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It is well known that explicit user ratings in recommender systems are biased toward high ratings and that

users differ significantly in their usage of the rating scale. Implementers usually compensate for these is-

sues through rating normalization or the inclusion of a user bias term in factorization models. However,

these methods adjust only for the central tendency of users’ distributions. In this work, we demonstrate

that a lack of flatness in rating distributions is negatively correlated with recommendation performance. We

propose a rating transformation model that compensates for skew in the rating distribution as well as its

central tendency by converting ratings into percentile values as a pre-processing step before recommenda-

tion generation. This transformation flattens the rating distribution, better compensates for differences in

rating distributions, and improves recommendation performance. We also show that a smoothed version of

this transformation can yield more intuitive results for users with very narrow rating distributions. A com-

prehensive set of experiments, with state-of-the-art recommendation algorithms in four real-world datasets,

show improved ranking performance for these percentile transformations.
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1 INTRODUCTION

Recommender systems have become essential tools in e-commerce systems, helping users to find
desired items in many contexts. These systems use information from user profiles to generate
personalized recommendations. User profiles are either implicitly inferred by the system through
user interaction or explicitly provided by users [Adomavicius et al. 2005; Adomavicius and Tuzhilin
2015]. In the latter case, users are asked to rate different items based on their preferences and may
have individual differences in how they use explicit rating scales: Some users may tend to rate
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Fig. 1. Rating distribution of CiaoDVD and MovieLens datasets.

Table 1. Rating Profiles with Percentile Transformation

Alice rating 〈1, 1, 2, 2, 3, 3, 3, 4, 5〉
Bob rating 〈3, 3, 4, 4, 4, 5, 5, 5, 5〉
Alice percentile 〈20, 20, 40, 40, 70, 70, 70, 80, 90〉
Bob percentile 〈20, 20, 50, 50, 50, 90, 90, 90, 90〉

higher, while some users may tend to rate lower; some users may use the full extent of the rating
scale, while others might use just a small subset [Herlocker et al. 1999].
When a user concentrates his or her ratings in only a small subset of the rating scale, this often

results in ratings distributions that are skewed—most often toward the high end of the scale. This
is because items are not rated at random, but rather preferred items are more likely to be selected
and therefore rated due to selection bias [Marlin et al. 2007]. Figure 1 shows the overall rating
distribution of two datasets that exhibit typically right-skewed distributions. Users in the CiaoDVD
dataset, for example, have assigned less than 10% of the ratings to ratings 1 and 2 and some 70% of
ratings are values 4 and 5. We can assume this is not because there are so many more good movies
than bad, but rather that users are selecting movies to view that they are likely to enjoy and the
ratings are concentrated among those selections. A drawback of this skew to the distribution is
that we have more information about preferred items and less information about items that are
not liked as well. It also means that a given rating value may be ambiguous in meaning.
As an example, assume that Alice and Bob both purchase an item X and rate it. Alice is a user

who tends to rate lower and tends to use the whole rating scale, while Bob is a user who tends to
rate higher and never uses ratings at the bottom of the scale. Their profiles, sorted by rating value,
are shown in Table 1. After using item X, Alice is fully satisfied with it, but Bob is only partially
satisfied. As a result, both rate the itemX as 4 of 5 although they have different levels of satisfaction
toward that item. These ratings, while identical, do not carry the same meaning. A transformation
based on percentiles, shown in the bottom rows of the table, captures this distinction well: A rating
of 4 for Alice is percentile 80, whereas for Bob, the same score has a score of 50. In addition, unlike
the original profiles, where the users’ ratings are distributed over different ranges, these profiles
span the same numerical range from 20 to 90.
Rating normalization in neighborhood models [Resnick et al. 1994] and inclusion of a bias term

in factorization models [Koren 2008; Koren et al. 2009] are two common techniques for managing
rating variances among users. However, these techniques adjust only for the central tendency of
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Table 2. An Example of User-item Matrix

Similarity to U1

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 rating z-score Gaussian Decoupling percentile

U1 1 1 1 — 1 1 — 2 2 3 3 — — — — —

U2 1 2 3 — — — 3 4 — 5 5 0.914 0.914 0.914 0.940 0.916

U3 — — — — 1 3 — 2 5 — 4 0.567 0.567 0.567 0.580 0.567

U4 1 4 4 — 4 4 — 5 5 5 5 0.606 0.612 0.606 0.909 0.966

U5 3 3 — 3 2 2 — 2 4 5 — 0.734 0.758 0.734 0.564 0.571

U6 5 5 5 — 5 5 — 2 2 4 4 −0.531 −0.549 −0.531 −0.426 −0.933

users’ rating distributions and do not fully compensate for different patterns of rating behavior
that users exhibit. However, the percentile transformation proposed in this article takes into ac-
count the whole shape of the distribution, not only its central tendency, and therefore retains more
information from the original user profile.
Table 2 shows a hypothetical rating matrix. In this table, users with different rating patterns

are exhibited. Some users tend to rate lower (e.g., U1), some users tend to rate higher (e.g., U4 and
U6), some users show normal rating pattern (e.g., U2 and U5), and, finally, some users do not show
any pattern (e.g., U3). For illustration purposes, we show how different normalization methods
affect the computation of user-user similarities (in this case similarities to user U 1). Note that for
calculating the similarity values based on z-score, Gaussian, Decoupling, and percentile, first we
created z-score, Gaussian, Decoupling, and percentile matrix from Table 2, and then we used the
corresponding matrix for calculating similarity values for each technique.
Based on users’ characteristics and rating patterns, certain similarity values between users are

expected. For example, U1 and U4 show different behavior when providing ratings to items. Based
on their rating patterns, a rating of 3 provided by U1 can be mapped to a rating of 5 provided by U4,
or rating 1 provided byU1 can bemapped to rating 3 provided byU4. Hence, a good transformation
technique should be able to capture these differences in these users’ behaviors. For this case, our
percentile1 technique assigns high similarity value to U1 and U4. The same result can be observed
between U1 and U6. However, the other transformation techniques are unable to capture these
differences when calculating similarity values. In other cases, where users have normal rating
patterns or do not show a specific rating pattern, our percentile technique behaves similarly to
other normalization techniques.
The above example also shows that, in general, original ratings, z-score, and Gaussian normal-

ization techniques behave similarly even when comparing rating patterns that are very different.
Decoupling normalization technique also does not work consistently well in these cases. How-
ever, our percentile technique yields more intuitive results for disparate profiles, while behaving
similarly to the other transformations in other cases.
One can imagine the most informative rating distribution would be a flat, uniform, distribution.

Users would provide ratings for items sampled uniformly across all of the items, and the profiles
would then represent their preferences across the whole inventory and across all possible rating
values. One way to think about the difference between the typical, skewed, distribution and a
uniform one is in terms of information entropy. The worst case, a profile where every item is rated
the same, carries no information that distinguishes the different items, and the assignment of a

1Results are based on first index percentile transformation. The same results are observed for median and last index per-

centile transformation.
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rating to an item has low entropy. A profile where the rating values are distributed across the
items with equal frequency has maximum entropy.
In this article, we formalize a rating transformation model as above that converts users’ ratings

into percentile values as a preprocessing step before recommendation generation. Each value as-
sociated with an item therefore reflects its rank among all of the items that the user has rated.
Thus, the percentile captures an item’s position within a user’s profile better than the raw rating
value and compensates for differences in users’ overall rating behavior. Also, the percentile, by
definition, will span the whole range of rating values, and as we show, gives rise to a more uni-
form rating distribution. To handle cases in which users use only a small part of the rating range,
we also introduce a smoothed variant of the percentile transformation that preserves distinctions
among users with different rating baselines.
We show that these two properties of the percentile transformation—its ability to compensate

for individual user biases and its ability to create a more uniform rating distribution—lead to
enhanced recommender system performance across different algorithms, different datasets, and
different performance measures. We also show that the percentile transformation creates flatter
rating distributions and that this is correlated with improved recommendation performance.
This article makes the following contributions:

1. We propose a rating transformation model that converts users’ ratings into percentile val-
ues to compensate for skew in rating distributions and variances in users’ rating behaviors.

2. We empirically evaluate the proposed percentile technique using state-of-the-art recom-
mendation algorithms on four real-world datasets. Our experiments include both overall
recommendation performance and recommendation performance on long-tail items.

3. We show the relationship between the uniformity of the rating distribution and
the quality of recommendation; with flatter distributions being correlated with better
recommendations.

4. We show that the smoothed version of the transformation overcomes the issue of identical
ratings in rating transformations, and provides further improvement over the percentile
alone.

2 BACKGROUND

It has long been noted that users differ in their application of explicit rating scales. Resnick’s al-
gorithm, perhaps the most well-known prediction method in recommendation, normalizes ratings
by user mean when computing its predictions [Resnick et al. 1994]. Herlocker et al. [1999] used z-
scores instead of absolute rating values in recommender systems and investigated its effectiveness
on quality of recommendations. In this research, they compared the performance of three rating
normalization techniques and showed that bias-from-mean approach performs significantly better
than a non-normalized rating approach and slightly better than the z-score approach in terms of
mean absolute error. This result is consistent with our findings.
Kamishima andAkaho [2010] proposed a ranking-basedmethod that replaces the existing rating

scheme with a ranking scheme. In this method, instead of rating the items, users order the items
based on their preferences. Based on order statistics theory, preference orders expressed by users
are converted into scores and then recommendation algorithms are applied on these scores to
generate recommendations. This method proved effective, but it is not widely applicable, because
order-based input is rare in recommender system interfaces, and requires more effort from users
than rating assignment.
Jin and Si [2004] compared the impact of two normalization techniques for user ratings, namely

Gaussian and Decoupling normalization techniques on the performance of recommender systems.

ACM Transactions on Intelligent Systems and Technology, Vol. 12, No. 2, Article 19. Publication date: March 2021.



Flatter Is Better: Percentile Transformations for Recommender Systems 19:5

This research found that Decoupling normalization is more effective than Gaussian normalization.
A more recent study by Kim et al. [2016] proposed a normalization model that learns the differ-
ences in users’ rating dispositions using two phases of clustering and normalization. At the clus-
tering phase, users are clustered based on their rating disposition and then at the normalization
phase, users’ ratings are normalized through predicting their rating disposition and adjusting their
neighbors’ ratings based on that disposition.
Adamopoulos and Tuzhilin [2013] incorporated weighted percentile into the neighborhood

model to assign weight to the ratings provided by neighbors of the target user on the target item. In
their approach, depending on the rank of the ratings provided by neighbors on a target item, when
calculating the predicted ratings in traditional neighborhood model, the ratings will be weighted
by a predefined percentile weight. Also, Dixit and Jain [2019] applied this weighted percentile
technique on context-aware recommender systems to improve the quality of recommendations.
Neither of these techniques involve transformation of rating inputs.
In the domain of trust relations in social networks, it has been shown that percentile values are

more effective than absolute trust ratings. Hasan et al. [2009] showed that using percentile values
instead of absolute trust ratings improves the accuracy of trust propagation model. They applied a
method introduced by NIST2 for converting predicted percentile values into trust rating in social
networks.

3 PERCENTILE TRANSFORMATION

In statistics, given a series of measurements, percentile (or quantile) methods are used to estimate
the value corresponding to a certain percentile. Given the Pth percentile, these methods attempt
to put P% of the dataset below and (100-P)% of the dataset above. There are a number of different
definitions in the literature for computing percentiles [Hyndman and Fan 1996; Langford 2006].
Although they are apparently different, the answers produced by these methods are very similar,
and the slight differences are negligible [Langford 2006]. In this article, we use a definition from
Hyndman and Fan [1996].
The percentile value, p, corresponding to a measurement, x , in a series of measurements, M , is

computed with regard to the position of x in the ordered listM , o(M ), as follows:

pz (x ,M ) =
100 × positionz (x ,o(M ))

|M | + 1
, (1)

where positionz (x ,o(M )) returns the index of occurrence of x in o(M ), or the position in the order
where x would appear if it is not present, and |M | is the number of measurements inM . For more
details, see Hyndman and Fan [1996].
This transformation assumes that values are distinct and there is no repetition in the series.

However, with rating data, we often have a different situation. User profiles usually contain many
repetitive ratings, and it is unclear how to specify the position of a rating. For example, in a series
of ratingsv = 〈2, 3, 3, 3, 3, 3, 5, 5, 5〉, it is not clear what the position of rating 3 should be. We could
take the first occurrence, position 2, or the last occurrence 6, or something in between.
We explore the performance of our percentile technique by taking the index of the first, median,

and last occurrence of repeated ratings in the ordered vector. Hence, the parameter z determines
the index rule that we want to use for percentile transformation and can take values f ,m, and l as
first, median, and last index assignments, respectively. Each of these index assignments signifies
a particular meaning when transforming rating profiles. The index of the last occurrence, for
example, is the highest rank (most preferred) position occupied by an item with the given rating.

2National Institute of original and Technology, http://www.itl.nist.gov/div898/handbook/prc/section2/prc262.htm.
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We experiment with all index assignments and show that the rule that yields a more uniform
distribution will provide greater recommendation performance.3

Even in contexts where ratings are gathered implicitly, they are often converted into numeric
scores representing user preference or relevance. For example, time spent on a page is often con-
sidered a measure of user interest [Yi et al. 2014] or number of seconds watched of a video [Zhao
et al. 2019]. Profiles generated in these ways can also be normalized using the percentile transform
as well, although they are less likely to have repeated entries.
For our purposes, the entire set of ratings provided by a user u is considered a rating vector for

u, denoted by Ru with an individual rating for an item i , denoted as rui . Let p (v, �) be the percentile
mapping in Equation (1) from a rating value v in a list of values �, using the first, median, and last
index method. Then, the percentile value of a rating r provided by user u on an item i is computed
by taking the rating rui and calculating its percentile rank within the whole profile of the user. For
example, based on the last index rule, for the user Bob from Table 1, an item rated 3 would have
percentile rank 100 ∗ 2/(9 + 1) = 20. We define the user-percentile function, Per zu , as follows:

Perzu (u, i ) = pz (rui ,Ru ). (2)

Analogously, we can consider profiles for an item, denoted byRi , to be all of the ratings provided
for that item by users, and we can define a similar transformation for item profiles in which the
transformation takes into consideration the rank of the rating across all ratings for that item, an
item-percentile function,

Perzi (u, i ) = pz (rui ,Ri ). (3)

Note that Per zu and Per zi might be quite different for the same user-item pair. For example,
user x might be a strong outlier relative to the dataset, liking an item y that no one else does.
Per zi (x ,y) would therefore be quite high. However, if user x has a strong tendency to high ratings
in general, then Perzu (x ,y) might be significantly lower. This article concentrates on the user-
oriented transformation: We plan to explore the properties of the Per zi transformation in future
work.

3.1 Measuring Distribution Uniformity

One of our claims in this article is that the flatness of the rating distribution in a dataset is an
indicator of how well collaborative recommendation will perform, and that the percentile trans-
formation achieves flatter distributions. To test this hypothesis, we need a measure of how close a
rating distribution is to uniformity.
One common technique formeasuring the shape of a distribution is kurtosis. Kurtosis is regularly

used for determining the normality of a distribution. A normal distribution has a kurtosis value of
34, and a value below 3 indicates a distribution closer to uniform. Although kurtosis can be used
for measuring the uniformity of a distribution, it is not a robust measure and may be misleading.
Therefore, to overcome this issue, we introduce a new technique for measuring the flatness of a
distribution as an alternative along with kurtosis.
To determine the flatness of a ratings distribution we calculate Kullback-Leibler divergence

(KLD) between the observed rating distribution and a uniform distribution in which each rating
value occurs the same number of times. If there is a discrete set of rating values V (for example,

3See https://github.com/masoudmansoury/percentile for the code for computing these and other transformations described

in this article.
4In some references, kurtosis is defined such that 0 reflects a normal distribution.
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Table 3. Flatness Calculation of BookCrossing Dataset

Rating Frequency D (v ) log( |V |D (v ))
1 349 0.0029 −3.5275
2 606 0.0051 −2.9757
3 1,300 0.0109 −2.2125
4 1,944 0.0164 −1.8101
5 11,322 0.0953 −0.0481
6 8,934 0.0752 −0.285
7 19,776 0.1665 0.5096
8 29,233 0.2461 0.9005
9 21,221 0.1786 0.5802
10 24,113 0.203 0.7079

F =0.448

1,2,3,4,5), then we define the flatness measure F as

F (D ‖ Q ) =
∑

v ∈V
D (v ) log

D (v )

Q (v )
, (4)

where V is the set of discrete rating values in rating matrix R and D is the observed probability
distribution over those values. Q is a uniform distribution that associates a probability 1/|V | for
each possible value in V (i.e., for each v ∈ V , Q (v ) = 1/|V |). Therefore,

F (D) =
∑

v ∈V
D (v ) log( |V |D (v )). (5)

The F function measures the distance between the two distributions and hence how close
the observed distribution is to the flat ideal, with a lower KLD value being indicative of a flatter
distribution.
Table 3 illustrates the flatness calculation of BookCrossing dataset for original ratings. In this

dataset, there are 10 rating values, |V | = 10. D (v ) is the probability distribution over each rating
values calculated as

D (v ) =
f requency (v )∑

v ∈V f requency (v )
. (6)

By using Equation (5), the flatness of this dataset will be F = 0.448. Comparison between this flat-
ness and the flatness of a uniform distribution (i.e., F = 0) shows that the distribution of original
ratings in BookCrossing dataset is far from a flat ideal.
The percentile, z-score, Gaussian, and Decoupling transformations yield real valued ratings, un-

like the original discrete ratings chosen by users in these datasets. Evaluating our flatness measure
at every point in these distributions yields results that are not comparable to the original discrete
distribution.
To have comparable calculations of the F value across types of distributions, we created binned

versions of the percentile, z-score, Gaussian, and Decoupling distributions, using the same number
of bins as present in the original ratings. In a 10-star rating system, such as found in the BookCross-
ing data, the rating distribution covers 10 values, and hence we created 10 equal length bins for
percentile, z-score, Gaussian, and Decoupling values and aggregated each bin by its mean.5

5As an example, we know that percentile values are between 0 and 100. Thus, we create 10 bins each of which with the

length of 10 and aggregate each bin by mean of its distribution.
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Fig. 2. Raw and binned percentile distributions for BookCrossing dataset.

Table 4. Statistical Properties of Datasets

Dataset #users #items #ratings Density Ratings
BX 7,033 9,441 118,798 0.179% 1–10
CiaoDVD 17,595 16,113 72,042 0.025% 1–5
FilmTrust 1,508 2,071 35,497 1.137% 0.5–4.0
ML1M 6,040 3,706 1,000,209 4.468% 1–5

Figure 2 shows the percentile distribution (last index illustrated here) and its aggregated distri-
bution for the BookCrossing dataset. The black curve is the percentile distribution and red line is
its aggregated distribution with 10 bins. It shows that aggregating by mean retains the shape of
the percentile distribution, while being comparable to the original ratings for computing flatness.

4 EXPERIMENTS

We evaluated the performance of percentile transformation on four publicly available datasets:
BookCrossing, CiaoDVD, FilmTrust, and MovieLens. The characteristics of the datasets are sum-
marized in Table 4. These datasets are from various domains and have different degrees of sparsity.
The ML1M is movie ratings data and was collected by the MovieLens6 research group. The

CiaoDVD7 includes ratings of users for movies available on DVD. The FilmTrust is a small dataset
collected from the FilmTrust website [Guo et al. 2013]. It contains both movie ratings and explicit
trust ratings. Finally, the BX dataset is a subset extracted from the BookCrossing dataset8 such that
each user has rated at least five books and each book is rated by at least five users. The ML1M has
the highest density and CiaoDVD has the lowest density.

4.1 Flatness

To evaluate the percentile transformation for its distributional properties, we evaluated its flatness
and kurtosis compared to the original ratings distribution and a distribution based on the z-score,
Gaussian, and Decoupling transformations over four datasets: BX, CiaoDVD, FilmTrust, ML1M.
First, we converted the original ratings into percentile, z-score, Gaussian, and Decoupling val-

ues. Then, we applied the binned flatness and kurtosis measures described above to these datasets
to evaluate the transformations for their distributional properties. Table 5 shows the flatness (F )

6https://grouplens.org/datasets/movielens/.
7https://www.cse.msu.edu/∼tangjili/trust.html.
8http://www.informatik.uni-freiburg.de/∼cziegler/BX/.
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Table 5. Flatness (F ) and Kurtosis (K ) of Rating Distribution

Dataset Method Rating z-score Gaussian Decoupling Per
f
u Permu Perlu

BX
F 0.449 0.661 0.144 0.173 0.110 0.120 0.101
K 3.371 3.679 4.354 2.660 2.099 1.907 1.909

CiaoDVD
F 0.317 0.468 0.339 0.267 0.208 0.218 0.153
K 3.619 3.781 4.919 2.470 2.384 2.343 2.044

FilmTrust
F 0.355 0.248 0.2 0.122 0.053 0.034 0.086
K 3.206 3.317 4.839 2.611 1.938 1.831 1.850

ML1M
F 0.153 0.562 0.881 0.213 0.057 0.055 0.130
K 2.648 2.920 7.380 2.687 2.078 1.829 1.961

Flatness of a uniform distribution is F = 0.

Kurtosis of a uniform distribution is K < 3.

and kurtosis (K ) values for each type of transformation on the four datasets (user profile transfor-
mation). As shown, the values for both measures are consistent across all three percentile trans-
formations and datasets. As anticipated, the proposed percentile model makes the rating values
flatter than rating transformations.
Thus, the proposed percentile transformation approach reduces skew in the rating distribution

over the original ratings, z-score, Gaussian, and Decoupling values. Given these results, we expect
to see better recommendation performance when we use percentile values as input for recom-
mender systems since they have lower F and K values.

4.2 Methodology

We performed a comprehensive evaluation of the effect of the percentile transformation on the
ranking performance of a number of recommendation algorithms. Due to the nature of our per-
centile technique, we experimented only with algorithms that make use of rating magnitude. The
percentile transformation rescales rating values without changing their relative ordering, so it will
have no effect when applied to ranking-based algorithms (for example, ListRank [Shi et al. 2010]).
Implicit feedback algorithms that use unary data, such as Bayesian Personalized Ranking [Rendle
et al. 2009], would also be inappropriate to use with percentile transform, because they use binary
interaction information and ignore rating values.
Our experiments included user-based collaborative filtering [Resnick et al. 1994], item-based

collaborative filtering [Sarwar et al. 2001], biased matrix factorization (BiasedMF) [Koren et al.
2009], singular value decomposition (SVD++) [Koren 2008], and non-negative matrix factorization
[Lee and Seung 2001] However, in this article, for the purpose of presentation, we only report
results on BiasedMF and SVD++.9 None of the other conditions showed the percentile transform
performing worse than the others. In some cases, it was not significantly different and in these
cases, all transformation methods yielded the same results.
We performed fivefold cross validation, and in the test condition, generated recommendation

lists of size 10 for each user. Then, we evaluated nDCG and precision10 at list size 10. Results were
averaged over all users and then over all folds. A paired t-test was used to evaluate the significance
of results and based on paired t-test, the results shown in bold are statistically significant with a
p-value of less than 0.05.

9Results on all algorithms and datasets are available at https://github.com/masoudmansoury/percentile.
10In addition, we evaluated recall and F-measure, also finding significant improvement in these metrics.
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Table 6. Performance of Recommendation Algorithms at nDCG@10 and precision@10

Algorithm Input
BX CiaoDVD FilmTrust ML1M

Precision nDCG Precision nDCG Precision nDCG Precision nDCG

rate 0.005 0.009 0.005 0.019 0.039 0.078 0.107 0.116

z-score 0.004 0.008 0.002 0.005 0.047 0.092 0.106 0.116

Gaussian 0.001 0.002 0.001 0.001 0.014 0.031 0.007 0.007

BiasedMF Decoupling 0.005 0.009 0.006 0.019 0.092 0.138 0.068 0.076

Per
f
u 0.007 0.014 0.007 0.027 0.158 0.317 0.132 0.151

Permu 0.007 0.014 0.006 0.024 0.160 0.314 0.137 0.156

Perlu 0.006 0.012 0.005 0.016 0.165 0.302 0.136 0.156

rate 0.005 0.009 0.003 0.009 0.024 0.049 0.125 0.145

z-score 0.003 0.006 0.003 0.011 0.035 0.072 0.125 0.145

Gaussian 0.001 0.002 0.001 0.004 0.016 0.036 0.003 0.003

SVD++ Decoupling 0.005 0.009 0.006 0.013 0.048 0.085 0.012 0.011

Per
f
u 0.006 0.012 0.006 0.022 0.044 0.079 0.129 0.153

Permu 0.006 0.012 0.006 0.019 0.049 0.087 0.133 0.157

Perlu 0.005 0.010 0.004 0.017 0.070 0.124 0.131 0.153

Before reporting on the results here, we performed extensive experiments with different
parameter configurations for each algorithm and dataset combinations. To determine sensible
values for parameters, we followed the settings reported in the literature. In factorization models,
for instance, we approximately set the number of factors and iterations based on the density of
the dataset and convergence of the loss function, and we tested these parameters for sensitivity.
We performed a grid search over bias11 ∈ {0.0001, 0.001, 0.005, 0.01}, factor ∈ {50, 100, 150}, itera-
tion ∈ {30, 50, 100}, and learning rate ∈ {0.0001, 0.001, 0.005, 0.01}. Results of extensive experiments
show that, in general, across on all settings, our percentile technique works significantly better
than the original ratings, z-score, Gaussian, and Decoupling values in terms of ranking quality.

4.3 Results

We include results for 14 experimental conditions: two recommendation algorithms evaluated over
seven different inputs (the original ratings, the results of the three percentile transformations, the
results of the z-score transformation, and the results of the transformations based on the Gaussian
and Decoupling normalization introduced in Jin and Si [2004]). Table 6 shows the results for all
the datasets and both algorithms, reporting the best-performing configuration for each dataset,
algorithm, and input value.12

Results in Table 6 show that in terms of ranking quality (i.e., nDCG), the percentile technique
produces recommendations that are consistently better than the other transformation techniques13

over all the recommendation algorithms and datasets except for Perlu as input for BiasedMF on
CiaoDVD dataset. On the densest dataset (ML1M), the average improvement by our percentile
technique on BiasedMF is 33% and on SVD++ is 7%. The improvement on the FilmTrust dataset
is 268% and 66%, on the CiaoDVD dataset is 182% and 95%, and on BX dataset is 58% and 48%,
respectively.

11User, item, implicit feedback, and overall bias terms.
12We used LibRec 2.0 and librec-auto for all experiments [Guo et al. 2015; Mansoury and Burke 2019; Mansoury et al. 2018].
13We can think of the original ratings as a null transformation.
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Table 7. Correlation between F / K and nDCG@10

for Each Algorithm

Dataset
F K

BiasedMF SVD++ BiasedMF SVD++
BX −0.28 −0.29 −0.94 −0.93
CiaoDVD −0.70 −0.69 −0.81 −0.89
FilmTrust −0.81 −0.89 −0.81 −0.89
ML1M −0.82 −0.59 −0.92 −0.73

In addition to nDCG, Table 6 shows the performance of the transformation techniques in terms
of precision, another measure of recommendation accuracy (without considering the ranking of
recommendations). Again, our percentile technique outperforms other transformation techniques
in most cases with significant results on denser datasets, FilmTrust and ML1M.

4.4 Flatness Analysis

Note that, in most cases, the results in Table 6 are consistent with our flatness hypothesis: flatter
profiles yield better recommendation quality. We hypothesize that a transformation that produces
a flatter distribution will compensate for skew in the rating distribution and generate improved
recommendation performance. As we have seen, the percentile transformation generally leads
to better performance and to flatter distributions, and the less-flat transformations have lower
performance.
Besides the percentile values (the flattest distribution) that provide the best recommendation

performance, our flatness hypothesis is also true about other transformations. For instance, based
on the flatness values reported in Table 5, the Decoupling values provide flatter distribution than
the original ratings, z-score, and Gaussian values on FilmTrust. Thus, we would expect better rec-
ommendation performance when Decoupling values are used as input for recommender systems
compared to the original ratings, z-score, and Gaussian values. According to the results in Table 6,
the performance of recommendation algorithms when the Decoupling transformation is applied
to the input is significantly better than the original ratings, z-score, and Gaussian transformations
across all metrics. The same results can also be observed for the original ratings on ML1M with
slight improvement.
We examined this phenomena more closely using seven types of inputs for rating transforma-

tion: original ratings, first, median, and last percentile values, z-score, Gaussian, and Decoupling
transformations.14 We examined the F and K values for the training data under the different
transformations and computed correlation against the recommendation performance using
nDCG@10.
Table 7 shows the correlation between F andK values of each transformation (i.e., original rat-

ing, first index percentile, median index percentile, last index percentile, z-score, Gaussian, and De-
coupling) and nDCG@10 of recommendation algorithms with those input values. It clearly shows
significant negative correlation between performance and divergence from uniformity. (Note that
a low F andK values correspond to a flatter distribution.) The flatter distributions (closer to zero
for F and below 3 for K ) yield better performance for all three algorithms across all datasets.
Except for the F value of BX, the F value of CiaoDVD on SVD++, and the F value of ML1M on
SVD++, all of the observed correlations between F / K and nDCG are between −0.99 and −0.70,
14Because a limitation in LibRec 2.0, z-score, Gaussian, and Decoupling values are shifted to positive values by the addition

of an offset.
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Table 8. Performance of Recommendation Algorithms on Long-tail Items at nDCG@10

Dataset Algorithm Rate z-score Gaussian Decoupling Per
f
u Permu Perlu

BX
BiasedMF 0.0008 0.0009 0.0007 0.0009 0.0018 0019 0.0034

SVD++ 0.0011 0.0009 0.0009 0.0009 0.0024 0.0024 0.0043

CiaoDVD
BiasedMF 0.019 0.005 0.002 0.005 0.027 0.024 0.016
SVD++ 0.009 0.011 0.004 0.012 0.022 0.019 0.017

FilmTrust
BiasedMF 0.058 0.067 0.015 0.013 0.199 0.211 0.227

SVD++ 0.0279 0.072 0.018 0.022 0.060 0.070 0.101

ML1M
BiasedMF 0.036 0.036 0.003 0.034 0.036 0.038 0.039

SVD++ 0.046 0.046 0.004 0.039 0.043 0.047 0.050

indicative of a strong inverse relationship: In general, flatter distributions give better algorithmic
performance.
Further investigation showed that the low correlation of F on BX is due to the inaccurate flat-

ness calculation on Gaussian values. Looking at the flatness values in Table 5 for Gaussian values
show that the calculation based on F and K are inconsistent (high flatness for one measure and
low flatness for another measure on the same dataset). This can be due to the fact that the distri-
bution of Gaussian values is more complex and our flatness measurement techniques are unable to
correctly calculate it. Also, we observed that omitting Gaussian values in correlation calculation
in Table 7 yields much higher correlation values.

4.5 Long-tail Performance

One enduring challenge in collaborative recommendation is the ability to provide accurate recom-
mendation about items in the “long tail” of popularity. These items are often of great interest to
users [Brynjolfsson et al. 2006; Park and Tuzhilin 2001], but many algorithms do not recommend
them with sufficient frequency [Jannach et al. 2015]. In this section, we examine the performance
of recommendation algorithms on recommending long-tail items when using different input trans-
formations. To do this, we follow the methodology in Cremonesi et al. [2010] for analyzing item
popularity. In this methodology, for each user in test set, a list of items will be recommended,
and then ranking quality will be measured only on long-tail items in the recommended list. The
main goal of this methodology is to measure the effectiveness of a recommendation algorithm in
recommending long-tail items.
For this evaluation, we need to determine the long-tail items from training data. To do this, we

create cumulative popularity list of items sorted from most popular to less-popular items, then
we define a cutting point such that it divides the items into short-head and long-tail items. For
experiments in this article, we used cutting point of 20%, meaning that cumulatively 20% of most
popular items are considered as short-head items and the rest of less popular items are considered
as long-tail items.
Table 8 shows the performance of recommendation algorithms on long-tail items for different

transformations. As shown in this table, some version of the percentile transform significantly
outperforms all others for each dataset/algorithm combination in terms of nDCG@10. In only 4 of

the 24 conditions are the improvements not significant: on CiaoDVD when Perlu is used as input

for BiasedMF, on FilmTrust when Permu is used as input for SVD++, and ML1M when Per
f
u is used

as input. We can therefore conclude that the improvements in recommendation accuracy shown
on the datasets overall are not accruing only to the popular items in the distribution but are shared
among the difficult to recommend long-tail items as well.
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Fig. 3. Percentage of users who provided identical ratings.

5 SMOOTHED TRANSFORMATION

A drawback of the percentile transform is the handling of a uniform user profile that consists
entirely of identical ratings, for example, 〈3, 3, 3, 3, 3, 3〉. When a user rates every item with the
same rating values, it is hard to determine user’s preferences and attitudes: If the user is generous
(tends to rate highly), then a rating value of 3 can be interpreted as dislike, while if user is stingy
(tends to rate low), then the same value can be interpreted as like. But in the absence of a rating
distribution for a given user, it is impossible to tell which assumption is correct.15

Figure 3 shows the percentage of users with uniform profiles at different rating values in three
datasets16: BX, CiaoDVD, and FilmTrust. In CiaoDVD as the sparsest dataset, more than half of
the users have uniform profiles, with almost 40% rating all items at 5. These profiles provide little
information for a recommendation algorithm beyond the implicit association of user and item.
To overcome the problem of uniform profiles, we introduce the notion of a smoothed percentile

transformation. Our inspiration for this method is additive (Laplace) smoothing as commonly
found in naive Bayes classification. The effect of additive smoothing is to shrink probability es-
timates based on counts toward a uniform probability; here our goal is to shrink the percentile
estimate toward a uniform (flat) distribution across the rating values. To create a smoothed version
of the percentile, we add a small number of artificial ratings, k , at each rating level. In a five-star
rating system, for example, possible rating values are 1, 2, 3, 4, 5, so a k = 2 smoothed transform of
the profile 〈3, 3, 3〉 yields the smoothed profile 〈1, 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 5〉.
After the smoothed profile is created, the percentile transformation is computed and then the

artificial rating values are removed, leaving behind the altered percentiles for the original rating
values. Thus, the profile consisting only of 3s, as in our example above, would have middling
percentile scores, being transformed to 〈64, 64, 64〉, using the last index method. If the profile had
been 〈5, 5, 5〉 instead, then the transformed versionwould be 〈93, 93, 93〉. The effect of the smoothed
transform is therefore to place the user profile in the context of the full rating scale.
We formalize our smoothed version of the percentile transformation for each index assignment

as follows:

pf (x ,M ) =
100 × (positionf (x ,o(M )) + (k × (index (x ) − 1)))

|M | + ( |R | ∗ k ) + 1
, (7)

pm (x ,M ) =
100 × (positionm (x ,o(M )) + (k × (index (x ) − 1)) + k/2)

|M | + ( |R | ∗ k ) + 1
, (8)

15Note that this issue can be even more problematic for some other transformation techniques: z-score, for example, is

undefined for uniform profiles.
16There are no uniform user profiles in ML1M.
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Table 9. Performance of Recommendation Algorithms with Smoothed

Percentile as Input at nDCG@10

Dataset Algorithms SPer
f
u SPermu SPerlu

BX
BiasedMF 0.014 0.014 0.013

SVD++ 0.014 0.013 0.012

CiaoDVD
BiasedMF 0.027 0.027 0.026

SVD++ 0.019 0.018 0.016

FilmTrust
BiasedMF 0.352 0.345 0.335

SVD++ 0.081 0.092 0.102

ML1M
BiasedMF 0.157 0.158 0.156

SVD++ 0.162 0.166 0.157

pl (x ,M ) =
100 × (positionl (x ,o(M )) + (k × index (x )))

|M | + ( |R | ∗ k ) + 1
, (9)

where index (x ) returns the index of rating x in the full list of rating values available in the appli-
cation. In rating system such as {0.5,1,1.5,2,2.5,3}, for example, index (1) = 2 or index (2.5) = 5. |R |
is the number of rating values available to users (i.e., in a five-star rating system, |R | = 5).
We repeated our prior experiments using these smoothed transforms, achieving the results

shown in Table 9. On the FilmTrust dataset, the smoothed percentile showed significantly im-
provement over the percentile technique particularly on BiasedMF algorithm. On BX dataset, re-
sults are only slightly better than percentile values. One might attribute this result to the fact that
there are few uniform profiles ratings in BX dataset. However, although ML1M does not have any
users with uniform profiles, the smoothed percentile showed significant improvement over the
percentile technique, indicative of effectiveness of smoothing even on non-uniform profiles.
On the CiaoDVD dataset, we expected significantly better results due to high number of users

who provided identical ratings. However, the improvement by smoothed percentile is only slightly
better than percentile transform. One possible reason for this result is because most of the users
who provided identical ratings are cold-start users with few items rated.

6 CONCLUSIONS

In this article, we presented a rating transformation model that converts rating values to per-
centile values as a pre-processing step before model generation. This technique addresses two
well-known problems in ratings distributions in recommender systems: the problem of user rat-
ing bias, due to variation in rating behavior, and the problem of right-skew, due to the selection
bias toward preferred items. This simple pre-processing step produces improved recommendation
ranking performance across multiple datasets, multiple algorithms, and multiple evaluation met-
rics. In addition, we introduced the smoothed percentile transformation to overcome the problem of
identical ratings in users profiles. Experimental results showed that the smoothed percentile tech-
nique can improve recommendation performance beyond the percentile technique alone, even in
cases where uniform profiles are not present.
In introducing these transformations and demonstrating their benefits for recommender sys-

tem performance, we also introduced the concept of distribution flatness and produced sugges-
tive evidence that distributional flatness may be a good indicator of the benefits of such rating
transformations: flatter, indeed, seems to be better when it comes to rating value distributions for
recommendation.
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In future work, we plan to conduct additional experiments with the percentile transform, partic-
ularly the item-based version of the transform, which was introduced here but for which no result
were presented. Early experiments indicate that on algorithms that are item oriented (for example,
the Sparse Linear Method [Ning and Karypis 2011]), the item-oriented version of the transform is
more appropriate.
We also plan to explore alternative approaches to enhancing the flatness of user profiles in-

cluding negative sampling. Negative sampling has been shown to improve classification accuracy
when the evidence is biased [Goldberg and Levy 2014]. For example, rather than adding artificial
ratings just for the percentile computation and removing them afterwards, it may be useful to sam-
ple items with different average rating values and use them to augment uniformity of user profiles.
This would have the effect of smoothing such low-information profiles both toward flatness and
toward the population average for item preferences.
Finally, we plan to investigate the effectiveness of the proposed percentile transformation on

generating fair recommendations to different groups of users with respect to sensitive attributes
[Ekstrand et al. 2018; Mansoury et al. 2019]. Recently, for example, it has been shown that entropy
of users profile can be one factor that leads to group unfairness in recommender systems [Man-
soury et al. 2020]. Although percentile transformation does not change the entropy of an individual
user’s profile, our initial studies indicate that it will significantly increase the entropy of the aggre-
gate profiles of user groups (e.g., male or female users). Therefore, we will study the effectiveness
of percentile transformation as a pre-processing technique on improving the consumer-side group
fairness.
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