD that was generalized to hybrid GGA and included a variational treatment of the

static magnetic perturbation.94 That work demonstrated that, when simulating MCD, the

most satisfactory solution to the gauge-origin problem arising from the use of an incomplete

Gaussian-type basis615,665–671 is to variationally include the effects of a uniform magnetic

field with London orbitals.631,640,664,672–678

4.8 Electron Dynamics in Strong Fields

Interactions of molecules with intense laser pulses can result in a number of non-perturbative

electronic phenomena involving ionization of electron(s).679 These can be loosely categorized

by the Keldysh adiabaticity parameter γ = ω
√

2Ei

F
, where Ei is the ionization potential of

the molecule, and ω and F are the field frequencies and amplitudes, respectively. In the

limit of high photon energy and low intensity (Keldysh γ � 1), multi-photon ionization

dominates where multiple photons are absorbed. High intensity and low frequency fields

(γ � 1) result in tunnel, barrier-suppression, and above-threshold ionization where the

electron escape through or above the Coulomb potential confining the electron to the par-

ent molecule. Molecular strong-field ionization can depend strongly on the geometry of

the molecule (e.g., charge resonance enhance ionization), as well as the light polarization

with respect to the molecule. Since strong laser pulses produce electric fields comparable to

those experienced by valence electrons in a molecule, simulating these phenomena requires

a description of time-dependent electronic structure beyond the perturbation limit. In the

strong-field regime, real-time techniques are particularly advantageous as they can explicitly

simulate the non-perturbative electronic response to strong electric fields, such charge redis-

tribution, multiphoton absorption, high-harmonic generation, strong-field ionization, photo-
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electron spectroscopy, and shape and Feshbach resonances.34,76,101,109,112,113,384,612,680–683

Simulations of strong-field dynamics can be challenging for real-time methods, as these

require a description of the wave function or density far from the molecule. Typically this is

achieved with grid-based methods using a combination of a large simulation box along with

some way of reducing spurious reflections from the edges of the box. These include: com-

plex absorbing potentials (CAPs) to remove outgoing electron flux,41,120,589,684–686 exterior

complex scaling,687–689 or masks that link an inner region (e.g., TDDFT) to an outer region

solved using known basis states (e.g., free electron in field).690,691 Although less commonly

done, strong-field ionization can also be described using atomic-centered basis sets, which

have the advantage of allowing wave function methods and hybrid TDDFT, but require

either additional bases for the continuum (e.g., B-splines692,693) or careful choice of CAPs.

Since it is most relevant to real-time electronic structure methods discussed in this review,

we now focus on the case of atom-centered basis sets with CAPs.

A typical CAP consists of an imaginary, position-dependent potential, which is added to

the time-dependent Hamiltonian:

Ĥ (r, t) = Ĥ0 (r, t)− iΓ (r) , (75)

Here, Ĥ0 (r, t) is the Hamiltonian without the CAP and Γ (t) is a spatial potential that is

zero around the molecule and smoothly increases at the boundary of the simulation. For

the purposes of strong-field ionization (SFI), the results should not depend on the specific

functional form of the CAP, nor its magnitude or location from the molecule, provided

reflections are minimized. In most cases, smoothly increasing functions (e.g., sigmoidal)

are used.112,589,682,685 Formally, this Hamiltonian is non-Hermitian which requires propagat-

ing the left 〈ψL(t)| and right |ψR(t)〉 eigenvectors independently, with C-products used to

compute the expectation values: 〈A(t)〉 =
〈
ψL(t)

∣∣∣Â∣∣∣ψR(t)
〉

.694 Generally, however, the

standard equations of motion (Eq. (43)) and expectation values can be used, as well as the
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(Hermitian) ground state computed via an SCF without the CAP. This approximation is

valid when the CAP has negligible effect on the bound states.

Construction of a CAP in a grid or planewave basis is straightforward, as Γ (r) is simply

a local one-body potential. When using atom-centered basis sets, however, this requires

projection onto the atomic orbitals,

Γµν = 〈µ|Γ(r)|ν〉 =

∫
dr φ∗µ(r)Γ(r)φν(r) (76)

These integrals can be performed either over the Cartesian or atom-centered grids. Using

CAPs with atom-centered basis sets requires highly diffuse functions to describe the wave

function far from the molecule.112,113,681,682 The limited spatial extent of these bases also

limits the range of the valid CAP positions, as a CAP too close to the molecule will affect

the bound states, while too far results in an insufficient overlap of the basis with the CAP.

If chosen correctly, simulations with a CAP will not affect the electron density near the

molecule yet outgoing flux will be removed completely. Put another way, the eigenvalues

for the bound states (occupied and virtual) should be unaffected by the CAP, whereas the

unbound states acquire lifetimes. A CAP that is too “weak” or misplaced might not remove

all outgoing charge, causing artificial reflections from the simulation box, whereas, conversely,

a sharply shaped CAP might cause reflections from the potential itself. The protocol for

choose the CAP location and strength is to determine a range of parameters where the results

are insensitive. See Fig. 23 for an example.

Once a CAP has been chosen, experimental observables such at the SFI yield for a

particular laser polarization and intensity can be computed from the change in the electronic

norm. Weaker intensities can also be challenging for atom-centered basis sets, as they require

CAPs far from the molecule to capture the tunnelling correctly. Additionally, basis set

CAP calculations are “leaky” due to small amounts of norm being lost due to non-zero

overlap with the ground state. This must be corrected for by subtracting this linear leakage
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values due to the CAP affecting the ground state. The rates are underestimated at large R0

due to insufficient overlap with the basis. The rates are insensitive between 4.0 and 9.0 Å,
giving results in quantitative agreement with grid-based methods. Adapted with permission
from Ref. 682. Copyright (2016) American Institute of Physics.

rate from the computed time-dependent norm.682,683 Using TDCIS with CAPs, Schlegel

and coworkers have successfully mapped out the angular dependence of the ionization rates

for small molecules in strong fields (see Fig. 24).112,113,681 These simulations shed light on

the orbitals involved in strong-field ionization as well as the localization of the hole in the

molecule.683,695 When using TDDFT, the use of range-separated functionals has been shown

to give significant improvements over traditional TDDFT, due to their correct long-range

asymptotic potential and reduced self-interaction.682

5 Outlook

Real-time electronic structure methods provide an unprecedented view of electron dynamics

on the atto and femtosecond timescales, with vast potential to yield new insights into the elec-

tronic behavior of molecules and materials. With recent development of accurate real-time

post-SCF methods, advanced DFT functional forms,696–698 and full quantum descriptions of
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Figure 24: Angle dependence of the ionization yield for CH2O calculated with the TDCIS-
CAP approach: (Top Panel) polar plots, in plane with and perpendicular to the molecular
axis, for field strengths of 0.04, 0.05, 0.06, 0.07, 0.08 Eh/ea0, (Bottom Panel) Dyson orbitals
for the 2B2, 2B1, 2A1 states. Adapted with permission from Ref. 113. Copyright (2015)
American Chemical Society.

the electrons and nuclei,514,699,700 real-time simulations have become more accurate and have

the capability of simulating ultrafast multidimensional spectroscopies and quantum dynam-

ics in the presence of a strong electromagnetic field, in the relativistic regime, and in the

quantum electrodynamics formalism.

The current prospect of universal quantum computing701,702 provides an exciting new

tool for the simulation of quantum dynamics because quantum computers obey the time-

dependent Schrödinger equation by nature. Modeling time-dependent electronic dynamics

in molecules and extracting information for the purpose of applications like spectroscopy, is

relatively unexplored with regard to quantum algorithms. The next generation of real-time

methods will encompass innovations in applied mathematics bolstered by high-performance

software and/or quantum computing algorithms. The ever-improving computational effi-

ciency of real-time methods will allow the simulation of the electron dynamics of larger

scale and more complex systems, bringing chemical insight into dynamical processes with

experimentally relevant spatial and time resolutions.
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(74) Marques, M. A.; López, X.; Varsano, D.; Castro, A.; Rubio, A. Time-Dependent

Density-Functional Approach for Biological Chromophores: The Case of the Green

Fluorescent Protein. Phys. Rev. Lett. 2003, 90, 258101.

(75) Lopez, X.; Marques, M. A. L.; Castro, A.; Rubio, A. Optical Absorption of the Blue

Fluorescent Protein: A First-Principles Study. J. Am. Chem. Soc. 2005, 127, 12329–

12337.

(76) Smith, S. M.; Li, X.; Markevitch, A. N.; Romanov, D. A.; Levis, R. J.; Schlegel, H. B. A

Numerical Simulation of Nonadiabatic Electron Excitation in the Strong Field Regime:

Linear Polyenes. J. Phys. Chem. A 2005, 109, 5176–5185.

(77) Isborn, C. M.; Li, X. Modeling the Doubly Excited State with Time-Dependent

Hartree–Fock and Density Functional Theories. J. Chem. Phys. 2008, 129, 204107.

(78) Isborn, C. M.; Li, X. Singlet-Triplet Transitions in Real-Time Time-Dependent

Hartree-Fock/Density Functional Theory. J. Chem. Theory Comput. 2009, 5, 2415–

2419.

(79) Kawashita, Y.; Yabana, K.; Noda, M.; Nobusada, K.; Nakatsukasa, T. Oscillator

Strength Distribution of C60 in the Time-dependent Density Functional Theory. J.

Mol. Struct. 2009, 914, 130–135.

(80) Chiodo, L.; Salazar, M.; Romero, A. H.; Laricchia, S.; Sala, F. D.; Rubio, A. Structure,

89



Electronic, and Optical Properties of TiO2 Atomic Clusters: An Ab Initio Study. J.

Chem. Phys. 2011, 135, 244704.

(81) Govind, N.; Lopata, K.; Rousseau, R.; Andersen, A.; Kowalski, K. Visible Light Ab-

sorption of n-Doped TiO2 Rutile using (LR/RT)-TDDFT and Active Space EOM-

CCSD Calculations. J. Phys. Chem. Lett. 2011, 2, 2696–2701.

(82) De Giovannini, U.; Brunetto, G.; Castro, A.; Walkenhorst, J.; Rubio, A. Simulating

Pump-probe Photoelectron and Absorption Spectroscopy on the Attosecond Timescale

with Time-dependent Density Functional Theory. ChemPhysChem 2013, 14, 1363–

1376.

(83) Wang, Y.; Lopata, K.; Chambers, S. A.; Govind, N.; Sushko, P. V. Optical Absorption

and Band Gap Reduction in (Fe1−xCrx)2O3 Solid Solutions: A First-Principles Study.

J. Phys. Chem. C 2013, 117, 25504–25512.

(84) Habenicht, B. F.; Tani, N. P.; Provorse, M. R.; Isborn, C. M. Two-electron Rabi Os-

cillations in Real-Time Time-Dependent Density-Functional Theory. J. Chem. Phys.

2014, 141, 184112.

(85) Tussupbayev, S.; Govind, N.; Lopata, K.; Cramer, C. J. Comparison of Real-time

and Linear-response Time-dependent Density Functional Theories for Molecular Chro-

mophores Ranging from Sparse to High Densities of States. J. Chem. Theory Comput.

2015, 11, 1102–1109.

(86) Fischer, S. A.; Cramer, C. J.; Govind, N. Excited State Absorption from Real-Time

Time-Dependent Density Functional Theory. J. Chem. Theory Comput. 2015, 11,

4294–4303.

(87) Fischer, S. A.; Cramer, C. J.; Govind, N. Excited-State Absorption from Real-Time

Time-eependent Density Functional Theory: Optical Limiting in Zinc Phthalocyanine.

J. Phys. Chem. Lett. 2016, 7, 1387–1391.

90
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(198) Beck, M. H.; Jäckle, A.; Worth, G. A.; Meyer, H.-D. The Multiconfiguration Time-

dependent Hartree (MCTDH) Method: A Highly Efficient Algorithm for Propagating

Wavepackets. Phys. Rev. 2000, 324, 1–105.

(199) Ben-Nun, M.; Martinez, T. J. Advances in Chemical Physics ; John Wiley and Sons,

Ltd, 2002; pp 439–512.

(200) Worth, G. A.; Meyer, H.-D.; Cederbaum, L. S. Conical Intersections ; World Scientific,

2004; pp 583–617.

(201) Li, X.; Tully, J. C.; Schlegel, H. B.; Frisch, M. J. Ab Initio Ehrenfest Dynamics. J.

Chem. Phys. 2005, 123, 084106.

(202) Tao, H.; Levine, B. G.; Mart́ınez, T. J. Ab Initio Multiple Spawning Dynamics Using

Multi-State Second-Order Perturbation Theory. J. Phys. Chem. A 2009, 113, 13656–

13662.

(203) Miller, W. H. Electronically Nonadiabatic Dynamics via Semiclassical Initial Value

Methods. J. Phys. Chem. A 2009, 113, 1405–1415.

(204) Coker, D. F.; Xiao, L. Methods for Molecular-Dynamics With Nonadiabatic Transi-

tions. J. Chem. Phys. 1995, 102, 496–510.

(205) Bittner, E. R.; Rossky, P. J. Quantum Decoherence in Mixed Quantum-Classical Sys-

tems - Nonadiabatic Processes. J. Chem. Phys. 1995, 103, 8130–8143.

103



(206) Wyatt, R. E.; Bittner, E. R. Quantum Wave Packet Dynamics With Trajectories:

Implementation With Adaptive Lagrangian Grids. J. Chem. Phys. 2000, 113, 8898–

8907.

(207) Bedard-Hearn, M. J.; Larsen, R. E.; Schwartz, B. J. Mean-Field Dynamics With

Stochastic Decoherence (MF-SD): A New Algorithm for Nonadiabatic Mixed Quan-

tum/Classical Molecular-Dynamics Simulations With Nuclear-Induced Decoherence.

J. Chem. Phys. 2005, 123, 234106.

(208) Shenvi, N.; Subotnik, J. E.; Yang, W. Simultaneous-trajectory Surface Hopping: A

Parameter-free Algorithm for Implementing Decoherence in Nonadiabatic Dynamics.

J. Chem. Phys. 2011, 134, 144102.

(209) Subotnik, J. E.; Shenvi, N. A New Approach to Decoherence and Momentum Rescaling

in the Surface Hopping Algorithm. J. Chem. Phys. 2011, 134, 024105.

(210) Fischer, S. A.; Chapman, C. T.; Li, X. Surface Hopping with Ehrenfest Excited Po-

tential. J. Chem. Phys. 2011, 135, 144102.

(211) Curchod, B. F. E.; Rauer, C.; Marquetand, P.; Gonzalez, L.; Mart́ınez, T. J. Com-

munication: GAIMS – Generalized Ab Initio Multiple Spawning for both Internal

Conversion and Intersystem Crossing Processes. J. Chem. Phys. 2016, 144, 101102.

(212) Space, B.; Coker, D. F. Nonadiabatic Dynamics of Excited Excess Electrons in Simple

Fluids. J. Chem. Phys. 1991, 94, 1976–1984.

(213) Space, B.; Coker, D. F. Dynamics of Trapping and Localization of Excess Electrons

in Simple Fluids. J. Chem. Phys. 1992, 96, 652–663.

(214) Hammes-Schiffer, S.; Tully, J. C. Proton Transfer in Solution: Molecular Dynamics

With Quantum Transitions. J. Chem. Phys. 1994, 101, 4657–4667.

104



(215) Hammes-Schiffer, S.; Tully, J. C. Vibrationally Enhanced Proton-Transfer. J. Chem.

Phys. 1995, 99, 5793–5797.

(216) Jasper, A. W.; Stechmann, S. N.; Truhlar, D. G. Fewest-Switches with Time Uncer-

tainty: A Modified Trajectory Surface-Hopping Algorithm with Better Accuracy for

Classically Forbidden Electronic Transitions. J. Chem. Phys. 2002, 116, 5424–5431.

(217) Nangia, S.; Jasper, A. W.; Miller, T. F.; Truhlar, D. G. Army Ants Algorithm for

Rare Event Sampling of Delocalized Nonadiabatic Transitions by Trajectory Surface

Hopping and the Estimation of Sampling Errors by the Bootstrap Method. J. Chem.

Phys. 2004, 120, 3586–3597.

(218) Fabiano, E.; Keal, T.; Thiel, W. Implementation of Surface Hopping Molecular Dy-

namics using Semiempirical Methods. Chem. Phys. 2008, 349, 334 – 347.

(219) Barbatti, M. Nonadiabatic Dynamics with Trajectory Surface Hopping Method.

WIREs Comput. Mol. Sci. 2011, 1, 620–633.
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