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There is a growing acceptance of using synchrophasor data collected over large power systems in control centers to enhance

the reliability of power system operations. The spatial and temporal nature of power system ambient and disturbance response
allows the analysis of large amount of synchrophasor data by low-rank methods. This paper provides an overview of several
applications of synchrophasor data utilizing the low-rank property. The tools to capitalize on the low-rank property include matrix
completion methods, tensor analysis, adaptive filtering, and machine learning. The applications include missing data recovery, bad
data correction, and disturbance recognition.

Index Terms—Synchrophasor data, low rankness, matrix completion, tensor analysis, adaptive filtering.

I. INTRODUCTION

W IDE-AREA monitoring systems (WAMS) built on syn-
chrophasor networks consisting of phasor measure-

ment units (PMUs) interconnected through communication
networks have seen a growing acceptance by power system
control centers to enhance the visibility of events and dynamics
propagation throughout the system [1]. At its core, PMU data
in a WAMS show the dependence of system dynamics on
the underlying power network and its operating condition. As
such, synchrophasor networks offer opportunities to develop
data-driven methods to improve the reliability of power system
operation, such as detection of malfunctioning equipment [2]
and wide-area damping control [3]. The purpose of this paper
is to address the PMU data quality based on its low-rank
property and applications that are based on this specified
property.

The low-rank property of data from a synchrophasor net-
work reflects the spatial and temporal variations of voltage and
current phasors measured at nearby high-voltage substations.
Absent of disturbances, the data show the slowly varying
adjustments of generator setpoints to meet the daily load
cycles. The almost simultaneity of the daily load cycles further
preserves the low rankness of PMU data over longer time
spans.

Data of many networks, whether man-made or based on
natural phenomena, will exhibit low rankness at some level.
For example, forecasts of temperature or precipitation for
points within a few tens of kilometers of each other tend to
be highly correlated [4]. The Netflix user preference system
developed many years ago can recommend movie choices to
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users with very high accuracy [5]. The main idea of that
algorithm is to cluster users into affinity groups and movies
into genres, resulting in a mostly low-rank linkage of user
groups and movie genres. As a result, many good numerical
algorithms have been developed to capitalize on data with low
rank such as [6], [7], [8], [9], [10]. Such development has
benefited many fields, including PMU data analysis. However,
it should be pointed out that these algorithms have been
developed for sparse data structure, whereas PMU analysis
requires algorithms dealing with non-sparse data structure.

This paper provides a review of low-rank methods for
enhancing the quality of PMU data as well as other related
applications. Although it will focus on the work by the authors,
other relevant research results will also be included to serve
as a literature survey. One of the aims of this paper is to
illustrate the richness of the low-rank property for research
and development.

The remainder of this paper is organized as follows. Section
II provides an example of disturbance event PMU data to
illustrate low rankness. Section III presents three methods
to reliably recover missing PMU using matrix, tensor, and
adaptive filtering techniques. Section IV applies the low-rank
property to detect bad data. Section V extends the low-rank
approach treating the PMU data as responses from a nonlinear
system. Section VI describes the use of PMU data to classify
disturbances.

II. A LOW-RANK PMU DATA EXAMPLE

As PMU data are time-synchronized measurements at many
different locations spread over a large expanse of a power
system, they capture the variations of voltages and currents
in ambient and disturbance conditions. From a data analytics
point of view, it is useful to organize the data into matrices
with time on one axis and measured data values on the other
axis. The measured data is a result of the power network
reacting to the generations and load changes during normal
operating conditions and control systems reacting to large and
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small disturbances. As the current injection phasors Ĩinj and

voltage phasors Ṽ in a power network are related by

Y Ṽ = Ĩinj, (1)

where Ṽ ∈ C
N and Ĩinj ∈ C

N are in the vector form, N is

the number of buses in the network, and Y ∈ C
N×N is the

matrix of network admittances [11]. In the formulation (1), it

is expected that strongly connected nearby buses would exhibit

similar voltage responses to sufficiently far away disturbances.

One of the earliest observations of the low-rank matrix of

PMU data was made in [12], which used principal component

analysis to reduce the dimensionality of the PMU data. In

this section, this low-rank property is illustrated by PMU data

measured during a disturbance event in central New York.

Fig. 1 shows the locations of six PMUs in central New York.

These multi-channel PMUs provide 11 bus voltage and 26
line current positive-sequence phasors. The voltage magnitude

response to a disturbance is shown in Fig. 2, with the onset

of the disturbance at about 2.3 s.

Fig. 1: Six PMUs in Central New York Power System [13].

Fig. 2: Voltage Phasor Response to a Disturbance [14].

Assembling all the measured phasor data into a single

matrix over a 20-second data window with 30 points per

second, a complex matrix X∗ of dimension 37 by 600 can

be obtained. Here a single phasor quantity is split into two

channels, one for its magnitude and one for its phase. A plot

of the singular values of the matrix is shown in Fig. 3. The ten

largest singular values of X∗ are 894.59, 36.83, 20.72, 8.34,

3.08, 2.48, 1.97, 1.35, 0.59 and 0.25. The largest singular value

is due to the nonzero steady-state values of the measurements,

and as such, it is much larger than the other singular values.

Thus, the data matrix X∗ can be approximated by the eight

largest singular values and their left and right singular vectors

with a small error.

Fig. 3: Singular Values of the PMU Data Matrix from a

Disturbance Event [13].

The low-rank condition of the PMU data matrix is main-

tained if additional rows are time shifted and included in X∗,

forming a Hankel matrix. Given an m× n matrix X with the

jth column denoted by xj , for any integer κ > 1, a Hankel

matrix Hκ(X) is defined as

Hκ(X) =

⎡
⎢⎢⎢⎣

x1 x3 · · · xn+1−κ

x2 x3 · · · xn+2−κ

...
...

...

xκ xκ+1 · · · xn

⎤
⎥⎥⎥⎦ . (2)

Fig. 4 shows the relative approximation errors of rank-r matrix

to the Hκ(X
∗) with different r and κ. All the matrices

Hκ(X
∗) can be approximated by a rank-2 or rank-3 matrix

with a negligible error.

Fig. 4: The Approximation Errors of Low-rank Matrices to

Hankel Matrices from X∗ [14].

As shown in [15], the power system can be approximated

by a linear dynamical system under minor disturbances. In

theory, the total number of modes n depends on the order of

the dynamical system. In practice, a mode might be highly
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damped, or not excited by a disturbance input, or not directly
measured in the measurements. Thus, if only r (r � n)
dominant modes are present in the measurements, the Hankel
matrix of the measurements is approximately rank r. When
the system is under a severe event such that the linear approx-
imation does not hold, one can apply the Koopman theory
[16], [17] to lift the nonlinear dynamical system to a possibly
infinite-dimensional linear system. Then if the number of
excited modes in this lifted system is smaller than the ambient
dimension, the low-rank Hankel property still holds [18].

III. MISSING DATA RECOVERY

Synchrophasor data collected by system operators often
suffer from quality issues such as data losses, bad data, and
possibly cyber data attacks due to communication delays,
device malfunction, and attacks from malicious intruders. To
ensure reliable outcomes from PMU-data-based applications,
we first need to address these data issues before sending them
to any application. In this section, we will discuss various
methods to recover missing data by exploiting the low-rank
property, while the discussions on correcting bad data and
cyber data attacks are deferred to Section IV.

A. Matrix Method

Let the matrix X∗ ∈ Cm×n contain synchrophasor data
from m PMU channels in n time instants. We consider
the general setup that X∗ can contain complex values to
characterize phasors, and all the results apply to real-valued
matrices as well.

Because X∗ is low-rank, as illustrated in Section II, the
missing data recovery problem can be formulated as a low-
rank matrix completion problem [19], [13], which has been
extensively studied in the past twelve year or so due to its
wide applications [9]. It has been established theoretically that
if an m×n matrix is rank r with r much smaller than m and
n, then as long as the number of observed entries of X∗ is in
the order of rn log2 n (assuming m ≤ n), all the remaining
missing entries can be corrected recovered. Thus, directly
applying existing low-rank matrix completion methods such as
Singular Value Thresholding (SVT) [7] and Fast Iterative Hard
Thresholding (FIHT) [20] on PMU data can provide accurate
estimates of the missing points.

Despite the encouraging results [19], [13], a direct appli-
cation of low-rank methods has two limitations. First, the
above theoretical guarantee is based on the assumption that the
locations of the missing points are randomly distributed in the
matrix, while PMU data losses are often consecutive in time or
simultaneous across channels, resulting from communication
congestion. The theoretical guarantee of recovering missing
points at a non-uniform location is established in [13], but the
required number of observations is much larger than rn log2 n,
leaving room for future theoretical improvement.

The other limitation is that the low-rank property does not
characterize the temporal correlations in PMU data fully. To
see this, consider arbitrarily swapping some columns in X∗,
then the resulting matrix X ′ still has the same rank, but each
row of X ′ does not correspond to a legitimate time series. One

way to characterize the correlations is to exploit the low-rank
property of the Hankel matrix of the PMU data.

Let Ω denote the set of indices of the entries that are
observed. Then, X∗ij is observed if (ij) is in Ω, and X∗ij is
missing otherwise. From the property of the low-rank Hankel
matrix, the data recovery problem is formulated as

minX∈Cm×n

∑
(ij)∈Ω(X∗ij −Xij)

2

s.t. rank(Hκ(X)) ≤ r, (3)

in [15]. The solution to (3), denoted by X̂ , is used to estimate
the missing points in X∗. The optimization (3) is nonconvex
due to the rank constraint.

An Accelerated Multi-channel Fast Iterative Hard Thresh-
olding (AM-FIHT) algorithm is developed in [15], [21] to
solve (3). At initialization, AM-FIHT sets all the missing
entries to zero and finds the best rank-r approximation of the
resulting κm × n Hankel matrix based on the observations.
Then in each iteration, it first updates through accelerated
gradient descent, then projects to a rank-r κm × n matrix,
and converts back to an m× n matrix.

If the locations of the missing points are randomly dis-
tributed, AM-FIHT is guaranteed to recover the missing entries
accurately, provided that the number of observations is in the
order of r2 log2 n [15]. This bound is significantly smaller
than rn log2 n by the conventional low-rank matrix completion
methods, demonstrating the effectiveness of exploiting the dy-
namics in the time series using the low-rank Hankel property.
Moreover, AM-FIHT has a low computational complexity. It
converges linearly, meaning the number of iterations needed to
return a solution within error ε is only in the order of log(1/ε),
and the per-iteration complexity is at most in the order of
r2mn+ rmn log n+ r3. The result can also be generalized to
the case that the obtained measurements contain noise [15].

The recovery performance of AM-FIHT is compared with
Singular Value Thresholding (SVT) [7] and Fast Iterative
Hard Thresholding (FIHT) [20] on the dataset visualized in
Fig. 2. SVT solves the convex relaxation of the low-rank
matrix completion problem. We apply it to both the data
matrix directly and the resulting Hankel matrix. FIHT is a
non-convex algorithm that recovers the missing data of single-
channel Hankel matrices, and it is implemented to recover data
in each PMU channel separately. The x-axis is the data loss
percentage. The y-axis is the relative recovery error, defined
as ‖X̂Ωc − X∗Ωc‖F /‖X∗Ωc‖F , where X̂Ωc and X∗Ωc denote
the recovered and ground-truth data of the missing points,
respectively. In Case 1, measurements are lost randomly and
independently across channels and time. In Case 2, measure-
ments in all PMU channels are lost simultaneously at some
randomly selected time instants. In Case 3, all measurements at
some fixed channels are lost simultaneously and consecutively
for some time. Directly applying SVT on the data matrix fails
to recover fully lost columns in Case 2. AM-FIHT achieves
the best performance among all the methods in all three cases.

B. Tensor Method
A phasor data matrix X∗ ∈ Cm×n can be represented as

a tensor X ∗ ∈ Rm×n×2 by separating the phasor magnitudes
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Fig. 5: Relative Recovery Error of SVT, FIHT and AM-FIHT on the Disturbance Data (visualized in Fig. 2) [21].
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Fig. 6: Polyadic Decomposition of Tensor X ∗.

and angles into two matrices (slices of the tensor). A tensor is a

multidimensional array which can be decomposed into a set of

low-dimension structures using a tensor decomposition method

[22]. For example, in the polyadic tensor decomposition (PD),

the tensor is approximated by the sum of a finite number of

rank-one tensors:

X ∗ ≈
r∑

i=1

x
(1)
i ◦ x(2)

i ◦ x(3)
i (4)

where r is the rank of the decomposed tensor, x
(k)
i is a

factor vector corresponding to i-th rank and k-th dimension,

and ◦ denotes the outer product. Expression (4) is illustrated

in Fig. 6. The factor vectors in (4), which have the same

dimension, can be grouped into a factor matrix:

X(k) = [x
(k)
1 , x

(k)
2 , . . . , x(k)

r ] (5)

The set of all factor matrices represents the decomposed

tensor: [[X(1),X(2),X(3)]]
The missing entries in X ∗ can be recovered by solving the

optimization problem:

min
X(k)

1

2
‖W � (X ∗ − [[X(1),X(2),X(3)]])‖2F (6)

where W ∈ {0, 1}m×n×2 is the observation tensor whose

entries are equal to 0 for the corresponding missing entries of

tensor X ∗ and 1 otherwise, � denotes the Hadamard product,

and ‖ · ‖F is the Frobenius norm. The problem (6) is solved

using a nonlinear least-squares formulation and the Gauss-

Newton method [23], [24]. Reconstructed from factor matrices

X(1),X(2),X(3), the tensor X̂ will not have missing entries.

Detailed description of the PD-based method for PMU missing

data recovery can be found in [25].

Fig. 7: Relative Recovery Error of the Disturbance Data.

The performance of the PD-based method is tested by

applying it to matrix X∗ and tensor X ∗ for Cases 1 and 3

of the data used in Section III-A. The results are shown in

Fig. 7. The results demonstrate that conversion of the data

into higher-dimensional objects can reduce the recovery error.

C. Adaptive Filtering Method

When significant temporal behaviors like periodic time

series are present in the data, an adaptive filtering approach,

called the temporal OnLine Algorithm for PMU data process-

ing (OLAP-t), can yield good data recovery results. Let a

measurement matrix Ψ = XT
k ∈ R

n×m be a sliding window

matrix with n time samples and m channels. Assuming

missing points only in the last row comprising the newest

measurements, we partition the left singular vector matrix U
of Ψ as

U =

[
U1

U2
U0

]
(7)

where U0 ∈ R
n×(m−r) denotes the less significant singu-

lar vectors, and U2 ∈ R
1×r is the last row of the first

r left singular vectors. U1 ∈ R
(n−1)×r captures the one-

step back temporal singular vectors (corresponding to known

measurements.) Then, we predict the missing measurements

by optimizing

minc∈Cr×n ||Ψn−1 − U1c||22 (8)

where Ψn−1 includes the first n−1 rows of Ψk. The last row

containing missing measurements is predicted by,

Ψ̂n = U2c (9)
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Fig. 8: Switching Event Comparison of Mean Absolute Error
in kV for Increasing Frequency 5-Point Outages [26].

where Ψn corresponds to the last row of Ψk. The above
process can be reformulated in an adaptive filtering form. If
the n− 1 past measurements in step k are

Ψn−1 =

ψk−n+1

...
ψk−1

 (10)

then

Ψ̂n =U2(UT1 U1)−1UT1 Ψn−1 (11)

Thus, OLAP-t solves a least-squares minimization problem
with a closed-form solution (11). By defining and calculating
the coefficients c as

c =U2(UT1 U1)−1UT1 = [c1 c2 . . . cn−1] (12)

we can obtain the missing data recovery (for a single channel)
from the prediction equation

ψ̂k = c1ψk−n+1 + · · ·+ cn−1ψk−1 (13)

The predictions will be utilized to fill in potential missing
data in the PMU data. For a detailed discussion on the filter
formulation, stability and performance on various event types,
the reader is referred to [26]. Fig. 8 shows the performance
of OLAP-t compared to three other methods for recovering
missing data in an oscillation event [26]. The error metric
utilized is the average absolute error of the estimated mea-
surements, defined as

∑N
i=1 |Ψ̂i − Ψi|/N , where Ψ̂i implies

an estimated value, and Ψi implies the ground-truth value of
the ith missing data point. N is the number of missing values
in the examined dataset. PETRELS [27] and GROUSE [28]
are subspace tracking and missing point recovery methods of
steaming data. SVT [7], on the other hand, solves the matrix
recovery problem via a nuclear norm minimization, where the
observed entries of the original matrix are preserved through
the introduction of equality constraints in the optimization.

IV. BAD DATA DETECTION

Bad data is another type of data quality issue that can result
from device malfunction, communication error, and cyber
data attacks. Conventional bad data detectors usually require
redundancy in the measurements and employ circuit laws to
identify outliers. Exploiting the low-rank property, one can
locate and correct bad data without any information about the
system topology and line impedance.

Let X∗ ∈ Cm×n denote the ground-truth data from m
channels in n time instant. Let S∗ denote arbitrary additive
errors in the measurements. The only assumption about S∗ is
that it contains a small percentage of non-zero entries, while
most entries are zero. That indicates the percentage of bad data
is low, but the error values can be large. The measurements
with bad data can be represented by M = X∗ + S∗. When
there is no missing data, the problem of recovering the low-
rank X∗ from M is studied under the terminology Robust
Principal Component Analysis (RPCA). When M further
contains missing data, the problem of estimating X∗ is called
Robust Matrix Completion (RMC). Various convex and non-
convex methods have been developed for both RPCA [8], [29],
[30], [31], [32], [33] and RMC [34], [35], [36], [37].

The location of the bad data cannot be concentrated in one
row or column for the successful correction by RPCA and
RMC. For example, if the fraction of bad data is at most in
the order of 1/r in each column and row, then methods such as
[34], [38] are guaranteed to correct bad data and recover X∗

accurately. However, conventional RPCA and RMC methods
cannot recover X∗ if all PMU channels have quality issues
(missing data or bad data) simultaneously. Similarly, they also
fail if all the data in one PMU channel have quality issues
continuously.

One approach to address this issue is to exploit the low-rank
property of the Hankel matrix to characterize the temporal
correlations in the data governed by the underlying dynamical
system. The data recovery problem is formulated in [39], [40]
as

min
X,S

∑
(ij)∈Ω

(Mij −Xij − Sij)2

s.t. rank
(
Hk(X)

)
≤ r and ‖S‖0 ≤ s,

(14)

where Ω denotes the location of missing data, and ‖ · ‖0
measures the number of nonzero entries. The parameters r
and s are predetermined constants.

An alternating minimization algorithm named structured
alternating projections (SAP) with recovery guarantee is pro-
vided in [39], [40] to solve (14). SAP iteratively removes bad
data by hard thresholding using a threshold that decreases
across iterations and computes a low-rank Hankel matrix that
best approximates the remaining values in the current iteration.
As long as the number of observations is at least in the
order of r3 log2(n) (assuming m ≤ n), the fraction of bad
data in each channel is at most in the order of 1/r, and the
Hankel matrix of X∗ has rank at most r, then SAP identifies
all the bad data and recovers X∗ accurately. Compared with
the conventional RPCA and RMC methods, SAP has no
constraint on the number of bad data at a given time instant
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and can recover simultaneous bad data across all channels. The
required number of observations is significantly smaller than
conventional RMC methods, indicating that SAP can tolerate
a much higher percentage of missing data. SAP converges
linearly, and the per-iteration computational complexity is in
the order of rmn log(n).

Fig. 9 compares the performance of SAP with R-RMC [38],
a non-convex RMC algorithm, as well as using Alternating
Direction Method of Multipliers (ADMM) to solve the convex
relaxation of RMC problem. The dataset is shown in Fig. 2
with the time window from t = 2.5s to 20s. In Fig. 9, given the
percentage of bad data and missing data, the location of these
data losses and outliers are selected uniformly at random in
each independent trial. The results are averaged over 50 trials.
A white block means accurately recovering X∗ in all these
trails. A black block corresponds to failures in all trails. SAP
achieves the best performance among these methods. When
data losses and bad data happen simultaneously across all the
channels, SAP shows a similar performance as those in Fig. 9,
while the other two methods fail because they cannot handle
fully corrupted or lost columns.
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Fig. 9: Performance of SAP, R-RMC, and ADMM on the
Disturbance Data (visualized in Fig. 2) [41] (©Cambridge
Univ. Press, Reprinted with permission).

One advantage of low-rank methods is that no modeling
of the power systems is required. However, if power system
topology and line parameters are available, they can be easily
incorporated into these methods to enhance performance.
Because bus voltage phasors and line current phasors are
related by circuit laws, their dependence can be modeled by
additional equations in the constraints of (14). For example,
[42] incorporates the topology information to identify cyber
data attacks and proves that with these additional constraints,
the developed method can correct a higher percentage of bad
data resulting from cyber data attacks.

Ref. [14] develops a streaming PMU data recovery method
to correct bad data and fill in missing entries in an online
fashion. Assuming all the data before time t have already been
corrected and recovered, the objective is to correct bad data
and fill in missing entries in the observations obtained at time
t. The idea is to construct a Hankel matrix using clean data
from t−L+1 to t−1 (L > 1) and estimate the low-dimensional
subspace by singular value decomposition. Then, based on the
estimated subspace and the cleaned data from t−κ+1 to t−1,
the data at time t can be estimated, where κ is the number of
time instants in each column of the Hankel matrix. Then the
method compares the estimation with the actual observations
at time t to correct bad data and fill in missing data. The
advantage of the online method is that the window length L

can be much smaller than the window length n in the block
processing method in (14), because one only needs a small
Hankel matrix of clean data to estimate the subspace. The
computational complexity of the online method in [14] at time
t is in the order of κmL2.

V. NONLINEAR SYSTEM APPROACH

The matrix, tensor, and filtering methods in Sections III-
IV essentially assume the power system in the observation
window can be approximated by a linear dynamical system.
When the power system is undergoing a large disturbance, a
nonlinear approach based on low-rankness can offer further
advantages.

From the Koopman theory, for every nonlinear dynamical
system, there exists a Koopman operator that lifts the system
to an infinite-dimensional linear system with the same obser-
vations [16], [17]. That means there exists a linear dynamical
system with order N (N can be infinite) described by

zt+1 = Azt, xt = Czt. (15)

where zt ∈ CN is the state variables in the lifted space at
time t, the state matrix A ∈ CN×N , and the output matrix
C ∈ Cm×N .

Let Z contain the data in a window of length L, i.e.,

Z =
[
zt−L+1 zt−L+2 · · · zt

]
∈ CN×L, (16)

and

Hκ(Z) =


zt−L+1 zt−L+2 · · · zt−κ+1

zt−L+2 zt−L+3 · · · zt−κ+2

...
...

. . .
...

zt−L+κ zt−L+κ+1 · · · zt

 . (17)

If the lifted linear dynamical system can be approximated by
a reduced-order system in the lifted space CN , then the rank
of Hκ(Z) is much smaller than its ambient dimension. The
low-rank property thus holds for Hκ(Z).

Ref. [18] considers the missing data recovery problem in
the online setting, where the objective is to fill in the missing
entries in xt at time t using historical information in a window
of length L. Suppose zj are all known for j < t and C is
known. One can first use the historical data to estimate the r-
dimensional column subspace in CN of Hκ(Z), and then use
zt−κ+1, ..., zt−1 to determine the location of the last column
vector of Hκ(Z) in (17). Then zt can be estimated, followed
by the estimation of xt. One can compare the estimation with
the obtained observations to correct bad data and fill in missing
entries.

Unfortunately, both z and C are unknown. However, the
above described recovery method only requires 〈zi, zj〉 for
any 1 ≤ i, j ≤ n rather than zi directly. Therefore, one can
employ a kernel function Φ [43] such that

Φ(xi,xj) = 〈zi, zj〉. (18)

Then, 〈zi, zj〉 can be computed directly from xi and xj
without knowing z. The kernel function is pre-defined, and
popular choices include Gaussian kernel, polynomial kernel,
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Fig. 10: Voltage Phasors Immediately after an Event [18].

and sigmoid kernel [43]. Overall, the computational complex-
ity of correcting data issues for observations at time t is in the
order of κmL2.

This method is evaluated on the event data in Fig. 2 during
the time interval 2.3s to 5s because the system is nonlinear
immediately after a line trip. The voltage phasors in this
interval is shown in Fig. 10. Given a fixed data loss percentage,
we tested four cases of data loss patterns. Case 1 is missing
data at random locations and times. Case 2 is simultaneous
data losses across all channels at random time instants. Case 3
is simultaneous data losses across all channels for consecutive
time instants. Case 4 is block-wise data losses occur across
some (but not all) randomly selected channels and some
consecutive instants repeatedly.

Fig. 11 shows the comparison of five different methods.
Duplication simply replaces a missing entry with the most
recent observation in the same channel. The low-rank Hankel
method is the online method that exploits the low-rank-Hankel
property of previous data samples to estimate the missing
points in the current time instant [14]. Kalman filter [44]
is a recursive filter that estimates the states of a dynamical
system from noisy measurements and is implemented for each
channel separately. Two versions of the lifted Hankel method
are implemented. One method only recovers missing data
(without bad data correction), while the other one also detects
and corrects bad data (with bad data correction). A Gaussian
kernel is selected in the lifted Hankel methods. The estimation
error is measured by ‖X̂ −X∗‖F /‖X∗‖F , where X̂ and X∗

denote the recovered and ground-truth data, respectively.
The Kalman filter method performs well when the data loss

percentage is not high (not over 20%), and this is consistent
with the conclusion in [44]. In contrast, the lifted Hankel
methods can achieve a small estimation error in a wide range
of data loss percentages and clearly outperform the other ones
when the data loss percentage is high.

VI. DISTURBANCE CLASSIFICATION

Cascading failures often start from a preliminary phase that
lasts from tens of seconds to hours. Once the power system
stability is violated, a rapid phase is triggered, and events occur
successively within milliseconds to tens of seconds [45]. Early
identification and mitigation of events can prevent cascading
failures [46], [47]. Data-driven methods extract features such
as frequency [48], the rate of change of frequency (ROCOF)
[49], and wavelet coefficients [50] from measurements and
identify events based on the representative features. In addition
to conventional event identification methods using SCADA
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Fig. 11: Estimation Errors of Missing Voltage Phasors [18].

data, some data-driven methods using PMU data have been
developed recently [51], [52], [53], [54], [55], [56], [57].

One idea is to use recorded event data with the correspond-
ing labels to train a classifier, usually one variant of Neural
Networks, such that when taking the PMU measurements
as the input, the learned classifier outputs the label that
corresponds to the event type. Despite the superior empirical
performance of neural networks for image classification, nat-
ural language processing, and computer vision, its application
on event identification has two limitations. The first one is
the requirement of a large training set of various events at
different system topologies with diverse initial conditions to
train a reasonable classifier. The neural network architecture
is thus complex and requires many computational resources
to train. The second limitation is that training data usually
contain individual events, while the actual observations may be
affected by multiple successive events like cascading failures.
For example, if a second event occurs when the system is
still under the disturbance resulting from a previous event,
directly applying the trained classifier may not identify the
second event accurately.

To address the first issue, refs. [58], [59] propose to train
on low-dimensional features extracted from PMU data rather
than training on time series measurements directly. Given the
measurements from m PMU channels in n time instants,
[58] chooses the r-dimensional row subspace of the m × n
data matrix as the feature because the row subspace is only
determined by the r (r ≤ n) dominant modes of the linear
dynamical system and independent of the pre-event condition.
Ref. [59] chooses r dominant singular values of the PMU
data matrix and r dominant modes of the linear dynamical
system as the low-dimensional representation of the data. The
singular values of the data matrix are affected by the significant
dynamics in the event. The modes of the linear dynamical
system can be computed from Dynamic Mode Decomposition
[60] and are affected by the characteristics of events because
different events excite different sets of modes. The feature
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size is thus reduced, and the features can compactly represent
event data. For example, a line trip event at the same line
but with different pre-event conditions leads to different time
series measurements, but the excited modes might be the
same. Then, different time series of event data may have
similar features, and the required number of training cases
can be significantly reduced, which in turn indicates that the
neural network architecture can be greatly simplified (a two-
layer convolutional neural network is used in [59]). Moreover,
these features can be computed using data in a short time
window (like one second) after an event happens rather than
using a long window of data, and thus, an event can be
identified immediately after it happens. Ref. [58] uses the low-
rank subspaces of voltage magnitude, current magnitude, and
frequency, respectively, to identify events. The identification
performance using these three types of data are comparable.
Ref. [59] computes r dominant modes in voltage magnitude,
active power, and frequency, respectively, and uses all these
3r features to identify events.

To address the second issue, [58] assumes that the effects of
different events on the measurements are additive and subtracts
the effect of the first event before applying the classifier to
identify the second event. Suppose the first event happens at
time t1 and the second event happens at time t2 (t2 > t1). To
predict the impact of the first event, one can use measurements
during time t2−L (L < t2−t1) to t2−1 and apply the online
Hankel matrix completion method in [14] to estimate the
observations after time t2 if the second event did not happen.
Then, subtracting this prediction from the actual observations
after time t2 provides the net effect of the second event.

Ref. [59] compares the proposed method, denoted by CNN-
F, with training directly on time series measurements using
convolutional neural networks, denoted by CNN-T, on sim-
ulated events that include line trips (LTs), generator trips
(GTs), three-phase short circuit (TPs), and generator reference-
voltage changes (GRCs). The number of parameters of CNN-
T is eight times larger than that of CNN-F. However, CNN-F
performs significantly better than CNN-T. The identification
accuracy rate (IAR) of CNN-F is about 15% higher than that
of CNN-T. Moreover, when the second event happens within
one second of the first event, subtracting the impact of the first
event increases the IAR of the second event by about 10%.

Fig. 12 compares the identification performance of CNN-F
and CNN-T when the number of training samples decreases.
The IAR of CNN-F is much higher than that of CNN-T and
robust with respect to the size of the training data, while
CNN-T degrades significantly when the number of events
for training is reduced. Because the practical recorded events
might not include all the possible event locations and pre-event
conditions, CNN-F is a more practical option.

The methods for missing data recovery and bad data correc-
tion described in Sections III and IV essentially first estimate
the low-rank subspaces based on the reliable data points and
then use the estimated subspaces to fill in missing entries
and correct bad data. If the disturbance data contain missing
or bad data, one can simply apply the methods in Sections
III and IV to estimate the low-rank subspaces and then
apply the identification methods. Because the data recovery

6 12 18 24 30 50 80 100
Percentage of Training Data (%)

40

60

80

100

IA
R

 (%
)

LT

6 12 18 24 30 50 80 100
Percentage of Training Data (%)

60

80

100

IA
R

 (%
)

GT

6 12 18 24 30 50 80 100
Percentage of Training Data (%)

70

80

90

100

IA
R

 (%
)

TP

6 12 18 24 30 50 80 100
Percentage of Training Data (%)

60

80

100

IA
R

 (%
)

Averaged

CNN-F CNN-T

Fig. 12: Performances of CNN-F and CNN-T when Partial
Training Datasets are Available [59].

methods can handle a significant percentage of missing or bad
data, the estimated low-rank subspaces are accurate, and the
identification performance will not be affected.

VII. CONCLUSION

This paper summarizes a recent line of work on PMU
data processing by exploiting the low-rank property, which
results from the strong dynamical corrections in the PMU
measurements. The low-rank property enables reliable data
recovery from severe data quality issues and simplifies dis-
turbance identification without sacrificing the identification
accuracy. These low-rank-based methods only provide the
best estimate, while one future direction is to provide an
uncertainty index to quantify the reliability of the returned
solution. Other applications of low-rank methods may include
data compression, quantifying the significance of disturbance
events, and reducing the complexity in PMU-data machine
learning methods.
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