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Abstract

A time-dependent (TD) formulation of equation-of-motion coupled-cluster (EOM-

CC) can provide excited-state information over an arbitrarily-wide energy window with

a reduced memory footprint relative to conventional, frequency-domain EOM-CC the-

ory. However, the floating-point costs of the time-integration required by TD-EOM-CC

are generally far larger than those of the frequency-domain form of the approach. This

work considers the potential of the short iterative Lanczos (SIL) integration scheme

[J. Chem. Phys. 1986, 85, 5870-5876] to reduce the floating-point costs of TD-

EOM-CC simulations. Low-energy and K-edge absorption features for small molecules

are evaluated using TD-EOM-CC with single and double excitations, with the time-

integrations carried out via SIL and fourth-order Runge-Kutta (RK4) schemes. Spectra

derived from SIL- and RK4-driven simulations are nearly indistinguishable, and, with

an appropriately-chosen subspace dimension, the SIL requires far fewer floating-point

operations than are required by RK4. For K-edge spectra, SIL is the more efficient

scheme by an average factor of 7.2.

Introduction

Time-domain methods for the ab initio description of light-matter interactions are increas-

ingly popular,1–17 as they offer several advantages over more familiar frequency-domain ap-

proaches to the excited-state problem. The primary benefit of working directly in the time

domain is that such approaches offer natural descriptions of a variety of processes that

cannot be directly modeled within a linear response framework, including high harmonic

generation,5,9,10,18 ultrafast charge19,20 and energy migration21,22 and laser induced ioniza-

tion.23–28 Second, time-domain methods offer the practical advantage that they can be used

to generate spectral information over an arbitrarily-wide energy range through analysis of

only a few time-domain signals.29 Frequency-domain approaches, on the other hand, gener-

ally involve the iterative diagonalization of a sizeable matrix, which can become challenging
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when large numbers of roots are desired. When applying frequency-domain techniques to

broad spectral features in systems with high densities of states, one must contend with both

potential stability issues associated with standard iterative diagonalization schemes, as well

as with the storage requirements associated with such algorithms. This latter issue can be

particularly problematic in the case of many-body electronic structure methods.30

Despite their nice properties, time-domain methods are not a panacea; they are subject to

their own limitations, the most obvious of which is the long simulation time required to fully

resolve closely-spaced spectral features. For example, a typical simulation may require the

numerical integration of the time-dependent Schrödinger equation over tens of thousands

of time steps. Consequently, the most promising strategies to reduce the cost of a time-

dependent calculation are to either reduce the length of a simulation required to achieve a

given spectral resolution, or to reduce the cost of the time integration itself. Total simulation

length can be minimized through advanced signal processing techniques such as the Padé

approximation to the Fourier transform.31–33 Reducing the cost of the time evolution itself

requires the careful selection of an appropriate numerical integrator.

Propagation schemes for many-body wave function expansions often rely on simple nu-

merical integration techniques,32,34–39 namely the fourth-order Runge-Kutta (RK4) scheme,

despite the fact that RK4 is not symplectic (meaning that stable RK4-based integrations may

require small step sizes). More sophisticated symplectic integrators40–42 have been applied

in the context of both time-dependent truncated configuration interaction (CI) 14 and time-

dependent CC theory.43–45 The algebraic diagrammatic construction (ADC) community also

has a long history19–22,46,47 of performing time integrations according to the short iterative

Lanczos (SIL) scheme originally proposed by Park and Light.48 In the SIL approach, an

approximation to the Hamiltonian, Hk, is constructed according to the Lanczos procedure,

and exact quantum dynamics are approximated by the dynamics associated with Hk. This

approximation is valid for only a short time after which a new approximate Hamiltonian

must be constructed. In practice, the cost of repeatedly constructing Hk can be far less than
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evaluating the dynamics with the exact Hamiltonian and a standard integration scheme such

as RK4.

In this work, we explore the efficacy of the SIL procedure in the context of the moment-

based formulation of time-dependent (TD) equation-of-motion coupled-cluster (EOM-CC) 49–52

theory developed in Ref. 35. Our SIL protocol is formulated according to a standard Lanc-

zos procedure for Hermitian matrices, despite the fact that the EOM-CC Hamiltonian is

non-Hermitian. While an asymmetric SIL scheme could be formulated in a way that ac-

counts for this non-Hermiticity,53 we demonstrate that the standard SIL algorithm provides

a sufficiently accurate description of the TD-EOM-CC dynamics relevant to the evaluation

of both low-energy and K-edge absorption features.

Theory

Time-Dependent Equation-of-Motion Coupled-Cluster Theory

It has been shown35 that the EOM-CC oscillator strength function, f(ω), can be obtained

from the real part of a lineshape function, Iξ(ω), as

f(ω) =
2

3
ω
∑
ξ

R{Iξ(ω)} (1)

with Iξ(ω) defined by the Fourier transform

Iξ(ω) =

∫ ∞
−∞

dt e−iωt 〈φ0| (1 + Λ̂)µ̄ξe
iH̄N tµ̄ξ |φ0〉 . (2)

Here, |φ0〉 represents a reference configuration (which, in this work, is taken to be a determi-

nant of generalized Hartree-Fock [GHF] spinors), Λ̂ is the coupled-cluster (CC) de-excitation

operator, µ̄ξ is the ξ-component (ξ ∈ x, y, z) of the similarity transformed dipole operator

µ̄ξ = e−T̂ µ̂ξe
T̂ (3)
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and H̄N is the normal-ordered similarity-transformed Hamiltonian

H̄N = e−T̂ ĤeT̂ − ECC (4)

In Eqs. 3 and 4, the symbol T̂ represents the cluster operator, and ECC is the energy as-

sociated with the ground-state CC wavefunction. In this work, the ground state is treated

at the CC with single and double excitations (CCSD)54 level of theory, so the cluster and

de-excitation operators take the form

T̂ =
∑
ia

tai â
†
aâi +

1

4

∑
ijab

tabij â
†
aâ
†
bâj âi (5)

and

Λ̂ =
∑
ia

λiaâ
†
i âa +

1

4

∑
ijab

λijabâ
†
i â
†
j âbâa (6)

respectively. Here â† and â represent second-quantized creation and annihilation operators,

and the labels i/j and a/b refer to orthonormal spinors that are occupied and unoccupied

in the reference determinant, respectively.

In order to evaluate the right-hand-side of Eq. 2 at all times, t, we first introduce time-

dependent left- and right-hand CC dipole functions, which, in this work, are expanded in

the basis of singly- and doubly-substituted configurations as

〈M̃ξ(t)| = 〈φ0|
(
m̃0 +

∑
ia

m̃i
aâ
†
i âa +

1

4

∑
ijab

m̃ij
abâ
†
i â
†
j âbâa

)
, (7)

and

|Mξ(t)〉 =
(
m0 +

∑
ia

ma
i â
†
aâi +

1

4

∑
ijab

mab
ij â
†
aâ
†
bâj âi

)
|φ0〉, (8)

respectively. Initial values of the time-dependent m̃- and m-amplitudes at time t = 0 are

defined according to

〈M̃ξ(0)| = 〈φ0| (1 + Λ̂)µ̄ξ (9)

5



and

|Mξ(0)〉 = µ̄ξ |φ0〉 (10)

We note that 〈M̃ξ(t)| and |Mξ(t)〉 span the same space as the left- and right-hand eigenfunc-

tions of the similarity-transformed Hamiltonian that one would encounter at the EOM-CC

with single and double excitations (EOM-CCSD) level of theory. As such, given a CCSD

treatment of the ground state, oscillator strengths obtained from Eq. 1 will be equivalent to

those obtained from a frequency-domain EOM-CCSD calcluation.

Given these left- and right-hand dipole functions, the right-hand side of Eq. 2 takes the

form of a moment autocorrelation function

Iξ(ω) =

∫ ∞
−∞

dt e−iωt 〈M̃ξ(0)|Mξ(−t)〉 (11)

and it becomes clear that knowledge of the right-hand moment function at all times is

required to evaluate the lineshape and oscillator strength functions. The time-evolution of

|Mξ(t)〉 is governed by the the time-dependent Schrödinger equation

i
∂

∂t
mξ(t) = H̄Nmξ(t) (12)

where mξ(t) and H̄N are the vector and matrix representations of |Mξ(t)〉 and H̄N , respec-

tively. We note that TD-EOM-CC conserves time-reversal symmetry [i.e., mξ(t) = m∗ξ(−t)],

and, as a result Eq. 12 need only be integrated over positive (or negative) times. This in-

tegration can be carried out using a variety of standard numerical integration techniques,

including short iterative Lanczos scheme outlined in the following subsection.

Short Iterative Lanczos Integration

Given that the dimension of H̄N is generally too large to allow for its full diagonaliza-

tion, the integration of Eq. 12 can be carried out using either explicit20–22,30,32,35,46–48,55–60
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or implicit55,56 numerical integrators that involve the repeated evaluation of matrix-vector

products of the form σ = H̄Nmξ(t). At the TD-EOM-CCSD level of theory, the number

of floating-point operations involved in evaluating this matrix-vector product increases with

the sixth power of the size of the system. As such, the repeated construction of σ-vectors is

by far the most time-intensive step of a TD-EOM-CC simulation, and any significant reduc-

tion in the number of required σ-vector evaluations will greatly enhance the efficiency of the

approach. Here, we present the general working equations for the SIL integration scheme

(unmodified from Ref. 48), which can achieve exactly that aim.

The essence of the SIL approach is the estimation of exact quantum dynamics via the

dynamics associated with an approximate Hamiltonian (Hk), which is constructed according

to the Lanczos algorithm. The evolution of a compact representation of the wave function

using Hk is far less computationally demanding than the propagation of the full wave function

using the exact Hamiltonian. However, Hk only provides an accurate approximation to H̄N

(and thus an accurate representation of the dynamics) for a limited number of time steps,

at which point the Lanczos procedure must be repeated. Even accounting for the repeated

generation of the approximate Hamiltonian, the SIL method generally will require many

times fewer σ-vector evaluations than are required by RK4.

The Lanczos algorithm generates an approximation of a given input matrix (i.e., H̄N),

resulting in a tridiagonal matrix of the form

Hk =



α0 β1 0 · · · 0 0

β1 α1 β2 · · · 0 0

0 β2 α2 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · αk−2 βk−1

0 0 0 · · · βk−1 αk−1


(13)

Here, the label k refers to the dimension of the Lanczos subspace, as generated by the
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algorithm below, and the coefficients of the approximate Hamiltonian are defined by

αk = σ†kak (14)

and

βk = ||wk−1|| (15)

Here, the vectors ak and σk represent the Lanczos vectors and their corresponding sigma-

vector products, respectively. The procedure is seeded with normalized mξ(t=0):

a0 = mξ(t)/||mξ(t)|| (16)

which is used to generate the initial σ-vector

σ0 = H̄Na0 (17)

The first diagonal coefficient of Hk, α0 is simply the expectation value of this operator with

respect to a0

α0 = σ†0a0 (18)

and w0 is defined by

w0 = σ0 − α0a0 (19)

Subsequent elements of the approximate Hamiltonian (αm and βm, for m = 1, ..., k − 1) are

generated via

βm = ||wm−1|| (20)

am =
wm−1

βm
(21)

σm = H̄Nam (22)
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αm = σ†mam (23)

wm = σm − αmam − βmam−1 (24)

In standard implementations of the Lanczos procedure, the coefficients α and β are as-

sumed to be real-valued. Because the EOM-CC Hamiltonian is non-Hermitian we lift this

restriction, allowing for α coefficients to become complex along with the Lanczos vectors; β

coefficients, however, will remain real-valued as they are defined by a Euclidean norm.

Once Hk has been constructed, a compact representation of the moment function within

the Krylov subspace is defined

c(t) =



1

0

0

...


(25)

and evolved according to the Schrödinger equation

∂c(t)

∂t
= −iHkc(t). (26)

Because Hk is so compact, the dynamics within the subspace can be evaluated exactly

according to

c(t+ dt) = exp(−iHkdt)c(t), (27)

and the time-evolved subspace representation of the moment function can then be trans-

formed back into the original Hilbert space according to

mξ(t+ dt) = Akc(t+ dt) (28)

The matrix Ak, which translates the time-evolved dynamics in the subspace back into the
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original basis, is constructed from the Lanczos vectors ak as

Ak = [a0a1a2...ak−1] (29)

In this way, mξ(t) is evolved in an inexpensive way for as many time steps as possible,

while monitoring the magnitude of the last element of c(t + dt) as a gauge of the fitness of

Hk. Once |ck−1(t + dt)| exceeds 10−8, t is updated (t ← t + dt), a new Lanczos subspace

is generated (seeded by a0 = mξ(t)/||mξ(t)||), and the subspace vector is reset according to

Eq. 25 for subsequent time evolution. This process continues until the desired number of

time steps have been evaluated.

Computational Details

All geometries were optimized at the CCSD/aug-cc-pVTZ level of theory using the Psi4

package.61 All time-domain calculations were carried out using a development version of the

Chronus Quantum software package.62 Low-energy spectra were derived from the discrete

Fourier transform (FT) of dipole autocorrelation functions, which were taken from simula-

tions with a total time of 1350 a.u. (≈ 32 fs) and time steps of 0.05 a.u. (≈ 1.2 × 10−3 fs).

K-edge calculations involved shorter simulations (500 a.u. or ≈ 12 fs) and smaller time steps

(0.01 a.u. or ≈ 2.4 × 10−4 fs). Because of the small time step necessary to resolve K-edge

features, these spectra were obtained using the Padé approximation to the FT, which has

much better convergence properties than the discrete FT itself. In principle, a Padé-based

analysis could be applied to the low-energy spectra as well, but we elect to perform the dis-

crete FT in this case because the Padé approximation can produce spurious features when

applied to dense spectral regions. All spectra were artificially broadened using a Lorentzian

line shape with a full width at half maximum of 0.2 eV. Benchmark calculations comparing

the relative efficiencies of RK4 and SIL integrations as a function of the Lanczos dimension

were performed using the cc-pVDZ basis set.63 K-edge spectra were also generated using a
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larger basis set (aug-cc-pVTZ64) and compared to experimentally obtained spectra.

Results and Discussion

The SIL-based TD-EOM-CC simulations described in this section consider the accuracy and

efficiency of that integration scheme over a range of Lanczos subspace dimensions (k=5–50).

Our goal is to identify a globally optimal subspace dimension that balances not only the

accuracy and floating-point cost of the approach, but also its memory footprint, as increases

in the subspace dimension translate into increases in the storage requirements of the TD-

EOM-CC procedure as a whole. An RK4-based procedure requires the storage of only four

copies of the moment-function amplitudes, whereas SIL will require a number of copies of

these amplitudes that slightly exceeds the Lanczos subspace dimension, k. Hence, a choice

of k = 40 in SIL carries a 10-fold increase in the storage requirements for the amplitudes,

relative to RK4. In this case, the storage of the amplitudes could begin to rival the storage

of the electron repulsion integrals, provided some tensor factorization strategy (e.g., density

fitting65,66) has been applied to that quantity. Consequently, minor improvements to the

efficiency of SIL gained by a choice of large k may be outweighed by the increased storage

requirements of the algorithm. Moreover, by limiting the Lanczos subspace dimension, we

can hopefully reduce the occurrence of spurious features, known as ghost states,67 that can

emerge with large, over-converged Lanczos spaces.

As discussed above, the floating-point cost of a TD-EOM-CC simulation is linked to the

total number of σ-vector evaluations required by the chosen integration scheme. Here, we

explore how the Lanczos dimension employed within SIL relates to the number of σ-vector

evaluations, while also monitoring the errors in computed spectra incurred through the use

of the SIL integrator, as opposed to RK4. As an error metric, we define the percent error in
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a computed spectrum as

% error =

∫ ′ |fSIL(ω)− fRK4(ω)|dω∫ ′
fRK4(ω)dω

× 100% (30)

where fSIL(ω) and fRK4(ω) represent oscillator strengths [Eq. 1] generated via SIL or RK4

integration, respectively, and the primes indicate that the integration is over some specified

spectral region(s). For example, we separately consider the efficacy of SIL for low-energy (i.e.,

0–25 eV) and K-edge features, where the relevant frequency range at the K-edge depends

upon the molecule of interest. In this analysis, for the K-edges in nitrogen, oxygen, and

carbon, we consider the ranges 402–409 eV, 528–542 eV, and 292–295 eV, respectively. The

number of σ-vector evaluations and percent errors for all of the benchmark simulations

discussed below are tabulated in the Supporting Information.

Figure 5(a) illustrates the total number of σ-vector evaluations (red squares) required for

generating low-energy (0–25 eV) spectra for several small open- and closed-shell molecules

(H2O, N2, NH3, CH3, NO, and OH), using RK4 and SIL with Lanczos dimensions varying

from 5 to 50. All calculations were carried out within the cc-pVDZ basis set, using a total

simulation time of 1350 a.u. and a time step of 0.05 a.u., and the number of σ-vector

evaluations have been averaged over simulations involving each molecule and each of the

three cartesian components of the dipole function. Based on the total simulation time and

time step, an RK4-based simulation requires 108,000 σ-vector evaluations. As can be seen in

Fig. 5(a), SIL significantly reduces the number of σ-vector evaluations required for a given

calculation, provided that the SIL subspace dimension is greater than five. For subspace

dimensions k=10 and k=50, for example, the number of σ-vector evaluations are reduced by

factors of 2.1 and 3.7, respectively. For the smallest subspace considered (k=5), we find only

a small reduction in the number of σ-vector evaluations, on average, with some molecules

(NO, H2O, and OH) actually requiring more σ-vector evaluations within the SIL scheme.

Also depicted in Fig. 5(a) is the average number of time steps that elapse between successive
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Hk builds (blue circles). As the subspace dimension k increases, we observe a near-linear

increase in the time for which the dynamics associated with Hk are reliable.

Figure 5(b) depicts the average percent error in the spectra obtained from SIL-based

calculations, with RK4-derived spectra serving as reference values. The data indicate that

the relative error between spectra generated by RK4 and SIL integration is generally small,

provided that the subspace size exceeds k=5. Beyond k=5, the average percent error ranges

from as large as 2.1% for k=10 to a minimum value of 0.1% at k=50, and we note that

only modest improvements are observed beyond k=20, which has associated with it an

average percent error equal to 0.5%. From these data, we conclude that a reasonable choice

of subspace size that balances accuracy, floating-point costs, and memory requirements is

k=20.

Figure 2 compares spectra generated via RK4 and SIL (with a subspace dimension k=20)

over the range for which the percent error was evaluated. Visual inspection of the data reveals

that both propagators yield indistinguishable spectra on this scale. As such, we have also

included in Fig. 2 the deviation between the spectra (green dashed lines), and we only find

one instance in which they differ by as much as 0.005; note that the the maximum feature in

each spectrum scaled to one. For the case of H2O, we have also calculated differences in the

peak positions predicted by SIL- and RK4-based simulations. For all six features depicted

in Fig. 2(e), these integrators yield peak positions that differ by less than 0.01 eV.

The number of σ-vector evaluations required for the evaluation of K-edge spectra is

depicted in Fig. 3(a), along with the average number of time steps over which the approximate

Hamiltonian, Hk provides reasonable dynamics. The associated average percent errors are

illustrated in Fig. 3(b). Here, we consider the same basis set and molecules considered in the

analysis above, and the total simulation time and time step were reduced to 500 a.u. and

0.01 a.u., respectively. With these parameters, an RK4-based simulation requires 200000

σ-vector evaluations. In contrast to the case of low-energy spectra, K-edge simulations

performed using SIL with any subspace size (including k=5) are dramatically more efficient
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Figure 1: (a) The total number of σ-vector evaluations required (red squares) for RK4- and
SIL-based TD-EOM-CC simulations of low-energy spectral features and the average number
of time steps over which the approximate Hamiltonian (Hk) provides reliable dynamic (blue
circles), averaged over the set of test molecules and the three cartesian components of the
dipole function. (b) The average percent error in the spectra derived from SIL integration,
relative to those from RK4-based calculations.
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than simulations performed using RK4, with the greatest performance advantages of SIL

occurring for k ≥ 10. Simulations involving k=10 and k=50 require 9.6 and 17.9 fewer σ-

vector evaluations than are required by RK4, respectively. Figure3(b) provides the average

percent error for each SIL subspace size, again with the RK4-derived spectra serving as a

reference. As in the case of low-energy spectra, the smallest subspace size (k=5) leads to the

largest error, and only modest improvements are observed beyond k=20. The percent errors

are generally larger for K-edge simulations than for simulations of the low-energy spectra,

by roughly an order of magnitude, but, for k ≥ 20, the average percent error never exceeds

4.1%. An analysis of the peak positions for the oxygen K-edge in H2O suggests that this

error derives from differences in the maximum heights of the peaks in the oscillator strength

functions, as opposed to shifts in the peak positions; SIL and RK4-based predictions of the

position of the two features at the oxygen K-edge in H2O differ by only 0.01 eV. From these

data, we again conclude that a reasonable choice of subspace size is k=20. In this case, SIL

reduces the number of σ-vector evaluations required by RK4, on average, by a factor of 13.6.

Figure 4 directly compares K-edge spectra generated via RK4 and SIL (with a subspace

dimension k=20), and once again, the spectra are difficult to distinguish visibly in most cases.

The spectra are normalized such that the largest features in the K-edge region are one. We

find that the deviations between SIL- and RK4-derived spectra (green dashed lines) can be

roughly 10 times larger than in the case of the low-energy spectra considered above, but the

largest errors observed are still quite small (with a maximum difference of roughly 0.06). As

mentioned already, for the case of the oxygen K-edge in H2O, the predicted positions for the

two peaks illustrated in Fig. 4(e) differ by only 0.01 eV.

To this point, all computations have considered only modest basis sets (i.e., cc-pVDZ),

which may be too small for reliable estimates of excitation energies, particularly at the K-

edge. Here, we assess the efficiency and accuracy of SIL-based integration for K-edge spec-

troscopy in a larger basis set (aug-cc-pVTZ), with the Lanczos dimension set at the optimal

value determined via our benchmark analysis (k=20). Table 1 provides experimentally-
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Figure 4: K-edge regions from the RK4(solid red line), SIL(dashed blue line) and the dif-
ference between them(dashed green line) for (a) OH (b) N2 (c) NH3 (d) CH3 (e) H2O (f)
NO.
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obtained K-edge features for the same small molecules above, as well the error in computed

values at the TD-EOM-CCSD/aug-cc-pVTZ level of theory. Peak labels are taken from

experiment,68–73 and assignments of simulated peaks were made based on the symmetry of

the lineshape function and the proximity of a given peak to the experimentally obtained

one. Also provided are the number of σ-vector evaluations required for a TD-EOM-CCSD

simulation, averaged over the three cartesian components of the dipole moment autocorre-

lation function. Using the same integration parameters used to generate the K-edge spectra

above, an RK4-based calculation would require 200000 σ-vector evaluations per simulation.

For the molecules we consider, SIL propagation improves upon this number by a factor of

roughly four to nine, with an average improvement of 7.2x. Here, the worst-case acceleration

is observed for OH, in which case SIL involves an average of 48253 σ-vector evaluations per

simulation. The average performance enhancement (7.2x) is somewhat smaller than was

observed in the cc-pVDZ basis (13.6x), but we can nonetheless conclude that SIL provides a

significant computational advantage over less sophisticated integration schemes in both basis

sets. As for the accuracy of the simulations, we find that the majority of the K-edge features

predicted by TD-EOM-CCSD deviate from experimentally obtained features by less than

1.5 eV, with a worst-case deviation of 2.01 eV (for the 1s→3p(a1/b1) transition in the water

molecule), and, overall, the mean unsigned error in all features is only 1.15 eV. These val-

ues are consistent with the accuracy of TD-EOM-CCSD K-edge spectra reported previously

for other small closed-32,44 and open-shell44 molecules. We note that, sub-eV accuracy can

be achieved via the inclusion of triple excitations, which is easily done in time-independent

EOM-CC calculations,44 but which presents more of a computational challenge within a

time-dependent EOM-CC framework. We also stress that the roughly 1 eV errors we ob-

serve pertain to K-edge features of second-row atoms. EOM-CCSD has been demonstrated

to display similar accuracy at the sulfur K-edge,74 but for heavier atoms, EOM-CCSD results

in larger errors. For example, at the xenon K-edge in XeF2, four-component EOM-CCSD,

including the Gaunt interaction, results in a roughly 40 eV error, relative to experiment
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(which translates into a 0.1% error in this case).75

Table 1: Experimentally-obtained K-edge features (eV) and errors in computed
K-edge features (eV), along with the average number of σ-vector evaluations
required for SIL simulations for each molecule.

σ transition exp. error
OH 48253 1s→ 2p 525.8069 0.26
NO 27093 N 1s→ 2pπ∗ 399.7070 0.40

O 1s→ 2pπ∗ 532.7070 1.13
N2 25273 1s→ 2pπg 401.0071 0.66

1s→ 3sσg 406.1071 1.45
1s→ 3pπu 407.0071 1.41

NH3 22367 1s→ 3s(a1) 400.6672 0.96
1s→ 3p(e) 402.3372 0.96
1s→ 3p(a1) 402.8672 1.53
1s→ 4s(a1) 403.5772 1.70
1s→ 3p(e) 404.1572 1.91

CH3 18453 1s→ 2p 281.3573 0.26
H2O 25847 1s→ 3s 534.0072 1.35

1s→ 3p(b2) 535.9072 1.24
1s→ 3p(a1/b1) 537.0072 2.01

MUE 1.15

The data presented above demonstrate that SIL-derived TD-EOM-CC spectra closely

reproduce those from RK4-based simulations for both open- and closed-shell species and

for both valence and core-level transitions. This result is somewhat surprising, as SIL was

originally formulated for non-Hermitian Hamiltonians, and the similarity-transformed Hamil-

tonian is not Hermitian. One possible explanation for this excellent performance is that, for

the systems that we have explored, H̄N is “close-enough” to Hermitian for the procedure to

work. To test this hypothesis, we consider additional far-from-equilibrium geometries of a

water molecule, within the cc-pVDZ basis. For this study, we consider spectra along a single

bond stretch coordinate, varying one O–H bond length, while holding the other O–H bond

length and the H–O–H bond angle fixed at values of 1.0 Å and 104.5◦, respectively. Table 2

provides the percent error in the oscillator strength functions and the maximum errors in the

peak locations for SIL-derived spectra, using RK4-based results as a reference. We find that

the percent error for low-energy features increases slightly with increasing bond length, but
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the errors remain low (the maximum percent error is 1.1%). We also evaluated the devia-

tions between peak locations from SIL- and RK4-based simulations, and the maximum error

we encountered was only 0.01 eV. For K-edge features, the percent error in the oscillator

strength function is comparable to the average values presented in Fig. 3(b), and we find

no clear trend in these values with increasing bond lengths. As in the case of low-energy

features, the maximum error in the K-edge peak locations is only 0.01 eV. These data sug-

gest that SIL remains a reliable choice of integrator when simulating far-from-equilibrium

TD-EOM-CC spectra.

Table 2: Percent error in the oscillator strength function and maximum errors
in peak locations (eV) for SIL-derived low-energy and K-edge features of H2O
along a single O–H bond stretch coordinate (Å).

% error max peak error
bond length low-energy K-edge low-energy K-edge

1.0 0.5 4.1 0.00 0.01
1.5 0.6 4.7 0.01 0.01
2.0 0.6 5.4 0.01 0.01
2.5 1.1 4.5 0.01 0.01

Conclusions

We have explored the utility of the short iterative Lanczos integration scheme in the con-

text of moment-based time-dependent equation-of-motion coupled-cluster theory. With a

suitably-chosen Lanczos dimension, the SIL scheme can be as much as an order of magni-

tude more efficient than a simpler numerical integration protocol based on, for example, the

RK4 approach. We validated the SIL procedure by evaluating both low-energy (0–25 eV)

and K-edge absorption features in a variety of small molecules and found that SIL-derived

spectra are nearly indistinguishable from those derived from RK4. This result is somewhat

surprising, as SIL was originally formulated for Hermitian Hamiltonians, whereas the EOM-

CC Hamiltonian is not Hermitian. Interestingly, we have found that the SIL scheme closely
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reproduces spectra obtained from RK4-based simulations even in cases where we expect

the similarity-transformed Hamiltonian to be significantly non-Hermitian (e.g., at far-from-

equilibrium geometries in H2O). When combined with advanced signal processing techniques

(e.g., the Padé approximation to the discrete FT), the floating-point cost of a simulation of

K-edge spectra, for example, can be reduced by more than an order of magnitude, relative

to a naive TD-EOM-CC simulation. Even so, such simulations are still expensive, requiring

tens of thousands of σ-vector builds, and may become impractical for large molecules. In

that case, these techniques could easily be combined with other approaches that exploit the

sparsity of the Hamiltonian (e.g., core-valence separation76–79 or local correlation techniques)

in order to expand their utility.

We reiterate that the TD-EOM-CC approach described in this work is a moment-based

one,35 and we note that a complementary time-domain approach to EOM-CC theory could

be developed in which the system is exposed to a time-dependent external perturbation (e.g.,

an oscillating electric field), and spectral information can subsequently be extracted from the

time evolution of observables such as the dipole moment.80,81 Such an approach, which we

refer to as field-driven TD-EOM-CC, is, in principle, more robust than the moment-based

one in that it can naturally describe non-linear effects. Nevertheless, several factors poten-

tially complicate the use of this complementary field-driven form of TD-EOM-CC theory,

particularly with a Lanczos-based integration scheme. First, the SIL procedure works un-

der the assumption that the Hamiltonian is time-independent, so SIL-accelerated dynamics

could only be realized when the time-dependent external perturbation goes to zero (e.g.,

after the system has been perturbed). Second, because EOM-CC is not a Hermitian the-

ory, evaluating the time-dependent dipole moment requires knowledge of both the left- and

right-hand wave functions. For this reason, correct SIL-based dynamics would likely require

the use of an asymmetric Lanczos tridiagonalization procedure.82 Finally, one should recall

that neither RK4 nor SIL are structure conserving, and, while they appear to be reliable

within the context of moment-based TD-EOM-CC theory, it could be preferable to employ
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a suitable symplectic integrator43–45 for field-driven TD-EOM-CC dynamics.

Lastly, we note that the moment-based formalism we employ derives30,44 from the sum-

over-states form of the frequency-dependent dipole polarizability,83 which is not size-extensive.84

As a result, TD-EOM-CC is also not strictly size extensive, but it does avoid the spurious

poles discussed in Ref. 84. Fortunately, multiple studies have demonstrated the accuracy of

moment-based TD-EOM-CC relative to conventional EOM-CC for both linear absorption

spectra35,44 and rotatory strengths,30 so it would appear that any size-extensivity error is

not problematic, at least in small molecules. Nonetheless, one should be aware of this issue.

Supporting Information

The number of σ-vector evaluations and the percent error in the oscillator strength functions

associated with simulations of low-energy and K-edge spectra for all molecules considered in

this study.
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