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Abstract

Real-time electronic structure methods provide an unprecedented view of electron
dynamics and ultrafast spectroscopy on the atto and femtosecond timescale, with vast
potential to yield new insights into the electronic behavior of molecules and materials.
In this Review, we discuss the fundamental theory underlying various real-time elec-
tronic structure methods, as well as advantages and disadvantages of each. We give
an overview of the numerical techniques that are widely used for real-time propagation
of the quantum electron dynamics, with an emphasis on Gaussian basis set methods.
We also showcase many of the chemical applications and scientific advances made by
using real-time electronic structure calculations and provide an outlook of possible new

directions.

1 Introduction

Real-time electronic structure theory explicitly considers the time-dependence of a quantum
electronic system by evolving the time-dependent Schrodinger or Dirac equation, Eq. (1), in

the time domain,

OU(r,t)
i = Hr )¥(r,0) (1)

In Eq. (1) and throughout this review, atomic units are used. The non-equilibrium condition
of the Hamiltonian under external perturbation gives rise to the time-evolution of the wave
function or the electron density that underlies all response properties of a quantum electronic
system. A complementary approach, not reviewed here, is frequency-domain response theory,
which has been widely applied to chemical systems with remarkable success. Instead, this
review focuses on the time-dependent electronic structure wave function or density, explicitly
propagated in the time domain.

Historically, the early work for explicitly time-dependent solutions of the time-dependent



Schrodinger equation began in the late 70’s and early 80’s in the field of nuclear physics with
a mean-field time-dependent Hartree-Fock (TDHF') approximation for studies of nuclear col-
lisions and their scattering profiles.'™ In 1990, Cederbaum and coworkers laid the ground
work for propagating correlated electronic wave functions in real time with the development
of the multi-configurational time-dependent Hartree (MCTDH) method.® In 1994, Micha
and Runge used a density-matrix based real-time time-dependent Hartree-Fock (RT-TDHF)
approach with a traveling atomic orbital basis for describing electron rearrangement during
atomic collisions.” However, despite these developments, real-time methods did not become
a practical computational tool for many years because the explicit time-propagation of cor-
related electronic wave functions remained computationally expensive and the Hartree-Fock
approach lacks important electron correlation effects.

In 1996, Bertsch and Yabana, for the first time, developed and applied the real-time
time-dependent density functional theory (RT-TDDFT) approach within the local density
approximation (LDA) for studies of dynamic response properties.® Their efforts in explicitly
time-dependent electronic structure theory, > '* combined with the advent of usable real-space
density functional theory (DFT) codes,'?1* have led to great interest in real-time methods
in the condensed matter physics community. However, the application of RT-TDDFT in
the quantum chemistry and spectroscopy communities remained limited due to the lack of
implementations of RT-TDDFT within the generalized gradient approximation (GGA) and
hybrid GGA approximations, the modern day workhorses for computational chemistry and
materials science. In 2005, Li and Schlegel introduced an efficient implementation of RT-
TDHF' in a Gaussian-type atomic orbital basis, followed by an RT-TDDFT extension 6
by Li and Isborn in 2007 that could use generalized hybrid density functionals which in-
clude exact exchange. The development of real-time electronic structure theory in an atomic
orbital basis, which allows for low-cost, accurate simulations of molecular spectroscopies
and electronic dynamics using GGA and generalized hybrid functionals, has led to many

Gaussian basis set based real-time implementations in widely used codes in the quantum



chemistry community capable of handling both small and large molecular and finite clus-
ter systems.!”23 With the development of scalable plane-wave and real-space grid based

24727 simulations of large-scale condensed phase systems have also become

implementations,
possible.

With advancements in computing power and numerical algorithms, there has been re-
newed interest in explicit time-propagation of correlated methods such as multi-configurational
self-consistent-field (MCSCF),?832 configuration interaction (CI),333% algebraic diagram-
matic construction,® ¢ and coupled cluster (CC)?2:3537475151°55 theories. Although wave
function based real-time techniques scale poorly compared to RT-TDDFT, they afford sys-
tematically improvable accuracy and allow for accurate simulations of electronic dynam-
ics in strong fields. Alternatively, correlated electron dynamics can be modeled through
the time evolution of the one-electron reduced density matrix (RDM)5¢ % or the two-
electron RDM, %62 as opposed to the wave function, but such methods are plagued by
N-representability % problems resulting from the truncation of the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY)54¢7 hierarchy of equations of motion for the RDMs. 6162

Motivated by the need for an explicit and accurate description of electron spin interaction
with internal (e.g., spin-spin and spin-orbit) and external (e.g., magnetic field) perturbations,
there has been a growing interest in extending real-time methods beyond the framework of
the time-dependent Schrodinger equation. In 2014, Li and coworkers introduced a non-
relativistic real-time time-dependent two-component method to simulate electron spin dy-
namics. % This work demonstrated that the ab initio simulation of electron spin dynamics
requires at least two components in the description of electronic degrees of freedom. In 2015,
Repisky and Ruud presented the first fully relativistic four-component RT-TDDFT (4¢-RT-
TDDFT),% followed by a formally equivalent relativistic two-component implementation
(2c-RT-TDDFT) by Li in 2016.™ The development of these real-time time-dependent Dirac
methods has enabled the computational investigation of magnetic and spin-orbit effects in

molecular spectroscopy and electronic dynamics.



The non-relativistic Hamiltonian for an N-electron system interacting with a time-dependent

electromagnetic field is defined as

Hr,t)=>" (%H — U(ry, t)) +) rlm + Veat, (2)

% 1<j

where the first term includes the electron kinetic energy and the coupling to the field, the
second term is the electron-electron repulsion term V.., and V,,; includes the electron-nuclear
attraction term and other external potentials, such as the system-bath interaction. The
external electromagnetic perturbation is usually treated classically and defined by a vector
potential A(r,t) and a scalar potential U(r,t). @ = p + A is the generalized momentum
that includes the vector potential A along with linear momenta p. This term gives rise
to the electron kinetic energy and electron-field coupling. Note that in some cases, the
electron-field interaction is included in the V,,; term but here we include this coupling by
incorporating the vector and scalar potentials in Eq. (2). The majority of this review focuses
on approximate solutions to the time-dependent Schrodinger equation and their scientific
applications. Development of practical real-time methods within the time-dependent Dirac
framework is an emerging direction and some aspects will be discussed in Sec. 2.5.
Equation (2) is the general form of the non-relativistic Hamiltonian that drives electronic
dynamics via the time-dependent Schrodinger equation. Real-time methods, like other ab ini-
tio methods, must numerically solve the underlying Schrédinger or Dirac equation (Eq. (1))
through mean-field approximations, such as Hartree-Fock (HF) and DFT, or wave function
based techniques, such as CC and CI. For treating large systems, low-cost semiempirical
approaches, continuum models, or molecular mechanics can be used to simulate responses
from the complex environment. The fundamental theory and mathematical ansatz of these
techniques will be reviewed in Secs. 2.1 to 2.6. In addition, real-time methods must also rely
on robust numerical techniques and representations (Sec. 3) to explicitly integrate the quan-

tum system in time and resolve quantum observables from time-signals without introducing



nonphysical behavior.

Most scientific applications of real-time methods concern electronic responses to external
perturbations, such as an electromagnetic field [A(r, t) and U(r, t)], electron-nuclear coupling
(Vne), and system-bath coupling (V3). These perturbations give rise to the spectroscopic
signatures, population transfer, and energetic decay of an electronic system. In the absence
of these driving forces, time-evolution of an electronic wave function will exhibit either
coherent oscillations that travel through phase space in the case of a pure coherent wave
function, or remain stationary in the case of an eigenstate. Real-time electronic structure
theory is thus a powerful tool for simulating diverse chemical phenomena, many of which
will be reviewed in Sec. 4.

Applications of real-time methods span the field of spectroscopy, including valence-

9,10,15,18,34,69-88 89-94

electron UV /Vis and photoelectron, circular dichroism, core-electron X-

49,95-98 14,99,100 71,101-115

ray absorption, nonlinear optical response, photoionization, and mag-

netization dynamics. %6117 Real-time electronic structure methods have also found utility

118-127 1 117,128-131
)

in studies of molecular electronics, optimal contro as well as coherence and

charge-transfer dynamics. 1327151 To probe chemical processes in complex environments,

32,152

real-time electronic dynamics have been coupled to polarizable and non-polarizable

74,153 138,139,154-157

molecular mechanical layers, implicit solvation models, quantum subsys-

158 and thermal baths in an open quantum system formalism.?%150:159°165 Recently,

tems,
the coupling of a molecule to a quantized electromagnetic field 1617 — real-time quantum
electrodynamics (QED) — has led to first-principles studies of photon absorption and emis-
sion and simulations of cavity QED experiments. The focus of this review is on real-time
electronic structure; thus we do not focus on nuclear motion. However, because different elec-
tronic structure methods lend themselves to different ways of coupling with nuclear motion, it
is worth briefly mentioning some of these methods here. See extensive reviews such as!7 180

and references therein for more in-depth discussions and an overview of mixed quantum-

classical dynamics methods. Exact electron-nuclear dynamics are obtainable via solution of
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the full time-dependent Schrodinger equation for the entire (electronic plus nuclear) system:
a computationally prohibitive prospect for all but the smallest of molecules with only a

181 Various approximate methods have been introduced with the aim of

few active electrons.
achieving reliable results at lower costs. 13%182°211 Two of the most widely used methods are
trajectory surface hopping and the Ehrenfest approach. 1#418% These mixed quantum-classical
formalisms use the classical equation-of-motion for nuclear degrees of freedom and quantum
mechanical evolution of the time-dependent electronic wave function, such as RT-TDHF,
RT-TDDFT, TD-CC, TD-CI, etc., but differ in how the electronic potential energy surface
is computed. Trajectory surface hopping methods, introduced specifically to account for the
branching of trajectories due to electron-nuclear coupling, often use fitted potential surfaces
or compute electronic forces and couplings on-the-fly. 84189212225 Qurface hopping there-
fore does not generally make use of real-time electronic structure. Analogous methods can
also be built from nuclear motion on the ground state electronic surface, which can provide
time-evolving ground state occupied and virtual orbitals to be used for time-domain surface
hopping methods, see for example Refs. 226,227; these techniques ignore feedback from the
excited state population to the nuclear motion as well as ignoring all electronic coherences
between states that are captured by real-time electronic structure methods.

In contrast, the Ehrenfest approach naturally couples to real-time electronic structure
methods, propagating the nuclei as classical particles subject to a force from a weighted aver-

16,128,129,135,175,188,201,210,228-237 T time-evolving

age of all the electronic states of the system.
expansion coefficients of the electronic wave function, which are governed by the electronic
time-dependent Schrodinger equation, determine the weights in the average of the poten-
tial energy surfaces. This method can avoid explicit computations of the excited states by
representing the wave function as a superposition state, while still accounting for electronic
non-adiabaticity, making the Ehrenfest dynamics an excellent approach for simulating dense

manifolds of electronic states. Indeed, for methods based on real-time propagation of the

electron density, such RT-TDHF and RT-TDDFT, excited states and their respective popu-

11



lations are ill-defined; evolving the classical nuclei on this electronic superposition state yields
Ehrenfest dynamics. The drawback of the Ehrenfest approach is the restriction to motion
on a single average potential energy surface, which can lead to nonphysical results, such as
over-coherence, particularly in the asymptotic limit.20%238243 Recently, Fedorov and Levine
proposed a systematically improvable multiple cloning approach to mitigate issues arising
from long-time propagation of Ehrenfest dynamics on unphysical mean-field surfaces. 27

In this review, we highlight the theory of various real-time electronic structure methods,
as well as advantages and disadvantages of each. We give an overview of the numerical
techniques that should be considered for real-time electron propagation, with a focus on

Gaussian basis set approaches, and we showcase many of the chemical applications for real-

time electronic structure calculations.

2 Theory of Real-Time Time-dependent Electronic Struc-

ture Methods

We use the following notations throughout the rest of this review:

e K. L,... are Slater determinants.

1,7, k, 1, ... are occupied molecular orbitals.

a,b,c,d,... are virtual molecular orbitals.
® p.q,r,Ss,... are general molecular orbitals.
® /i, v, ... are atomic orbitals.

All equations use atomic units, with e = i = m, = 1. Primed notations (e.g., F',P’) are
used for matrices in the orthonormal basis and unprimed notations for matrices (e.g., F, P)

in the atomic orbital (AO) basis.

12



2.1 Real-Time Time-Dependent Hartree-Fock and Density Func-

tional Theory

Many excellent articles, reviews, and books exist focusing on details of TDDFT within
both the linear response matrix formulation and within the real-time electronic propagation

146,244252 WWe refer the reader to these works to gain a more detailed perspective

formulation.
of the theoretical underpinnings of TDDFT, including details of the Runge-Gross?*® and
the van Leeuwen?* proofs of mappings from the density to the potential that show that all
time-dependent properties can be extracted from the time-evolving electron density. Here,
we especially wish to highlight similarities and differences between RT-TD Hartree-Fock
(RT-TDHF) and RT-TDDFT. We therefore initially present these two methods on an equal
footing within a molecular orbital or Kohn-Sham (KS) picture, which is required by Hartree-
Fock and by generalized KS hybrid DFT methods due to the inclusion of exact exchange,
before focusing on some of the relevant issues specific to RT-TDDFT.

For both TDDFT and TDHF within an orbital basis, a set of time-dependent one-particle

equations is given by

0 .
Z§¢i<r7t) = H(r>t)¢i(rat>7 (3)

where ¢ runs over all N electrons and the time-dependent electron density is

n(r.t) = lour. )" (@)

Although numerous theoretical differences exist between TDDFT and TDHF as discussed
in the citations listed above, the main, practical difference is the treatment of the electron-
electron repulsion term V. in the Hamiltonian H(r,t) in Eq. (2). For both TDHF and
TDDFT, V.. depends on the time-dependent density or the time-dependent orbitals, and
therefore becomes a time-dependent operator.

For Hartree-Fock, V. contains Coulomb and exchange operators that describe average

13



electron-electron interactions within the single particle picture

*
VAT (x, 0e.1) {2 e Y {Z e
(5)
where the first term provides an average Coulombic electron-electron interaction and the
second term describes the non-local exchange contribution to the energy that results from
the use of a Slater determinant for describing an anti-symmetric wave function. Both terms
depend only on the instantaneous orbitals at time . The missing electron-electron interaction
energy in Hartree-Fock theory is called the correlation energy, the lack of which arises from
the mean-field single particle approximation.
For density functional theory, the electron-electron interaction term V. contains the
same average Coulombic electron-electron interaction (often called the Hartree term in the
physics community), which can also be written in terms of the electron density n(r,t), and

an exchange-correlation term V.

VI 0ot = | [ a4 v, 00l o) )

where the unknown exchange-correlation potential V. is formally a function of: the electron
density n at all points in space and at all previous points in time, ¥, the initial many-body
wave function, and ®, the initial state to be used for the non-interacting Kohn-Sham wave
function. Unlike TDHF theory, TDDFT up to this point is formally exact. Although the
Coulomb/Hartree energy contains contributions from each electron in orbital ¢; interacting
with itself as part of the total density n, this erroneous self-interaction energy should be
exactly canceled in the exchange contribution of V., as it is for the exact non-local exchange
in Hartree-Fock theory.

The Liouville equation generalizes the time-dependent Schrédinger equation to

A e, 0), o), )

14



where p(t) is the density operator and H (r,t) is the time-dependent many-body Hamiltonian.
This expression is only valid for Hermitian Hamiltonians, i.e., without complex absorbing
potentials. The time-dependent molecular orbitals ¢; are often created from a linear com-
bination of basis functions {x,} as ¢; = >_, ¢,i(t)x,, where ¢, ;(t) are the time-dependent
coefficients. The elements of the Hartree-Fock or DFT density matrix P are then given in

this basis by

Pu(t) =Y fochp(heun(t). (8)

where f), is the occupation of orbital p. Transforming the density matrix P to the orthonormal
basis and now writing it as P’ in this basis, we can then express the TDHF or TDDFT
equation as

z'apalst) _ [H’(t), P’(t)] , (9)

where H'(¢) is the Hamiltonian matrix (integrated over r), here the Fock matrix for TDHF
or the Kohn-Sham matrix for TDDF'T, in the orthonormal basis.

This equation is a starting point for both solving for the density response in the frequency
domain via a matrix formulation, usually by keeping only the terms that are first order

255258 and for propagating the electron

in the perturbation to obtain the linear response,
density in the time domain by numerical integration.?® Real-time propagation reveals time-
resolved electron distributions responding to a perturbation, such as the electron density of
an acetylene molecule under the influence of an applied laser pulse as shown in Fig. 1.269
However, a key challenge with RT-TDHF and RT-TDDF'T is that the Hamiltonian be-
comes time-dependent, not just from the time-dependent perturbation, but from the de-
pendence of the Hartree-Fock and DFT Hamiltonian on the time-dependent density in the
Coulomb/Hartree and exchange-correlation potentials. This time-dependence of V.. con-
trasts with correlated electronic dynamics methods wherein the exact form of V. is used

and the only source of time dependence in the Hamiltonian is the external perturbation.

The time-dependence of the Hartree-Fock / DFT Hamiltonian creates a nonlinear equation,

15



Figure 1: Snapshots of the time-dependent electron localization function of acetylene during
application of a laser pulse. The electronic transition is from a bonding 7 to an antibonding
7" state. Adapted with permission from Ref. 260. Copyright (2005) American Institute of
Physics.

which exhibits a host of inaccuracies for the RT-TDHF method and for the RT-TDDFT

method with the common approximations to V... These inaccuracies include unphysical

77,261-266 84,267,268

peak-shifting, incorrect Rabi oscillations, and incorrect charge-transfer dy-
namics. 140:292.269 Because TDDFT is formally exact, these inaccuracies derive from the prac-
tical implementation of TDDFT, which requires approximations in choosing the form of the
initial Kohn-Sham state ® and in choosing the form of the exchange-correlation potential
Vie. In practice, the initial Kohn-Sham state ® is usually chosen to be a single Slater deter-
minant constructed from the single particle orbitals ¢;, as in Hartree-Fock theory. A recently
developed formulation where the number of Kohn-Sham orbitals and their occupations are
updated on the fly shows promise for alleviating some of the inaccuracies of RT-TDDFT. 268
The most common approximation to V. is to ignore all previous time-dependence on the
electron density and to use the instantaneous electron density with a V.. parametrized or
derived for the ground state: V.[n; Wy, ®o](r,t) = Vie[n(t)](r). This adiabatic approxi-

mation, which ignores all memory dependence of the electron density, is equivalent to a

frequency-independent kernel in linear response.
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2.1.1 The adiabatic approximation in TDDFT

Formally, RT-TDDF'T electron density propagation is exact, assuming the use of the exact
time-dependent exchange-correlation potential. In contrast, RT-TDHF is inherently ap-
proximate because electron correlation effects are formally missing from the Hamiltonian
and therefore from the electron propagation. The phase information encoded in the orbitals
leads to some incorporation of memory via the exact exchange energy contribution in TDHF
or in orbital-dependent TDDFT, but these memory effects?™2™ do not fix the dramatic er-
rors in the RT-TDHF and RT-TDDEF'T electron dynamics. The exact V., which would yield
the exact electron density propagation, formally depends on the density at all points in time,
as well as the initial wave function and initial Kohn-Sham state. 27227 However, this memory
dependence of the potential at time ¢ on the density at all previous points in time t’ < t is
not well-understood. As a result of this lack of knowledge, almost all TDDFT calculations
ignore the history dependence of the electron density completely, with some notable excep-
tions discussed below. The dependence of V. on the initial wave function and Kohn-Sham
state is usually ignored as well. Therefore, in almost all applications, RT-TDDFT is used
within the adiabatic application, in which V., usually a ground state functional, only uses

input from the instantaneous electron density (see Fig. 2).

|ch [1; Wo, ®ol(r, t)|

Adiabatic
n00) | | approvmi

[n(r,0) | ’|n(r,1)| 7|n(r,...)| 7|n(r,t—1) |

[ Vxe [r®I) |
@i
l A
[rc0 ] [reD]  [ne.)] [nme-D]

7 A

AGL0) > 0Q); AGH1) - 0 AGh..) > 0C.); A t—1) 0 —1) AG0) » 0(0); AR 1) — 00y AG.) » 0(.); Alrt—1) -0 —1)

Figure 2: The commonly used adiabatic approximation in TDDFT uses only the instanta-
neous electron density n(r,t) as an input to the exchange-correlation potential, ignoring the
dependence on the electron density at all previous points in time.

Despite its widespread use for modeling charge transfer in complex systems, RT-TDDFT
as it is used in practice within the adiabatic approximation suffers from a number of deficien-

cies for small model systems. The RT-TDDFT method within the adiabatic approximation

17



is not able to capture Rabi oscillations, where if an electric field of frequency resonant with
an allowed transition is applied to the system, single electron transitions occur between the
states.®257 For RT-TDDFT, a field that is initially resonant with an energy gap will no
longer be resonant as soon as electron density transfers out of the ground state. As a re-
sult, the electron transfer into the excited state is not complete when the electric field is
applied, limiting RT-TDDFT’s applicability to model pump-probe spectroscopy and non-
equilibrium dynamics. Intricately connected with this issue is the incorrect extent and rate
of charge transfer within RT-TDDFT for the exactly solvable Hubbard dimer. For this sys-
tem, in addition to obtaining the exact dynamics, the dynamics were also simulated within
the adiabatically exact approximation, revealing that the error is in fact due to the adi-
abatic approximation rather than any errors in the exchange or correlation functional for
the instantaneous electron density. 14%2%9 Note that using the adiabatically exact functional
is a non-trivial task, but recent progress in numerically constructing the exact Kohn-Sham
potential for a given density makes this possible for model systems with smooth potentials
(see Fig. 3).2™72™ The lack of time-dependence within the adiabatic approximation, which
corresponds to a lack of frequency-dependence in the frequency domain used with linear
response theory, was shown by Maitra, Cave, and Burke in 2004 to be linked to the lack
double excitations within TDDFT.?8° However, Li and Isborn in 2008 showed that although
RT-TDDFT cannot capture the response of two-electron excitations, it can recover the elec-
tron density of closed-shell doubly-excited states.”” Another related problem observed with
approximate RT-TDDFT is the phenomena of peak-shifting within the computed absorp-
tion spectra. 2617266 Although the energy of the spectral peaks computed with RT-TDDFT
agree with the energy of the resonances computed from linear response theory within the
matrix formulation of TDDFT if a ground state electron density is used as a reference, as the
electron density evolves away from the ground state the peaks in the absorption spectrum
unphysically shift in energy. This spurious shift is due to the changing character of the evolv-

ing electron density. Both RT-TDDFT within the adiabatic approximation and RT-TDHF
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suffer from the problems of incorrect Rabi oscillations and peak-shifting; these problems are
due to the nonlinear nature of the potential, which depends on the time-dependent electron

density. Thus, a challenge in going beyond the adiabatic approximation requires that any

time-dependence built into V,, repair this resonance condition. 265266
density
5. ‘
X(au ™~ f’” t(au)
0 0
potential
100, |
0
-100 .. ‘“
1~V N
s )| ___d_,,_.-'-"
x{au) ~_ _—, 0.11
e t(a.u.)
00

Figure 3: The density and corresponding correlation potential in atomic units created from
density-potential mapping. Adapted with permission from Ref. 277. Copyright (2013) Amer-
ican Physical Society.

Previous studies have attempted to explore the time-dependence of the V., with some
progress in developing time-dependent potentials via the current TDDFT formalism. 281289
Very recent work by Maitra and co-workers has introduced a new class of nonadiabatic
approximations to V. that are functionals of the one-body reduced density-matrix and the

290,291 The dependence of the density evolution on the initial Kohn-

exchange-correlation hole.
Sham state going beyond a single Slater determinant has also been recently explored. 2 All

efforts to go beyond the adiabatic approximation require careful attention to exact condi-
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tions, 265,290,293-296

In contrast to RT-TDDFT and RT-TDHF, for correlated wave function based time-
dependent approaches there is no dependence of the Hamiltonian on the electron density,
and therefore no unphysical peak-shifting. Wave function based methods instead propagate
the time-dependent coefficients corresponding to different electronic states, rather than time-
dependent orbitals. The adiabatic approximation of RT-TDDFT becomes less justified as the
electron density is propagated away from the ground state, which is the case for many non-
equilibrium and pump-probe simulations. Although correlated wave function based methods
often have greater computational expense than RT-TDDFT for complex systems, they have
the potential to perform better at modeling these far-from-ground state phenomena.

To evolve the system from an excited state, an alternative to propagating the system
with a resonant laser pulse is to instead initialize the system in an excited state. This tech-
nique offers a way to partially bypass some of the problems with adiabatic TDHF/TDDFT
for resonant processes and allows for computation of excited state dynamics and nonlinear
properties. The accuracy of the technique, however, hinges on the preparation of an initial
state that yields physically meaningful dynamics and avoids undesirable broadband exci-
tation due to the rapid change in potential. Additionally, there are as-of-yet unaddressed
formal problems such as the initial-state dependence for TDDFT.273297 The simplest ap-
proach for preparing an initial state close to an excited state is to directly manipulate the
orbital populations without relaxation, either by promoting an electron to an unoccupied
orbital, 3% or by removing it to emulate valence or core-level ionization.?”® An improvement
on this approach is to instead propagate from a state computed from the linear-response
eigenvectors.®29 Another approach is to converge the system in the presence of a static
field, typically to create a charge separated state. Van Voorhis and coworkers showed that
using constrained DFT (cDFT),3% which minimizes the energy with the constraint that
particular fragments of a system have a particular charge. This gives an initial state with

improved intramolecular charge migration dynamics as compared to an orbital hole. This is
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due to reduced self-interaction errors with ¢cDFT. 30!

2.1.2 Accuracy of TDHF and TDDFT

Many reviews, 245:249,251,252,302 1,5 5cg 247:248 and benchmarking studies?°°2303-312 highlight the
accuracy and pitfalls of TDDFT for common approximations for V.. for various excited state
properties. Although these reviews mostly focus on the more common linear response matrix
formulation of TDDFT rather than real-time TDDF'T, the accuracy for real-time and linear
response formulations will be similar, assuming that the ground state electron density is used
as a reference in both cases. Thus, the use of these functionals for TDDFT calculations can
be expected to work well for the valence excited states of medium-sized organic molecules,
although qualitatively incorrect transitions are predicted for thiophene and thienoacenes. 3!3

TDDFT with standard approximate functionals has larger errors in modeling other kinds
of excited states, including those with charge-transfer, Rydberg, or double excitation char-
acter. Approximate local exchange in DFT leads to a lack of Coulombic attraction between
the excited electron and hole in TDDFT, so that charge-transfer transitions are generally
much too low in energy. 245314316 These spuriously low-energy charge-transfer transitions are
particularly problematic when computing the excitation energies of a molecule in explicit
solvent.317320 The charge-transfer problem can be remedied using exact exchange,3'¢ with
long-range corrected hybrid functionals and optimally tuned functionals providing much im-
proved treatment of charge-transfer excitations.304321-326 Rydberg transitions are also often

302,327-331 hocause the V. does not

too low in energy using approximate TDDFT methods
exhibit the correct —1/r limit as the distance r between an electron to the nucleus becomes
large. Both TDHF and the usual adiabatic approximations for V. in TDDFT yield singly-
excited states, therefore give a very poor description for states that have doubly-excited
character. Such mixed states are often important for describing surface crossings, conical

intersections, and extended conjugated systems. 289302:3327337 For modeling core-electron exci-

tations, there is a consistent improvement in the absolute values of the calculated excitation
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energies with increasing Hartree-Fock exchange. 5338340 Particularly, short-range exchange
has been shown to be an important component of hybrid functionals applied to core excita-
tions. Both TDHF and TDDF'T should be used with extreme caution in modeling open-shell

341-343

systems such as transition metal complexes or systems with multi-reference character

where a single Slater determinant provides a poor starting reference.

2.2 Real-Time Time-Dependent Semi-Empirical Methods

Semiempirical methods have a long history.3** With the growing interest in excited state
properties and dynamics of large molecular systems, these methods have been revisited in

1345 and Pariser-

recent years. The first examples of semiempirical methods (i.e., the Hiicke
Parr-Pople (PPP) methods), were limited to the description of 7 networks in organic sys-
tems. This treatment was later extended by Hoffman to both 7 and ¢ bonding.® Subse-
quently, Pople and Segal developed a series of semiempirical Hamiltonians based on HF the-

347348 intermediate neglect

ory, namely, the complete neglect of differential overlap (CNDO),
of differential overlap (INDO),?* and neglect of diatomic differential overlap (NDDO).3%
The INDO (INDO/S) Hamiltonian was further reparametrized by Zerner and co-workers in
order to evaluate UV /Vis spectra for organic systems within the frameworks of configuration
interaction with single excitations (CIS) and the random phase approximation (RPA),35! 355
respectively. Since then, this approach has been used for a broad range of systems including
organic electronics, organic dyes, conjugated polymers, biological molecules and nanopar-

ticles, 356-368

INDO/S parameters are now available for transition metals, lanthanides, and
actinides.?%937 More recent improvements to the INDO/S method, INDO/X, have also been
reported by Voityuk. 3™ Other approximate methods include the modified neglect of diatomic
orbital (MNDOQ)3™37 and its parametrized model 3 (PM3) or MNDO-PM3 methods. 376377
The semipirical density functional tight binding (DFTB) method,3™ 3% which is formally

based on DF'T, has also been extensively developed over the last two decades.

Despite this long history, real-time formulations of semi-empirical methods have only been
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reported within the last two decades. The PPP Hamiltonian, which includes the important
Coulomb interaction among 7 electrons, is particularly useful for studies of electronic prop-
erties of conjugated molecules. Mukamel and co-workers have successfully developed and
employed real-time PPP Hamiltonian for studies of spectroscopic signals and electron dy-
namics of conjugated organic molecules.3¥173%5 Bartell et. al.3*¢ and Ghosh et. al.¥" have
reported real-time time-dependent implementations of the PM3 and INDO/S methods using
the Liouville superoperator approach and Chebyshev time propagation framework to study
the time-dependent response to a weak pulse. They studied the UV /Vis spectra of a range
of molecules, including large systems like the tyrosine chromophore in the ubiquitin protein
(Fig. 4), the betanin dye molecule in the presence of methanol and water, and the Nile
Red chromophore in a variety of solvents (acetone, ethanol, toluene and n-hexane). Both
approaches yield spectra that are comparable in quality to those obtained from RT-TDDFT
simulations or experiment. Large scale real-time DFTB simulations have also been used to

model electron dynamics in complex systems such as solvated nanodroplets, '*® plasmonic

388,389 390,391

nanoantennas, and dye TiO, nanoparticle hybrids for charge injection, such as

those shown in Fig. 5.

2.3 Real-Time Time-Dependent Configuration-Interaction Meth-

ods

Time-evolved multiconfigurational wave functions are ideally suited for modeling time-resolved
spectroscopies or excited-state properties in strong perturbations, in part, because they do
not exhibit the deficiencies of RT-TDDFT that result from the use of approximate adiabatic
exchange-correlation functionals of the density.

The conceptually simplest multiconfigurational wave function approach is time-dependent

configuration interaction (TD-CI), wherein the wave function W(¢) is expressed as a linear
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Figure 4: RT-INDO/S spectra of tyrosine in the gas phase and in the ubiquitin protein
environment. The experimentally observed small red shift within the protein environment
is qualitatively reproduced. Adapted with permission from Ref. 387. Copyright (2017)
American Chemical Society.

combination of electron configurations {®x }:
U(t) =) Ck(t)0y. (10)
K

Here, {Ck(t)} are time-dependent CI expansion coefficients, and {®} represent electronic
configurations (Slater determinants or configuration state functions). If all configurations are
included in the wave function expansion, TD-CI gives the exact description of the dynamics

of a many-electron system,

iC(t) = H(t)C(t). (11)

The total number of configurations in the determinant-based full CI framework is

Nyt = (]\;b) (12)

e

where N, and n, are the total number of orbitals and electrons, respectively, in the system.

Since the full TD-CI method is exponentially complex, the CI expansion is often trun-
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Figure 5: Population evolution of dyes involved in both direct (type-I) and indirect (type-1I)
photoinjection into TiOy were studied with real-time DFTB. Adapted with permission from
Ref. 390. Copyright (2012) American Chemical Society.

cated in terms of either the excitation operator (e.g., singles and doubles)?333539,106,392,393
or the space used to construct the full CI basis (e.g., the complete active space (CAS) ap-

proach).28730,32,107,110,3947396 As the

size of the truncated space increases, the time-evolution
of the approximate wave function approaches the asymptotic limit of the full TD-CI solution.

As an example, the CAS Hamiltonian is given in the determinant basis as

Hicr(t) = (K| Y (hew + Y (2(tulii) — (ti]iu)) |L)

]S S (o) (BB — 80 1) (13)

tuvw

where t,u,v,w label the orbitals of the active space, and h,, and (pg|rs) represent one- and
two-electron integrals, respectively. qu is a spin-adapted excitation operator
Epq = af g0 + @) 543, (14)
defined in terms of the creation (a') and annihilation (a) operators of second quantization,
respectively.
The TD-CI wave function can be propagated in the basis of eigenstates of the CI Hamil-
tonian, in which case the time-evolution operator can be expressed as a unitary matrix.

However, this approach requires that the Hamiltonian be fully diagonalized to obtain all CI

states; the transition dipoles between all states must then also be computed. This approach
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is computationally expensive and generally infeasible, with the exception of very small sys-
tems or small CAS problems. On the other hand, the time-consuming matrix-vector product

32,396,397 which reduces

in Eq. (11) can be computed within the determinant basis on-the-fly,
memory requirements and allows for the consideration of more complete CI expansions and
the study of larger systems.

The CI wave function can be expanded in terms of excited determinants derived from
restricted, unrestricted, or noncollinear mean-field reference functions. When a truncated
CI expansion is used with a Slater determinant basis, the CI wave functions inherits any
broken symmetries associated with the reference configuration. In a variational treatment,
symmetry breaking can be advantageous in that it may lower the energy of the system.
However, unphysical bright transitions to different spin states may arise from the broken
symmetry wave function, and these features should be removed from calculated spectra and
electric properties. Given a reference that is an eigenfunction of both S, and S 2 spin-adapted
configuration state functions (CSFs), which are also eigenfunctions of these operators, are
an appealing alternative to excited determinants when expanding the CI wave function.
Within a CSF basis, the CI wave function will also be an eigenfunction of S, and S2, and
the effective CI space will be smaller because the Hamiltonian can be block-diagonalized

according to spin state. 333839

TD-CI electron dynamics have been used to model photoionization, 28:106-108,110,112-115,393,398,399

32,35,39,392,394,400 29,30,37,38,107,392,393 iy o-

linear spectroscopies, and nonlinear optical responses.
dependent configuration interaction singles (TD-CIS) is the most commonly used multicon-
figurational approach. TD-CIS is particularly useful when the underlying chemical processes
are mostly driven by single-electron dynamics, such those in linear optical response and
photoionization. Unfortunately, TD-CIS tends to overestimate both static and dynamic
hyperpolarizabilities due to a lack of electron correlation in the description of the ground
37,38,392,393

state.

In the nonlinear and nonperturbative regime, it is important that the wave function
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include configurations which are multiply substituted, relative to the reference configura-
tion. As such, the use of a complete-active-space CI (CASCI) formalism becomes advanta-
geous. TD-CASCI has been used to investigate population dynamics and simulate spectro-
scopies.333% This active-space approach has been generalized to the restricted active space
(RAS) CI formalism which allows treatment of larger systems but possesses the drawback of
a loss of size extensivity.1% In TD-CASCI, the choice of initial orbitals is of key importance.
This has recently been highlighted by Liu et. al.,3? who investigated the effect of different
initial orbitals in the TD-CASCI calculation of absorption spectra.®? Similarly, in the nu-
merical grid implementation of the time-dependent truncated CI approach, pseudo-orbitals
based on HF orbitals have been demonstrated to be a decent orbital basis for the study of
strong-field ionization, photoionization, and X-ray IR pump probe ionization. %8

Recent years have also seen the development of TD-CASSCF where the wave function
obeys the time-dependent variational principle by allowing variations in both the CI coef-
ficients and the orbitals; 2831394399401 thig approach contrasts with TD-CASCI wherein the
orbitals remain fixed. This technique has also been extended to the RAS partitioning, allow-
ing a detailed analysis of the role that multi-electron excitations play in the description of
nonlinear properties, as well as the study of high harmonic generation spectra and ionization

of carbon and beryllium atoms. 230

2.4 Real-Time Time-Dependent Coupled-Cluster Methods

As discussed in Sec. 2.3, wave function-based time-domain approaches do not exhibit many
of the well-known failures of RT-TDDFT, making them desirable candidates for modeling
strong or long-time light-matter interactions. However, real-time methods built upon the
configuration interaction expansion of the wave function suffer from their own problems.
For example, the lack of correlation effects in TD-CIS often renders it unreliable (e.g., for

37,38,392,393)

estimating dynamic and static hyperpolarizabilities . A truncated CI scheme such

as CI with single and double excitations (CISD) is neither size extensive nor is it particularly
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accurate, and multiconfigurational CI is exponentially complex. On the other hand, coupled-
cluster (CC)-based approaches are highly accurate, rigorously size extensive when truncated
at any excitation order, and can be realized in polynomial time.

The ground-state (CC) coupled-cluster wave function is given by
[Wee) = e[ @o) (15)

where |®g) represents a single-determinant reference function, and T is the cluster operator,

defined in second-quantized notation as

T = Zt“wr thj fadaa; + ... . (16)

ijab

If the cluster operator is not truncated, full CC theory is numerically equivalent to the full
CI. Further, as mentioned above, CC theory has the useful property that it is rigorously size
extensive should Eq. (16) be truncated to any excitation order (i.e., at the level of single and
double excitations, as in CCSD4%?). The CC ground-state energy and cluster amplitudes are
determined using a projection approach that is nonvariational and which slightly complicates
the evaluation of properties because the Hellman-Feynmann theorem cannot be applied. The
complete parametrization of the ground state thus requires a generalized Hellman-Feynmann

theorem and a stationary Lagrangian function of the form
L = (Ve H| o), (17)

where

(Too| = (@ole (1 + A), (18)
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and A represents a de-excitation operator, defined as

Z Noala, + = Z Naalalaya, + ... . (19)
z]ab
The non-Hermiticity of this formalism and the fact that both right- and left-hand CC wave
functions are required to define ground-state properties play important roles in the extension
of CC theory to the time domain.

Given a time-dependent Hamiltonian operator, H (t), the simplest way to achieve a time-
dependent CC (TD-CC) theory is to build time-dependence into the right-hand CC wave
function [I" — T(t)] while ignoring the non-Hermiticity of the theory and assuming that
the underlying molecular orbitals are independent of time. Under these assumptions, which
define the TD-CC formalism of Huber and Klamroth,*” the time-dependent Schrodinger

—T'(¢)

equation can be left-multiplied by e to obtain

ih eT(t)%ef(t)‘q)o> _ e*T(t)Jfl(t)eT(t)@o), (20)

and programmable expressions for the time derivatives of the cluster amplitudes can then be
obtained upon considering the Baker-Campbell-Hausdorff expansions of both the similarity-
transformed Hamiltonian and time derivative operators that arise in Eq. (20).%% Few groups
follow this precise scheme, though, for two reasons. First, a correct description of time-
dependent properties (e.g., the energy, dipole moment, etc.) requires knowledge of the time-
evolution of both the right- and left-hand CC wave functions. Indeed, the CC wave functions

404 and the complete specification

should satisfy a time-dependent bivariational principle,
of the time evolution of the system requires the integration of both the time-dependent
Schrodinger equation and its complex conjugate. Second, Huber and Klamroth” observed
that, in practical computations at the time-dependent CCSD (TD-CCSD) level of theory,

the lack of time-dependence of the orbitals apparently leads to numerical instabilities that

emerge when considering either large basis sets or intense external electric fields. Pedersen
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and Kvaal® later confirmed intense-field-induced instabilities within a more sophisticated
TD-CCSD formalism that evolved both the ¢- and A-amplitudes.

Regarding the time-evolution of the molecular orbitals, in the 1970s, Hoodbhoy and

403,406 4

Negele and Schonhammer and Gunnarsson“’” separately proposed that the molecular
orbitals should evolve in time, with the former authors suggesting that the CC amplitudes
could be evolved within the orbital basis defined by the equations of motion of TDHF theory.
In 2012, Kvaal®® refined these ideas with his orbital adaptive TD-CC (OATDCC) heirarchy,
which employs time-varying biorthogonal orbitals and interpolates between the MCTDHF
and TDHF approaches when the cluster operator is chosen to include all excitation levels or
none, respectively. A similar treatment, based upon time-varying orthonormal orbitals, can
be found in the time-dependent orbital-optimized CC (TD-OCC) method of Sato et al.,*
although it should be noted that, for systems with more than two electrons, orbital-optimized
CC theory does not converge to the full CI limit.*%®

Some aspects of the structure of both the OATDCC with double excitations (OATDCCD)
and TD-OCC with double excitations (TD-OCCD) approximations resemble those of Huber
and Klamroth’s TD-CCSD, with two significant exceptions. First, OATDCC and TD-OCC
ignore single-particle transitions in the cluster operator, as they are rendered redundant
through the time dependence of the orbitals. Second, and more significantly, the TD-CC
scheme of Huber and Klamroth considers only the time evolution of the t-amplitudes (that
define the right-hand CC wave function), whereas OATDCC and TD-OCC evolve both the
t- and A-amplitudes (as does the TD-CCSD approach of Pedersen and Kvaal%). Huber and
Klamroth attempted to circumvent the need to consider the time evolution of A-amplitudes
by defining time-dependent quantities in terms of an approximate CISD wave function, con-
structed from TD-CCSD amplitudes. However, observables computed in this way incorrectly
assume complex values upon interaction of the system with an oscillating electric field. On

the other hand, Pedersen and Kvaal?%® demonstrated that a time-dependent formalism that

respects the non-Hermiticity of CC theory will retain physically meaningful (i.e., real) ob-
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servables; small imaginary contributions to quantities such as the energy are purely numerical
artifacts that can be removed through the use of a suitable integrator.

The nonlinear nature of the cluster operator leads to complicated equations for the time-
evolution of the cluster amplitudes. The complexity of these equations and any related
potential numerical issues can be avoided by keeping the cluster amplitudes fixed at their
time-independent, ground-state values and considering time-evolution of the system only at
the equation-of-motion CC49411 (EOM-CC) level of theory.??:3537:49:5253 Within the con-

ventional EOM-CC framework, the I*" electronic state is represented by

Ri|Wec) = TO+Z7’&T&Z—|— Zr;gb Falasa, + ... )eT| D), (21)

ijab

where the expansion coefficients rq, r?, etc., comprise the (right-hand) eigenvectors of the

[

normal-ordered similarity-transformed Hamiltonian,

HN = G_T[A{GT - ECC. (22)
Here, Ecc represents the energy associated with the ground-state CC wave function, which is
recovered in the EOM framework with Ry = 1. The non-Hermitian nature of the similarity-

transformed Hamiltonian implies that these right-hand eigenfunctions comprise one half of

a biorthogonal set of functions; the complementary left-hand eigenfunctions are
(Woo| = (@ole T (1o + Zzz ilag + - Zzgf falapa, +...). (23)
z]ab

In this representation, a general time-dependent wave function can be represented by right-

and left-hand states

(U(t)) = R(t)eT |®y), (24)
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and

(U(t)| = (@ole TL(1), (25)

whose time evolution are governed by the time-dependent Schrodinger equation and its
complex conjugate, respectively.

We are only aware of two examples of laser-driven electron dynamics described by time-
dependent EOM-CC (TD-EOM-CC). In 2011 Sonk et al.?® used TD-EOM-CC with single
and double excitations (TD-EOM-CCSD) to explore the response of butadiene to short,
intense laser pulses, and in 2012 Luppi and Head-Gordon®" applied TD-EOM-CCSD to
model high harmonic generation in Hy and N;. In both cases, the time-dependent wave
function was expanded in the basis of field-free eigenstates of the similarity-transformed
Hamiltonian. In this basis, the transition dipole matrix that comprises the field interaction is
not Hermitian, which could potentially lead to dynamics that do not conserve the norm of the
wave function. The similarity-transformed Hamiltonian is also not strictly Hermitian, even
though it is diagonal in this basis. In both Refs. 35 and 37 the non-Hermitian components of
the matrices are disregarded. The largest difference between the two formalisms described in
these papers is that Sonk et al., having Hermitized the similarity-transformed dipole matrix,
employed a propagation scheme suitable for a Hermitian theory (that is, the time-dependent
state is characterized by only a single wave function), whereas Luppi and Head-Gordon
retained distinct left- and right-hand time-dependent wave functions.

Nascimento and DePrince?*% have also developed a TD-EOM-CC formalism with a
slightly more limited scope than those discussed above. In their work, the linear absorption
lineshape function given by Fermi’s Golden Rule is obtained from the Fourier transform
of a dipole autocorrelation function. This treatment is similar to that employed decades

412-414

earlier in the context of fluorescence and Raman spectroscopy and in the vibrational

coupled-cluster approach proposed by Prasad in 1988.41°
It can be shown??% that each Cartesian component of a linear absorption lineshape

function can be expressed as the Fourier transform of a dipole autocorrelation function
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defined as

Iiw) = [ dt e o) M), 20

o0

Here, (M,(0)| and |M¢(0)) are left- and right-hand dipole functions defined at time ¢t = 0 by
(Me(0)] = (®o|(1+ A)fze (27)

and

[M¢(0)) = fig|®o), (28)

respectively, and fi¢ represents the £ component (€ € z,vy, z) of the similarity-transformed
dipole operator (fie = e‘T,&geT). A dipole strength function, S(w), which is formally equiv-
alent to the oscillator strengths which arise within conventional EOM-CC theory, can then

be obtained from the real part of this lineshape as
2
S(w) = Jw > Re{I:(w)}. (29)
3

Nascimento and DePrince applied this formalism to the evaluation of UV /Vis absorption
spectra?? at the TD-EOM approximate second order coupled-cluster (CC2)!6 level of the-
ory and X-ray absorption fine structure?® at the TD-EOM-CCSD level of theory. As with
other real-time approaches, one of the benefits of TD-EOM-CC is that broad-band absorp-
tion spectra can be generated from a single time-domain simulation (for each Cartesian
component of the absorption lineshape function). For example, Fig. 6 illustrates a TD-
EOM-CCSD absorption spectrum for carbon monoxide that spans 600 eV. More recently,
Nascimento and DePrince have generalized this moment-based TD-EOM-CC formalism to
other linear electronic spectroscopies, demonstrating, for example, the numerical equiva-
lence of electronic circular dichroism spectra generated at the TD-EOM-CC and conven-
tional EOM-CC levels of theory.%? Further, DePrince, Li, and their coworkers® have also

recently extended TD-EOM-CC theory to the description of relativistic effects within the
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Figure 6: Broadband absorption spectrum for carbon monoxide computed at the TD-EOM-
CCSD/aug-cc-pVTZ level of theory. Adapted with permission from Ref. 49. Copyright
(2017) American Chemical Society.

t 98417431 framework.

exact two-componen
Closely related to time-dependent CC theory is the time-dependent algebraic diagram-

matic construction (ADC) approach, 046432 which has been applied to a variety of problems,

40,45 41,42

including ultrafast charge and energy*>** migration, metastable states, and X-ray
absorption spectroscopy.*® The ADC formalism is Hermitian and its extension to the time

domain is thus slightly less complicated than that of CC theory.

2.5 Real-Time Time-Dependent Two-Component and Relativistic

Methods

Conventional electronic structure methods are incapable of simulating time-dependent spin
precession. The reason for this shortcoming is the common choice to align electronic spins
(anti-)parallel with respect to each other within the electron configuration. In single-reference
techniques, such as unrestricted Hartree-Fock and spin-density density functional theories,
this choice leads to spin orbitals that are eigenfunctions of the spin operator S.. Asa result,
the number of spin-up and spin-down electrons will be conserved throughout any dynamical

process.
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In order to obtain a proper description of spin precession, one must consider the full vector
form of the time-dependent magnetization m(r). The dynamics of m(r), which corresponds
to the spin quantization axis, requires a non-collinear spin electronic structure framework,
such as that provided by two-component or generalized Hartree-Fock/Kohn-Sham meth-
ods. 884337450 Smooth transitions between various spin configurations are enabled through

the spinor basis,

beet) = ¢r(r,1) | (30)

o (r,t)

where the spatial functions {¢g(r,t)}, {¢;(r,t)} are expanded in terms of a common set of

basis functions {x,(r)}

r(r,t) =) em(thxu(r), (31)

GL(rt) = em(t)xu(r): (32)

The first example of ab initio non-collinear real-time electronic dynamics was reported in
2014.%8 In that work, Ding, et al. derived and utilized a density-matrix based two-component

Liouville-von-Neumann equation in the orthonormal basis: %7

9 [Py Py | [Eer) Fer)) (P PR (33)
i \poe posw ) |\Eew mom ) e pow) |

where P'*(t) and F'*%(t) are the density and Fock/Kohn-Sham matrices in an orthonormal
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basis, which are transformed from AO-basis quantities in with a spin-blocked structure,

PI(t) =3 cu®) - i), o7 € {a, 5} (34)

F77(t) = h7(t) + 067 [I7(t) + I ()] — (1 = QVT + CKT(1), (35)

The magnetization densities P'*? and P’#* give rise to the non-collinear spin projection on
the 2 and y rotational axes. The off-diagonal Fock/Kohn-Sham matrices, F'*# and F'%
arise from the spin coupling with external (e.g., magnetic field) and internal (e.g. spin-orbit
coupling) perturbations. For hybrid DFT, the HF exchange integral K takes on a fractional
value scaled by a non-zero scaling factor ¢, whereas ¢ = 0 for pure DF'T kernels.

The non-relativistic Hamiltonian ignores interactions explicitly associated with the spin
degrees of freedom, such as the spin-spin interactions, spin-orbit couplings, and spin-magnetic
field interactions. Although it seems the extension of the non-relativistic time-dependent
many-electron methods to the relativistic case is straightforward, incorporation of special
relativity introduces new conceptual difficulties. First, the theory of special relativity as-
sumes the equivalence of all inertial reference frames under Lorentz transformation of the
space-time coordinates. A relativistic quantum mechanical description of a molecular sys-
tem requires a definition of a Lorentz invariant molecular Hamiltonian, which is not readily
established. As a result, separation of the space-time coordinates must be performed in
a particular reference frame and will only be valid in this reference frame. For molecular
systems, the most convenient reference frame is the Born-Oppenheimer frame where the
nuclei are at rest, and the electromagnetic potential created by the nuclei is simply a scalar
potential.

The time-dependent two-component framework [Eq. (33)] is well-suited for the inclu-
sion of scalar relativistic or spin-coupling effects, subject to an appropriate transformation
from the bi-spinor or four-component representation of the Dirac equation, such as the

Douglas-Kroll-Hess, **' 453 the normalized elimination of the small components*°*45® or the
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156:457 and the the exact two-component (X2C)

zeroth order regular approximation (ZORA)
method. 417431 Because relativistic methods are not the focus of this review, we refer read-
ers to Refs. 458, 459, and 430 for a more thorough review of the subject matter. Applications
of the relativistic real-time four-component method were first reported by Repisky, et al.%°
and more recently by De Santis, et al.%® for computing absorption spectra. In 2016, a
real-time relativistic two-component method was developed by Goings, et al.”™ to study
spin-forbidden excitations; this approach was then extended to the description of nonlinear

optical properties by Repisky, et al. 1%

2.6 Real-Time Methods in Complex and Non-Equilibrium Envi-

ronments

Chemical properties, including nuclear conformation, spectroscopy, and chemical reactiv-

ity, can often be dramatically modified by interaction with the surrounding medium (e.g.,

461-464 465,466

through solvation). These environmental interactions could be steric or specific

electronic perturbations such as hydrogen bonding, dipole-dipole, or non-covalent interac-

tions. 467~

469 Unfortunately, treating the system and its surrounding environment with high
levels of theory is a computationally intractable.

Instead, practical theoretical models focus on capturing the most important aspects of
the system-environment interaction. One of the most computationally tractable approaches
is the polarizable continuum model (PCM) that replaces the explicit atomistic environ-
ment with an implicit solvent model.*™® 4™ The real-time time-dependent formalism of the
equilibrium PCM (TDPCM) has been developed into the RT-TDHF/RT-TDDFT frame-
work. 138139154 Tpy the initial approach, the environment was kept in equilibrium with respect
to the polarization of the system by relaxing the solvent dielectric constant from the dy-
namic, high frequency (optical) value to the static, zero-frequency value according to an

empirical relaxation model. Later, a non-equilibrium TDPCM approach was introduced to

explicitly treat the evolution of the dielectric medium as it responds to the time-dependent
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system polarization.1°51°6

Although continuum models can provide an accurate description for systems with weak
interaction with the environment,*™479481 an atomistic description of the environment be-
comes necessary for strong specific system-environment interactions (e.g., solute-solvent hy-
drogen bonding or protein active sites). %2 Hybrid time-dependent models treat the high-level
time-dependent electronic dynamics quantum mechanically (QM), while the environmental
response is described at a classical molecular mechanics (MM) level. 837485 The most com-
mon example of these hybrid QM/MM models electrostatically embeds the QM system on
effective point charges to represent the environment atoms. Morzan et al. employed an elec-
trostatic embedding model in a real-time QM/MM method to capture the solvatochromic
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tem and its environment. Recently, many approaches for including the system-environment

mutual polarization have been explored, including“fluctuating charges”, #8749 “effective

fragment potentials”, 41492 “induced dipoles”,**3 497 and Drude oscillator-based models.4%®
Li and Mennucci have extended the polarizable molecular mechanics (MMPol) based on
the induced dipole formalism*%*4% to the real-time regime coupled with RT-TDHF /RT-
TDDFT %5249 and TD-CASSCF.3? In these approaches, the electronic degrees of freedom of
the environment, modeled by the induced dipoles with frequency independent polarizabilities

in the MMPol regime, respond instantaneously to the electric field at each polarizable site.

This approximation is reasonable and useful for cases where the electric field generated by

the QM region is oscillating much more slowly than the response in the MM region. 499:500
4.0
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Figure 8: (Left) 11-cis retinal protonated Schiff base (RPSB) in a shell of residues from
bovine rhodopsin. The chromophore is covalently bonded to the Lys296 residue. The free
valency created on Cs by the division of the QM (shown in a ball and stick representation)
and MM (shown in a line representation) regions was capped with a hydrogen link atom.
See Ref. 494 for details in the partitioning scheme. (Left) LR- and RT-TDDFT/MMPol
computed absorption spectrum of RPSB in bovine rhodopsin. Adapted with permission
from Ref. 152. Copyright (2017) American Chemical Society.

Studies coupling the polarizable embedding approach with real time electron dynamics
have been successful at predicting spectroscopic properties, such as solvatochromic shifts, as

well as providing unique insight into the responsive dynamics of the electronic degrees of free-
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dom in a classical environment. Wu et al. captured the solvatochromic effects of water on the
absorption spectrum of coumarin, a common solvatochromic dye; this study also investigated
the physical extent of the mutual polarization between dye and solvent after perturbation,
demonstrating the diminishing effects of polarizable solvent on the dynamics of the quantum

%01 Donati et al. explored spectroscopic properties of

subsystem as a function of distance.
a similar chromophore, coumarin-153, in methanol and in a covalently bound environment
that cannot be modeled with continuum embedding approaches.*? The calculated absorp-
tion spectrum of retinal protonated Schiff base (RPSB) in rhodopsin ( Fig. 8) demonstrated
the mutual polarization of electronic degrees of freedom in environments tightly coupled to

the quantum system. 52

3 Numerical Techniques

3.1 Basis Set Representations

Over the years real-time time-dependent electronic structure approaches have been devel-

oped in a number of widely used electronic structure programs, with wave function or density

15,17-23,33,502

matrix representations ranging from Gaussian-type functions, numerical atomic

14,503-505 27,506-508 24,122,127,509-514

orbitals, real-space grids, planewaves, and mixed Gaussian-

type functions and planewaves.?® Other promising representations include Lagrange func-

518,519 520

tions, 515517 finite elements and maximally localized Wannier functions.

Of the various real-time electronic structure approaches, RT-TDDFT has been explored
with all the above mentioned basis sets, while post-Hartree-Fock theories have only been
implemented with Gaussian orbitals, taking full advantage of their analytical properties.®2!
This has allowed the development of ground-, excited-state and higher-order response prop-
erties based on electronic structure theories of increasing complexity over many decades. It

is also the mostly widely used basis set representation in quantum chemistry. Each of these

representations have their strengths and weaknesses and the specific choice depends on the
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system and phenomena being investigated, accuracy and algorithm requirements.

3.2 Time Propagation Methods

A key component in real-time schemes involves the time propagation of the wave function

or the density matrix. The correspondence between quantum Hamiltonians and unitary

522) imposes strict requirements on time-propagation al-

time propagators (Stone’s theorem
gorithms. As a result, general purpose integrators like the Runge-Kutta method®?* are not
necessarily appropriate for evolving the TDSE as they can become unstable with increas-
ing system size, and stable propagation often necessitates the use of small time steps. On

15,259,524-527

the other hand, algorithms based on the Magnus expansion, which are unitary by

405,528-539

construction, and other symplectic integrators can be useful in this context. Beyond

ﬁ‘540 259,541 for

this review, we refer the reader to the reviews of Koslo and Castro and workers
a more general overview of time propagation schemes.

The goal of any time-propagation method is to find a numerical solution of the time-
dependent Schrédinger or Dirac equation [Eq. (1)] or associated approximations. The Mag-

nus expansion achieves this via an exponential form of the propagator U(t,ty) that relates

wave functions or density matrices at different times as follows,

() =Ult, to)¥(to) (36)
U(t, to) = exXp (Q(t, to)) ) U(tg, to) =1 (37)
Given this propagator, Eq. (1) can be cast as,

%U(t, to)¥(to) = H(t)U (¢, to) W (to) (38)
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where H(t) = ~tH(t). In the Magnus expansion, Q(t,%,) is written as a power-series,

t
Q(t, to) :/ﬁldtl (39)
to
1 t t1
+§/dt1/dt2 [Hl,HQ]
to to
t t t

1 5
+é/dt1/dt2/dt3 ([ﬁl,[ﬁg,ﬁlg]] - [ﬁlg,[FIQ,ﬁl]]) o
to to to

where Hy, = H(t;). One can think of each order in this series as a correction accounting
for the proper time-ordering of the Hamiltonian. A higher order expansion allows for larger
time steps, but this benefit must be weighed against the subsequent requirement that more
Hamiltonian evaluations be carried out at every time step. Omne complication with the
Magnus propagation approach arises from requiring the knowledge of the Hamiltonian at a
future time, which, in the case of single-particle theories like RT-TDHF and RT-TDDFT,
is unknown.'® As a result, different predictor schemes have to be used, which also have to
conserve time-reversibility.

The simplest propagator based on the Magnus expansion just uses the first term in

Eq. (39),
¢
Q(t, to) = /Ij]ldtl (40)
to
Equation (40) can be numerically integrated with a forward-Euler-like time integrator but

more accurate approaches are based on second-order methods.

A popular second-order method approximates the first term in Eq. (39) by the midpoint

rule, leading to an O(At?) time integrator 132542

Ultnr) = exp (ALH (b ) ) (1) (41)
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where At is the time step and subscript k is the time index. Modifying the time index to
eliminate the need to evaluate the Hamiltonian at fractional time steps, by changing the time

step to 2At, leads to the modified midpoint unitary transformation (MMUT) method 595526

Ultin) = exp (2ALH (1)) (1 1) (42)

The MMUT method is a leapfrog-type unitary integrator that assumes H is linear over the
time interval and that higher-order terms go to zero when this approximation is applied to
Eq. (39). Other integrators based on the Magnus expansion have also been developed. 29527
These integrators are all symplectic and consequently practically energy conserving. The
Runge-Kutta class of methods, on the other hand, are non-symplectic and are thus subject
to energy drifts over the course of a long-time simulation. Real-time methods using Magnus

integrators require the evaluation of a matrix exponential, which is non-trivial and often the

most time consuming step. In matrix form, Equation (42) can be rewritten as

P'(tis1) = Uty) - P'(te-1) - U'(te) (43)

Ul(t),) = exp[—i2AtH(t,)] (44)

The time-evolution matrix U(t;) can be constructed using various methods such as direct
diagonalization or power-series- or Lanczos-based approximations.

For small Hamiltonian matrices (i.e., those for which direct diagonalization at every time
step does not create a bottleneck), the time-evolution matrix can be constructed using the
eigenvectors C(t;) and eigenvalues €(t;) of the matrix representation of the Hamiltonian at

time tk

Cl(ty) - H'(1y) - C(ty) = €(ty) (45)

U(t) = C(ty) - exp[—i2Ate(ty,)] - CT(ty) (46)
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The Baker-Campbell-Hausdorff (BCH)?®# and other polynomial expansions offer an at-
tractive alternative to matrix diagonalization as they only involve general matrix multiplica-
tion operations, which are more straight-forward to parallelize. '® Defining W = —i2AtH(t,)

and writing Eq. (42) in matrix form,
P'(ty41) = eV P (tyy) (t) eV, (47)
we can use the BCH expansion to evolve the density matrix as,

P/ (ths) = P'(tc1) + 35 (Wi P (1) 5 (W (W P10} + 5 (W (W (W PGt )] -

(48)

The BCH expansion has been shown to have superior convergence properties as compared
to a simple power series expansion.®

The Chebyshev expansion approach?95447546 hag also been explored as an alternative to
diagonalization in the construction of the time-evolution operator given by Eq. (44). 544545547551
Since the Chebyshev expansion requires matrix eigenvalues within the spectral range of
[—1, 1], an approximate estimate of the upper and lower bounds of the eigenspectrum is used
to achieve this mapping of the Hamiltonian matrix. 387551
Propagation schemes for correlated wave functions (i.e., at the CI, CC, or ADC levels

of theory) are oftentimes based on simple procedures, such as the fourth-order Runge-Kutta

404) " How-

(RK4) integrator?24749:50 (or RK4 augmented by a variational splitting®®? scheme
ever, the utility of more sophisticated integrators has also been explored in this context. For
example, for linear and Hermitian expansions of the wave function, the real and imaginary
parts of the wave function form a pair of conjugate variables that obey classical equations of
motion, a fact that has inspired the development of high-order explicit symplectic integrators

536,538,539

for general wave packet dynamics; explicit symplectic integrators of this form have

been applied to electron dynamics at the truncated CI level of theory.3 Pedersen and Kvaal

44



have noted that the ¢- and A amplitudes of CC theory form a pair of conjugate variables that

obey complex classical equations of motion and have developed an implicit symplectic inte-

405 40,43-46

grator tailored to that problem.*” In addition, many applications of time-dependent
ADC theory employ the short iterative Lanczos (SIL) scheme.5%3 In SIL, a tridiagonal sub-
space approximation to the Hamiltonian is constructed according to the Lanczos procedure,
and the system is evolved according to dynamical equations associated with this approxi-
mate Hamiltonian. This approximation is only valid for short time intervals, after which the
Lanczos procedure must be repeated to construct an updated approximation to the Hamilto-
nian. This SIL procedure has been extended to imaginary-time dynamics at the ADC level of

theory, 32 where it has been demonstrated that imaginary time TD-ADC with SIL becomes

competitive, in terms of computational effort, with frequency-domain ADC calculations.

3.3 Signal Processing

Real-time methods can be very efficient for computing spectra in molecules and materials
with a high density of states as, in principle, an entire absorption spectrum can be computed
from a single real-time simulation (see Sec. 4.1). In a nutshell, this requires computing
the frequency-dependent response of the system via Fourier transforms (FT) of the dipole
moment following interaction with a laser pulse with sufficient bandwidth to cover a spectral
region of interest. In practice, a narrow-in-time pulse (or delta function) is typically used.
Real-time methods, however, suffer from two main drawbacks: first, the spectra generated
from the dipole moment do not contain any information about the molecular orbitals or
excited states involved in each transition, which is typically how spectra are interpreted.
Second, long simulation times are typically required to resolve the spectra via FTs, with
denser spectra requiring longer simulations.

Many approaches exist for interpreting spectra generated via real-time methods. The
simplest approach is to visualize each transition by exciting a particular mode with a narrow-

band quasi-monochromatic field and plotting the deviation of the charge density (or other
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observable) from the ground state.!®% This process, however, involves a separate simulation
for each resonant peak, each of which requires a very long simulation times in order to
selectively excite a particular mode. This makes it unsuitable for spectra with multiple
nearby peaks. Alternatively, the FT of the deviation of the 3D time-dependent density from

k,%5 but this requires a FT at each

the ground state can be used to characterize each pea
point in space and involves either 4D data (z,y, z,t — x,y, z,w) or reduction via integration
over particular directions. Another method to extract orbital-resolved information involves
projecting the wave function onto the ground-state molecular orbitals (MOs) in order to
deconvolute the dipole moment into a sum of transitions between MO pairs. %5 In a density

matrix TDHF/TDDFT framework, this procedure requires the projection of the density

matrix and dipole operator onto the ground state MO basis:

PMO(1)=C'P (¢)C (49)

DM = C'DC, (50)

where C is the eigenvector matrix for the ground state Fock/Kohn-Sham matrix in the AO
basis. Using these quantities, the time-dependent MO dipole contributions can be defined
as

fiaa (t) = DRG PG () + DY PG (1), (51)

ia,d ia,d

where d = z,y, 2z, and 7,a are indices for the molecular orbitals, generally occupied and

virtual, respectively. The total dipole given by

N N
pa (D) = pao+ Y > piaa(t), (52)
=1 a=i+1

where N; is the number of steps in the simulation. The static contribution to the dipole is

given by
N¢

pao = » PNOD}S. (53)

=1
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Note that here the matrices are assumed to be unitary (i.e., no complex absorbing potential)
and square (i.e., no linear dependencies in the overlap matrix). For the more general case
involving linear dependencies, see Ref. 555.

Since the FT is a linear operator, the total spectrum is simply the sum of the spectra for
each of these transition dipoles, i.e., in TDHF/TDDFT the spectrum is a sum of the con-
tributions from all combinations of occupied—virtual MO pairs. Accordingly, the spectrum
can be decomposed into orbital contributions, much like in linear response calculations (see

Fig. 9). Note that p;,(w), which are not physical observables, can contain negative peaks

754 456 458 460 462 464 466 468
Energy (eV)

Figure 9: Ly 3 absorption edges for TiCly modeled with B3LYP and the aug-cc-pVTZ basis
set. The time evolving dipole was split into different spinor pairs and only contributions
from the 2p orbitals are included. Adapted with permission from Ref. 98. Copyright (2018)
American Chemical Society.

but the total dipole spectrum is guaranteed to be positive. The magnitudes of these features
can be used to construct numerical weights of each MO pair to the peak by integrating over
each peak (or via peak-fitting). These weights give a qualitative interpretation similar to
linear response coefficients, which makes RT methods an essentially complete replacement to
linear-response methods, albeit with more complicated and time-consuming data analysis.
There are two important caveats, however. First, only optically active excitations can be
measured, where as LR methods can capture selection or spin forbidden transitions. Sec-

ondly, this MO decomposition techniques are not valid for the case of strong-fields, where
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Stark shifting of the orbitals makes the projection onto the ground state in Eq. (51) invalid.

The main drawback of real-time approaches over frequency-domain (eigenspectrum-based)
methods is the long simulation times are often required to adequately converge a spectrum
via a Fourier transform, i.e., the Fourier “uncertainty principle”. This issue can be espe-
cially problematic for high energy spectra with high spectral densities, such as those relevant
to X-ray absorption. The simplest trick to improve spectral resolution is to preprocess the

signal by damping and padding with zeros:

/l(w):/ dt m(t)e™" (54)

- eit/‘r max
m(®) = [u(t) = ()l e™7, t<t (55)

0, t > tmax

where (p) is either the dipole moment at ¢ = 0 or the average, and 7 is a damping parameter
that corresponds to a phenomenolgical lifetime (linewidth) in the spectrum. This lifetime
must be chosen to be small enough such that the discontinuity in Eq. (55) does not intro-
duce ringing artifacts in the spectrum, which in practice can blur nearby peaks in a dense
spectrum.

Fortunately, there are numerous alternatives to Fourier analysis that can be used to accel-
erate spectral convergence of time signals without resorting to broadending. Such harmonic

556

inversion methods®®® include Prony’s method, filter diagonalization," % Padé approxi-

560-562 563,564

mants, and linear predictors. These methods have applications in virtually all

types of time-domain simulations ranging from classical electrodynamics, %6562 to molecular

558,557,559,565 There are advantages and disadvantages to

dynamics,®** to quantum dynamics.
each. As an example, filter diagonalization, fits the time signal to a sum of damped os-
cillations. This can rapidly converge spectra containing only a few dominant modes, but

may have convergence issues for highly dense spectra. Padé approximants (discussed be-

low) assume nothing about the line shape, but require a matrix inversion and can introduce
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artifacts into the spectrum if the time signal is too short. These techniques are especially
effective when used in conjunction with a dipole decomposition scheme, where each pi;,(w)
is computed separately using an accelerated transform, and the total spectrum is computed
from the sum of these contributions. This strategy exploits the fact that each transition
dipole is spectrally sparser than the total, which facilitates convergence of the accelerated
transforms.

A good general purpose transform is the Padé approximant to the F'T, which in a diagonal

form consists of writing the discrete F'T as a ratio of power series expansions:

M
M S agz®
p(z) = Z ci(z1)* = '740— (56)
k=0 Z bkz’“
k=0

where M = N;/2, and 2z, = e~“?! and the coefficients {c;} = u(tx) are the discrete values

of the input time signal. Thus, we have a linear system for the coefficients

M M M
Z cp” Z by, 2" = Z apz” (57)
k=0 m=0 k=0

with ag = ¢y and by = 1 chosen by convention. The unknown coefficients {a;} and {b;} are

determined by solving the matrix equation:
Gb=d (58)

where G is a N; X N; matrix with elements Gy, = ¢n,—mik, d is a column vector of length
N; with elements given by dy = —cn,+%, and b is a vector of length NV;. The elements of b

can be found via inversion of the G matrix, which has Toeplitz symmetry:

b=G'd (59)

49



The coefficients {a;} are then given by:

k
W= bmChm, k=1,...N, (60)
m=0

Once these coefficients have been determined, the FT can be computed using Eq. (56). Crit-
ically, since these coefficients are independent of frequency, the spectrum can be generated
for an arbitrary spectral density. This is analogous to extrapolating the input signal to an
arbitrarily long time. Although this procedure requires the solution of a linear equation
[Eq. (57)] for each p;, (), the cost of this procedure is modest, and, in practice, one can
often compute a fully converged spectrum with 1/5 or less of a simulation time compared to
a traditional FT (see Fig. 10). This approach is especially well-suited to X-ray absorption,
since one needs only consider transitions from a limited set of occupied orbitals, much like
566

orbital windowed linear response.

Accelerated Convergence using Padé Approximants
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Figure 10: Convergence of the valence absorption spectrum for water using a conventional
Fourier transform (FT; left) and Padé accelerated transition dipole scheme (PT; right) for
various simulation times. PT of the total dipole converges roughly 3 times faster than the
FT, and PT of the dipole contributions 7 times faster. Adapted with permission from Ref.
555. Copyright (2016) American Chemical Society.
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4 Application of Real-Time Time-dependent Electronic

Structure Methods

4.1 UV /Vis Spectroscopy

One of the biggest advantages of real-time electronic structure theory over solving for the
lowest energy eigenstates is the ability to simulate the linear (UV-Vis) absorption spectrum
of a system with a dense manifold of states. Using real-time electronic propagation, the
entire energy spectrum is obtained after Fourier transform of the dipole moment (Sec. 3.3),
providing the response of all electronic states that the system accesses via the applied per-
turbation. Real-time methods may be preferable over matrix eigenstate methods, and are
particularly advantageous for metallic systems and clusters, where collective oscillations of
the electrons are important for capturing plasmonic excitations. 144145151567 However, for
real-time propagation of the electron density with TDHF or TDDF'T, the time-evolution of
the electron density may be more cost efficient than solving for hundreds of excited states
via a linear response matrix formulation that requires generating a matrix-vector product

1.8% The crossover point in computa-

for all occupied-virtual orbital combinations, see Fig. 1
tional cost will depend on the implementation, the requested number of states, the desired
resolution of the spectrum, and time-step for numerical propagation.

The UV-Vis linear absorption spectrum can be obtained from a real-time simulation
by Fourier transforming the field-free time-dependent dipole moment after perturbation by
a weak, off-resonant perturbation (often an electric field applied as a delta function). To

obtain oscillator strength values that are proportional to the linear response values, the

dipole strength function S(w) should be used
S(w) = ZTr[o(w)], (61)

where o(w) is the absorption cross section tensor with diagonal elements that can be com-
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Figure 11: Absorption spectrum of C7oH3gNog (inset) calculated using the B3LYP functional
in combination with the 6-31G(d) basis set. The linear response TDDFT spectrum con-
tains 200 roots compared to the RT-TDDFT absorption spectrum from Fourier transform
of the dipole moment. Adapted with permission from Ref. 85. Copyright (2015) American
Chemical Society.

puted from the polarizability by

o (w) = “Twlm[%(w)], (62)
and
() = pi(w)
o (w) Ei(w) (63)

Here p;(w) and E;(w) are the Fourier transforms of the dipole moment and electric field for
1= x,Y, 2, respectively.

Early applications of the real-time TDDFT method by Yabana and Bertsch computed
the optical spectra for the benzene molecule!® and for metallic lithium clusters.® A few years
later, Ullrich and co-workers simulated the spectra and collision properties of sodium clus-
ters,?*? with QM/MM UV-Vis spectral simulations of biological chromophores performed
by Rubio and co-workers following closely after these early studies.™™ Real-time meth-
ods are now widely used for simulations of UV-Vis spectra for a variety of complex sys-

tems, 15:18,34,69,70,76-80,82,84-88,568,569
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4.2 X-ray Absorption Spectroscopy

Recent advances in synchrotron technology have greatly improved the temporal and energy
resolution of X-ray photons, making X-ray absorption spectroscopy (XAS) an indispensable
experimental technique in materials and chemical sciences. Excitation of core electrons to
unoccupied bound orbitals or to the continuum allows XAS to probe element specific chemical
processes that provide insights into the local electronic and binding environment.?7%57!

XAS K-, L-, and M-edge spectra are generated from photoexcitations of electrons in
n =1, n = 2, and n = 3 orbitals, respectively, where n is the principal quantum number.
Because core electrons move close to the speed of light, relativistic effects play an important
role in XAS. Scalar relativistic effects lead to contraction of core orbitals, which blue-shifts
the entire XAS spectrum relative to a spectrum calculated with a non-relativistic Hamil-
tonian. 99:338:339,:566,572-574 Qpin_orbit coupling splits the degenerate 2p orbitals into 2p; /2 and
2p3 /2 manifolds, giving rise to unique features in L-edge XAS spectra and a more complicated
spectra at the M-edge. Therefore, electronic structure methods that include relativistic ef-
fects are needed to accurately describe XAS spectra, especially at the L- and M-edges. A
uniform energy shift to spectra derived from non-relativistic calculations is often sufficient
for describing the K-edge.

Many ab initio methods have been developed to model core excitations, and the ma-
jority of these approaches operate within the frequency domain. K-edge spectra have been
obtained with linear response TDDFT (LR-TDDFT),%:338:566.574°577 4]0ehraic-diagramatic

1

construction,®® %0 linear-response density cumulant theory,®®' coupled-cluster theory us-

4

ing both the complex polarization propagator®?5% and the EOM-CC formalisms,®™ and

restricted active space (RAS) multiconfigurational methods. 58458 T-edge XAS spectra can

286:587 and the more recently

be computed using RAS with perturbative spin-orbit coupling
developed relativistic two-component LR-TDDFT. 340
In the time-domain, non-relativistic RT-TDDFT and time-dependent EOM-CC*® have

been applied to compute molecular K-edge XAS. Recently, time-dependent variational four-
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and two-component relativistic TDDFT methods were developed to model the XAS L-edge

97,98 Two-component variational relativistic real-time methods are an attractive al-

spectra.
ternative to their four-component analogues due to the balance of the computational cost
and theoretical accuracy offered by the former. For example, in work by Kasper et al. the

L, 3 spectra of SiCly, obtained using the real-time X2C method, were in excellent agreement

with experimentally obtained spectra (Fig. 12) and similar in quality to those calculated at
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Figure 12: Two-component relativistic RT-TDDFT modeled Ly 3 absorption edges for SiCly,
compared to experimental spectrum.®®® Adapted with permission from Ref. 98. Copyright
(2018) American Chemical Society.

Finally, simulations of X-ray absorption can be challenging for systems with a high density
of states, as finite basis set effects can introduce unphysical “intruder peaks” into XAS
spectra. These features arise from transitions from valence orbitals to very high lying virtual
orbitals, which should have zero lifetime since they reside within the continuum. Such peaks
are unlikely to occur for smaller molecules, but are unavoidable for larger systems. This
issue is avoided if using a large simulation box with a grid or planewave basis, provided an
appropriate boundary condition is used (e.g., complex absorbing potential). For more details
regarding open TDDFT systems, see review by Rubio and coworkers.?®® For atom-centered

basis set methods, however, it is usually more efficient to instead give the virtual states a
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phenomenological lifetime!®” to filter the intruder peaks from the spectrum. This technique

has been successfully applied to resolve the K-edge XAS spectrum of a-quartz (Fig. 13).%

E,=103.4 eV

RT-TDD

~/

FT

Normalized Absorption [arb. units]

A= v LR-TDDFT
1.3[eV (300 roots)
| | | | |
100 110 120 130 140

Photon Energy [eV]

Figure 13: Computed real-time TDDFT K-edge XAS of a-quartz with (orange) and without
(green) a complex absorbing potential, along with corresponding linear response TDDFT
(purple) and experimental data. Adapted with permission from Ref. 96. Copyright (2015)
American Chemical Society.

4.3 Excited State Absorption and Emission

There are numerous methods for probing excited state dynamics, such as transient absorption
spectroscopy where modulations in the absorption as a function of time delay between a pump
and a probe laser pulse encode the dynamics in the system. % Although conceptually simple,
one of the main challenges with time-resolved experiments is the ability to characterize
overlapping transient spectral features within an energy range. This problem grows with
increases in system size and complexity of the electronic structure. From the standpoint

of theory, the ability to simulate the excited-state dynamics and extract the corresponding
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excited-state absorption (ESA) spectrum is of great value, allowing one to interpret and
predict experiments. The success of such a procedure obviously hinges on the accuracy of
the theoretical approach.

Currently, the primary approach to compute ESA is via response theory.??1%92 Within
linear response (LR) theory, the poles of the response function yield the excitation energies of
the system, and transition moments between excited states can be obtained from the second-
order residues of the quadratic response function. Together, these quantities can be used to
evaluate the ESA of a molecular system. The first-order residues of the quadratic response
function can also be used to obtain the two-photon absorption. In spite of these advantages,
quadratic response theory is a numerically prohibitive approach for the computation of ESA
in large molecular systems with high densities of states as the excited states have to be treated
individually, which can become computationally infeasible when seeking the full spectrum
of the system. An alternative approach is to reformulate the problem by calculating the
linear response from an excited state reference. Formally, this approach is equivalent to the
quadratic response with respect to the ground state. However, this relationship only holds
within an exact treatment (namely, full CI*?!) and not for approximate theories.

RT-TDDFT has been shown to be an efficient and appealing method for computing
spectra of systems with high densities of states.®3%° It has also been intuitively used in the
context of pump-probe experiments by De Giovannini and co-workers,®? where an electric
field is first applied to pump the system to a target excited state and a second electric
field is used to probe the response of that excited state. The outstanding question with
this approach, however, is whether the probe pulse is actually interacting with the intended
target excited state, since resonant excitations are problematic and challenging to achieve
with RT-TDDFT. 82:84:246,261-263,267,593,594

Fischer and co-workers® have proposed an alternate approach that circumvents the RT-
TDDFT-specific challenges associated with resonant excitations but that still relies upon RT-

TDDFT to probe the response of the target excited state. One first performs a LR-TDDFT
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£295:59 calculation to compute the density matrix of the excited state of interest. This

gradien
serves as the initial superposition state for a subsequent RT-TDDFT calculation, which then
effectively yields the response of the excited state of interest. In order to preserve the exact
structure of this approach, an exact exchange-correlation kernel, which is a functional of the
initial state and complete history of the density, would be needed.®” However, in practice,
approximate exchange-correlation functionals within the adiabatic approximation have to be
used. Maitra and co-workers have formally analyzed the errors in the propagation of initial
states that derive from these two key approximations. 2%

Despite the use of exchange-correlation approximations that are, in general, designed
for the ground state, this strategy of seeding RT-TDDFT simulations with LR-TDDFT
densities has been shown to reproduce the ESA features in a number of molecular sys-
tems, including zinc phthalocyanine®” and tetrapyridyl porphyrins.?* Li and co-workers
have also combined RT-TDDFT with Ehrenfest dynamics simulations in order to inves-
tigate excited-state lifetimes. '3 Parkhill and co-workers® also developed a combined
RT-TDDFT /nonadiabatic-relaxation model?® to simulate the transient absorption spectra
of pyrazole and a GFP-chromphore derivative. Lopata and co-workers alternatively used a
constrained DFT initial state to compute transient X-ray absorption for pumped molecules,
which showed a decreased in absorption and a blue shift in the frequency with increasing

598 Recently, Ghosh and co-workers®? have also

electron density around the absorbing atom.
reported simulations of ESA with the semiempirical RT-INDO/S approach (see Sec. 2.2)

that compares well with RT-TDDFT.

4.4 Charge Transfer, Plasmon Excitations, and Exciton Dynamics

Charge transfer, which we here consider as a process wherein electrons transfer between states
or between regions of space, has central importance in biochemistry, in photosynthesis, in
the generation and storage of electricity, as well as in electro-optic activity (i.e., photovoltaic

cells, fuel cells, organic chromophores for use in optical fibers and light-emission diodes etc.).
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Real-time electronic structure methods can explicitly model time-resolved, nonperturbative
charge-transfer and exciton dynamics in donor-acceptor or dye molecules applicable to the de-

18,81,136,142,148,390,391,600,601 1y5]ecular conductance, 2! energy transfer

velopment of solar cells,
between chromophores,®® and plasmon behavior in noble metal nanowires and nanoparti-
cles. 144:145:388 Here we first focus on simulations of charge transfer with fixed nuclei, then
highlight some applications where the nuclear motion is key to driving the charge-transfer
dynamics.

Within the RT-TDDFT method, inaccuracies in charge transfer can be traced both to
the approximate exchange-correlation functional and the adiabatic approximation. Errors
due to the approximate exchange-correlation functional affect excitation energies and charge
transfer rates. Local and semi-local density functionals yield a very poor description of
charge-transfer excitations, but improved excitation energies are often predicted with long-
range correction to the exchange functional. 325602603 However, errors in charge transfer due
to the adiabatic approximation are much more challenging to remedy. When a resonant field
is applied to the ground state to induce charge transfer to the resonant excited state for
a model double-well potential for two electrons, RT-TDDFT within the adiabatic approxi-
mation qualitatively fails,'? see Fig. 14. However, another study suggests that the charge
transfer from an excited state to the ground state might be more accurately captured by

265 For a detailed explanation of the impact of the adiabatic

the adiabatic approximation.
approximation on the charge-transfer dynamics of model systems, see work by Maitra as
discussed in references 140, 265, and 252.

Despite the poor behavior of RT-TDDFT within the adiabatic approximation simulating
the charge transfer of model systems, it is widely used for simulating the charge transfer of
more complex systems such as organic materials and metal nanoparticles. In 2011, Chap-
man et. al. simulated RT-TDDFT ultrafast charge-transfer dynamics in a photoexcited

fullerene complex.'3® A charge-transfer event was observed following the photoexcitation

of Cg:DMA (DMA=N,N-diethylamine) where the initial electron-hole pair is localized in
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Figure 14: Absolute values of dipole moments for the charge transfer from the ground
state between closed-shell fragments for exact propagation (solid black line), RT-TDDFT
with adiabatic exact exchange (dashed red line), and RT-TDDFT with the self-interaction-
corrected adiabatic local density approximation (dotted blue line). The calculations were
performed in the presence of a resonant field for a model double well potential with two
electrons in one dimension. Adapted with permission from Ref. 140. Copyright (2013)
American Chemical Society.

fullerene (Fig. 15). This charge transfer can potentially give rise to a long-lived photogener-
ated electron-hole pair. A subsequent study, using RT-TDDFT with a time-dependent po-
larizable model,®® has shown that solvated ligand-to-fullerene charge transfer is enhanced
relative to vacuum due to solvent reorganization of excited electronic states and solvent-
solute coupling. ' A follow up real-time time-dependent DFTB study was performed by
Oviedo and Wong on the same system using explicit toluene and water solvent molecules
but different system conditions. 4

Using real-time time-dependent DFTB, Sanchez and co-workers have studied the nonequi-
librium charge injection mechanism from both catchetol and cresol dye molecules to a TiO4

390391 The simulations of a Type II photo-injection mechanism showed

nanoparticle (Fig. 16).
direct promotion of an electron from the dye to the first unoccupied level of the conduction
band of the nanoparticle during the application of the resonant field. The evolution of

the molecular orbital populations showed an exchange from the highest occupied molecular

orbital of the dye to a manifold of high-energy orbitals from the conduction band of the
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Figure 15: Time evolution of photogenerated electron (dotted line) and hole (dashed line) lo-
calized on Cgp, and an electron localized on the DMA ligand (solid line) following a fullerene-
localized excitation. Adapted with permission from Ref. 136. Copyright (2011) American
Chemical Society.

nanoparticle.

RT-TDDEFT electronic dynamics has also been applied to study excitonic and plasmonic
dynamics in metal nanowires and metal nanoparticles. Ding et. al. illustrated the electronic
dynamic characteristics of a molecular plasmon in silver nanowires from the perspective of
a coherent multi-electron oscillation. ' This work was later extended to the investigation of
the exciton transfer rate and diffusion length driven by the pure dephasing mechanism in a
silver nanowire array (Fig. 17).'% The team of Tlawe, Oviedo, and Wong demonstrated that
highly long-range electronic couplings in a multiparticle plasmonic nanoantenna system were
responsible for electronic excitation transfer(Fig. 18),%%® finding that the common nearest-
neighbor Forster resonance energy transfer model is inadequate for accurately characterizing
electronic excitation transfer. Real-time TDCI calculations have also been used to model
rapid dephasing of plasmon-like excitations in model systems?3® that could be interpreted as
electron thermalization. %4

Using RT-TDDFT with Ehrenfest dynamics, Meng and Kaxiras investigated electron and

hole dynamics upon photo-excitation in dye-sensitized solar cells made from three model
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Figure 16: Changes in Mulliken charges with respect to their ground state values as a function
of time for a dye chromophore and TiO, nanoparticle together with the plots of the spatial
distribution of electrons involved in the optical excitation during the application of resonant
electric field. Adapted with permission from Ref. 391. Copyright (2012) American Chemical
Society.)

dyes interfaced with a TiOs semiconductor surface.®®® The amount of charge transfer was
determined by the integral of excited electron (hole) density projected onto the TiO5 orbitals.
They found that after excitation, the electron gradually delocalizes and is injected into
the semiconductor TiOs region, on a time scale of 125-175 fs, whereas the hole does not
penetrate through the interface region. The hole injection time is much longer than the
time for electron injection, and hole injection only starts after the excited electron has been
completely injected into the TiOy(Fig. 19).%° Ehrenfest dynamics on the RT-TDDFT surface
has been used to simulate the charge transfer in a light-harvesting molecular triad with good
comparison with experimental time scales,*! as well as charge delocalization and transfer in
an organic polymer-fullerene photovoltaic system, 3 with both studies showing that vibronic
motion is key to driving the charge transfer dynamics. When exciton-phonon coupling is
considered in RT-TDDFT Ehrenfest dynamics, molecular vibrations have been shown to

149,567

induce molecular plasmon decay and transfer. Petrone and co-workers have applied
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Figure 17: Time evolving dipole moments (Cartesian components) in the first (left) and
second (right) silver nanowire at an interchain separation distance of 10.0 A. Adapted with
permission from Ref. 145. Copyright (2015) American Chemical Society.

RT-TDDFT to study the dynamics of photoexcited charge carriers in ladder-type donor-
acceptor block copolymers. 142 Shortly after the formation of the exciton, the electron and hole
densities dissociate to yield a pseudo charge-separated state. Based on the observed orbital
pathways involved in the short-time dynamics, p and n type conductivity have been identified
in different block copolymers. When the charge carrier dynamics is coupled to molecular
vibrations, the dynamical evolution of the polaron pair can be observed. Donati and co-
workers have applied RT-TDDFT Ehrenfest dynamics and wavelet analysis to investigate

the formation of polaron pairs in a thiophene oligomer. ¢%°

The formation of a polaron pair is
modulated by the out-of-plane motion of the polymer backbone dynamics with an observed

lifetimes of ~10 fs.

4.5 Nonlinear Properties and Multi-Dimensional Spectroscopy

One of the great advantages of real-time approaches is their ability to model the nonlinear
response of a system to electromagnetic radiation. These techniques allow one to consider
pulse shapes and field strengths representative of those applied in experimental settings.
Simulations thus go beyond the perturbative regime, capturing all orders of response si-

multaneously. As a result, real-time time-dependent approaches have emerged as the a key
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Figure 18: Time-dependent dipole moments induced in the four nanoparticles of a plasmonic
nanoantenna system upon optical excitation of nanoparticle 1 (NP1) with a sinusoidal electric
field perturbation. The induced dipole moments in the nanoparticles are indicative of the
electronic excitation transfer in the multiparticle plasmonic nanosystem. Adapted with
permission from Ref. 388. Copyright (2017) American Chemical Society.

method for describing highly nonlinear processes and properties.

High harmonic generation (HHG), arising from the interaction between molecular (hy-
per)polarizabilities and an external field, occurs at integer multiple frequencies of the driv-
ing frequency of the laser that illuminates the medium.%%%7 As such, HHG can supply
high-energy attosecond pulses for ultrafast spectroscopy experiments. %6 6% From the com-
putational point of view, the HHG power spectrum can, in principle, be extracted from the

time-evolution of the dipole moment, %19

after the system is perturbed by a monochromatic
external field. One challenge in extracting such nonlinear response properties from real-time

electronic structure simulations is that all orders of response are combined in one time sig-
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Figure 19: Comparison of electron and hole dynamics of three model dyes of increasing
size, in intact and dissociated forms, representing the injection probability from the dye to
the TiOy nanocrystal surface. Adapted with permission from Ref. 600. Copyright (2010)
American Chemical Society.

nal, which is apparent from the expansion of the dipole moment interacting with an external

monochromatic field, E(t) = A cos(wt),

pilt) = i+ D (A + D pa A A+ D i (A A A+ (64)

j ik jkl
piy (1) = i (—w; w) cos(wt) (65)
usz,)g(t) = }1[/81']']{;(_2(4); w,w) cos(2wt) + Bk (0; w, —w)] (66)
ugizl(t) = i [Yijit (—3w; w, w, w) cos(3wt) + 3 (—w; w, w, —w) cos(wt)] (67)

Here, w and A are the frequency and the amplitude vector of the field, respectively, and

a(—w;w), B(—2w; w,w), and y(—3w; w, w, w) are the frequency-dependent (hyper)polarizabilities,
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which give rise to the linear response and second- and third-harmonic generations. 3(0;w, —w)
and y(—w;w,w, —w) also appear in the dipole expansion; these terms are related to op-
tical rectification and degenerate four-wave mixing, respectively. Equation (64) suggests
that one can use some signal processing techniques to extract frequency-dependent (hy-
per)polarizabilities from the time-evolving dipole moment.

When the field strength is small, one can obtain linear and nonlinear molecular response
properties by ignoring the higher order contributions. Chen et al.%*! used the filter diago-
nalization approach to extract the first hyperpolarizability tensor. Rehr et al.'* obtained
second-order response properties by applying the finite-field method in conjunction with a
quasimonochromatic approximation to RT-TDDFT, driven by a Gaussian-enveloped exter-
nal field. Bandrauk et al. resolved the high-order harmonic spectra of atomic hydrogen by
numerical solving the time-dependent Schrodinger equation, with a Hamiltonian augmented
by a linearly polarized laser pulse.®? TD-CT has also been applied to compute the (non)linear
properties of small molecules, and it has been shown that TD-CI based techniques outper-
form RT-TDDFT in the prediction of HHG spectra if higher order excitation operators are
included in the TD-CI expansion. 29:30:37,38,392,393

The most general approach for computing frequency-dependent polarizabilities and hy-
perpolarizabilities via real-time simulations was developed by Ding et al.”? Individual orders
are separated into independent expressions which are free from higher order contributions
up to the fourth order. Using time-evolving dipole moments from just a few short simula-
tions, one can determine polarizabilities, and first and second hyperpolarizabilities in good
agreement with those calculated using response theory. For example, Fig. 20 shows the time-
evolutions of the linear and nonlinear properties of the paramagnetic BeH molecule computed
using TD-CI. The first- and second-order dipole responses show excellent agreement between
the real-time signals and analytical expressions, and there are noticeable deviations, arising
from the absence of higher-order corrections, of the real-time simulations from the truncated

analytical expression for the third-order dipole response.
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Figure 20: Time-evolutions of the first-, second-, and third-order responses of BeH modeled
with the TD-CIS/6-314+-G(d) level of theory. The fit curves and their R? values overlay the
simulation data. Adapted with permission from Ref. 38. Copyright (2018) Elsevier.

The accuracy of calculated (hyper)polarizability tensors is sensitive to the approximate
field-matter interaction and the quality of basis set.3%3013 The field-matter interaction is
usually treated within the electric-dipole approximation in the length gauge form. Some

have suggested the use of alternative gauges (i.e, the velocity or acceleration gauge) to

2 2

improve the description of the power spectrum in finite basis sets. %4616 Simple cos? or sin
pulse envelopes are often used to ‘dress’ the perturbing field,3"% but even the field envelope
can be tailored to enhance or damp specific harmonics. %" Additional diffuse functions have
been shown to improve the quality of (hyper)polarizabilities extracted from the time-domain
approach.?? For TD-CI, recent work by Lestrange, et. al. suggests that accurate nonlinear
properties may require CI expansions that span most of the full CI configuration space.
Specifically, as much as 2/3 of the full CI space is needed to obtain nonlinear properties
accurate to within 5% of the exact (full CI) values.3®

Work by Konecny et. al.'®® has shown that nonlinear properties can be significantly
affected by relativistic effects. In calculations on a W(CO)spy complex, it was found that

the dominant component of the second harmonic generation tensor was shifted by about

35% compared to that obtained from a non-relativistic method. Importantly, this work also
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demonstrated that these higher-order properties can still be captured using approximate
relativistic methods such X2C, with almost no loss of accuracy compared to fully relativistic
4-component Dirac calculations.

Multidimensional nonlinear spectroscopy®®%2! has become an indispensable tool for
probing molecular structure, structural/electronic dynamics, energy transfer, and chemical
reactions and the nature of excited state correlations. Useful information on the couplings
between molecular degrees of freedom (spin, vibrational, or electronic) can be obtained by
disentangling a congested one-dimensional spectrum into n-dimensions by scanning the in-
terpulse delays. Spreading the linear absorption spectrum in multidimensions allows one
to monitor and unravel the dynamics of, e. g¢., intermolecular energy transfer processes
in molecular aggregates. Intense ultrashort pulses are needed to monitor subfemtosecond
electronic processes. These signals are commonly simulated by the sum-over-states (SOS)
technique, in which the signal is calculated from electronic eigenstates and the coupling to
electric fields, which is treated perturbatively under the dipole approximation. Nonlinear
signals are calculated from corresponding transition dipoles, transition energies, and dephas-
ing rates. An alternative approach for computing multidimensional signals is to simulate the
electronic dynamics by propagating the one-electron reduced density matrix, driven by mul-
tiple electric fields. In this way, one avoids having to explicitly calculate many electronic
eigenstates. Nonlinear effects induced by intense external fields are automatically accounted
for because the incoming fields are treated in a non-perturbative way. These effects can,
in principle, be calculated with the wide range of real-time electronic structure methods
discussed in this review.

In a novel application of real-time electronic structure methods, Mukamel and co-workers

2 gcheme to extract desired

have recently used RT-TDDFT to implement a phase cycling%?
nonlinear signals from a finite set of RT-TDDFT simulations for multiple incoming fields
with variable phases. The scheme was implemented for four-wave mixing signals. RT-

TDDFT simulations were performed to compute XUV and X-ray nonlinear signals for the
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CO molecule and were found to be in qualitative agreement with CASSCF sum-over-states
(SOS) calculations.

In other recent nonlinear studies that have demonstrated the robustness of RT-TDDF'T,
Bruner and co-workers??® reported a study of charge migration dynamics following nitro-
gen 1s ionization of nitrosobenzene comparable to that of post-Hartree-Fock wave function

3

based methods, Cho and co-workers%®® simulated the electronic dynamics after a valence

or core ionization in the glycine-phenylalanine dipeptide and calculated the resulting time-

4 computed the resonant X-ray

resolved X-ray diffraction signals, Bruner and co-workers %2
sum-frequency generation (SFG) signals of the oxygen and fluorine K-edges in acetyl fluo-
ride and, more recently, Nascimento and co-workers have explored how subtle changes can
be probed in nearly indistinguishable intramolecular chemical environments. 92°

In a nutshell, real-time propagation of the reduced single-particle density matrix, driven
by external fields, allows for the simulation of multidimensional nonlinear signals in a non-

perturbative manner, beyond perturbative response-based SOS methods. In addition, com-

plex ultrafast nonlinear dynamics can also be simulated sufficiently accurately.

4.6 Spin and Magnetization Dynamics

Model Hamiltonians parametrized by experimental or empirical data have historically been
the method of choice for modeling spin dynamics. These methods have succeeded in describ-
ing fundamental spin physics, but they are incapable of simulating the time-evolution of
the spin-dependent wave function or density matrix. A fully time-dependent first-principles
electronic structure description is needed to simulate spin dynamics driven by strong spin
non-collinearity, spin-orbit coupling, or by interactions with intense external electromagnetic
fields. In 2014, Ding et. al. reported the first fully ab initio real-time treatment of spin dy-

namics driven by an external magnetic field using a non-collinear two-component method. ®®
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The one-electron Pauli Hamiltonian including magnetic field effects can be expressed as
Pauli _ 7 1 ; 1 2
h :ho(r)+§(a—zrxV)-B+§(B><r), (68)

where ﬁo(r) is the one-electron Hamiltonian in the absence of the external field. The sec-
ond term accounts for spin and orbital Zeeman interactions, and the third term, which is
quadratic in the strength of magnetic field, is the diamagnetic contribution. Figure 21 shows
that, with this treatment, the magnetization of each spin precesses about the magnetic field
at each lattice point.

Although the orbital Zeeman and the diamagnetic terms are relatively small and do not
directly affect the spin dynamics, they play an important role in diamagnetism, especially
in the presence of a strong magnetic field.%626-630 I the initial work by Ding, only the
spin Zeeman term was considered in the spin-blocked core Hamiltonian in a real-time non-
relativistic two-component framework,

h'ee s h{ + %BZS 1(B, —iB,)S

W pos (B.+iB,)S h)—1B.S

N[

The orbital Zeeman and the diamagnetic contribution were later included by Sun et. al. in
the two-component Hartree-Fock approach using the Pauli matrix representation. 93!

The non-relativistic spin-field coupling developed in Refs. 68 and 631 relaxes the stan-
dard spin constraints, allowing electrons to respond to external magnetic fields. However,
the extension of real-time methods to the relativistic Dirac equation is critical for accurate
treatment of spin and magnetization dynamics of transition metal and heavy element com-
plexes. Spin-spin and spin-orbit couplings, which can connect different spin states, cause
spin-forbidden processes to become weakly allowed, leading to features in electronic absorp-

tion spectra that are absent in non-relativistic treatments. For example, the ns? to ns'np!

transitions of group 12 atoms have been studied using relativistic RT-TDDFT at both the
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Figure 21: (a) the initial spin magnetization of an equilateral triangle formed by three Li
atoms, Lis, with an Li-Li bond length of 2.10 A and (b) the time evolution of the spin
magnetization in a uniform magnetic field that is applied perpendicular to the plane of
the trimer (B, = 85 x 107° a.u. [~20 Tesla]). The time-evolution is represented as the
progression of coloration in units of picoseconds, and the magnetization vector is represented
in units of Bohr magneton. Adapted with permission from Ref. 68. Copyright (2014)
American Institute of Physics.

four-component and two-component levels of theory.™ 1% The 3P, state is weakly allowed
by the presence of the spin-orbit coupling operator and a nonzero transition moment is ob-
served. This effect becomes more important moving down the periodic table from Zn to Cd

to Hg, as the magnitude of the relativistic corrections grows more prominent.

4.7 Electronic Circular Dichroism and Magnetic Circular Dichro-
ism

Electronic circular dichroism (ECD) models the differential absorption of left- and right-

handed circularly polarized light, proving a useful tool for determining the absolute configu-

ration of chiral enantiomers.%? RT-TDDFT has been developed for computing ECD spectra

of molecules using grid-based %" and atomic-orbital-based *? simulation protocols. The ECD

signal is determined by the isotropic rotatory strength for the transition between states |¢,,)
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and |¢;), which is given by %

Rijp = Tr [T ({215 (005 m|ton))] - (70)

where g = r and m = 3 (r x V) are the electric dipole and magnetic dipole operators,
respectively (in the length gauge), and c¢ is the speed of light.
The most common methods for computing the ECD spectrum are based on the response

633642 o1 the complex polarization propagator technique.%43%44 In the time do-

formalism,
main, if an electric dipole field is applied as a perturbation, the time-dependent magnetic

dipole obtained from the electronic dynamics is required for simulating ECD. The Fourier

transform of the time-dependent magnetic dipole gives the rotatory strength (Eq. (70))83%92
as
Rw) = 6(w—wjn)Rjn = Tr LRe!Me @) (71)
- in)Llin = T K )

J#n
where k is the magnitude of the electric field, and the labels « and ( denote Cartesian
coordinates. LR and RT-TDDFT methods have been shown to give essentially the same
results in the weak field limit (e.g., Fig. 22), though RT-TDDFT is able to compute the
whole ECD band spectrum with only three simulations of the electron dynamics.

The moment-based TD-EOM-CC approach??4? described in Sec. 2.4 is applicable to any
type of linear electronic spectroscopy, including ECD.%? In this formalism, the ECD spec-
trum can be extracted from the Fourier transform of the electric-dipole-magnetic-dipole and
magnetic-dipole—electric-dipole correlation functions (for specific expressions, the reader is
referred to Ref. 52). One important distinction between the evaluation of linear absorption
and ECD spectra at the TD-EOM-CC level of theory is that, in the latter case, the compu-
tational effort is doubled, as both the electric-dipole-magnetic-dipole and magnetic-dipole—
electric-dipole correlation functions must be evaluated. This complication arises because the
similarity-transformation of the Hamiltonian and other operators destroys their hermiticity.

For spectroscopies like ECD that are defined by multiple operators (i.e., the electric and
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Figure 22: ECD spectra of 2,3-(5,5)-dimethyloxirane (DMO) computed at the PBEPBE/6-
311+G** level of theory. Adapted with permission from Ref. 92. Copyright (2016) American
Institute of Physics.

magnetic dipole operators), it is common%% to restore symmetry properties of the transition
amplitudes through an average. In this way, the rotatory strengths defined by Eq. (70) would

become

Ry = 5 (T T Q) ol )]+ T [ (Gl i) ). (72

As in the case of linear absorption spectra, ECD spectra generated via TD-EOM-CC are
numerically indistinguishable from those generated by conventional EOM-CC approaches,
in the limit that all roots are computed in the conventional calculation. Further, because
real-time simulations yield broadband spectra, one can easily quantify the degree to which
TD-EOM-CC violates the Condon sum rule,%® which states that the sum of all rotatory
strengths from a given initial state should equal zero. In other words, the integrated area
under a TD-EOM-CC-derived ECD spectrum should vanish. The analysis presented in Ref.
52 suggests that deviations from this rule are gauge dependent and are significantly more
severe in the velocity-gauge than in the length-gauge.

In magnetic circular dichroism (MCD) experiments, an external static magnetic field is

applied in addition to the circularly polarized probing light. The magnetic field breaks the
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spin and orbital degeneracies through the couplings of spin and orbital angular momenta to
the field. As a result, the optical selection rules are modified, giving rise to additional spec-
troscopic features that are otherwise inaccessible at zero field. %47 Although the simulation of
an ECD spectrum only needs to treat electric field perturbations, both static magnetic and
probing electric fields are necessary for simulating MCD. Various perturbative approaches to
simulate magnetic field effects have been used with electronic structure methods for comput-

648-664 however they are not applicable to the real-time formalism, which

ing MCD spectra,
requires a variational treatment of all external perturbations. This is particularly challeng-
ing for time-dependent electronic structure simulations using atomic orbitals; in the presence
of electromagnetic fields, physical observables depend on the origin of the electromagnetic

field 615,665-671

The MCD strength of excited state |¢;) can be defined as

1
R; = T QZM €apy I [ (Yo |l ¥5)” (j (1] o) 7], (73)

where B is the external magnetic field, g is Bohr magneton, and €,4, is Levi-Civita symbol
(€xyz = €ysz = €say = 1, €yuz = €42y = €2y = —1, otherwise 0). The superscript v explicitly
denotes the direction of the applied magnetic field. The MCD strength function Eq. (73) re-
quires the computation of the imaginary component of the quantity (o |pa| ¥;)" (¥ |115] o)
from time-dependent electronic structure methods. However, this quantity cannot be eas-
ily extracted from Fourier transformation of time-dependent observables. Bertsch et. al®!
expanded Eq. (73) in the power of electric field perturbation and obtained the following

working expression for computing MCD spectra using real-time methods

Ry— Re( 14 _ 1 74
j—mg%ﬁv e(ﬁ—;)- (74)

Li and coworkers later derived the same expression based on a close connection between

the real-time signal and the response function formalism, which leads to a more generalized
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approach to compute any type of spectrum.®*

Bertsch and coworkers included the orbital Zeeman term in the electronic Hamiltonian
using a real-space local density approximation (LDA) to simulate effective 7 and % terms
of MCD spectra.?! More recently, Li and coworkers developed a RT-TDDFT approach to
MCD that was generalized to hybrid GGA and included a variational treatment of the
static magnetic perturbation.? That work demonstrated that, when simulating MCD, the
most satisfactory solution to the gauge-origin problem arising from the use of an incomplete

615,665-671

Gaussian-type basis is to variationally include the effects of a uniform magnetic

field with London orbitals, 631,640,664,672-678

4.8 Electron Dynamics in Strong Fields

Interactions of molecules with intense laser pulses can result in a number of non-perturbative
electronic phenomena involving ionization of electron(s).5™ These can be loosely categorized

S ;Ei, where £ is the ionization potential of

by the Keldysh adiabaticity parameter v =
the molecule, and w and F' are the field frequencies and amplitudes, respectively. In the
limit of high photon energy and low intensity (Keldysh > 1), multi-photon ionization
dominates where multiple photons are absorbed. High intensity and low frequency fields
(v < 1) result in tunnel, barrier-suppression, and above-threshold ionization where the
electron escape through or above the Coulomb potential confining the electron to the par-
ent molecule. Molecular strong-field ionization can depend strongly on the geometry of
the molecule (e.g., charge resonance enhance ionization), as well as the light polarization
with respect to the molecule. Since strong laser pulses produce electric fields comparable to
those experienced by valence electrons in a molecule, simulating these phenomena requires
a description of time-dependent electronic structure beyond the perturbation limit. In the
strong-field regime, real-time techniques are particularly advantageous as they can explicitly

simulate the non-perturbative electronic response to strong electric fields, such charge redis-

tribution, multiphoton absorption, high-harmonic generation, strong-field ionization, photo-

74



electron spectroscopy, and shape and Feshbach resonances. 3476:101,109,112,113,384,612,680-683

Simulations of strong-field dynamics can be challenging for real-time methods, as these
require a description of the wave function or density far from the molecule. Typically this is
achieved with grid-based methods using a combination of a large simulation box along with
some way of reducing spurious reflections from the edges of the box. These include: com-

41,120,589,684-686

plex absorbing potentials (CAPs) to remove outgoing electron flux, exterior

687-689 or masks that link an inner region (e.g., TDDFT) to an outer region

complex scaling,
solved using known basis states (e.g., free electron in field).%9%%9 Although less commonly
done, strong-field ionization can also be described using atomic-centered basis sets, which

have the advantage of allowing wave function methods and hybrid TDDFT, but require

692,693 or careful choice of CAPs.

either additional bases for the continuum (e.g., B-splines
Since it is most relevant to real-time electronic structure methods discussed in this review,
we now focus on the case of atom-centered basis sets with CAPs.

A typical CAP consists of an imaginary, position-dependent potential, which is added to

the time-dependent Hamiltonian:
H (r,t) = Hy (r,t) — il (), (75)

Here, H (r,t) is the Hamiltonian without the CAP and I'(¢) is a spatial potential that is
zero around the molecule and smoothly increases at the boundary of the simulation. For
the purposes of strong-field ionization (SFI), the results should not depend on the specific
functional form of the CAP, nor its magnitude or location from the molecule, provided
reflections are minimized. In most cases, smoothly increasing functions (e.g., sigmoidal)
are used. 112589682685 Formally, this Hamiltonian is non-Hermitian which requires propagat-
ing the left (¢, (t)| and right |¢g(t)) eigenvectors independently, with C-products used to
compute the expectation values: (A(t)) = <¢L(t) ‘fl’wR(t)>.694 Generally, however, the

standard equations of motion (Eq. (43)) and expectation values can be used, as well as the
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(Hermitian) ground state computed via an SCF without the CAP. This approximation is
valid when the CAP has negligible effect on the bound states.

Construction of a CAP in a grid or planewave basis is straightforward, as I" (r) is simply
a local one-body potential. When using atom-centered basis sets, however, this requires

projection onto the atomic orbitals,

L = (P @) = [ dr 6360w (r) (76)

These integrals can be performed either over the Cartesian or atom-centered grids. Using
CAPs with atom-centered basis sets requires highly diffuse functions to describe the wave
function far from the molecule. 2113681682 The limited spatial extent of these bases also
limits the range of the valid CAP positions, as a CAP too close to the molecule will affect
the bound states, while too far results in an insufficient overlap of the basis with the CAP.
If chosen correctly, simulations with a CAP will not affect the electron density near the
molecule yet outgoing flux will be removed completely. Put another way, the eigenvalues
for the bound states (occupied and virtual) should be unaffected by the CAP, whereas the
unbound states acquire lifetimes. A CAP that is too “weak” or misplaced might not remove
all outgoing charge, causing artificial reflections from the simulation box, whereas, conversely,
a sharply shaped CAP might cause reflections from the potential itself. The protocol for
choose the CAP location and strength is to determine a range of parameters where the results
are insensitive. See Fig. 23 for an example.

Once a CAP has been chosen, experimental observables such at the SFI yield for a
particular laser polarization and intensity can be computed from the change in the electronic
norm. Weaker intensities can also be challenging for atom-centered basis sets, as they require
CAPs far from the molecule to capture the tunnelling correctly. Additionally, basis set
CAP calculations are “leaky” due to small amounts of norm being lost due to non-zero

overlap with the ground state. This must be corrected for by subtracting this linear leakage
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Figure 23: Strong-field ionization rates computed using an atomic orbital basis as a function
of complex absorbing potential (CAP) starting distance Ry for a hydrogen atom under
1064 nm light with intensity 1x10 W /cm?. The rates are overestimated for smaller R
values due to the CAP affecting the ground state. The rates are underestimated at large Ry
due to insufficient overlap with the basis. The rates are insensitive between 4.0 and 9.0 A,
giving results in quantitative agreement with grid-based methods. Adapted with permission
from Ref. 682. Copyright (2016) American Institute of Physics.

rate from the computed time-dependent norm.%2%3 Using TDCIS with CAPs, Schlegel
and coworkers have successfully mapped out the angular dependence of the ionization rates

12,113,681 These simulations shed light on

for small molecules in strong fields (see Fig. 24).
the orbitals involved in strong-field ionization as well as the localization of the hole in the
molecule. %399 When using TDDFT, the use of range-separated functionals has been shown
to give significant improvements over traditional TDDFT, due to their correct long-range

asymptotic potential and reduced self-interaction. %2

5 Outlook

Real-time electronic structure methods provide an unprecedented view of electron dynamics
on the atto and femtosecond timescales, with vast potential to yield new insights into the elec-
tronic behavior of molecules and materials. With recent development of accurate real-time

post-SCF methods, advanced DFT functional forms, %% and full quantum descriptions of
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Figure 24: Angle dependence of the ionization yield for CH5O calculated with the TDCIS-
CAP approach: (Top Panel) polar plots, in plane with and perpendicular to the molecular
axis, for field strengths of 0.04, 0.05, 0.06, 0.07, 0.08 E},/eaq, (Bottom Panel) Dyson orbitals
for the 2By, 2By, 2A; states. Adapted with permission from Ref. 113. Copyright (2015)
American Chemical Society.

514,699,700 req]-time simulations have become more accurate and have

the electrons and nuclei,
the capability of simulating ultrafast multidimensional spectroscopies and quantum dynam-
ics in the presence of a strong electromagnetic field, in the relativistic regime, and in the
quantum electrodynamics formalism.

The current prospect of universal quantum computing 70792

provides an exciting new
tool for the simulation of quantum dynamics because quantum computers obey the time-
dependent Schrodinger equation by nature. Modeling time-dependent electronic dynamics
in molecules and extracting information for the purpose of applications like spectroscopy, is
relatively unexplored with regard to quantum algorithms. The next generation of real-time
methods will encompass innovations in applied mathematics bolstered by high-performance
software and/or quantum computing algorithms. The ever-improving computational effi-
ciency of real-time methods will allow the simulation of the electron dynamics of larger

scale and more complex systems, bringing chemical insight into dynamical processes with

experimentally relevant spatial and time resolutions.
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