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Abstract
Higher-order tensors can represent scores in a rating system, frames in a video, and
images of the same subject. In practice, the measurements are often highly quantized
due to the sampling strategies or the quality of devices. Existing works on tensor
recovery have focused on data losses and random noises. Only a few works consider
tensor recovery from quantized measurements but are restricted to binary
measurements. This paper, for the first time, addresses the problem of tensor recovery
from multi-level quantized measurements by leveraging the low
CANDECOMP/PARAFAC (CP) rank property. We study the recovery of both general
low-rank tensors and tensors that have tensor singular value decomposition (TSVD) by
solving nonconvex optimization problems. We provide the theoretical upper bounds
of the recovery error, which diminish to zero when the sizes of dimensions increase to
infinity. We further characterize the fundamental limit of any recovery algorithm and
show that our recovery error is nearly order-wise optimal. A tensor-based alternating
proximal gradient descent algorithm with a convergence guarantee and a TSVD-based
projected gradient descent algorithm are proposed to solve the nonconvex problems.
Our recovery methods can also handle data losses and do not necessarily need the
information of the quantization rule. The methods are validated on synthetic data,
image datasets, and music recommender datasets.

Keywords: Tensor recovery, CP decomposition, Low-rank, Multi-level quantization,
Tensor singular value decomposition, Nonconvex optimization

1 Introduction
Many practical datasets are highly noisy and quantized, and recovering the actual val-
ues from quantized measurements finds applications in different domains. For example,
users’ preferences in rating systems are represented by a few scores (or even two scores in
1 bit [1]), which do not provide accurate characterizations of preferences. Due to sensor
issues or communication restrictions, images and videos in some applications may have
very low resolution [2]. Quantization is applied to enhance the data privacy in power sys-
tems and sensor networks [3–5]. It is important to develop computationally efficient and
reliable methods to recover the actual data from low-resolution measurements.
Li et al. [6] estimate the data from 1-bit measurements by linearizing the nonlinear

quantizer. Khobahi et al. [7] leverage the deep learning tool to recover the data. These
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approaches either require accurate parameter estimation or have high computational
costs. Some other works recover data from a small number of quantized measurements,
but the methods only apply to sparse signals [8–10]. Low-rank matrices can characterize
the intrinsic data correlations in user ratings, images, and videos [11, 12], and the low-
rank property has been exploited to recover the data from quantized measurements by
solving a nonconvex constrained maximum likelihood estimation problem [1, 4, 13, 14].
For an n × n rank-r matrix (r � n), the best achievable recovery error from quantized

measurements is O
(√

r3
n

)
1 [4, 13]. The recovery error diminishes to zero when the data

size increases.
Practical datasets may contain additional correlations that cannot be captured by low-

rank matrices. For instance, if every frame of a video is vectorized so that the video
is represented by a matrix, the spatial correlation is not directly characterized by low-
rank matrices [15]. In recommendation systems, users’ ratings against objects vary under
different contexts [16], and assuming the rating matrix is low-rank does not fully charac-
terize the dependence of ratings over the contexts. That motivates the usage of low-rank
tensors where higher-order tensors contain data arrays with at least three dimensions.
Tensors can represent three-dimensional objects in generic object recognition [17],

engagements on advertisements over time for behavior analysis [18], gene expressions
in the development process [19], etc. Moreover, tensor techniques are widely used in
deep learning [20, 21]. Unlike matrices, there are different rank definitions for higher-
order tensors, such as CANDECOMP/PARAFAC (CP) rank [22, 23] and Tucker rank [24].
Since there exist correlations in the practical datasets such as images and user ratings,
the resulting tensor data is often low-rank. The low-rank property has been exploited
in problems like low-rank tensor completion [25–30] and low-rank tensor recovery
[31–35]. Leveraging the low-rank property, a convex relaxation of the Tucker rank can
be applied to robust tensor recovery [31, 32] and tensor completion [25, 26]. CP rank-
based decompositions are also proved to be effective in these tasks [27, 28]. Besides the
low-Tucker-rank and low-CP-rank, there are also other tensor rank forms used in lit-
erature. To solve the unbalanced matricization scheme in the Tucker rank, tensor train
rank is proposed to solve the tensor recovery and completion problem [29, 33]. Some
works also leverage another rank form called tubal multi-rank and its convex surrogate
tensor nuclear norm as tools for tensor-related tasks [34, 35]. This paper concerns only
the recovery under the CP rank. It is more challenging to analyze tensors than matri-
ces because some matrix properties do not extend to higher-order tensors. For example,
in general, the best low-rank approximation to a tensor does not always exist [36, 37].
A couple of works have focused on special tensors that have the tensor singular value
decomposition (TSVD) (a.k.a. completely orthogonal) [38, 39], which is a direct general-
ization of the matrix singular value decomposition. The significance of the tensors with
TSVD is that many matrix properties are preserved. For example, the best orthogonal
low-rank tensor approximation always exists [38, 40], and the CP rank of a tensor having
TSVD equals to the number of its singular values. We will refer tensors having TSVD as
SVD-tensors.

1We use the notations g = O(n), g = �(n) if as n goes to infinity, g ≤ c · n, c1 · n ≤ g ≤ c2 · n eventually holds for some
positive constants c, c1 and c2 , respectively.
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Low-rank tensors with quantization noise exist in hyper-spectral data [41, 42], rating
systems [43], and the knowledge predicates [44]. Existing works on low-rank tensor recov-
ery mainly consider random noise or sparse noise [45–47], while only a few works [41–
43] consider tensor recovery from 1-bit measurements, i.e., all measurements are binary.
Aidini et al. [41] introduce a 1-bit tensor completion method that first unfolds the tensor
measurements to matrices along all dimensions and then applies matrix recovery tech-
niques to each matrix. The final estimation is a real-valued tensor folded by the weighted
sum of the recovered matrices. Ghadermarzy et al. [43] use tensor M-norm constraint to
replace the exact low-rank constraint and then recover the tensor by solving the convex
optimization problem. The recovery error is guaranteed to be O(( r

3K−3K
nK−1 )1/4), where K

is the number of tensor dimensions, and n is the size per dimension. Li et al. [42] focus
on three-dimensional tensor and the scenario when a significant percentage of measure-
ments are lost. The recovery is based on minimizing the convex surrogate of the tubal
multi-rank.
This paper for the first time studies the problem of low-rank tensor recovery from

multi-level quantized measurements, while the existing works [41–43] only consider 1-
bit measurements. This paper is also the first one to study the recovery problem for
SVD-tensors for quantized measurements.We formulate the tensor recovery problems as
constrained nonconvex optimization problems. When there is no missing data, and the
quantization rule is known, we prove that the recovery error of a K-dimensional tensor
with CP rank r is at most O(

√
rK−1K logK

nK−1 ), where n is the length of each tensor dimen-
sion. The error bound decays to zero much faster than any existing results. Moreover, we
prove that if the tensor is a SVD-tensor, then the recovery error is reduced to at most
O(

√
rK logK
nK−1 ). We also prove that the recovery error of low-CP-rank tensors by any algo-

rithm cannot be smaller than the order of
√

r
nK−1 . Our method is close to optimal for

a small r. We further develop computationally efficient algorithms to solve the noncon-
vex problems for recovering low-CP-rank tensors and tensors with TSVD. We prove that
even with partial data losses, our proposed low-CP-rank tensor recovery algorithm con-
verges to a critical point of the nonconvex problem from any initialization with at least a
sublinear convergence rate. Lastly, all the existing works on tensor recovery from quan-
tized measurements assume that the quantization rule is known to the recovery method
except one low-rank matrix recovery work [13]. We empirically extend our methods to
recover the tensor from quantized measurements when the quantization rule is unknown
and demonstrate encouraging numerical results.
This paper is organized as follows. The problem formulation is introduced in Section 2.

Section 3 discusses our approach and its recovery error. An efficient algorithm with
the convergence guarantee is proposed in Section 4.1. The recovery algorithm for SVD-
tensors is proposed in Section 4.2. Section 5 records the numerical results. Section 6
concludes the paper. All the lemmas and proofs can be found in the Appendices (see
Appendices 1, 2, 3, 4, 5, and 6).

1.1 Notation and preliminaries

We use boldface capital letters to denote matrices (two-dimensional tensors), e.g., A.
Higher-order tensors (three or higher dimensions) are denoted by capital calligraphic let-
ters, e.g., X . X ∈ R

n1×n2×···×nK represents a K-dimensional tensor with the size of the
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i-th dimension equaling to ni, i ∈[K], where [K]= {1, 2, . . . ,K}. Xi1,i2,...,iK denotes the
(i1, i2, . . . , iK )-th entry of X . X(k) ∈ R

nk×(n1...nk−1nk+1...nK ) is the mode-k matricization of
X , which is formed by unfolding X along its k-th dimension. The Frobenius norm of the
tensor X is defined as ‖X ‖F =

√∑n1
i1=1

∑n2
i2=1 · · ·∑nK

iK=1X 2
i1,i2,...,iK .

Let ai ∈ R
ni ,∀i ∈[K] be K vectors. Then, A = a1 ◦ · · · ◦ aK is a K-dimensional tensor

with Ai1,i2,...,iK = a1i1a2i2 . . . aK iK . Here, ◦ is called the outer product. The CP rank of X
[22, 23] is defined as

rank(X ) = min{R : X =
R∑
i=1

A1i ◦ A2i ◦ · · · ◦ AKi,Ak ∈ R
nk×R, k ∈[K] },

(1)

where Aki is the i-th column of Ak. A1 ◦ A2 ◦ · · · ◦ AK is equivalent to
∑R

i=1A1i ◦ A2i ◦
· · · ◦ AKi. Note that the CP rank can be different in different fields, e.g., real number
and complex number. We remark that the results in this paper can be easily generalized
to different fields. We use Ak � Ap to represent the Khatri-Rao product [48] of Ak ∈
R
nk×r ,Ap ∈ R

np×r . We have Ak �Ap =[Ak1
⊗

Ap1,Ak2
⊗

Ap2, . . . ,Akr
⊗

Apr], where
Aki

⊗
Api =[ (Aki)1Ap

T
i , (Aki)2Ap

T
i , . . . , (Aki)nkAp

T
i ]

T ∈ R
nknp×1,∀i ∈[ r].

We define the set of tensors that have tensor singular value decomposition (TSVD) as
follows

Stsvd := {X |X =
R∑
i=1

ζiV1i ◦ V2i ◦ · · · ◦ VKi,

Vk ∈ R
nk×R, ζ1 ≥ ζ2 ≥ · · · ≥ ζR > 0,

〈Vki,Vkj〉 = 1[i=j], 1 ≤ i, j ≤ R,∀R}

(2)

where 1[B] is an indicator function that takes value “1” if the event B is true and value “0”
otherwise. 〈, 〉 denotes the inner product operation. Definition (2) generalizes the matrix
SVD. One can see that TSVD is a special case of the decomposition form in (1), and
Lemma 3.3 in [38] implies that the tensor in (2) has CP rank R. We remark that not all of
the tensors have TSVD. We refer readers to [38] for more details.
Throughout this paper, when discussing tensor ranks and low-rank tensors, we refer to

CP rank if not otherwise specified. Again, we will refer tensors in Stsvd as SVD-tensors.

2 Our proposed framework of tensor recovery from noisy andmulti-level
quantizedmeasurements

Let X ∗ ∈ R
n1×n2×···×nK denote the actual data that are represented by a K-dimensional

tensor. Let ‖ · ‖∞ denote the entry-wise infinity norm. We assume that the maximum
value ofX ∗ is bounded by a positive constant α, i.e., ‖X ∗‖∞ ≤ α. We further assume that
X ∗ is a low-rank tensor, i.e., rank(X ∗) ≤ r.
Each entry of X ∗ is mapped to one of a few possible values with certain probabil-

ities through the quantization process. To model this probabilistic mapping, let N ∈
R
n1×n2×···×nK denote a noise tensor with i.i.d. entries drawn from a known cumulative

distribution function �(x). Given the quantization boundaries ω∗
0 < ω∗

1 < · · · < ω∗
W , the

noisy data X ∗
i1,i2,...,iK +Ni1,i2,...,iK (ij ∈[ nj] , j ∈[K]) can be quantized toW values based on

the following rule,
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Yi1,i2,...,iK = Q
(
X ∗
i1,i2,...,iK + Ni1,i2,...,iK

) = l

if ω∗
l−1 < X ∗

i1,i2,...,iK + Ni1,i2,...,iK ≤ ω∗
l , l ∈[W ] ,

(3)

where Q is an operator that maps a real value to one of W values. We choose ω∗
0 = −∞

and ω∗
W = ∞. Yi1,i2,...,iK is the (i1, i2, . . . , iK )-th entry of the quantized measurements

Y ∈[W ]n1×n2×···×nK . When W = 2, Y reduces to the 1-bit case [43]. In general, Y is
a log2W -bit tensor. Figure 1 provides a visualization of the quantization process when
K = 3 and Y is a log2W -bit tensor. The actual tensor X ∗ is mapped to the quantized
tensor Y by first adding a noise tensorN and then quantized by the operator Q.
The probability that Yi1,i2,...,iK = l given X ∗

i1,i2,...,iK and ω∗
l−1,ω

∗
l is expressed by

fl
(
X ∗
i1,i2,...,iK ,ω

∗
l−1,ω

∗
l

)
, where

fl
(
X ∗
i1,i2,...,iK ,ω

∗
l−1,ω

∗
l
)

= P
(
Yi1,i2,...,iK = l|X ∗

i1,i2,...,iK ,ω
∗
l−1,ω

∗
l
)

= �
(
ω∗
l − X ∗

i1,i2,...,iK
)− �

(
ω∗
l−1 − X ∗

i1,i2,...,iK
)
,

(4)

and
∑W

l=1 fl
(
X ∗
i1,i2,...,iK ,ω

∗
l−1,ω

∗
l

)
= �

(
∞ − X ∗

i1,i2,...,iK

)
− �

(
−∞ − X ∗

i1,i2,...,iK

)
= 1.

The probability description (4) follows from the same formula as those in [4, 13], except
that the entries are from a higher-order tensor. Two common choices for �(x) are as
follows: (1) probit model with �(x) = �norm(x/σ), where �norm is the cumulative
distribution function of a standard Gaussian distribution, and (2) logistic model with
�(x) = �log(x/σ) = 1

1+e−x/σ .
We also consider the general setup that there exists missing data in the measurements,

i.e., only measurements with indices belonging to the observation set � are available,
while all the other measurements are lost. The question we will address in this paper is
as follows. Given the partial observations Y� and the noise distribution �, how can we
estimate the original tensor X ∗? We will discuss the case when X ∗ is a general tensor and
the special case when X ∗ is a SVD-tensor.
We remark that this problem formulation can be applied in different domains. In the

user voting systems, data can be represented as {users × scoring objects × contexts}
[16], which is a three-dimensional tensor. The scores from the reviewers are highly
quantized [1]. By solving the quantized tensor recovery problem, one can obtain the
actual preferences of the reviewers. In video processing, the measurements can be repre-
sented as {rows of a frame × columns of a frame × different frames}. The measurements
can be highly quantized due to the sensing process, and the objective is to recover the
data [49, 50]. A similar idea also applies to low-quality image recovery [2, 15]. Images

Fig. 1 Quantization model (K = 3)
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from the same subject can be represented by {rows of an image× columns of an image×
different images}.

3 Results: theoretical
We propose to estimate tensor X ∗, boundaries ω∗

1,ω∗
2, · · · ,ω∗

W−1 using a constrained
maximum likelihood approach. The negative log-likelihood function is given by

F�(X ,ω1,ω2, · · · ,ωW−1) = −n1n2 · · · nK
|�|

∑
(i1,··· ,iK )∈�

W∑
l=1

1[Yi1,i2,··· ,iK =l] log(fl(Xi1,i2,...,iK ,ωl−1,ωl)),
(5)

where |�| denotes the cardinality of �. Equation (5) is a convex function when fl is a
log-concave function. When ω∗

l ’s are unknown, we estimate X ∗, ω∗
l ’s by X̂ , ω̂l ’s, where

(X̂ , ω̂1, ω̂2, · · · , ω̂W−1)

= argminX ,ωl ,∀l∈[W−1]F�(X ,ω1,ω2, · · · ,ωW−1)

s.t.X ,ω1,ω2, · · · ,ωW−1 ∈ Sfω,

(6)

and

Sfω :={X ∈ R
n1×n2×...nK ,ωl,∀l ∈[W − 1] :

‖X ‖∞ ≤ α, rank(X ) ≤ r,

ω0 < ω1 < ω2 < · · · < ωW−1 < ωW }.
(7)

Most existing works on quantized data recovery consider the special case that the quan-
tization boundaries are known [1, 4, 43] only except for [13]. In this case, (6) can be
simplified to

X̂ = argminXF�(X ,ω∗
1,ω∗

2, ...,ω∗
W−1) s.t.X ∈ Sf , (8)

where

Sf := {X : ‖X ‖∞ ≤ α, rank(X ) ≤ r}. (9)

If we assume that X ∗ ∈ Stsvd, then the optimization problem (6) changes to

(X̂ , ω̂1, ω̂2, · · · , ω̂W−1)

= argminX ,ωl ,∀l∈[W−1]F�(X ,ω1,ω2, · · · ,ωW−1)

s.t.X ,ω1,ω2, · · · ,ωW−1 ∈ Sfωs,

(10)

where

Sfωs :={X ∈ R
n1×n2×...nK ,ωl,∀l ∈[W − 1] :

‖X ‖∞ ≤ α, rank(X ) ≤ r,X ∈ Stsvd

ω0 < ω1 < ω2 < · · · < ωW−1 < ωW },
(11)

and problem (8) changes to

X̂ = argminXF�

(
X ,ω∗

1,ω∗
2, ...,ω∗

W−1
)

s.t.X ∈ Sfs, (12)

where

Sfs := {X : ‖X ‖∞ ≤ α, rank(X ) ≤ r,X ∈ Stsvd}. (13)
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We remark that all (6), (8), (10), and (12) are nonconvex problems since Sfω, Sf , Sfωs, Sfs
are nonconvex sets. Note that when the ground-truth tensor is not in Stsvd, the solutions
of (10) and (12) can be viewed as a low-rank approximation of the tensor.
Ghadermarzy et al. [43] study the case with known bin boundaries in (8)–(9). It focuses

on the special case that W = 2 and relaxes the low-rank constraint in Sf with a convex
M-norm constraint. Bhaskar et al. [13] and Gao et al. [4] consider minimizing a nega-
tive log-likelihood function subject to a low-rank constraint, which is similar to (8), but
are restricted to quantized matrix recovery. None of the works address the problem of
low-rank tensor recovery from multi-level quantized measurements, nor the recovery of
SVD-tensors. We first analyze the recovery performance of our models. We defer the
algorithms to Section 4.

3.1 Tensor recovery guarantee

Similar to the works of quantized matrix recovery [1, 13], we first define two constants
γα and Lα for analysis in the case boundaries are all known constants. For simplicity, we
denote fl(x,ω∗

l−1,ω
∗
l ) by fl(x).

γα = min
l∈[W ]

inf|x|≤2α

{
ḟ 2l (x)
f 2l (x)

− f̈l(x)
fl(x)

}
,

Lα = max
l∈[W ]

sup
|x|≤2α

{
|ḟl(x)|
fl(x)

}
,

(14)

where ḟl and f̈l are the first- and second-order derivatives of fl. Note that f̈l − ḟlfl ≥ 0 if
fl is log-concave, and f̈l − ḟlfl > 0 if fl is strictly log-concave. One can check that fl is
strictly log-concave if � is log-concave, which holds true for noises following Gaussian
and logistic distributions. Thus, γα > 0 in our setup. We also remark that Lα and γα are
bounded by some fixed constants when both α and fl are given. Taking the logistic model
as an example [4, 13], we have

γα = min
l∈[W ]

inf|x|≤2α

1
σ 2 [�log(

ωl − x
σ

)(1 − �log(
ωl − x

σ
))

+ �log(
ωl−1 − x

σ
)(1 − �log(

ωl−1 − x
σ

))]

Lα =
1/
[
2σ min

l∈[W ]
inf|x|≤2α

{
�log

(
ωl − x

σ

)
− �log

(
ωl−1 − x

σ

)}]
(15)

where Lα and γα depend on σ andW. It is also easy to check that γα , Lα > 0 from (15).
We next state our main results that characterize the recovery error when there are no

data losses and the quantization boundaries are known, i.e., the accuracy of the solutions
to (8) and (12) when � is the full observation set.

Theorem 1 Suppose ω∗
l ’s are given, and � contains all the indices. X ∗ ∈ Sf , and fl(x)

is strictly log-concave in x, ∀l ∈[W ]. Then, with probability at least 1 − δ, δ ∈[ 0, 1], any
global minimizer X̂ of (8) satisfies

‖X̂ − X ∗‖F/
√
n1n2...nK ≤ min(2α,Uα) (16)

where
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Uα =

√√√√64rK−1L2α
((∑K

k=1 nk
)
log(4K/3) + log(2/δ)

)
n1n2...nK · γ 2

α

, (17)

Theorem 2 Under the same assumptions on ω∗
l ’s, �, and fl(x) as Theorem 1, for X ∗ ∈

Sfs, any global minimizer X̂ of (12) satisfies

‖X̂ − X ∗‖F/
√
n1n2...nK ≤ min(2α,U ′

α) (18)

with probability at least 1 − δ, where

U ′
α =

√√√√64rL2α
((∑K

k=1 nk
)
log(4K/3) + log(2/δ)

)
n1n2...nK · γ 2

α

, (19)

Theorems 1 and 2 establish the upper bounds of the recovery error when the measure-
ments are noisy and quantized. Lα , δ, γα are all constants. Specifically, when n1, n2, . . . , nK
are all in the order of n, the recovery error of (16) and (18) can be represented as

‖X̂ − X ∗‖F/
√
n1n2...nK ≤ O

⎛
⎝
√
rK−1K logK

nK−1

⎞
⎠ , (20)

and

‖X̂ − X ∗‖F/
√
n1n2...nK ≤ O

(√
rK logK
nK−1

)
. (21)

The right-hand sides of (20) and (21) diminish to zero when n increases to infinity. Com-
paring (20) and (21), the provided recovery error bound is further reduced if the tensor is
a SVD-tensor. Note that the Frobenius norm of X∗ is in the same order of √n1n2...nK . By
dividing the actual error by √n1n2...nK , we have that the left-hand sides of (20) and (21)
are in the same order of the relative error ‖X̂ − X ∗‖F/‖X ∗‖, which is a commonly used
normalized error measure. Therefore, the relative recovery error is sufficiently close to
zero when the size of the tensor is large enough. We want to emphasize that Theorem 1
and Theorem 2 are based on the global minimizers of (8) and (12), respectively. In general,
the global optimum of a nonconvex problem is hard to achieve.
Note that the recovery error depends on W implicitly because W affects Lα and γα .

It might seem counterintuitive that the recovery error is not a monotone function of
W. That is because we consider all the possible selections of bin boundaries for a given
W when computing Lα and γα . A larger W does not necessarily lead to more informa-
tion in the quantized measurements. For example, if two bin boundaries are very close
to each other, almost no data would be mapped to this bin, and the effective number of
quantization levels is less than W (think of the extreme case when ω1 = ωW−1). This is
why W does not appear directly in the recovery bound. Of course, in practice, in most
cases, largerW (more bits) will provide us more information about the real data and thus
increase the performance.

3.1.1 Recovery enhancement over the existing work on 1-bit tensor recovery

Recovering low-CP-rank tensors from 1-bit measurements has been studied in the work
of Ghadermarzy et al. [43]. Ghadermarzy et al. [43] relax the nonconvex low-rank con-
straint with a convex M-norm constraint, and the resulting recovery method has an error
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bound ofO
((

r3K−3K
nK−1

)1/4)
. In contrast, our recovery error bound in (20) for general low-

CP-rank tensors decays to zero faster than the 1-bit tensor recovery [43] for any K ≥ 2,
and the bound for TSVD tensors is even smaller. For example, the recovery error bounds
in (20) and (21) are O( rn ) and O

(√
r
n

)
when K = 3, while the bound is O

((
r3/2
n1/2

))
by

Ghadermarzy et al. [43].

3.1.2 Reduction to thematrix case

When reduced to the matrix case, i.e., K = 2, both (20) and (21) show that the quantized
matrix recovery has an error bound of O

(√
r
n

)
, which is the same as the smallest error

bound in the matrix case [4].

3.1.3 Recovery enhancement over quantizedmatrix recovery

Here, we simply compare the recovery error in (20) and (21) with the results obtained
by applying quantized matrix recovery methods on the mode-k matricization X(k) along
the k-th dimension of X . When the size of each dimension is �(n), the sizes of the two
dimensions of X(k) are �(n) and �(nK−1), respectively. Let r̄ be the rank of the matrix,
and r̄ is smaller or equal to r.
Existing works provide the theoretical analyses of matrix recovery from quantized mea-

surements [1, 4, 13]. The recovery errors of applying these methods to X(k) are in the

order of O
(√

r̄3
n

)
and O(( r̄n )1/4) by Bhaskar et al. [13] and Davenport et al. [1], respec-

tively. The best existing bound is O
(√

r̄
n

)
by Gao et al. [4]. Note that the error order in

our results has a power of K − 1 in its denominator. For example, the recovery error is
O( rn ) by (20) and O(

√
r
n ) by (21) when K = 3. r is often assumed to be a constant, i.e.,

O(1) as in the work of Ghadermarzy et al. [43]. Then, r̄ is also O(1). It is easy to see that
when K ≥ 3, the recovery errors of both (20) and (21) decay to zero faster than the best
existing bound of O(

√
r̄
n ) by Gao et al. [4] for the mode-k matricization case. In Table 1,

we compare our results to the state-of-art results of the existing 1-bit tensor recovery [43]
and quantized matrix recovery [4].

3.2 Fundamental limitation of the recovery

Wenext provide a fundamental error limit of any recoverymethod in recovering low-rank
(CP rank) tensors even when the observed measurements are unquantized. We consider
the noise distribution that follows from zero mean Gaussian distribution with variance
σ 2. Let nmax denotes the max(n1, n2, · · · , nK ), and assume rnmax > 64.

Table 1 Comparison of our method to state-of-the-art quantized matrix recovery method and 1-bit
tensor recovery method

Framework Recovery error (general) Recovery error (K = 3) Recovery error (K = 2)

General tensors (our work) O

(√
rK−1K log K

nK−1

)
O
( r
n

)
O
(√

r
n

)

SVD-tensors (our work) O

(√
rK log K
nK−1

)
O
(√

r
n

)
O
(√

r
n

)

Ghadermarzy et al. [43] O

((
r3K−3K
nK−1

)1/4)
O
((

r3/2

n1/2

))
O
((

r3/4

n1/4

))

Gao et al. [4] (matrix rank) O

(√
r̄
n

)
O

(√
r̄
n

)
O

(√
r̄
n

)
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Theorem 3 LetN ∈ R
n1×n2···×nK contain i.i.d. entries from zero mean Gaussian distri-

bution with variance σ 2. For any X ∈ Sf , consider any algorithm that takes Y = X + N
as the input and returns an estimation X̂ . Then, there always existsX ∈ Sf such that with
probability at least 3

4 ,
‖X̂ − X ‖F√n1n2 · · · nK ≥ min

(
α

4
,C1σ

√
rnmax − 64
n1n2 · · · nK

)
(22)

holds for a fixed constant C1 <

√
1

512 .

Theorem 3 establishes the lower bound of the recovery error. When n1, n2, . . . , nK are
all in the order of n, the recovery error of (22) can be represented as

‖X̂ − X ∗‖F/
√
n1n2...nK ≥ �

(√
r

nK−1

)
, (23)

That means the recovery error from unquantized measurements by any algorithm is at
least �

(√
r

nK−1

)
. Comparing the error bounds in (20) and (23), one can see that the error

bound (20) is almost order-wise optimal when r � O(n).

4 Algorithms: tensor recovery from quantizedmeasurements
We propose two efficient algorithms to solve the noncovex problems (6) and (10),
respectively. Both algorithms transform the rank constraint to a penalty function in
the objectives, and update all the variables alternatively. Since the problem (10) has
extra orthonormal constraints on tensor decomposition components, we apply different
updating strategies on these decomposition component variables.

4.1 Alternating proximal gradient descent based on tensors

We develop a fast algorithm named tensor-based alternating proximal gradient descent
(TAPGD) to solve the nonconvex problem (6) with the convergence guarantee.
Since rank(X ) ≤ r, there existsAk ∈ R

nk×r ,∀k ∈[K], such thatX = A1 ◦A2 ◦ · · · ◦AK.
Then, we change the rank constraint into a penalty function λ

2‖X −A1 ◦A2 ◦ · · · ◦AK‖2F
in the objective, where λ is a positive constant. The equality constraint holds when λ goes
to infinity. Note that X = A1 ◦A2 ◦ · · · ◦AK is in the form of CANDECOMP/PARAFAC
(CP) decomposition [51, 52]. Unlike matrix decomposition and the other major ten-
sor decomposition method (Tucker decomposition [53]), CP decomposition has a very
weak requirement for the uniqueness of tensor factors. A sufficient condition for CP
decomposition to be unique is that the summation of independent column numbers in
Ak, k = 1, 2, · · · ,K is larger or equal to 2r+K−1 [23], which often holds true. In contrast,
Tucker decomposition is generally not unique and is usually computationally expensive
to update its core tensor.
We revise Sfω to add constraints that quantization boundaries shall not be too close to

avoid trivial solutions in practice. The resulting feasible set is

Sω = {X ,ω1,ω2, · · · ,ωW−1 : αlow ≤ ω1 ≤ ω2 − κ2,

ωl−1 + κl ≤ ωl ≤ ωl+1 − κl+1, ∀l ∈ {2, , 3, ...,W − 2},
ωW−2 + κW−1 ≤ ωW−1 ≤ αupper, ‖X ‖∞ ≤ α},

(24)

where κl,∀l ∈ {2, 3, · · · ,W − 1} are some positive numbers that can be chosen using
hyperparameter tuning or simply set as small positive constants, and κ1 = κW = 0.
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αlow,αupper are two constants that provide the lower and upper bound of the boundaries,
which could be chosen as −α and α, or estimates computed in different applications. The
revised problem of (6) is shown as follows

(X̂ , ω̂1, ω̂2, · · · , ω̂W−1) =
argminX ,Ak,k∈[K ],ωl ,l∈[W−1]F�(X ,ω1,ω2, · · · ,ωW−1)

+ λ

2
‖X − A1 ◦ A2 ◦ · · · ◦ AK‖2F+


1(X ) +
W−1∑
l=1


2(ωl)

(25)

where


1(X ) =

⎧⎪⎨
⎪⎩

∞ if ‖X ‖∞ > α

0 otherwise


2(ωl) =

⎧⎪⎨
⎪⎩

∞ if ωl > min(ωl+1 − κl+1,αupper)

or ωl < max(ωl−1 + κl,αlow)

0 otherwise

(26)


1(X ) is transformed by the constraint ‖X ‖∞ ≤ α. 
2(ωl) is transformed by the
constraints on ωl in Sω. Let

H =F�(X ,ω1,ω2, · · · ,ωW−1)

+ λ

2
‖X − A1 ◦ A2 ◦ · · · ◦ AK‖2F .

(27)

Then, we solve (25) using the proximal gradient method [54]. Themain steps of the proxi-
mal gradientmethod include updatingX ,Ak, k ∈[K] ,ωl, l ∈[W−1] by using the gradient
descent method on H, and projecting the result to Sω. Since for ∀k ∈[K]

‖X − A1 ◦ A2 ◦ · · · ◦ AK‖F =
‖X(k) − Ak(AK � · · · � Ak+1 � Ak−1 � . . .A1)

T‖F ,
(28)

the partial gradients of H with respect to Ak and X can be calculated by

∇AkH = (Ak(Bk)
T − X(k))Bk,∀k ∈[K] , (29)

∇XH =∇XF�(X ,ω1,ω2, · · · ,ωW−1)

+ λ(X − A1 ◦ A2 ◦ ... ◦ AK),
(30)

where Bk = AK � ... � Ak+1 � Ak−1 � ... � A1. For any (i1, i2, · · · , iK ) ∈ �,

∇XF�(X ,ω1,ω2, · · · ,ωW−1)i1,i2,...,iK

= �̇(ωl − Xi1,i2,...,iK ) − �̇(ωl−1 − Xi1,i2,...,iK )

�(ωl − Xi1,i2,...,iK ) − �(ωl−1 − Xi1,i2,...,iK )
.

(31)

Otherwise, for any (i1, i2, · · · , iK ) /∈ �

∇XF�(X ,ω1,ω2, · · · ,ωW−1)i1,i2,...,iK = 0. (32)

Strictly speaking, the result should time a n1n2···nK|�| term. We ignore this term since it is
canceled out when we multiply the step size in our algorithm. The partial derivative of H
with respect to ωl is shown as follows
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∇ωlH =
⎛
⎝ ∑

(i1,i2,··· ,iK )∈�

1[Yi1,i2,...,iK =l+1]�̇(ωl − Xi1,i2,...,iK )

�(ωl+1 − Xi1,i2,...,iK ) − �(ωl − Xi1,i2,...,iK )

)

−
⎛
⎝ ∑

(i1,i2,··· ,iK )∈�

1[Yi1,i2,...,iK =l]�̇(ωl − Xi1,i2,...,iK )

�(ωl − Xi1,i2,...,iK ) − �(ωl−1 − Xi1,i2,...,iK )

)
,

(33)

The step sizes of the gradient descent are selected as

τAk = 1
‖(Bk)TBk‖ ,∀k ∈[K] ,

τX = 1
1

σ 2β2 + λ
,

τωl = σ 2β2
√
Gl +

√
Gl+1

,∀l ∈[W − 1] ,

(34)

where ‖(Bk)
TBk‖, 1

σβ
+ λ,

√
Gl+

√
Gl+1

σ 2β2 are Lipschitz constants of ∇AkH , ∇XH , and ∇ωlH .
Gl,Gl+1 are the number of entries in Y� that equal to l and l + 1, respectively. Here,
β is a small positive value that satisfies �(ωl − Xi1,i2,...,iK ) ≥ �(ωl−1 − Xi1,i2,...,iK ) + β .
This holds true since Xi1,i2,...,iK ,ωl,ωl−1 are all bounded, ωl is larger than ωl−1, and � is
a monotonously increasing function. After updating X , the algorithm sets Xi1,i2,...,iK to
α if Xi1,i2,...,iK > α, and sets Xi1,i2,...,iK to −α if Xi1,i2,...,iK < −α. After updating ωl, the
algorithm sets ωl = min(ωl+1 − κl+1,αupper) if ωl > min(ωl+1 − κl+1,αupper), and sets
ωl = max(ωl−1 + κl,αlow) if ωl < max(ωl−1 + κl,αlow).
The algorithm is initialized by first estimating ω∗

l ’s according to the applications or
simply setting ω0

l = 2αl
W − α if no information is available, and then setting

X 0
i1,i2,...,iK =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω0
l +ω0

l−1
2 , if 1 < Yi1,i2,...,iK = l < W .

α+ω0
W−1
2 , if Yi1,i2,...,iK = W .

−α+ω1
2 , if Yi1,i2,...,iK = 1.

0, (i1, i2, · · · , iK ) �∈ �.

(35)

Ak
0 ∈ R

nk×r ,∀k ∈[K] are obtained through the decomposition of X 0. The details of
TAPGD are shown in Algorithm 1. Note that when the quantization boundaries ω∗

l ’s are
known, TAPGD can be revised easily by removing steps 14–20 from Algorithm 1.
To improve the recovery performance, one can multiple λ by a small constant larger

than one in each iteration. This provides a better numerical result than fixing λ in all iter-
ations. The complexity of TAPGD in each iteration is O(Krn1n2 . . . nK ). The convergence
of TAPGD is summarized in Theorem 4.

Theorem 4 Assume that the sequence
{
Ak

t} generated by Algorithm 1 is bounded.
Then, TAPGD globally converges to a critical point of (25) from any initial point, and the
convergence rate is at least O

(
t

θ−1
2θ−1
)
, for some θ ∈ ( 12 , 1).
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Algorithm 1 Tensor Based Alternating Proximal Gradient Descent (TAPGD)
Require: Quantized tensorY� ∈ R

n1×n2×···×nK , initialization ω0
l , l ∈[W −1] , tensorX 0,

matrices Ak
0, k ∈[K], parameters r, σ , β , κl, l ∈[W ] , αupper, αlow.

1: for t = 1, 2, . . . ,T do
2: for k = 1, 2, . . . ,K do
3: Bk

t−1 = AK
t−1 � ... � Ak+1

t−1 � Ak−1
t � ... � A1

t .
4: ∇AkH = (Ak

t−1(Bk
t−1)T − X(k))Bk

t−1, and τ t−1
Ak

= 1/‖(Bk
t−1)TBk

t−1‖.
5: Ak

t = Ak
t−1 − τ t−1

Ak
∇AkH .

6: end for
7: ∇XH = ∇XF�(X t−1,ωt−1

1 ,ωt−1
2 , · · · ,ωt−1

W−1) + λ(X t−1 − A1
t ◦ A2

t ◦ ... ◦ AK
t),

τ t−1
X = 1

1
σβ

+λ
.

8: X t = X t−1 − τ t−1
X ∇XH .

9: for ij = 0, 1, 2, . . . , nj,∀j ∈[K] do
10: if X t

i1,i2,...,iK > α, then set X t
i1,i2,...,iK = α.

11: else if X t
i1,i2,...,iK < −α, then set X t

i1,i2,...,iK = −α.
12: end if
13: end for
14: for l = 1, 2, . . . ,W − 1 do
15: Calculate ∇ωlH according to (33), and τ t−1

ωl
= σ 2β2

√
Gl+

√
Gl+1

.

16: ωt
l = ωt−1

l − τ t−1
ωl

∇ωlH .
17: if ωt

l > min(ωt−1
l+1 − κl,αupper), then set ωt

l = min(ωt−1
l+1 − κl,αupper).

18: else if ωt
l < max(ωt

l−1 + κl,αlow), then set ωt
l = max(ωt

l−1 + κl,αlow).
19: end if
20: end for
21: end for
22: return X ,ω1,ω2, · · · ,ωW−1.

Theorem 4 indicates a sublinear convergence of TAPGD. One way to satisfy the require-
ment of bounded sequence is to scale the factorized variables so that ‖A1‖F = ‖A2‖F =
· · · = ‖AK‖F after each iteration. We find TAPGD performs well numerically without the
additional steps.

4.2 TSVD-based alternating projected gradient descent

We develop an algorithm named TSVD-based alternating projected gra-
dient descent (TSVD-APGD) to solve the nonconvex problem (10). Let
H ′ = F�(X ,ω1,ω2, · · · ,ωW−1) + λ

2‖X −∑r
i=1 ζiV1i ◦ V2i ◦ · · · ◦ VKi‖2F . Similar to (25),

we relax the problem of (10) to

(X̂ , ω̂1, ω̂2, · · · , ω̂W−1) =

argminX ,Vk,k∈[K ],ωl ,l∈[W−1]H
′ + 
1(X ) +

W−1∑
l=1


2(ωl)

s.t.〈Vki,Vkj〉 = 1[i=j], 1 ≤ i, j ≤ r

(36)

The updates of X ,ωl are the same as TAPGD, while the updates of the decomposition
components ζi,Vk are different. In Algorithm 2, we borrow the idea from work of Li et al.
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[39] to update ζi,Vk, i ∈[ r] , k ∈[K] in steps 2–8. QR in step 4 in Algorithm 2 represents
the QR decomposition [55] that returns an orthonormal matrix and an upper triangular
matrix, and we use the orthonormal matrix to update Vk.

Algorithm 2 TSVD Based Alternating Projected Gradient Descent (TSVD-APGD)
Require: Quantized tensorY� ∈ R

n1×n2×···×nK , initialization ω0
l , l ∈[W −1] , tensorX 0,

orthonormal matricesVk
0, k ∈[K] (by calculating the left singular vectors ofX0

(k) and
selecting vectors corresponding to the r largest singular values), parameters r, σ , β ,
κl, l ∈[W ] , αupper, αlow.

1: for t = 1, 2, . . . ,T do
2: for k = 1, 2, . . . ,K do
3: Bk

t−1 = VK
t−1 � ... � Vk+1

t−1 � Vk−1
t � ... � V1

t .
4: Vk

t = QR(X(k)Bk
t−1).

5: end for
6: for i = 1, 2, . . . , r do
7: ζi = X

⊗
1 V1

t
i
⊗

2 V2
t
i · · ·

⊗
K VK

t
i

8: end for
9: ∇XH ′ = ∇XF�(X t−1,ωt−1

1 ,ωt−1
2 , · · · ,ωt−1

W−1)+λ(X t−1−∑r
i=1 ζiV1

t
i◦V2

t
i◦...◦VK

t
i),

τ t−1
X = 1

1
σβ

+λ
.

10: X t = X t−1 − τ t−1
X ∇XH ′.

11: Same steps as 9-20 in Algorithm 1 (replacing H with H ′)
12: end for
13: return X ,ω1,ω2, · · · ,ωW−1.

Similar to Algorithm 1, when the quantization boundaries are known, TSVD-APGD
can be revised easily by removing step 11. We cannot prove the convergence of
Algorithm 2 yet and will leave it to future work. However, numerically, Algorithm 1
demonstrates reliable numerical performance as shown in Section 5.

5 Results: numerical experiments
We conduct simulations on synthetic data, image data, and data from an in-car music
recommender system [16] in this section. The recovery performance is measured by
‖X ∗−X̃ ‖2F/‖X ∗‖2F , where X̃ is our estimation ofX ∗.K = 3 in both tests on synthetic data
and real data. We set T = 200. All the results are averaged over 100 runs. The simulations
are run in MATLAB on a 3.4-GHz Intel Core i7 computer.

5.1 Synthetic data

A rank-r, three-dimensional tensor is generated as follows. We first generate A1 ∈ R
n1×r

with entries sampled independently from a uniform distribution in [−0.5, 0.5], A2 ∈
R
n2×r , and A3 ∈ R

n3×r with each entry sampled independently from a uniform dis-
tribution in [ 0, 1]. Then, we obtain the tensor by calculating A1 ◦ A2 ◦ A3 and scaling
all the values to [−1, 1]. A rank-r, three-dimensional SVD-tensor is generated as fol-
lows. V1,V2,V3 are first obtained by transforming A1,A2,A3 to orthonormal matrices.
ζi, i ∈[ r] are generated from right-half standard normal distribution. Then, we obtain the
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SVD-tensor by (2) and scaling all the values to [−1, 1]. The entries of N are i.i.d. gener-
ated from the Gaussian distribution with mean 0 and the standard deviation σ of 0.25.We
chooseW = 2 (1-bit) and 4 (2-bit) in our experiments. WhenW = 2, ω∗

0 = −∞, ω∗
1 = 0,

ω∗
2 = ∞. WhenW = 4, ω∗

0 = −∞, ω∗
1 = −0.4, ω∗

2 = 0, ω∗
3 = 0.4, ω∗

4 = ∞.
Figure 2 compares TAPGD with M-norm constrained 1-bit tensor recovery (MNC-

1bit-TR) method [43] and the quantized matrix recovery method [4]. We remark that
MNC-1bit-TR can only deal with 1-bit measurements and requires solving a convex opti-
mization problem. The tolerance value is set as 0.01 for the matrix recovery method. In
theMNC-1bit-TRmethod, we use the theoretical upper bound r

3
2 α (here α = 1) to bound

the maximum row norm of the low-rank factors. We vary one of the rank, the dimension,
and the noise level while fixing the other parameters. n1 = n2 = n3 = 120 when we only
vary the rank and the noise level. Figure 2 demonstrates that the relative recovery error
increases when the rank increases or the dimension decreases. The results also show that
TAPGD has the best performance among all these methods. Moreover, the performance
improves when the number of bits increases. Figure 3 shows the comparisons of different
algorithms on recovering SVD-tensors. The performance of TSVD-APGD outperforms
the existing methods when the tensor is a SVD-tensor. We notice that the recovery errors
of using TAPGD and TSVD-APGD are very close.
As shown in Fig. 4, when the noise level (the standard deviation σ ) increases, the rel-

ative recovery error first decreases and then increases. The reason is that the noise is
considered as part of the quantization process and plays the role of adding measurement
uncertainty. The problem without noise (measurement uncertainty) is ill-posed because
all the values in one bin are mapped to one same quantized value deterministically.

5.2 Image data

We test our method on the Extend Yale Face Dataset B [56, 57]. The dataset contains
192 × 168 pixel face images from 38 different people. Each person has 64 images with
different poses and various illumination. We pick two objects to form a 192 × 168 × 128
three-dimensional tensor. All entries are scaled to [ 0, 1]. We add N with i.i.d. entries
generated from the Gaussian distribution with mean 0 and the standard deviation of 0.3.
When W = 2, ω∗

0 = −∞, ω∗
1 = 0.4, ω∗

2 = ∞. When W = 3, ω∗
0 = −∞, ω∗

1 = 0.2,
ω∗
2 = 0.4,ω∗

3 = ∞. Figure 5a compares TAPGDwithMNC-1bit-TR, the quantizedmatrix

Fig. 2 Recovery performance on general tensor. a Relative recovery error when rank changes. b Relative
recovery error when dimension changes
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Fig. 3 Recovery performance on SVD-tensor. a Relative recovery error when rank changes. b Relative
recovery error when dimension changes

recovery method, and a nonconvex low-rank tensor recovery method named nonconvex
regularized tensor (NORT) [30]. Note that MNC-1bit-TR models the quantization pro-
cess like our approach, while NORT does not model quantization and treats the data as
general noisy measurements. We find that our method works well in a wide range of r,
and the results are under the selection of r = 50. The tolerance rate is set as 0.001 for the
matrix recovery method. In the NORT method, we set the hyperparameters as λ = 0.1,
θ = 5 (the parameters have different meanings from the parameters in our work), and the
tolerance rate as 0.0001. In the MNC-1bit-TR method, we use r

3
2 α (here α = 1) to bound

the maximum row norm of the low-rank factors. It shows that the relative recovery error
decreases when the percentage of the observation increases, and TAPGD obtains the best
performance among all the methods. Figure 5b compares the recovery error when the
bin boundaries are known and unknown to the recovery algorithm.When the boundaries
are unknown, the initial point is uniformly chosen from [ 0.1, 0.6] for ω1 when W = 2,
and [ 0.1, 0.3] , [ 0.2, 0.6] for ω1,ω2, respectively when W = 3. αupper,αlow are selected as
0.6, 0.1. κl is set to 0.1 for ∀l ∈[W − 1].

Fig. 4 Relative recovery error when noise level changes
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Fig. 5 a Relative recovery error when the observation rate changes. b Relative recovery error of unknown
boundaries

In Fig. 6, we show a boxplot diagram of relative recovery error with 100 runs obtained
by TAPGD. All the setups are the same as the scenario W = 3 in Fig. 5a. The tops and
bottoms of each “box” are the 25th and 75th percentiles of the samples, respectively. The
maximum standard deviation happens when the observation rate is 0.3, which equals to
8.79× 10−4. The relative standard deviation, which is defined as the ratio of the standard
deviation to the mean, reaches its maximum value 0.028 when the observation rate is 0.6.
Figure 7 compares the time cost of TAPGD and MNC-1bit-TR [43] when the number

of facial images changes. TAPGD is three magnitudes faster than MNC-1bit-TR. Figure 8
visualizes the quantized and recovered images by TAPGD.

5.3 In-car music recommender dataset

Many recommender systems’ ratings from users are highly quantized (such as like or
dislike) with many missing entries (e.g., users do not give rating for all subjects), while
the underlying systems may want to recover real-valued user ratings. Following the same
motivations and assumptions as in quantized matrix [1, 13] and 1-bit tensor work [43],
the quantized measurements are caused by system limitation, and the actual ratings of
users lie in the real-valued domain [1, 13, 43]. Moreover, users’ actual ratings are affected
by a few factors and thus satisfy the low-rank property [58]. Our method can be used
to recover the true underlying real-valued user preferences, thus improving the quality

Fig. 6 Relative recovery error when the observation rate changes (W = 3, TAPGD)
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Fig. 7 Time cost of TAPGD and MNC-1bit-TR

of recommendations. We apply our method to an in-car music recommender dataset
[16]. The recommender dataset contains 139 songs with 4012 ratings from 42 users. This
dataset has 26 contexts that include relaxed driving, country side, happy, and sleepy. The
same user may rate different scores to the same song under different contexts. A total
of 2751 ratings have the corresponding context information while the rest 1261 ratings
do not have context information. We only use the ratings with context information. An
example of three ratings is shown in Table 2.
We construct the resulting tensor M as {users × musics × contexts}, which is a 42 ×

139 × 26 tensor. The ratings are quantized to 0,1,2,3,4,5 (we change ratings to 1,2,3,4,5,6
to distinguish them from missing values). All the locations without ratings are set to be
zero. We then randomly set 0.362% of the data (20% of the observed data) to be zero
and let �predict denote the set of the indices. We predict data with indices belonging to
�predict using the rest 1.448% of the data (80% of the observed data), which are referred to
as training data. In this test, we define the relative recovery error as

Fig. 8 a1, b1 Original images. a2, b2 Quantized images (W = 2). a3, b3 Recovered images (W = 2). a4, b4
Quantized images (W = 3). a5, b5 Recovered images (W = 3)
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Table 2 Example of the in-car music recommender dataset [16]

User ID Item ID Rating Driving style

6 1 4 NA

11 1 4 NA

9 42 1 NA

Landscape Mood Natural phenomena Road type

NA NA NA NA

NA Happy NA NA

NA NA NA NA

Sleepiness Traffic condition Weather

Free road NA NA

NA NA NA

NA NA Sunny

1
|�predict|

∑
(i1,i2,i3)∈�predict

|Mi1,i2,i3 − M̄i1,i2,i3 |
5

, (37)

where M̃ is our estimation of the ground truth, and M̄ maps the values in M̃ to their
nearest quantized values. The reason for the occurrence of 5 at denominator is that the
maximum difference between M̄ and M is 5. The error increases when the difference
increases. Ref. [43] also studies on the same dataset and first maps the multi-level quan-
tized values to binary values. It then deletes some binary values and evaluates the recovery
error. The smallest recovery error is 0.23 by their method. We remark that the multi-
level prediction is harder than binary prediction in this application, since the binary case
is to choose one out of two numbers, while the multi-level case is to choose one out
of W > 2 numbers. Here, we estimate the rank r and the noise level σ , since we do
not know the actual rank and noise. In Algorithm 1, we choose the estimated rank r
from the set {5, 10, 15, 20, 25}, and choose the estimated standard variation σ from the
set {0.001, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25}. The recovery results are shown in Fig. 9. The
relative recovery error reaches its smallest value when r = 5 and σ = 0.05, and the
smallest relative recovery error is 0.22. Figure 10 shows the comparison of TAPGD to

Fig. 9 Relative recovery error when the estimated noise level and rank change
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Fig. 10 Comparison of TAPGD to the tensor recovery method NORT [30]: relative recovery error when the
observation rate of the observed data changes

NORT [30] when the percentage of the training data changes. Note that when the per-
centage equals to one, we use 80% of the observed data. The relative recovery error
obtained by NORT is defined in the same way as using TAPGD. We set r = 5 and
σ = 0.1 for TAPGD. In the NORT method, we set the hyperparameters as λ = 0.1,
θ = 5, and the tolerance rate as 0.0001. The relative recovery error using NORT is about
twice larger than the relative recovery error using TAPGD, suggesting that the perfor-
mance improvement can be achieved when the users’ actual ratings are considered to be
real-valued.

6 Conclusion and discussion
This paper recovers a low-rank tensor from quantized measurements. A constrained
maximum log-likelihood problem is proposed to estimate the ground-truth tensor. The
recovery error is proved to be at most O(

√
rK−1K log(K)

nK−1 ) when boundaries are known.

The recovery error decreases to O(

√
rK log(K)

nK−1 ) when the tensor is a SVD-tensor. When
reduced to the special case of 1-bit tensor recovery and low-rank matrix recovery
from quantized measurements, our error bounds are significantly smaller than those
of the existing methods. We also provide the fundamental limit of the recovery error
by any recovery method and show that our method is nearly order-wise optimal.
We propose two algorithms TAPGD and TSVD-APGD to solve the nonconvex opti-
mization problems. We prove that TAPGD can converge to a critical point from any
initial point. Both algorithms can handle missing data and do not require informa-
tion of the quantization rule. Future works include data recovery when partial mea-
surements contain significant errors and developing algorithms with global optimality
guarantees.

Appendix 1. Supporting lemmas used in the proof of Theorems 1 and 2
Let 〈A,B〉 denote the inner product of A ∈ R

n1×...×nK and B ∈ R
n1×...×nK , i.e., the sum

of the products of their entries. Then, the spectral norm of a tensor X ∈ R
n1×...×nK is

defined as
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‖X ‖
= sup{〈X ,u1 ◦ u2... ◦ uK 〉 : ‖uk‖2 = 1,

uk ∈ R
nk ,∀k ∈[K] }

= supu1,u2,...,uKX (u1,u2, ...,uK ), ‖uk‖2 = 1,

uk ∈ R
nk ,∀k ∈[K]

= supu1,u2,...,uK
∑

i1,i2,...,iK

Xi1,i2,...,iK u1i1u2i2 , ...,uKiK ,

‖uk‖2 = 1,uk ∈ R
nk ,∀k ∈[K]

(38)

where u1 ◦ u2... ◦ uK ∈ R
n1×...×nK .

Lemma 1 provides an upper bound on the spectral norm of a tensor with independent
random entries.

Lemma 1 Suppose that X ∈ R
n1×...×nK is a K-dimensional tensor whose entries are

independent random variables that satisfy, for some s2,

E[Xi1,i2,...,iK ]= 0, E[ eεXi1,i2,...,iK ]≤ es
2ε2/2, a.s. (39)

Then

P(‖X ‖ ≥ μ) ≤ δ (40)

for some δ ∈[ 0, 1], where

μ =
√√√√8s2

(( K∑
k=1

nk

)
log(4K/3) + log(2/δ)

)
. (41)

Proof The proof is completed by combining Lemma 1 and Theorem 1 in [59].

We first define F(X ) as the function when F�(X ,ω1,ω2, · · · ,ωW−1) is under the full
observation and ωl,∀l ∈[W − 1] are known. Specifically,

F(X )

= −
n1∑

i1=1

n2∑
i2=1

· · ·
nK∑

iK=1

W∑
l=1

1[Yi1,i2,...,iK =l] log(fl(Xi1,i2,...,iK ,ω
∗
l−1,ω

∗
l )).

(42)

Lemma 2 With probability at least 1 − δ,

‖∇XF(X ∗)‖

≤
√√√√8L2α

(( K∑
k=1

nk

)
log(4K/3) + log(2/δ)

) (43)

Proof Consider

Zi1,i2,...,iK :=[∇XF(X ∗)]i1,i2,...,iK

= −
W∑
l=1

ḟl(X ∗
i1,i2,...,iK )

fl(X ∗
i1,i2,...,iK )

1[Yi1,i2,...,iK =l].
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Recall that the probability Yi1,i2,...,iK = l given X ∗
i1,i2,...,iK is expressed by fl(X ∗

i1,i2,...,iK ),
which only holds true for X∗. Then using the fact that

∑W
l=1 fl(Xi1,i2,...,iK ) = 1, we

have E[Zi1,i2,...,iK ]= 0, −Lα ≤ Zi1,i2,...,iK ≤ Lα . By Hoeffding’s lemma, we can obtain
E[ eεZ

2
i1,i2,...,iK ]≤ e(Lα+Lα)2ε2/8 = eL2αε2/2. Replacing s with Lα in Lemma 1, we complete the

proof.

Lemma 3 and Lemma 4 describe the relation of X ∗ with any data in the feasible set
Sf and Sfs. Considering any X ′ ∈ Sf and X ′ ∈ Sfs, we can calculate the second-order
Taylor expansion of F(X ′) at X ∗. Both lemmas indicate that the absolute value of the
first-order term of the Taylor expansion can always be upper bounded by a term related
to ‖X ′ − X ∗‖F .

Lemma 3 Let θ ′ = vec(X ′), θ∗ = vec(X ∗), ∇θF(θ∗) = vec(∇XF(X ∗)), and X ′, X ∗ ∈
Sf . Then with probability at least 1 − δ,

| 〈∇θF(θ∗), θ ′ − θ∗〉 | ≤√√√√16rK−1L2α((

K∑
k=1

nk) log(
4K
3

) + log(
2
δ
))‖X ′ − X ∗‖F

(44)

Proof The tensor nuclear norm ‖X ‖∗ is defined as

‖X ‖∗ = inf{
r∑

i=1
|ζi| : X =

r∑
i=1

ζiV1i ◦ V2i ◦ · · · ◦ VKi,

‖Vki‖2 = 1}
(45)

According to Theorem 9.4 of [60], ‖X ‖∗ satisfies ‖X ‖∗ ≤
√

r1r2r3
max(r1,r2,r3)‖X ‖F whenK = 3,

where rk , k ∈[K] is the k-rank of the tensor X , which is defined as the column rank of
X(k). A generalization to any K is shown as follows

‖X ‖∗ ≤
√ ∏K

i=1 ri
max(r1, r2, · · · , rK )

‖X ‖F . (46)

The details can be viewed in [61]. Note that rk ≤ r,∀k ∈[K], since X(k) = Ak(AK � · · · �
Ak+1 � Ak−1 � . . .A1)T . Therefore,

‖X ′ − X ∗‖∗ ≤
√
2rK−1‖X ′ − X ∗‖F . (47)

where the last inequality holds because ‖ · ‖∗ ≤ √
r‖ · ‖F for any matrix. We then have

‖∇XF(X ∗)‖‖X ′ − X ∗‖∗ ≤√√√√16rK−1L2α

(( K∑
k=1

nk

)
log
(
4K
3

)
+ log

(
2
δ

))
‖X ′ − X ∗‖F

(48)
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holds with probability at least 1 − δ. Then,

| 〈∇θF(θ∗), θ ′ − θ∗〉 | = | 〈∇XF(X ∗),X ′ − X ∗〉 |
≤ | 〈∇XF(X ∗),X ′ − X ∗〉 |
≤ ‖∇XF(X ∗)‖‖X ′ − X ∗‖∗ ≤√√√√16rK−1L2α

(( K∑
k=1

nk

)
log
(
4K
3

)
+ log

(
2
δ

))
‖X ′ − X ∗‖F

holds with probability at least 1−δ. The second inequality comes from the fact | 〈A,B〉 | ≤
‖A‖‖B‖∗ for two tensorsA and B [60]. We then have the desired result.

Lemma 4 Let θ ′ = vec(X ′), θ∗ = vec(X ∗), ∇θF(θ∗) = vec(∇XF(X ∗)), and X ′, X ∗ ∈
Sfs. Then with probability at least 1 − δ,

| 〈∇θF(θ∗), θ ′ − θ∗〉 | ≤√√√√16rL2α

(( K∑
k=1

nk

)
log
(
4K
3

)
+ log

(
2
δ

))
‖X ′ − X ∗‖F ,

(49)

Proof Let Ti denote the V1i ◦V2i ◦ · · · ◦VKi in (2). One can easily check that 〈Ti, Tj〉 = 0
and 〈X , Ti〉 = ζi, i, j ∈[R] , i �= j. Then ‖X ‖F =

√∑r
i=1 ζ 2

i . Equation (45) defines
that ‖X ‖∗ = ∑r

i=1 ζi. From Cauchy–Schwarz inequality, we have ‖X ‖∗ ≤ √
r‖X ‖F .

Therefore,

‖X ′ − X ∗‖∗ ≤ √
2r‖X ′ − X ∗‖F . (50)

Following the same proof technique of (48), we have the desired result.

Lemma 5 provides a lower bound on the second-order term of the second-order Taylor
expansion. This lower bound is also related to ‖X ′ − X ∗‖F .

Lemma 5 Let θ ′ = vec(X ′), θ∗ = vec(X ∗), and X ′, X ∗ ∈ Sf . Then for any θ̃ = θ∗ +
η(θ ′ − θ∗) and any η ∈[ 0, 1], we have

〈
θ ′ − θ∗, (∇2

θθF(θ̃))(θ ′ − θ∗)
〉
≥ γα‖X ′ − X ∗‖2F . (51)

Proof Lemma 5 is an extension of Lemma 7 in [13].
Using (42), it follows that

∂2F(X )

∂2Xi1,i2,...,iK
=

W∑
l=1

(
ḟ 2l (Xi1,i2,...,iK )

f 2l (Xi1,i2,...,iK )
− f̈l(Xi1,i2,...,iK )

fl(Xi1,i2,...,iK )
)1[Yi1,i2,...,iK =l]
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Then, we have
〈
θ ′ − θ∗, (∇2

θθF(θ̃))(θ ′ − θ∗)
〉

=
n1∑

i1=1
· · ·

nK∑
iK=1

∂2F(X̃ )

∂2Xi1,i2,...,iK
(X ′

i1,i2,...,iK − X ∗
i1,i2,...,iK )

≥ γα

n1∑
i1=1

· · ·
nK∑

iK=1
(X ′

i1,i2,...,iK − X ∗
i1,i2,...,iK )2

= γα‖X ′ − X ∗‖2F

where the first inequality comes from the fact that γα = minl∈[W ] inf|x|≤2α

{
ḟ 2l (x)
f 2l (x) − f̈l(x)

fl(x)

}
.

Appendix 2. Proofs of Theorems 1 and 2
Proof The first bound 2α follows from the fact that ‖X̂ ‖∞, ‖X ∗‖∞ ≤ α. We have

‖X̂ − X ∗‖F/
√
n1n2...nK

≤ 2α
√
n1n2...nK/

√
n1n2...nK = 2α.

(52)

Let θ̂ = vec(X̂ ) and F(θ̂) = F(X̂ ). By the second-order Taylor’s theorem, we have

F(θ̂) =F(θ∗) +
〈
∇θF(θ∗), θ̂ − θ∗〉

+ 1
2

〈
θ − θ∗, (∇2

θθF(θ̃))(θ̂ − θ∗)
〉
,

(53)

where θ̃ = θ∗ + η(θ̂ − θ∗) for some η ∈[ 0, 1], with the corresponding tensor X̃ = X ∗ +
η(X̂ − X ∗).
Using the results of Lemma 3 and Lemma 5, we can obtain that

F(X̂ ) ≥ F(X ∗)−√√√√16rK−1L2α((

K∑
k=1

nk) log(
4K
3

) + log(
2
δ
))‖X̂ − X ∗‖F

+ γα

2
‖X̂ − X ∗‖2F

(54)

holds with probability at least 1 − δ for X̂ ,X ∗ ∈ Sf . Note that X̂ is the global optimal of
the optimization problem. Thus, F(X̂ ) ≤ F(X ∗). We then have

γα

2
‖X̂ − X ∗‖2F ≤

√√√√16rK−1L2α

(( K∑
k=1

nk

)
log
(
4K
3

)
+ log(

2
δ
)

)
‖X̂ − X ∗‖F

(55)

holds with probability at least 1 − δ. Thus,

‖X̂ − X ∗‖F/
√
n1n2...nK ≤ Uα (56)
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holds with the same probability 1 − δ, where

Uα =
√
64rK−1L2α((

∑K
k=1 nk) log(

4K
3 ) + log( 2

δ
))

γα
√n1n2...nK

. (57)

Similarly, using the results of Lemma 4 and Lemma 5, we can obtain that

F(X̂ ) ≥ F(X ∗)

−
√√√√16rL2α((

K∑
k=1

nk) log(
4K
3

) + log(
2
δ
))‖X̂ − X ∗‖F

+ γα

2
‖X̂ − X ∗‖2F

(58)

holds with probability at least 1 − δ for X̂ ,X ∗ ∈ Sfs. Following the same process as (55)–
(57), we can obtain

‖X̂ − X ∗‖F/
√
n1n2...nK ≤ U ′

α (59)

and

U ′
α =

√
64rL2α((

∑K
k=1 nk) log(

4K
3 ) + log( 2

δ
))

γα
√n1n2...nK

. (60)

Combining (52) and (56), (52) and (59), we have the results of Theorem 1 and
Theorem 2, respectively.

Appendix 3. Supporting lemmas used in the proof of Theorem 3
Lemma 6 Let ς ≤ 1. There is a set SX ⊂ Sf with

|SX | ≥ exp(
rnmax
16

) (61)

with the following properties:
1. For all X ∈ SX, |Xi1,i2,...,iK | = ας , ∀i1, i2, . . . , iK
2. For all X (i), X (j) ∈ SX, i �= j,

‖X (i) − X (j)‖2F > α2ς2(
n1n2 · · · nK

2
). (62)

3. For any X ∈ SX and Y = X + N , we can bound the mutual information with the
following inequality

I(X ,Y) ≤ n1n2 · · · nK
2

log(1 + (
ας

σ
)2) (63)

Proof Without loss of generality, we assume n1 = nmax. We first construct a matrix
D ∈ R

n1×n2 with rank r in the following way. The entries in Di,j,∀i ∈[ n1] , j ∈[ r] are i.i.d.
symmetric random variables with values ±ας . We then construct the rest parts of D as
follows.

Di,j := Di,j′ wherej′ = j(modr) + 1. (64)

The matrixDwill consist of same blocks of dimensions n1×r. Note thatD can be decom-
posed into

∑r
i=1 ζiV1i ◦ V2i. We then construct a tensor by D ◦ In3 ◦ In4 · · · ◦ InK =∑r

i=1 ζiV1i ◦V2i ◦ In3 ◦ In4 · · · ◦ InK , where Ink ∈ R
nk is the vector containing all entries 1.

Therefore, the CP rank of this tensor is smaller or equal to r. One can easily check that the
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matrix D is copied along dimension 3 to K. By varying D, we can obtain a set of low-rank
tensors SX . For any X (i),X (j) ∈ SX , we have

‖X (i) − X (j)‖2F
=

∑
i1,i2,··· ,iK

(X (i)
i1,i2,··· ,iK − X (j)

i1,i2,··· ,iK )2

≥ n3n4 · · · nK�n2
r

�·
∑

i1∈[n1]

∑
i2∈[r]

(X (i)
i1,i2,··· ,iK − X (j)

i1,i2,··· ,iK )2

= 4α2ς2n3n4 · · · nK�n2
r

�
rn1∑
i=1

δi,

(65)

where δi’s are independent variables chosen from {0, 1} and with mean 1/2. We then have

P( min
X (i) �=X (j)∈SX

‖X (i) − X (j)‖2F ≤

α2ς2n3n4 · · · nK�n2
r

�rn1)

≤
(|SX |

2

)
exp(− rnmax

8
).

(66)

Equation (66) comes from Hoeffding’s inequality and the union bound. Note that the
right-hand side of (66) is less than 1 for X of the size given in (61). Thus, the event that

‖X(i) − X(j)‖2F > α2ς2n3n4 · · · nK�n2
r

�rn1
≥ α2ς2 n1n2 · · · nK

2

(67)

for allX (i) �= X (j) ∈ SX has nonzero probability, where the second inequality comes from
the fact that �x� ≥ x/2 for all x ≥ 1.
The third property comes from modification on Lemma A.5 in [1]. By replacing the

matrix dimension with the tensor dimension, we can obtain the desired result.

Appendix 4. Proof of Theorem 3
Proof We first define ε as follows

ε2 = min{α
2

16
,C2

1σ
2 rnmax − 64
n1n2 · · · nK } (68)

where C1 is a constant to be determined later. We consider ς in the range

2
√
2ε

α
≤ ς ≤ 4ε

α
≤ 1. (69)

We will consider running any algorithms on the set SX . Suppose for the sake of a contra-
diction that there exists an algorithm, for any X ∈ Sf , given Y, returns an X̂ such that

‖X − X̂‖2F/n1n2 · · · nK ≤ ε2 (70)

with probability at least 1/4. We will show that if X ∗ = argminX ′∈SX ‖X ′ − X̂ ‖2F , then
X ∗ = X . Based on (62) and (69), for any X ′ ∈ SX with X ′ �= X , we have

‖X ′ − X ‖F > ας
√
n1n2 · · · nK/2 ≥ 2

√
n1n2 · · · nKε. (71)
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Combining (70) and (71), we then have

‖X ′ − X̂ ‖F = ‖X ′ − X + X − X̂‖F
≥ ‖X ′ − X ‖F − ‖X − X̂ ‖F
≥ 2

√
n1n2 · · · nKε − √

n1n2 · · · nKε

= √
n1n2 · · · nKε.

(72)

Since X ∈ SX is also a candidate for X ∗, we have

‖X ∗ − X̂ ‖F ≤ ‖X − X̂‖F ≤ √
n1n2 · · · nKε. (73)

Thus, if (70) holds, then ‖X ∗ − X̂‖F < ‖X ′ − X̂ ‖F for any X ′ ∈ SX with X ′ �= X , and
hence, we must haveX ∗ = X . By assumption, (70) holds with probability at least 1/4, and
thus P(X �= X ∗) ≤ 3/4. However, by Fano’s inequality, the probability that X �= X ∗ is at
least

P(X �= X ∗) ≥ H(X |Y) − 1
log |SX |

= H(X ) − I(X ,Y) − 1
log |SX | ≥ 1 − I(X ,Y) + 1

log |SX | .
(74)

Combining |SX | and I(X ,Y) from Lemma 6, and using the inequality log(1 + z) ≤ z, we
obtain

P(X �= X̂ ) ≥ 1 − 16
rnmax

(
n1n2 · · · nK

2
(
ας

σ
)2 + 1). (75)

Combining (75) with (69), we obtain

16
rnmax

(8n1n2 · · · nK (
ε

σ
)2 + 1) ≥ 1

4
, (76)

which implies that

ε2 ≥ σ 2

512
rnmax − 64
n1n2 · · · nK . (77)

Setting C2
1 < 1

512 will lead to a contradiction; hence, (70) must fail to hold with probability
at least 3/4. This finishes the proof.

Appendix 5. TAPGD: proof of the Lipschitz differential property and calculation
of Lipschitz constants
We provide the Lipschitz differential property of H and compute the corresponding Lip-
schitz constants of its partial derivatives with respect to Ak ∈ R

nk×r ,∀k ∈[K], X ∈
R
n1×n2×···×nK , andωl,∀l ∈[W−1].We call a function Lipschitz differentiable if and only if

all its partial derivatives are Lipschitz continuous. The definition of Lipschitz continuous
of a function’s partial derivatives is shown in Definition 1.

Definition 1 [54] For any variable y, and a function y → ϒ(y, z1, z2, ..., zn), with
other variables z1, z2, .., zn fixed, the partial derivative ∇yϒ(y, z1, z2, · · · , zn) is said to be
Lipschitz continuous with Lipschitz constant Lp(z1, z2, ..., zn), if the following relation holds

‖∇yϒ(y1, z1, z2, ..., zn) − ∇yϒ(y2, z1, z2, ..., zn)‖F
≤ Lp(z1, z2, ..., zn)‖y1 − y2‖F , ∀y1, y2.
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Let Lt+1
Ak

,∀k ∈[K], Lt+1
X , and Lt+1

ωl
,∀l ∈[W − 1] denote the smallest Lipschitz constants

of ∇AkH , ∇XH , and ∇ωlH in the (t + 1)-th iteration. The details of the calculation are
shown in (78), (81), and (82).

‖∇AkH(Ak) − ∇AkH(Ak
′)‖F

= ‖(Ak(Bk
t)T − X(k))Bk

t

− (Ak
′(Bk

t)T − X(k))Bk
t‖F

= ‖(Ak − Ak
′)(Bk

t)TBk
t‖F

(a)≤ ‖(Bk
t)TBk

t‖‖Ak − Ak
′‖F

(b)= 1
τAk(Bk

t)
‖Ak − Ak

′‖F ,

(78)

where ∇AkH(Ak) and ∇AkH(Ak
′) are the abbreviations of ∇AkH(A1

t+1,A2
t+1,-

· · · ,Ak−1
t+1,Ak,Ak+1

t , · · · ,AK
t ,X t ,ωt

1,ω
t
2, · · · ,ωt

W−1) and ∇AkH(A1
t+1,A2

t+1, · · · ,-
Ak−1

t+1,Ak
′,Ak+1

t , · · · ,AK
t ,X t ,ωt

1,ω
t
2, · · · ,ωt

W−1), respectively. Bk
t represents AK

t �
...�Ak+1

t �Ak−1
t+1 � ...�A1

t+1. (a) holds from the inequality ‖AB‖F ≤ ‖A‖‖B‖F . (b)
follows from

τAk = 1
‖(Bk)TBk‖ ,∀k ∈[K] , (79)

and (78) implies that

Lt+1
Ak

≤ ‖(Bk
t)TBk

t‖, and
τAk(Bk

t) ≤ 1/Lt+1
Ak

.
(80)

‖∇XH(X ) − ∇XH(X ′)‖F
= ‖∇XF�(X ,ωt

1,ω
t
2, · · · ,ωt

W−1)

+ λ(X − A1
t+1 ◦ A2

t+1 ◦ ... ◦ AK
t+1)

− ∇XF�(X ′,ωt
1,ω

t
2, · · · ,ωt

W−1)

− λ(X ′ − A1
t+1 ◦ A2

t+1 ◦ ... ◦ AK
t+1)‖F

(c)= ‖∇XF�(X ,ωt
1,ω

t
2, · · · ,ωt

W−1)

− ∇XF�(X ′,ωt
1,ω

t
2, · · · ,ωt

W−1)‖F
+ ‖λ(X − X ′)‖F

(d)= ‖diag(∇2F�(X̄ ))vec(X − X ′)‖2 + ‖λ(X − X ′)‖F
(e)= (‖diag(∇2F�(X̄ ))‖∞ + λ)‖X − X ′‖F
(f)≤ (

1
σ 2β2 + λ)‖X − X ′‖F

(g)= 1
τX

‖X − X ′‖F ,

(81)

where ∇XH(X ) and ∇XH(X ′) are the abbreviations of ∇XH(A1
t+1,A2

t+1, · · · ,-
AK

t+1,X ,ωt
1,ω

t
2, · · · ,ωt

W−1) and ∇XH(A1
t+1,A2

t+1, · · · ,AK
t+1,X ′,ωt

1,ω
t
2, · · · ,ωt

W−1),
respectively. In (81), (c) comes from the triangle inequality. (d) follows from the
differential mean value theorem, and the fact ‖A‖F = ‖vec(A)‖2. ∇2F�(X̄ ) ∈
R
n1×n2×···×nK has the (i1, i2, . . . , iK )-th entry equaling to ∂2F�

∂2Xi1,i2,...,iK
|
X̄i1,i2,...,iK

, and diag(-

∇2F�(X̄ )) ∈ R
n1n2...nK×n1n2...nK is a diagonal matrix with the diagonal vector equaling to
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vec(∇2F�(X̄ )). (e) follows from the fact that the l2 norm of a diagonal matrix is equal to
its entry-wise infinity norm. Note that the probability distribution function of the normal
distribution and its derivative have the upper bounds 1√

2πσ
and e−1/2√

2πσ 2 , respectively. Then,
one can check that ‖diag(∇2F�(X̄ ))‖∞ is bounded by 1

σ 2β2 . (f ) follows from upper bound-
ing ‖diag(∇2F�(X̄ ))‖∞ with 1

σ 2β2 . (g) comes from τX = 1
1

σ2β2
+λ

. Therefore, τX ≤ 1/Lt+1
X .

‖∇ωlH(ωl) − ∇ωlH(ω′
l)‖F

= ‖
∑

(i1,i2,··· ,iK )∈�

(
1[Yi1,i2,...,iK =l+1]�̇(ωl − X t+1

i1,i2,...,iK )

�(ωt
l+1 − X t+1

i1,i2,...,iK ) − �(ωl − X t+1
i1,i2,...,iK )

− 1[Yi1,i2,...,iK =l]�̇(ωl − X t+1
i1,i2,...,iK )

�(ωl − X t+1
i1,i2,...,iK ) − �(ωt+1

l−1 − X t+1
i1,i2,...,iK )

)

−
∑

(i1,i2,··· ,iK )∈�

(
1[Yi1,i2,...,iK =l+1]�̇(ω′

l − X t+1
i1,i2,...,iK )

�(ωt
l+1 − X t+1

i1,i2,...,iK ) − �(ω′
l − X t+1

i1,i2,...,iK )

− 1[Yi1,i2,...,iK =l]�̇(ω′
l − X t+1

i1,i2,...,iK )

�(ω′
l − X t+1

i1,i2,...,iK ) − �(ωt+1
l−1 − X t+1

i1,i2,...,iK )
)‖F

(h)≤ ‖〈Gl+1,∇J(Uωl )〉(ωl − ω′
l)‖F

+ ‖〈Gl,∇M(Vωl )〉(ωl − ω′
l)‖F

(i)≤ ‖Gl+1‖F‖∇J(Uωl )‖∞‖ωl − ω′
l‖F

+ ‖Gl‖F‖∇M(Vωl )‖∞‖ωl − ω′
l‖F

(j)≤ ‖Gl+1‖F 1
σ 2β2 ‖ωl − ω′

l‖F + ‖Gl‖F 1
σ 2β2 ‖ωl − ω′

l‖F

= 1
σ 2β2 (

√
Gl +

√
Gl+1)‖ωl − ω′

l‖F
(k)= 1

τωl
‖ωl − ω′

l‖F ,

(82)

where ∇ωlH(ωl) and v∇ωlH(ω′
l) are the abbreviations of ∇ωlH(A1

t+1,-
A2

t+1, · · · ,AK
t+1,X t+1,ωt+1

1 ,ωt+1
2 , · · · ,ωt+1

l−1 ,ωl,ωt
l+1, · · · ,ωt

W−1) and
∇ωlH(A1

t+1,A2
t+1, · · · ,AK

t+1,X t+1,ωt+1
1 ,ωt+1

2 , · · · ,ωt+1
l−1 ,ω

′
l,ω

t
l+1, · · · ,ωt

W−1), respec-
tively. In (82), Gl,Gl+1 are binary tensors with entries equaling to one when the
corresponding positions of Y equal to l and l + 1, respectively, and with entries equaling
to zero otherwise. (h) follows from the differential mean value theorem, and Uωl ,Vωl ∈
R
n1×n2×···×nK have the entries between ωl and ω′

l to satisfy the differential mean value
theorem. The (i1, i2, . . . , iK )-th entries of ∇J(Uωl ),∇M(Vωl ) ∈ R

n1×n2×···×nK are partial

derivatives of
�̇(ωl−X t+1

i1,i2,...,iK
)

�(ωt
l+1−X t+1

i1,i2,...,iK
)−�(ωl−X t+1

i1,i2,...,iK
)
, and

�̇(ωl−X t+1
i1,i2,...,iK

)

�(ωl−X t+1
i1,i2,...,iK

)−�(ωt+1
l−1−X t+1

i1,i2,...,iK
)
with

respect to ωl at the points (Uωl )i1,i2,...,iK and (Vωl )i1,i2,...,iK , respectively. (j) comes from
the fact that ‖∇J(Uωl )‖∞ and ‖∇M(Vωl )‖∞ are upper bounded by 1

σ 2β2 . (k) comes from

τωl = σ 2β2
√
Gl+

√
Gl+1

,∀l ∈[W − 1]. Thus, τωl ≤ 1/Lt+1
ωl

.
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We remark that the results of (78) and (81) do not change when the boundaries ω∗
l ,∀l ∈

[W − 1] are known to TAPGD, since ωt=1
l ,∀l ∈[W − 1] are fixed values in (78) and (81).

Appendix 6. Proof of Theorem 4
Proof As described in Section 4.1 of the paper, ψ1(X ) corresponds to the operations

of setting Xi1,i2,...,iK to α if Xi1,i2,...,iK > α, and setting Xi1,i2,...,iK to −α if Xi1,i2,...,iK < −α,
∀ik ∈[ nk] , k ∈[K]. ψ2(ωl) corresponds to the operations of setting ωl = min(ωl+1 −
κl+1,αupper) if ωl > min(ωl+1−κl+1,αupper), and setting ωl = max(ωl−1+κl,αlow) if ωl <

max(ωl−1 + κl,αlow), ∀l ∈[W − 1]. TAPGD is a special case of the proximal alternating
linearizedminimization (PALM) algorithm from the results by Bolte et al. [54]. The global
convergence of TAPGD to a critical point of (12) from any initial point can be proved
by two steps: (1) H(A1,A2, · · · ,AK,X ,ω1,ω2, · · · ,ωW−1) is Lipschitz differentiable; (2)
H(A1,A2, · · · ,AK,X ,ω1,ω2, · · · ,ωW−1)+
1(X )+∑W−1

l=1 
2(ωl) satisfies the Kurdyka-
Lojasiewicz (KL) property.
The Lipschitz differential property of H(A1,A2, · · · ,AK,X ,ω1,ω2, · · · ,ωW−1) has

been shown in Appendix 5. 
1 and 
2 are semi-algebraic functions. According
to [54], a semi-algebraic function satisfies the KL property. In addition, function
H(A1,A2, · · · ,AK,X ,ω1,ω2, · · · ,ωW−1) is differentiable everywhere, which is equivalent
to being real analytic. Thus, H(A1,A2, · · · ,AK,X ,ω1,ω2, · · · ,ωW−1) is a KL function
according to Xu et al. [62]. Finally, we have H(A1,A2, · · · ,AK,X ,ω1,ω2, · · · ,ωW−1) +

1(X ) +∑W−1

l=1 
2(ωl) satisfying the KL property. The claim follows by Xu et al. [62]. By
Remark 3.4 in the work of Bolte et al. [54], the convergence rate is at least O(t

θ−1
2θ−1 ), for

some θ ∈ ( 12 , 1). The proof is done.
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