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Abstract

A time-dependent (TD) formulation of equation-of-motion coupled-cluster (EOM-
CC) can provide excited-state information over an arbitrarily-wide energy window with
a reduced memory footprint relative to conventional, frequency-domain EOM-CC the-
ory. However, the floating-point costs of the time-integration required by TD-EOM-CC
are generally far larger than those of the frequency-domain form of the approach. This
work considers the potential of the short iterative Lanczos (SIL) integration scheme
[J. Chem. Phys. 1986, 85, 5870-5876] to reduce the floating-point costs of TD-
EOM-CC simulations. Low-energy and K-edge absorption features for small molecules
are evaluated using TD-EOM-CC with single and double excitations, with the time-
integrations carried out via SIL and fourth-order Runge-Kutta (RK4) schemes. Spectra
derived from SIL- and RK4-driven simulations are nearly indistinguishable, and, with
an appropriately-chosen subspace dimension, the SIL requires far fewer floating-point
operations than are required by RK4. For K-edge spectra, SIL is the more efficient

scheme by an average factor of 7.2.

Introduction

Time-domain methods for the ab initio description of light-matter interactions are increas-
ingly popular,™'7 as they offer several advantages over more familiar frequency-domain ap-
proaches to the excited-state problem. The primary benefit of working directly in the time
domain is that such approaches offer natural descriptions of a variety of processes that

cannot be directly modeled within a linear response framework, including high harmonic

5,9,10,18 19,20 21,22

generation, ultrafast charge and energy migration and laser induced ioniza-
tion.?*2® Second, time-domain methods offer the practical advantage that they can be used
to generate spectral information over an arbitrarily-wide energy range through analysis of
only a few time-domain signals.?? Frequency-domain approaches, on the other hand, gener-

ally involve the iterative diagonalization of a sizeable matrix, which can become challenging



when large numbers of roots are desired. When applying frequency-domain techniques to
broad spectral features in systems with high densities of states, one must contend with both
potential stability issues associated with standard iterative diagonalization schemes, as well
as with the storage requirements associated with such algorithms. This latter issue can be
particularly problematic in the case of many-body electronic structure methods.*°

Despite their nice properties, time-domain methods are not a panacea; they are subject to
their own limitations, the most obvious of which is the long simulation time required to fully
resolve closely-spaced spectral features. For example, a typical simulation may require the
numerical integration of the time-dependent Schrodinger equation over tens of thousands
of time steps. Consequently, the most promising strategies to reduce the cost of a time-
dependent calculation are to either reduce the length of a simulation required to achieve a
given spectral resolution, or to reduce the cost of the time integration itself. Total simulation
length can be minimized through advanced signal processing techniques such as the Padé
approximation to the Fourier transform.?' 3% Reducing the cost of the time evolution itself
requires the careful selection of an appropriate numerical integrator.

Propagation schemes for many-body wave function expansions often rely on simple nu-
merical integration techniques,3?343% namely the fourth-order Runge-Kutta (RK4) scheme,
despite the fact that RK4 is not symplectic (meaning that stable RK4-based integrations may
require small step sizes). More sophisticated symplectic integrators®2 have been applied
in the context of both time-dependent truncated configuration interaction (CI)'* and time-
dependent CC theory.*3 > The algebraic diagrammatic construction (ADC) community also

has a long history19-22:46:47

of performing time integrations according to the short iterative
Lanczos (SIL) scheme originally proposed by Park and Light.*® In the SIL approach, an
approximation to the Hamiltonian, Hy, is constructed according to the Lanczos procedure,
and exact quantum dynamics are approximated by the dynamics associated with Hy. This

approximation is valid for only a short time after which a new approximate Hamiltonian

must be constructed. In practice, the cost of repeatedly constructing Hj, can be far less than



evaluating the dynamics with the exact Hamiltonian and a standard integration scheme such
as RK4.

In this work, we explore the efficacy of the SIL procedure in the context of the moment-
based formulation of time-dependent (TD) equation-of-motion coupled-cluster (EOM-CC) 4952
theory developed in Ref. 35. Our SIL protocol is formulated according to a standard Lanc-
zos procedure for Hermitian matrices, despite the fact that the EOM-CC Hamiltonian is
non-Hermitian. While an asymmetric SIL scheme could be formulated in a way that ac-
counts for this non-Hermiticity,?® we demonstrate that the standard SIL algorithm provides

a sufficiently accurate description of the TD-EOM-CC dynamics relevant to the evaluation

of both low-energy and K-edge absorption features.

Theory

Time-Dependent Equation-of-Motion Coupled-Cluster Theory

It has been shown?® that the EOM-CC oscillator strength function, f(w), can be obtained

from the real part of a lineshape function, I¢(w), as
2
f(0) = 203 #{I(w)) )
3
with I¢(w) defined by the Fourier transform

[5(&]) = /; dt 672'(“ <¢0‘ (1 + ]\)ﬂéeiHNtﬂg |¢0> . (2)

o0

Here, |¢o) represents a reference configuration (which, in this work, is taken to be a determi-
nant of generalized Hartree-Fock [GHF] spinors), A is the coupled-cluster (CC) de-excitation

operator, fie is the {-component (£ € x,y, z) of the similarity transformed dipole operator

fie = e " fige” (3)



and Hy is the normal-ordered similarity-transformed Hamiltonian
HN = G_T]:IBT — ECC (4)

In Egs. 3 and 4, the symbol T represents the cluster operator, and FE¢c is the energy as-
sociated with the ground-state CC wavefunction. In this work, the ground state is treated
at the CC with single and double excitations (CCSD)?* level of theory, so the cluster and

de-excitation operators take the form

T = Z teala; Z tfjb Fala,a, (5)
ia

zjab

and

A= Z)\“TA + - Z)\” TaTdbaa (6)

mab
respectively. Here a' and a represent second-quantized creation and annihilation operators,
and the labels i/j and a/b refer to orthonormal spinors that are occupied and unoccupied
in the reference determinant, respectively.

In order to evaluate the right-hand-side of Eq. 2 at all times, ¢, we first introduce time-
dependent left- and right-hand CC dipole functions, which, in this work, are expanded in

the basis of singly- and doubly-substituted configurations as

<ME()‘—<¢0 mo—l-zmlflT&aﬂL Zm aabaa (7)
ijab
and
| M(t)) = mo+zm“d*&l mej Lada;a;) | do), (8)
zyab

respectively. Initial values of the time-dependent m- and m-amplitudes at time ¢ = 0 are

defined according to

(Mg (0)] = (o] (1 + A)jig (9)



and

|M¢(0)) = fig [ o) (10)

We note that (M (t)| and | Me(t)) span the same space as the left- and right-hand eigenfunc-
tions of the similarity-transformed Hamiltonian that one would encounter at the EOM-CC
with single and double excitations (EOM-CCSD) level of theory. As such, given a CCSD
treatment of the ground state, oscillator strengths obtained from Eq. 1 will be equivalent to
those obtained from a frequency-domain EOM-CCSD calcluation.

Given these left- and right-hand dipole functions, the right-hand side of Eq. 2 takes the

form of a moment autocorrelation function

) = [ dre s (o) M) (1)

[e.9]

and it becomes clear that knowledge of the right-hand moment function at all times is
required to evaluate the lineshape and oscillator strength functions. The time-evolution of

| M¢(t)) is governed by the the time-dependent Schrédinger equation
0 -
S me(r) = yme (1) (12)

where mg(t) and Hy are the vector and matrix representations of |M(t)) and Hy, respec-
tively. We note that TD-EOM-CC conserves time-reversal symmetry [i.e., mg(t) = m(—1)],
and, as a result Eq. 12 need only be integrated over positive (or negative) times. This in-
tegration can be carried out using a variety of standard numerical integration techniques,

including short iterative Lanczos scheme outlined in the following subsection.

Short Iterative Lanczos Integration

Given that the dimension of Hy is generally too large to allow for its full diagonaliza-

tion, the integration of Eq. 12 can be carried out using either explicit 20 22:30,32,35,46-48,55-60



2556 numerical integrators that involve the repeated evaluation of matrix-vector

or implici
products of the form o = Hyme(t). At the TD-EOM-CCSD level of theory, the number
of floating-point operations involved in evaluating this matrix-vector product increases with
the sixth power of the size of the system. As such, the repeated construction of o-vectors is
by far the most time-intensive step of a TD-EOM-CC simulation, and any significant reduc-
tion in the number of required o-vector evaluations will greatly enhance the efficiency of the
approach. Here, we present the general working equations for the SIL integration scheme
(unmodified from Ref. 48), which can achieve exactly that aim.

The essence of the SIL approach is the estimation of exact quantum dynamics via the
dynamics associated with an approximate Hamiltonian (Hy), which is constructed according
to the Lanczos algorithm. The evolution of a compact representation of the wave function
using Hy, is far less computationally demanding than the propagation of the full wave function
using the exact Hamiltonian. However, H;, only provides an accurate approximation to Hy
(and thus an accurate representation of the dynamics) for a limited number of time steps,
at which point the Lanczos procedure must be repeated. Even accounting for the repeated
generation of the approximate Hamiltonian, the SIL method generally will require many
times fewer o-vector evaluations than are required by RK4.

The Lanczos algorithm generates an approximation of a given input matrix (i.e., Hy),

resulting in a tridiagonal matrix of the form

(&%) 51 0 tee 0 0
fr a1 Pa - 0 0
0 By ag --- 0 0
H, = : (13)
0 0 0 - a2 Bra
0 0 0 - Bro1 g

Here, the label k refers to the dimension of the Lanczos subspace, as generated by the



algorithm below, and the coefficients of the approximate Hamiltonian are defined by
Qp =0 Lak (14)
and

Br = [|wi-l] (15)

Here, the vectors a; and o represent the Lanczos vectors and their corresponding sigma-

vector products, respectively. The procedure is seeded with normalized m(t=0):

ay = mg(t)/|[me(t)]] (16)
which is used to generate the initial o-vector
Oy = }_INag (17>

The first diagonal coefficient of Hy, «q is simply the expectation value of this operator with
respect to ag

ag = ohag (18)

and wq is defined by

Wy = 09 — Qp (19)

Subsequent elements of the approximate Hamiltonian («,, and §,,, for m =1,...,k — 1) are

generated via

B = [|Win-1l] (20)
a, = Wé”; (21)
O, = ﬁNam (22)



U = O Ay, (23)

Wi = Om — Q@ — Bm@m—1 (24)

In standard implementations of the Lanczos procedure, the coefficients o and S are as-
sumed to be real-valued. Because the EOM-CC Hamiltonian is non-Hermitian we lift this
restriction, allowing for « coefficients to become complex along with the Lanczos vectors; 3
coefficients, however, will remain real-valued as they are defined by a Euclidean norm.
Once Hy, has been constructed, a compact representation of the moment function within

the Krylov subspace is defined

Because Hy is so compact, the dynamics within the subspace can be evaluated exactly
according to

c(t + dt) = exp(—iHdt)c(t), (27)

and the time-evolved subspace representation of the moment function can then be trans-

formed back into the original Hilbert space according to

me(t + dt) = Agc(t + dt) (28)

The matrix Ag, which translates the time-evolved dynamics in the subspace back into the



original basis, is constructed from the Lanczos vectors a; as
Ak = [agalag...ak_l] (29)

In this way, mg(f) is evolved in an inexpensive way for as many time steps as possible,
while monitoring the magnitude of the last element of c(t + dt) as a gauge of the fitness of
H;. Once |cp_1(t + dt)| exceeds 1078, ¢ is updated (¢ < t + dt), a new Lanczos subspace
is generated (seeded by apg = m¢(t)/||me(?)||), and the subspace vector is reset according to
Eq. 25 for subsequent time evolution. This process continues until the desired number of

time steps have been evaluated.

Computational Details

All geometries were optimized at the CCSD/aug-cc-pVTZ level of theory using the Psi4
package.®! All time-domain calculations were carried out using a development version of the
Chronus Quantum software package.®? Low-energy spectra were derived from the discrete
Fourier transform (FT) of dipole autocorrelation functions, which were taken from simula-
tions with a total time of 1350 a.u. (= 32 fs) and time steps of 0.05 a.u. (x~ 1.2 x 1073 fs).
K-edge calculations involved shorter simulations (500 a.u. or ~ 12 fs) and smaller time steps
(0.01 a.u. or ~ 2.4 x 107% fs). Because of the small time step necessary to resolve K-edge
features, these spectra were obtained using the Padé approximation to the FT, which has
much better convergence properties than the discrete F'T itself. In principle, a Padé-based
analysis could be applied to the low-energy spectra as well, but we elect to perform the dis-
crete FT in this case because the Padé approximation can produce spurious features when
applied to dense spectral regions. All spectra were artificially broadened using a Lorentzian
line shape with a full width at half maximum of 0.2 eV. Benchmark calculations comparing
the relative efficiencies of RK4 and SIL integrations as a function of the Lanczos dimension

t.63

were performed using the cc-pVDZ basis se K-edge spectra were also generated using a
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larger basis set (aug-cc-pVTZ5%) and compared to experimentally obtained spectra.

Results and Discussion

The SIL-based TD-EOM-CC simulations described in this section consider the accuracy and
efficiency of that integration scheme over a range of Lanczos subspace dimensions (k=5-50).
Our goal is to identify a globally optimal subspace dimension that balances not only the
accuracy and floating-point cost of the approach, but also its memory footprint, as increases
in the subspace dimension translate into increases in the storage requirements of the TD-
EOM-CC procedure as a whole. An RK4-based procedure requires the storage of only four
copies of the moment-function amplitudes, whereas SIL will require a number of copies of
these amplitudes that slightly exceeds the Lanczos subspace dimension, k. Hence, a choice
of k = 40 in SIL carries a 10-fold increase in the storage requirements for the amplitudes,
relative to RK4. In this case, the storage of the amplitudes could begin to rival the storage
of the electron repulsion integrals, provided some tensor factorization strategy (e.g., density
fitting®-%%) has been applied to that quantity. Consequently, minor improvements to the
efficiency of SIL gained by a choice of large k£ may be outweighed by the increased storage
requirements of the algorithm. Moreover, by limiting the Lanczos subspace dimension, we
can hopefully reduce the occurrence of spurious features, known as ghost states,%” that can
emerge with large, over-converged Lanczos spaces.

As discussed above, the floating-point cost of a TD-EOM-CC simulation is linked to the
total number of o-vector evaluations required by the chosen integration scheme. Here, we
explore how the Lanczos dimension employed within SIL relates to the number of o-vector
evaluations, while also monitoring the errors in computed spectra incurred through the use

of the SIL integrator, as opposed to RK4. As an error metric, we define the percent error in
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a computed spectrum as

f/ ’fSIL(W) - fRK4(w)|dw
f/ Jra(w)dw

% eIrror —

x 100% (30)

where forr,(w) and frika(w) represent oscillator strengths [Eq. 1] generated via SIL or RK4
integration, respectively, and the primes indicate that the integration is over some specified
spectral region(s). For example, we separately consider the efficacy of SIL for low-energy (i.e.,
0-25 eV) and K-edge features, where the relevant frequency range at the K-edge depends
upon the molecule of interest. In this analysis, for the K-edges in nitrogen, oxygen, and
carbon, we consider the ranges 402—-409 eV, 528-542 eV, and 292-295 eV, respectively. The
number of o-vector evaluations and percent errors for all of the benchmark simulations
discussed below are tabulated in the Supporting Information.

Figure 5(a) illustrates the total number of o-vector evaluations (red squares) required for
generating low-energy (0-25 eV) spectra for several small open- and closed-shell molecules
(H2O, Ny, NH3, CH3, NO, and OH), using RK4 and SIL with Lanczos dimensions varying
from 5 to 50. All calculations were carried out within the cc-pVDZ basis set, using a total
simulation time of 1350 a.u. and a time step of 0.05 a.u., and the number of o-vector
evaluations have been averaged over simulations involving each molecule and each of the
three cartesian components of the dipole function. Based on the total simulation time and
time step, an RK4-based simulation requires 108,000 o-vector evaluations. As can be seen in
Fig. 5(a), SIL significantly reduces the number of o-vector evaluations required for a given
calculation, provided that the SIL subspace dimension is greater than five. For subspace
dimensions k=10 and k=50, for example, the number of o-vector evaluations are reduced by
factors of 2.1 and 3.7, respectively. For the smallest subspace considered (k=5), we find only
a small reduction in the number of o-vector evaluations, on average, with some molecules
(NO, H50, and OH) actually requiring more o-vector evaluations within the SIL scheme.

Also depicted in Fig. 5(a) is the average number of time steps that elapse between successive

12



H. builds (blue circles). As the subspace dimension k increases, we observe a near-linear
increase in the time for which the dynamics associated with Hy are reliable.

Figure 5(b) depicts the average percent error in the spectra obtained from SIL-based
calculations, with RK4-derived spectra serving as reference values. The data indicate that
the relative error between spectra generated by RK4 and SIL integration is generally small,
provided that the subspace size exceeds k=5. Beyond k=5, the average percent error ranges
from as large as 2.1% for k=10 to a minimum value of 0.1% at k=50, and we note that
only modest improvements are observed beyond k=20, which has associated with it an
average percent error equal to 0.5%. From these data, we conclude that a reasonable choice
of subspace size that balances accuracy, floating-point costs, and memory requirements is
k=20.

Figure 2 compares spectra generated via RK4 and SIL (with a subspace dimension k=20)
over the range for which the percent error was evaluated. Visual inspection of the data reveals
that both propagators yield indistinguishable spectra on this scale. As such, we have also
included in Fig. 2 the deviation between the spectra (green dashed lines), and we only find
one instance in which they differ by as much as 0.005; note that the the maximum feature in
each spectrum scaled to one. For the case of HyO, we have also calculated differences in the
peak positions predicted by SIL- and RK4-based simulations. For all six features depicted
in Fig. 2(e), these integrators yield peak positions that differ by less than 0.01 eV.

The number of o-vector evaluations required for the evaluation of K-edge spectra is
depicted in Fig. 3(a), along with the average number of time steps over which the approximate
Hamiltonian, Hy provides reasonable dynamics. The associated average percent errors are
illustrated in Fig. 3(b). Here, we consider the same basis set and molecules considered in the
analysis above, and the total simulation time and time step were reduced to 500 a.u. and
0.01 a.u., respectively. With these parameters, an RK4-based simulation requires 200000
o-vector evaluations. In contrast to the case of low-energy spectra, K-edge simulations

performed using SIL with any subspace size (including k=5) are dramatically more efficient

13



110000 60 9

100000 8
50
5
90000 5 7
2
b7}
j
(2] Q
5 80000 40 : 6
g 2
o 70000 @ . 5
3 30 @ i
> ) B
o 60000 % 4
o Q.
3 g
-g )
S 50000 20 £ 3
z 5
9]
e}
40000 S 2
P4
10
30000 1
20000 | | | | | | | | | 0 0
RK4 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
SIL Subspace Size SIL subspace size

Figure 1: (a) The total number of o-vector evaluations required (red squares) for RK4- and
SIL-based TD-EOM-CC simulations of low-energy spectral features and the average number
of time steps over which the approximate Hamiltonian (Hy,) provides reliable dynamic (blue
circles), averaged over the set of test molecules and the three cartesian components of the
dipole function. (b) The average percent error in the spectra derived from SIL integration,
relative to those from RK4-based calculations.
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Figure 2: Low-energy spectra derived from the RK4- (solid red curves) and SIL-based (dashed
blue curves) simulations of (a) OH (b) Ny (¢) NH3 (d) CHs (e) HoO (f) NO. Deviations
between SIL- and RK4-derived spectra are indicated by the dashed green curves.
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than simulations performed using RK4, with the greatest performance advantages of SIL
occurring for £ > 10. Simulations involving k=10 and k=50 require 9.6 and 17.9 fewer o-
vector evaluations than are required by RK4, respectively. Figure3(b) provides the average
percent error for each SIL subspace size, again with the RK4-derived spectra serving as a
reference. As in the case of low-energy spectra, the smallest subspace size (k=5) leads to the
largest error, and only modest improvements are observed beyond k=20. The percent errors
are generally larger for K-edge simulations than for simulations of the low-energy spectra,
by roughly an order of magnitude, but, for £ > 20, the average percent error never exceeds
4.1%. An analysis of the peak positions for the oxygen K-edge in HyO suggests that this
error derives from differences in the maximum heights of the peaks in the oscillator strength
functions, as opposed to shifts in the peak positions; SIL and RK4-based predictions of the
position of the two features at the oxygen K-edge in HyO differ by only 0.01 eV. From these
data, we again conclude that a reasonable choice of subspace size is k=20. In this case, SIL
reduces the number of o-vector evaluations required by RK4, on average, by a factor of 13.6.

Figure 4 directly compares K-edge spectra generated via RK4 and SIL (with a subspace
dimension £=20), and once again, the spectra are difficult to distinguish visibly in most cases.
The spectra are normalized such that the largest features in the K-edge region are one. We
find that the deviations between SIL- and RK4-derived spectra (green dashed lines) can be
roughly 10 times larger than in the case of the low-energy spectra considered above, but the
largest errors observed are still quite small (with a maximum difference of roughly 0.06). As
mentioned already, for the case of the oxygen K-edge in H,O, the predicted positions for the
two peaks illustrated in Fig. 4(e) differ by only 0.01 eV.

To this point, all computations have considered only modest basis sets (i.e., cc-pVDZ),
which may be too small for reliable estimates of excitation energies, particularly at the K-
edge. Here, we assess the efficiency and accuracy of SIL-based integration for K-edge spec-
troscopy in a larger basis set (aug-cc-pVTZ), with the Lanczos dimension set at the optimal

value determined via our benchmark analysis (k=20). Table 1 provides experimentally-
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Figure 3: (a) The total number of o-vector evaluations required (red squares) for RK4- and
SIL-based TD-EOM-CC simulations of K-edge spectral features and the average number of
time steps over which the approximate Hamiltonian (Hj) provides reliable dynamic (blue
circles), averaged over the set of test molecules and the three cartesian components of the
dipole function. (b) The average percent error in the spectra derived from SIL integration,
relative to those from RK4-based calculations.
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Figure 4: K-edge regions from the RK4(solid red line), SIL(dashed blue line) and the dif-
ference between them(dashed green line) for (a) OH (b) N (¢) NH; (d) CHjy (e) H2O (f)
NO.
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obtained K-edge features for the same small molecules above, as well the error in computed

values at the TD-EOM-CCSD/aug-cc-pVTZ level of theory. Peak labels are taken from

t,5%°™ and assignments of simulated peaks were made based on the symmetry of

experimen
the lineshape function and the proximity of a given peak to the experimentally obtained
one. Also provided are the number of o-vector evaluations required for a TD-EOM-CCSD
simulation, averaged over the three cartesian components of the dipole moment autocorre-
lation function. Using the same integration parameters used to generate the K-edge spectra
above, an RK4-based calculation would require 200000 o-vector evaluations per simulation.
For the molecules we consider, SIL propagation improves upon this number by a factor of
roughly four to nine, with an average improvement of 7.2x. Here, the worst-case acceleration
is observed for OH, in which case SIL involves an average of 48253 o-vector evaluations per
simulation. The average performance enhancement (7.2x) is somewhat smaller than was
observed in the cc-pVDZ basis (13.6x), but we can nonetheless conclude that SIL provides a
significant computational advantage over less sophisticated integration schemes in both basis
sets. As for the accuracy of the simulations, we find that the majority of the K-edge features
predicted by TD-EOM-CCSD deviate from experimentally obtained features by less than
1.5 eV, with a worst-case deviation of 2.01 eV (for the 1s—3p(a;/b;) transition in the water
molecule), and, overall, the mean unsigned error in all features is only 1.15 eV. These val-
ues are consistent with the accuracy of TD-EOM-CCSD K-edge spectra reported previously
for other small closed-3%%* and open-shell** molecules. We note that, sub-eV accuracy can
be achieved via the inclusion of triple excitations, which is easily done in time-independent
EOM-CC calculations,** but which presents more of a computational challenge within a
time-dependent EOM-CC framework. We also stress that the roughly 1 eV errors we ob-
serve pertain to K-edge features of second-row atoms. EOM-CCSD has been demonstrated
to display similar accuracy at the sulfur K-edge, ™ but for heavier atoms, EOM-CCSD results
in larger errors. For example, at the xenon K-edge in XeF,, four-component EOM-CCSD,

including the Gaunt interaction, results in a roughly 40 eV error, relative to experiment
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(which translates into a 0.1% error in this case).”™

Table 1: Experimentally-obtained K-edge features (eV) and errors in computed
K-edge features (eV), along with the average number of o-vector evaluations
required for SIL simulations for each molecule.

o transition exp. error

OH 48253 1s— 2p 525.80%  0.26
NO 27093 N Is— 2pm*  399.707°  0.40
O 1s— 2pm*  532.70™ 1.13

Ny 25273 1s— 2pmy 401.00™  0.66
Is— 3so, 406.10™0 145

1s— 3pm, 407.00™" 1.41

NH; 22367 1s— 3s(aq) 400.66™  0.96
1s— 3p(e) 402.33™  0.96

1s— 3p(a;)  402.86™ 1.53

Is— 4s(aq) 403.57™  1.70

1s— 3p(e) 404.15™  1.91

CH; 18453 1s— 2p 281.35™  0.26
H,O 25847 Is— 3s 534.00™  1.35
1s— 3p(b2) 535.90™ 1.24

Is— 3p(ai/by) 537.00™  2.01

MUE 1.15

The data presented above demonstrate that SIL-derived TD-EOM-CC spectra closely
reproduce those from RK4-based simulations for both open- and closed-shell species and
for both valence and core-level transitions. This result is somewhat surprising, as SIL was
originally formulated for non-Hermitian Hamiltonians, and the similarity-transformed Hamil-
tonian is not Hermitian. One possible explanation for this excellent performance is that, for
the systems that we have explored, Hy is “close-enough” to Hermitian for the procedure to
work. To test this hypothesis, we consider additional far-from-equilibrium geometries of a
water molecule, within the cc-pVDZ basis. For this study, we consider spectra along a single
bond stretch coordinate, varying one O—-H bond length, while holding the other O-H bond
length and the H-O-H bond angle fixed at values of 1.0 A and 104.5°, respectively. Table 2
provides the percent error in the oscillator strength functions and the maximum errors in the
peak locations for SIL-derived spectra, using RK4-based results as a reference. We find that

the percent error for low-energy features increases slightly with increasing bond length, but
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the errors remain low (the maximum percent error is 1.1%). We also evaluated the devia-
tions between peak locations from SIL- and RK4-based simulations, and the maximum error
we encountered was only 0.01 eV. For K-edge features, the percent error in the oscillator
strength function is comparable to the average values presented in Fig. 3(b), and we find
no clear trend in these values with increasing bond lengths. As in the case of low-energy
features, the maximum error in the K-edge peak locations is only 0.01 eV. These data sug-

gest that SIL remains a reliable choice of integrator when simulating far-from-equilibrium

TD-EOM-CC spectra.

Table 2: Percent error in the oscillator strength function and maximum errors
in peak locations (eV) for SIL-derived low-energy and K-edge features of H,O
along a single O—H bond stretch coordinate (A).

% error max peak error
bond length low-energy K-edge low-energy K-edge
1.0 0.5 4.1 0.00 0.01
1.5 0.6 4.7 0.01 0.01
2.0 0.6 5.4 0.01 0.01
2.5 1.1 4.5 0.01 0.01

Conclusions

We have explored the utility of the short iterative Lanczos integration scheme in the con-
text of moment-based time-dependent equation-of-motion coupled-cluster theory. With a
suitably-chosen Lanczos dimension, the SIL scheme can be as much as an order of magni-
tude more efficient than a simpler numerical integration protocol based on, for example, the
RK4 approach. We validated the SIL procedure by evaluating both low-energy (0-25 eV)
and K-edge absorption features in a variety of small molecules and found that SIL-derived
spectra are nearly indistinguishable from those derived from RK4. This result is somewhat
surprising, as SIL was originally formulated for Hermitian Hamiltonians, whereas the EOM-

CC Hamiltonian is not Hermitian. Interestingly, we have found that the SIL scheme closely
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reproduces spectra obtained from RK4-based simulations even in cases where we expect
the similarity-transformed Hamiltonian to be significantly non-Hermitian (e.g., at far-from-
equilibrium geometries in H,O). When combined with advanced signal processing techniques
(e.g., the Padé approximation to the discrete FT), the floating-point cost of a simulation of
K-edge spectra, for example, can be reduced by more than an order of magnitude, relative
to a naive TD-EOM-CC simulation. Even so, such simulations are still expensive, requiring
tens of thousands of o-vector builds, and may become impractical for large molecules. In
that case, these techniques could easily be combined with other approaches that exploit the

6779 or local correlation techniques)

sparsity of the Hamiltonian (e.g., core-valence separation
in order to expand their utility.

We reiterate that the TD-EOM-CC approach described in this work is a moment-based
one,* and we note that a complementary time-domain approach to EOM-CC theory could
be developed in which the system is exposed to a time-dependent external perturbation (e.g.,
an oscillating electric field), and spectral information can subsequently be extracted from the

.80:81 Such an approach, which we

time evolution of observables such as the dipole moment
refer to as field-driven TD-EOM-CC, is, in principle, more robust than the moment-based
one in that it can naturally describe non-linear effects. Nevertheless, several factors poten-
tially complicate the use of this complementary field-driven form of TD-EOM-CC theory,
particularly with a Lanczos-based integration scheme. First, the SIL procedure works un-
der the assumption that the Hamiltonian is time-independent, so SIL-accelerated dynamics
could only be realized when the time-dependent external perturbation goes to zero (e.g.,
after the system has been perturbed). Second, because EOM-CC is not a Hermitian the-
ory, evaluating the time-dependent dipole moment requires knowledge of both the left- and
right-hand wave functions. For this reason, correct SIL-based dynamics would likely require
the use of an asymmetric Lanczos tridiagonalization procedure.®? Finally, one should recall

that neither RK4 nor SIL are structure conserving, and, while they appear to be reliable

within the context of moment-based TD-EOM-CC theory, it could be preferable to employ
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a suitable symplectic integrator? > for field-driven TD-EOM-CC dynamics.

Lastly, we note that the moment-based formalism we employ derives3*#* from the sum-

over-states form of the frequency-dependent dipole polarizability,®* which is not size-extensive.

As a result, TD-EOM-CC is also not strictly size extensive, but it does avoid the spurious
poles discussed in Ref. 84. Fortunately, multiple studies have demonstrated the accuracy of
moment-based TD-EOM-CC relative to conventional EOM-CC for both linear absorption

35,44

spectra and rotatory strengths,® so it would appear that any size-extensivity error is

not problematic, at least in small molecules. Nonetheless, one should be aware of this issue.

Supporting Information

The number of o-vector evaluations and the percent error in the oscillator strength functions
associated with simulations of low-energy and K-edge spectra for all molecules considered in

this study.
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