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Abstract

Scientists are extending the computational application of relativistic methods to

ever-increasing sizes of molecular systems. To this end, reduction of the computational

cost of relativistic methods through modest approximations is a welcome effort. In

this work, we review several localized two-component approximations and introduce a

maximally localized variant. We also extend the focus of local relativistic approxima-

tions from the ground state to excited states. Benchmark calculations on both valence

and core electron absorption spectra are carried out to analyze the error incurred by

using the relativistic local approximations for excited state computations.

Keywords: Relativistic Electronic Structure Theory, Two-Component Theory, Local Ap-

proximation, X-ray Absorption

1 Introduction

Relativistic effects are known to be important for the description of electronic structure

of heavy elements, core-electron spectroscopy, and spin-driven chemical phenomena. Rela-

tivistic electronic structure methods can be classified according to the number of complex
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components in the wave function description. The most accurate approaches are based on

the Dirac equation and employ a four-component wave function ansatz.1,2 For most chemi-

cally relevant studies, exact or approximate two-component methods are usually of sufficient

accuracy.

Recent developments of two-component relativistic electronic structure theories have en-

abled accurate description of relativistic effects in moderate-size molecular systems. 3–30 For

example, relativistic two-component calculations have been used to analyze the Rashba ef-

fect in quantum confined semiconductor nanocrystals31 and electronic structures of gold

clusters.32 In the two-component relativistic framework, the four-component equation from

the Dirac equation is transformed to a related problem of half dimension to reduce the

computational cost. This is possible since the four-component formalism describes both

electronic and positronic degrees of freedom, yet most often it is the electronic solutions

that are of interest to chemistry. In general, the four-component to two-component trans-

formation is not a computational expensive step in relativistic calculations relative to the

cost of treating electron correlation. However, because the transformation matrix is intrin-

sically dependent on all nuclear coordinates, analytical evaluations of molecular properties

(e.g., gradients, Hessians, etc.) become non-trivial as the response of the transformation

matrix has to be computed.32 In computing a periodic system, the transformation matrix is

k-dependent and has to be evaluated for every irreducible k-point.23 This is primarily due to

the non-local spin-coupling terms because, for example, all nuclear potentials contribute to

the one-electron spin-orbit coupling. To mitigate this issue, various localized four-component

to two-component transformations have been proposed.32

Two main types of local approximations have been explored to reduce the computational

cost of the two-component methods.33–40 Here we adopt Peng and Reiher’s naming conven-

tions in Ref. 37. The first kind is the local approximation to the decoupling transformation

U (DLU) and the second is the local approximation to the two-component Hamiltonian H+

(DLH). The former utilizes transformation matrices that are diagonally blocked according to
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atoms or small groups of atoms in the molecular Hamiltonian. In the DLH approach, only

the relativistic corrections from blocks of atoms are retained in the Hamiltonian, making it

an even more localized relativistic approach.

While previous work has focused on the impact to ground state properties, in this work

we compare these approximations as well as an atomically-localized two-component approach

based on the ideas of diagonal local approximation to the Hamiltonian (DLH)37 in the calcu-

lation of excited states. In particular, both valence and core-level excitations are performed

in this series of calculations.

2 Methods

We use the following notation throughout the rest of this work:

• A,B, ... are atomic centers.

• µ, ν, ... are atomic orbitals.

• i, j, ... are molecular orbitals.

• Calligraphic notations (H, U , · · · ) are molecular quantities in the two-component rep-

resentation.

• Blackboard notations (H, U, · · · ) are molecular quantities in the four-component rep-

resentation.

The restricted-kinetically-balanced Dirac four-component Hamiltonian in matrix form is

written as1,2

H =

V T

T W − T

 , (1)
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where V and T are the non-relativistic potential energy and kinetic energy matrices, respec-

tively. W gives rise to relativistic corrections in the Dirac Hamiltonian,

Wµν =
1

4c2
〈χµ| (σ · p̂)V (σ · p̂) |χν〉 , (2)

where V is the potential energy operator.

The solutions of the four-component restricted-kinetically-balanced Dirac Hamiltonian

in Equation (1) are a set of bi-spinor (four-component) molecular orbitals,

ψi =

ψLi
ψSi

 , (3)

expressed in the linear combinations of atomic orbitals (LCAO) ansatz. The large and small

components (ψLi and ψSi ) of a bi-spinor orbital are expanded in a set of basis functions

centered on different nuclei (RA),

ψLi =
∑
A

∑
µ

cL,Aiµ χAµ (r−RA), (4)

ψSi =
∑
A

∑
µ

cS,Aiµ χAµ (r−RA), (5)

where χAµ (r − RA) is a basis function centered on nucleus A. The orbital coefficients that

correspond to positive and negative energy solutions can be written in a matrix form,

C =

CL,+ CL,−

CS,+ CS,−

 . (6)

In two-component methods, the electronic and positronic components of the four-component

Dirac equation are decoupled by a unitary transformation U that block-diagonalizes the four-
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component Hamiltonian:

U†HU =

H+ 02

02 H−

 . (7)

The exact-two-component (X2C)13–18,35,41–48 transformation takes the form

U =

12 −Y†

Y 12


(12 + Y†Y)−1/2 02

02 (12 + YY†)−1/2

 , (8)

where the matrix Y is calculated from the orbital coefficients as

Y = CS,+(CL,+)−1. (9)

For most chemistry problems, only the two-component Hamiltonian corresponding to elec-

tronic solutions, H+, needs be computed. In the one-electron X2C framework, the transfor-

mation (or “picture change”) is independent of the two-electron operator. This simplification

leads to a one-step procedure to construct the transformation matrix through the diagonal-

ization of the one-electron four-component core Hamiltonian.

2.1 Local Approximation to the Two-Component Hamiltonian (DLH

and ALH)

The DLH approach applies the local approximation to the construction of the Dirac Hamil-

tonian in the matrix form. Assume a molecular system consists of N number of atomic

centers. As in Equation (1), the kinetically-balanced Dirac four-component Hamiltonian in

matrix form for each atom can be written as,1,2

HA =

VA T A

T A WA − T A

 . (10)
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Given the definition of atomic block of basis functions, the atomic non-relativistic overlap

matrix SA, kinetic energy matrix T A, and potential matrix VA, as well as the relativistic

matrix WA in the four-component core Hamiltonian in Equation (10) can be defined as

SAµν = sAµν = 〈χAµ |χAν 〉, (11)

T Aµν = tAµν = 〈χAµ |
p̂2

2
|χAν 〉, (12)

VAµν =
∑
B

vABµν , vABµν = −〈χAµ |
ZB

|r−RB|
|χAν 〉, (13)

WA
µν =

∑
B

wABµν , wABµν = − 1

4c2
〈χAµ |

(σ · p̂)ZB(σ · p̂)

|r−RB|
|χAν 〉, (14)

where ZB is the charge of nucleus B. Lowercase notations describe quantities (e.g., vABµν and

wABµν ) that only account for a single nuclear potential originated from nucleus B.

For an N -atom molecule, one can carry out N independent X2C transformations for each

block using only basis functions localized on each atom of interest. This procedure results in

N atomic two-component Hamiltonians {HA}. The DLH approach assumes the molecular

two-component Hamiltonian has the following form,

HDLH = V + T +
⊕
A

HA −
⊕
A

VA −
⊕
A

T A (15)

where V and T are the full molecular non-relativistic potential and kinetic energy matrices.

Since the atomic diagonal blocks of V and T are also effectively included in the atomic

relativistic X2C Hamiltonian HA, the last two terms are applied to correct for errors of

double-counting.

It is clear from Equation (15) that the computational cost of four- to two-component

transformation is reduced because only diagonal atomic blocks of the Hamiltonian are trans-

formed. However, as seen from Equations (13) and (14), both potential and relativistic

matrices in HA still contain contributions from nuclei outside the atomic block. This sug-

gests that the DLH Hamiltonian is still non-local, as both the atomic transformation matrix
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and HA depend on the coordinates of other nuclei.

In order to develop a maximally localized two-component approach, we introduce a more

drastic approximation in the DLH framework. The new Hamiltonian, referred to here as the

atomically localized Hamiltonian (ALH), is

HALH = V + T +
⊕
A

H̃A −
⊕
A

vAA −
⊕
A

tA, (16)

where tA and vAA are defined in Equation (12) and Equation (13). In the atomic four-

component Hamiltonian, H̃A, ṼA and W̃A matrices no longer have contributions from other

atoms in the molecule,

ṼAµν = vAAµν = −〈χAµ |
ZA

|r−RA|
|χAν 〉, (17)

W̃A
µν = wAAµν = − 1

4c2
〈χAµ |

(σ · p̂)ZA(σ · p̂)

|r−RA|
|χAν 〉, (18)

making it a simple atomic, instead of atom-in-molecule, transformation. As before, the

last two terms in Equation (16) account for errors of double-counting. Compared to the

DLH approach, the ALH Hamiltonian ignores relativistic effects arising from off-centered

potentials. As a result, the one-electron spin-orbit effect in a molecular system is only

partially accounted for.

The main advantage of the ALH Hamiltonian compared to other approximations is that

four- to two-component transformation is completely independent of the coordinates of other

nuclei. In addition to being a low-cost relativistic two-component Hamiltonian, this makes

ALH well-suited to calculations with periodic boundary conditions and also greatly simplifies

the mathematical formalisms using ALH for computing relativistic molecular properties (e.g.,

gradients, Hessian, etc.).
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2.2 Local Approximation to the Decoupling Transformation (DLU

and ALU)

A strategically different approach is to apply the local approximation to the transformation

matrix. In the exact transformation, all atomic blocks are needed throughout the X2C

procedure. That is, the transformation matrix U in Equation (8) takes the form

U =



UAA UAB · · · UAN

UBA UBB · · · UBN

...
...

. . .
...

UNA UNB · · · UNN


(19)

In the DLU approximation all interatomic blocks are set to zero. That is, U is assumed to

be of the form

UDLU =



UAA 0 · · · 0

0 UBB · · · 0

...
...

. . .
...

0 0 · · · UNN


(20)

In construction of the block-diagonal atomic transformation matrix UAA in DLU, all nuclear

potentials in the system are included [Equations (13) and (14)]. The simplification of Equa-

tion (20) allows one to consider N small four-component localized transformation matrices

instead of one with the full dimension in the diagonalization procedure. In particular, this

leads to much more favorable scaling of the X2C method with respect to the number of

atoms. However, we emphasize that since there is no approximation to H, this does not

lead to a block diagonal H+ once the transformation is applied as in Equation (7). Figure 1

graphically illustrates the main differences in the DLU and DLH approaches.

The DLU approach can be further approximated using an atomic approach similar to

ALH, where the block-diagonal atomic transformation matrix UAA does not include nuclear
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potentials from other atoms in the system [Equations (17) and (18)], leading to the atomic

local approximation to the decoupling transformation (ALU) approach.

ℋ! ℍ𝕌!,# 𝕌!

𝒯 + 𝒱

DLU-X2C

X2C

DLH-X2C

Figure 1. Graphical representation of the electronic part of the X2C transfor-
mation H+ = U+,†HU+ in a diatomic system, where U+ is the electronic part
of U. White blocks are zero submatrices in the DLU and DLH approximated
approaches.

3 Result and Discussion

This work aims to benchmark various local approximations within X2C with a focus on ex-

cited state properties and potential energy surfaces. In the implementation of two-component

methods, we restrict the 4c→2c transformation to the one-electron operator. Because of this

approximation, an additional scaling factor for the spin-orbit coupling terms is included

to account for the two electron terms in an approximate manner.49 All approximations of

X2C are implemented in the open-source Chronus Quantum package.50 Excited state poten-

tial energy surfaces are obtained using the AO-direct formalism of relativistic TDHF 51 and

TDDFT26 in the different X2C frameworks. For brevity, we refer to the approximations to

X2C, e.g. ALH, in the form “ALH-X2C”, such as ALH-X2C-TDHF and ALH-X2C-TDDFT,

compared to the full X2C approach, denoted as X2C-TDHF and X2C-TDDFT.
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3.1 Pt2 valence excited-state potential energy surfaces

To study the accuracy of the approximations in valence excited states, we use the platinum

dimer (Pt2)
52–55 as a model system as it has an open-shell ground state configuration. We

compute the potential energy surfaces (PES) of the ground and first 34 excited states in the

bond-length range of 2.2 to 2.7 Å with the Sapporo double-ζ 56 basis set [Sapporo(DZ)]. PES

from X2C, ALU-X2C, and ALH-X2C are shown in Figure 2, and curves for the ground state

and two characteristic avoided crossings are highlighted. Error statistics of all approximation

schemes are listed in Table 1. Note here that both spin-orbit coupling and correlation effects

are crucial in the valence electronic structure of Pt2.
52 Since electronic correlation is not

sufficiently captured in the TDHF calculation, we do not expect the simulated PES to

be accurate. This comparison is merely intended to examine the accuracy of the these

approximations relative to full X2C.

Table 1. Statistics of errors with respect to full X2C-TDHF results in approximated Pt2 excited-state
PES. ∆E is the error (in meV) in ground state energy, represented by non-parallelism error (NPE) and
mean signed error (MSE). ∆ω is the error (in meV) in excitation energies. ∆r is the error (in pm) in curve
crossing internuclear distance. Maximum error (MAX) and mean absolute error (MAE) are presented for ∆ω
and ∆r. Note here there are in total 59 curve crossings in Sapporo(DZ) basis and 41 in Sapporo(DZ)+diffuse.

Approximation
∆E/meV ∆ω/meV ∆r/pm

NPEa MSE MAX MAE MAX MAE
Sapporo(DZ)

DLU 1.6 0.8 0.6 0.2 0.13 0.02
ALU 1.5 0.9 0.6 0.2 0.13 0.02
DLH 27.3 20.8 62.6 16.9 3.00 0.94
ALH 27.2 21.5 62.5 16.9 2.88 0.92

Sapporo(DZ)+diffuse
DLU 3.8 −8.1 1.9 0.4 0.40 0.07
ALU 3.8 −8.1 1.9 0.4 0.40 0.06
DLHb 3926.5 −11427.7 344.6 102.5 17.81 6.70
ALHb 4016.0 −11567.5 419.7 129.7 29.12 10.10

a The non-parallelism error (NPE) is defined as the difference between maximum and minimum errors
across the ground-state potential energy curve.

b DLH- and ALH-X2C-TDHF simulated PES in Sapporo(DZ)+diffuse do not recover all the 41 crossings
in the X2C-TDHF PES. Only 29 crossings recovered and included in statistics.

In Figure 2 we do not include the results from DLU-X2C and DLH-X2C because they are

not distinguishable from corresponding ALU-X2C and ALH-X2C PES, respectively. Detailed

10



0.74

0.77

0.80

0.83

0.86

(E
+
36

79
8)

 / 
E h

T0

T6

S4

S6

X2C Sapporo(DZ)

0.74

0.77

0.80

0.83

0.86

T0

T6

S4

S6

ALU-X2C Sapporo(DZ)

0.74

0.77

0.80

0.83

0.86

T0

T6

S4

S6

ALH-X2C Sapporo(DZ)

2.2 2.3 2.4 2.5 2.6 2.7
r (Pt−Pt) / Å

0.71

0.74

0.77

0.80

0.83

(E
+
36

79
8)

 / 
E h

T0

T6

S4

S6

X2C Sapporo(DZ)+diffuse

2.2 2.3 2.4 2.5 2.6 2.7
r (Pt−Pt) / Å

0.71

0.74

0.77

0.80

0.83

T0

T6

S4

S6

ALU-X2C Sapporo(DZ)+diffuse

2.2 2.3 2.4 2.5 2.6 2.7
r (Pt−Pt) / Å

0.26

0.29

0.32

0.35

0.38

T0

T6

S4

S6

ALH-X2C Sapporo(DZ)+diffuse

Figure 2. The first 34 excited states of Pt2 computed using X2C-, ALU-X2C-,
and ALH-X2C-TDHF methods in the Sapporo double-ζ basis set with or without
diffuse functions. Most of the potential energy surfaces are shown in grey. Solid
blue curves represent ground states. Orange, green, and red curves show two
characteristic avoided crossings in excited states.

statistics are listed in Table 1. Overall, different atomic approximations (ALU and ALH)

perform similarly compared to their corresponding diagonally localized methods (DLU and

DLH). This implies that ALU and ALH are good approximations to DLU and DLH in

practical applications to further reduce the computational cost of X2C based relativistic

electronic structure methods. The errors in DLH and ALH are larger at shorter bond lengths

and smaller at longer bond lengths. This trend is expected since the off-centered relativistic

effects decrease as the distance increase, making the DLH and ALH approximations more

accurate at the longer interaction distance.

In anionic molecules or systems with delocalized electronic excitations, diffuse functions

are often used to improve the description of wavefunction. When PES are calculated with

the Sapporo(DZ) basis set without diffuse functions, the differences between the full X2C
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calculations and approximated PES in the plots are unnoticeable as shown in the upper

panels in Figure 2. All 59 excited state curve crossings in the full X2C calculations are also

correctly predicted by all local approximations. Table 1 reveals that errors in DLU and ALU

calculations are much smaller than those using local Hamiltonian approximations (DLH and

ALH). This is understandable because in DLU and ALU, the underlying Hamiltonian is still

non-local and is better able to capture inter-nuclear relativistic corrections. Although the

errors in DLH and ALH are 10 ∼ 100 times larger than those in DLU and ALU, they are

small deviations from the full X2C calculations.

When diffuse basis functions are added in these computations, the errors in all approxi-

mation increase. The DLH- and ALH-X2C PES are qualitatively different from the full X2C

calculation, while the diagonal transformation approximations (DLU and ALU) still main-

tain an excellent accuracy, as shown in the lower panels in Figure 2. The non-parallelism

error in the ground-state potential energy curve for DLH and ALH calculations is as large as

4.0 eV, and the max and mean absolute errors in excitation energy also increase to an unac-

ceptable range. In contrast, the errors in DLU and ALU simulations with diffuse functions

are only about 3 times greater than those without diffuse functions and still in excellent

agreement with the full X2C results.

The error in local Hamiltonian approximations (DLH and ALH) primarily arises from ne-

glect of the relativistic transformation to the off-diagonal matrix elements
〈
χA
∣∣ ĥ ∣∣χB〉 where

A 6= B. When diffuse functions are introduced into the system, their significant overlaps

with valence electron atomic orbitals in nonorthogonal atomic basis lead to a non-negligible

off-diagonal contribution. Ignoring these large terms in the transformation will result in a

significant change of the electronic characteristics of valence electrons. As such, local Hamil-

tonian approximations (DLH and ALH) with diffuse functions are not good methods for

describe relativistic effects in ground state and low-energy valence excited state.
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Figure 3. The upper panel is the experimental oxygen K-edge and chromium
L2,3-edge spectra.57 The middle and lower panel shows TDDFT simulated spectra
computed in cc-pVTZ-DK and aug-cc-pVTZ-DK basis sets with B3LYP func-
tional. Simulated spectra are shifted 12.5 and 6.2 eV for O K-edge and Cr
L2,3-edge, respectively, to match experimental spectra. A Lorentzian broaden-
ing parameter of 0.5 eV was used to plot the simulated spectra. The geometry of
CrO2Cl2 is from Ref. 26.

3.2 Transition metal complex L2,3-edge X-ray absorption spectra

To investigate the accuracy of local approximations in simulating core electron excitation,

we compute the chromium L2,3-edge X-ray absorption spectra of the CrO2Cl2 molecule with

linear-response non-collinear time-dependent density functional theory (TDDFT)46,47,58 and

B3LYP exchange-correlation functional.59–61 The excitation oscillator strengths in this work

are computed with dipole operator directly applied in the X2C transformed basis without

considering the picture-change effect.43,62 Table 2 lists error analyses of Cr L-edge calculations

using different local X2C approximations. As is standard practice in computations involving

core electron excitations, a uniform shift is applied to the full X2C simulated X-ray spectra

so that the main L3 peak matches the experiment. The same amount of shift is applied

to all local approximations, and statistical analyses (MAX and MAE) are carried out. We
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also define the shifted mean absolute error (S-MAE) to analyze excitation energies when the

approximated spectra are independently shifted instead of using the shift amount for the full

X2C calculation.

As already reported in Ref. 26, with appropriate shifts, the X2C-TDDFT simulated

spectra agree well with the experimental measurement. We observe a similar trend and

behavior for all local approximations compared to those for the valence excitations discussed

in the previous section. In most cases, the differences between local approximations and the

full X2C calculations are on the order of a few meV for excitation energy MAE and less

than 1% for oscillator strength MAE. Comparably, DLU- and ALU- approximated results

are more accurate than those with DLH and ALH approximations. This is especially true

for ground-state absolute energies and in the presence of diffuse basis functions. Although

the error in ground state energy can be significant, the excitation energies computed using

local approximation are all in excellent agreement with the full X2C calculations. This

is because the relativistic effect in core-electron excitation is mostly local. As such, local

approximations are well-suited for computing X-ray absorption spectroscopies. Using diffuse

functions seems to introduce a relatively larger error but not as significant as that for valence

excitations. If the spectra computed using local approximations are shifted independently so

that their respective main L3 peaks are aligned with experiments, the shifted mean absolute

error (S-MAE) is reduced to less than 1 meV. This means the error introduced by local

approximations is mostly manifested as a constant energy shift.

In Figure 3 we overlap the most drastic approximation (ALH-X2C-TDDFT) and X2C-

TDDFT simulated X-ray absorption spectra in cc-pVTZ-DK and aug-cc-pVTZ-DK63–65 basis

sets. In cc-pVTZ-DK basis set, the near-perfect overlap between X2C-TDDFT and ALH-

X2C-TDDFT results in Figure 3 demonstrates that the local approximations do not introduce

noticeable error on both excitation energies and oscillator strengths. With diffuse functions

in the aug-cc-pVTZ-DK basis set, the ALH approximated spectra still recovers the shape of

the reference X2C-TDDFT ones, but the L2,3-edge spectra appears to be slightly red shifted.
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According to the statistics in Table 2, the errors in the aug-cc-pVTZ-DK ALH-X2C-TDDFT

L2,3-edge spectra are up to 54 meV, which mostly arises from the spectral shift constant as

discussed above.

To demonstrate the accuracy of simulating XAS with the most drastic approximation

(ALH-X2C-TDDFT method) in different molecular systems, in Table 3 we list the statisti-

cal error analyses between ALH-X2C and full X2C simulations of SiCl4 and four transition-

metal-complex L2,3-edge spectra. Additionally, these calculations compare two different den-

sity functional methods (B3LYP59–61 and PBE066–68) and two basis sets [6-311G(d)69–74 and

Sapporo double-ζ 75]. Note that Pd does not have an associated 6-311G(d) basis set. We

also note here that only peaks with oscillator strengths greater than 0.01 (0.004 for PdCl2)

are included in our statistics to avoid large relative numerical error.

As seen in Table 3, the difference in errors between the B3LYP and PBE0 functionals

are much less than the difference between the 6-311G(d) and Sapporo(DZ) basis sets. This

is because the approximations are applied to the one-electron Hamiltonian but have no

influence on the electron repulsion integrals. Consequently, the approximation does not

contribute significantly to exchange and correlation effects, and the errors are essentially

functional independent.

For all systems considered here, the ALH approximation has a maximum error up to 3%

and mean absolute error less than 1% in oscillator strength. For first-row transition metal

complexes (Ti, V, and Cr), according to the statistics in Table 3, the ALH approximation

has a maximum error of 1∼4 meV in excitation energy, which is smaller than the errors

in ground state energy. The errors in both ground state and excitation energies for Si and

Pd complexes can be as large as 18 meV, likely due to a strong coupling between Si/Pd

with Cl ligands. Considering the large L-edge excitation energies, however, this error is still

relatively small.

In contrast to the poor performance of local Hamiltonian approximations (DLH and

ALH) with diffuse functions for describing valence excited states in the Pt2 case, these
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approximated X2C approaches seem to work well for core-electron excitations even in the

presence of diffuse functions. While diffuse functions have large overlap with valence atomic

orbitals, their overlaps with the highly-localized core electron orbitals remain small and do

not significantly modify the electronic structures of core electrons. As a result, the computed

spectra are in excellent agreement with the full X2C results.

4 Conclusion

In this work, we reviewed and studied localized approximations to the two-component rel-

ativistic Hamiltonian, including atomic-localized variants. In performance benchmarks, the

ALH- and ALU-X2C methods reproduce well the results of the DLH- and DLU-X2C simu-

lations with negligible loss of accuracy.

All approximated results, including those from the maximally localized ALH-X2C ap-

proximation, are almost indistinguishable from the X2C reference for systems that do not

include diffuse basis functions. Including diffuse basis functions in computations introduces

significant error in the ground-state absolute energies and low-lying valence excited states

predicted by DLH and ALH approximations. This is because the strong overlap between the

diffuse functions and valence electron orbitals. Ignoring these contributions in local Hamil-

tonian approximations (DLH and ALH) will significantly change the underlying electronic

structures.

However, due to the small overlap between diffuse functions and core-electron orbitals, all

local approximations, including, DLU, DLH, ALU, and ALH, are well-suited for computing

core-electron excited states. All calculations exhibit excellent agreement, in both the exci-

tation energy and oscillator strength, with the full X2C result in computing K- and L-edge

X-ray absorption spectra.
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Table 2. Error analyses of simulated Cr L-edge X-ray absorption spectra of
CrO2Cl2 using different local approximations with non-collinear B3LYP and var-
ious basis sets, compared to those computed using full X2C-TDDFT. All Npeak

peaks with oscillator strengths greater than 0.01 are included in the statistics. ∆E
is the absolute error (in meV) in ground state energy. ∆ω is the error (in meV)
in excitation energies. ∆f% is the percent error in oscillator strength. Maximum
error (MAX) and mean absolute error (MAE) are presented for ∆E and ∆f%.
In addition, shifted MAE (S-MAE) is presented for ∆ω. The molecule geometry
is available in Ref. 26.

Approximation ∆E/meV Npeak
∆ω/meV ∆f%

MAX MAE S-MAE MAX MAE
6-311G(d)

DLU 6.52 13 0.94 0.23 0.20 1.57 0.21
ALU 6.52 13 0.13 0.05 0.05 1.57 0.21
DLH 12.63 13 1.53 0.57 0.47 1.92 0.34
ALH 11.74 13 1.56 0.57 0.47 0.61 0.14

6-311+G(d)
DLU 4.76 12 0.07 0.04 0.03 0.00 0.00
ALU 4.76 12 0.07 0.04 0.03 0.00 0.00
DLH −75.42 12 3.41 2.92 0.20 4.85 0.67
ALH −76.67 12 3.49 2.91 0.18 6.67 0.86

Sapporo(DZ)
DLU 0.53 13 0.21 0.11 0.05 0.13 0.01
ALU 0.53 13 0.21 0.11 0.05 0.13 0.01
DLH 6.57 13 3.99 2.68 0.27 0.13 0.02
ALH 6.28 13 3.96 2.73 0.26 0.13 0.02

Sapporo(DZ)+diffuse
DLU 0.45 13 0.41 0.16 0.06 0.65 0.11
ALU 0.45 13 0.41 0.16 0.05 0.65 0.11
DLH −227.41 13 1.27 0.67 0.35 1.20 0.25
ALH −228.76 13 1.30 0.68 0.32 1.81 0.32

cc-pVDZ-DK
DLU 2.06 13 0.10 0.04 0.03 0.10 0.01
ALU 2.07 13 0.09 0.03 0.02 0.10 0.01
DLH −0.28 13 3.23 2.60 0.29 0.68 0.24
ALH −0.70 13 3.09 2.58 0.28 0.68 0.22

aug-cc-pVDZ-DK
DLU 0.37 12 0.69 0.58 0.03 0.48 0.07
ALU 0.37 12 0.69 0.58 0.03 0.48 0.07
DLH −572.14 12 53.93 52.82 0.65 2.11 0.35
ALH −575.41 12 54.47 53.52 0.52 1.22 0.30



Table 3. Error analyses of the ALH-X2C simulated L-edge X-ray absorption
spectra of five molecules with different functionals and basis sets, compared to
those computed using full X2C-TDDFT. All Npeak peaks with oscillator strengths
greater than 0.01 (0.004 for PdCl2) are included in the statistics. ∆E is the
absolute error (in meV) in ground state energy. ∆ω is the error (in meV) in
excitation energies. ∆f% is the percent error in oscillator strength. Maximum
error (MAX) and mean absolute error (MAE) are presented for ∆ω and ∆f%.
In addition, shifted MAE (S-MAE) is presented for ∆ω. Geometries and spectra
plots are available in Ref. 26.

Basis Functional ∆E/meV Npeak
∆ω/meV ∆f%

MAX MAE S-MAE MAX MAE
SiCl4 Si L2,3-edge
6-311G(d) B3LYP 2.73 8 18.48 9.64 4.72 2.56 0.65
6-311G(d) PBE0 3.65 9 17.40 9.28 4.45 2.17 0.69

sapporo(dz) B3LYP −17.60 8 14.55 6.62 4.77 0.60 0.24
sapporo(dz) PBE0 −16.29 8 13.73 6.53 4.81 0.85 0.27

TiCl4 Ti L2,3-edge
6-311G(d) B3LYP 3.12 5 0.94 0.74 0.14 2.38 0.61
6-311G(d) PBE0 2.88 4 1.09 0.72 0.28 0.00 0.00

sapporo(dz) B3LYP −8.94 4 2.81 2.51 0.23 0.00 0.00
sapporo(dz) PBE0 −7.89 4 2.75 2.50 0.22 0.09 0.02

VOCl3 V L2,3-edge
6-311G(d) B3LYP 8.12 10 0.79 0.31 0.22 0.32 0.03
6-311G(d) PBE0 7.88 10 0.86 0.32 0.25 0.17 0.03

sapporo(dz) B3LYP −1.22 10 1.20 0.91 0.16 0.27 0.06
sapporo(dz) PBE0 −0.52 10 1.15 0.90 0.18 0.48 0.10

CrO2Cl2 Cr L2,3-edge
6-311G(d) B3LYP 11.74 13 1.56 0.57 0.47 0.61 0.14
6-311G(d) PBE0 11.52 15 0.98 0.46 0.45 0.85 0.10

sapporo(dz) B3LYP 6.28 13 3.96 2.73 0.26 0.13 0.02
sapporo(dz) PBE0 6.27 13 3.71 2.64 0.29 0.45 0.10

PdCl2 Pd L2,3-edge
sapporo(dz) B3LYP −14.34 3 12.51 7.39 3.41 0.00 0.00
sapporo(dz) PBE0 −13.46 3 5.89 4.79 4.42 1.69 0.56


