
0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

1

Locality-based Encoder and Model Quantization for
Efficient Hyper-Dimensional Computing

Justin Morris∗†, Yilun Hao∗, Roshan Fernando∗, Mohsen Imani‡,
Baris Aksanli†, and Tajana Rosing∗

∗University of California San Diego, La Jolla, CA 92093, USA
†San Diego State University, San Diego, CA 92182, USA
‡University of California Irvine, Irvine, CA 92697, USA

{justinmorris, yih301, rdf004}@ucsd.edu, m.imani@uci.edu, baksanli@sdsu.edu, tajana@ucsd.edu

Abstract—Brain-inspired Hyperdimensional (HD) computing
is a new computing paradigm emulating the neuron’s activity
in high-dimensional space. The first step in HD computing is to
map each data point into high-dimensional space (e.g., 10,000),
which requires the computation of thousands of operations
for each element of data in the original domain. Encoding
alone takes about 80% of the execution time of training. In
this paper, we propose, ReHD, an entire rework of encoding,
training, and inference in HD computing for a more hardware
friendly implementation. ReHD includes a fully binary encoding
module for HD computing for energy-efficient and high-accuracy
classification. Our encoding module based on random projection
with a predictable memory access pattern can be efficiently
implemented in hardware. ReHD is the first HD-based approach
that provides data projection with a 1:1 ratio to the original data
and enables all training/inference computation to be performed
using binary hypervectors. After the optimizations ReHD adds to
the encoding process, retraining and inference become the energy
intensive part of HD computing. To resolve this, we additionally
propose model quantization. model quantization introduces a
novel method of storing class hypervectors using n-bits, where n
ranges from 1 to 32, rather than at full 32-bit precision, which
allows for fine-grained tuning of the trade-off between energy
efficiency and accuracy. To further improve ReHD efficiency, we
developed an online dimension reduction approach that removes
insignificant hypervector dimensions during training.

Index Terms—Brain-inspired computing, Hyperdimensional
computing, Machine learning, Energy efficiency

I. INTRODUCTION

The emergence of the Internet of Things (IoT) has led

to a copious amount of small connected embedded devices.

Many of these devices need to perform classification tasks

such as speech recognition, activity recognition, face detec-

tion, and medical diagnosis [1], [2]. However, these small

embedded devices do not have the computing power to run

sophisticated classification algorithms such as Deep Neural

Networks(DNN) [3]. To resolve this, many devices send the

data they collect to the cloud and the cloud performs the

inference task, sending the result back to the embedded device.

This leads to new problems such as network usage and user

security [4]. In order to solve these new issues and still provide

a way for these embedded devices to perform classification

tasks, we need a light-weight classification algorithm that

can achieve comparable accuracy to sophisticated resource-

intensive algorithms.

Brain-inspired Hyperdimensional (HD) computing has been

proposed as the alternative computing method that processes

the cognitive tasks in a more light-weight way [5]. HD com-

puting is developed based on the fact that brains compute with

patterns of neural activity [5]. Recent research utilized high

dimension vectors (e.g., more than a thousand dimensions),

called hypervectors, to represent the neural activities and

showed successful progress for many cognitive tasks such as

activity recognition, object recognition, language recognition,

and bio-signal classification [6], [7], [8]. HD computing offers

an efficient learning strategy without overcomplex computa-

tion steps such as back propagation in neural networks. In

addition, it builds upon a well-defined set of operations with

random HD vectors which makes the learning model extremely

robust in the possible presence of hardware failures. HD has

even recently been used for more secure learning [9].

In HD computing, training data points are combined into a

set of hypervectors, called an HD model, through light-weight

computation steps. Each hypervector in the model represents a

class of the target classification problem. Most of the proposed

HD computing work exploits binarized hypervectors to reduce

the computational/memory intensity in HD computing [10],

[11]. However, the existing HD computing algorithms [10]

have two main challenges: (i) the encoding is computationally

expensive, as it requires the computation of thousands (e.g.,

10,000) of operations to map each element of data from the

original domain to high-dimensional space [8], [12]. For exam-

ple, our experiments on five practical applications (described in

Section VII) show that in HD computing the encoding module

takes about 79% and 74% of the training and inference time.

(ii) In addition, HD computing using binary encoded vectors

provides significantly lower classification accuracy. In other

words, HD computing requires non-binary (integer) vectors

in order to provide acceptable accuracy. However, working

with non-binary vectors significantly increases the memory

requirement, and the computation complexity of training and

inference.

Designs were previously constrained to two methodologies

for performing all training and inference computation. In the

first methodology, we represent the encoded training data

and model class hypervectors using binary hypervectors. This

process is much more efficient because we compute the

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

2

similarity between query hypervectors and model hypervectors

via Hamming distance. However, binary representation results

in significant information loss and therefore lower classifi-

cation accuracy [13]. In the second methodology, we per-

form all training/inference computation with 32-bit integers.

When using a 32-bit model, we need to utilize the more

computationally expensive cosine similarity between the query

hypervector and class hypervectors. However, information is

preserved and we maintain high classification accuracy. In

other words, there existed a trade-off between two extremes:

high efficiency and low accuracy or inefficiency and high

accuracy. However, many situations call for more nuanced

control over the trade-off between computational efficiency

and classification accuracy.
In this paper, we propose ReHD, a full rework of Brain-

Inspired HD computing to make it more hardware friendly

and achieve energy-efficient and high-accuracy classification.

ReHD introduces a novel encoding module based on random

projection with a predictable memory access pattern that

can be efficiently implemented in hardware. In contrast to

existing HD computing algorithms that increase the size of

encoded data by 20× [10], ReHD is the first HD-based

approach which provides data projection with a 1:1 ratio

to the original data. In addition, ReHD encodes all data

to binary hypervectors, simplifying computation in training

and inference. The low memory requirement and computation

cost makes ReHD a suitable candidate for embedded devices

with limited resources. To address systems that need more

control over the trade-off between computational efficiency

and classification accuracy, we propose n-bit model quantiza-

tion. With our new model quantization method, we represent

hypervector elements with n-bit integers. To further improve

ReHD efficiency, we improve online dimension reduction by

intelligently choosing insignificant dimensions to remove.

II. RELATED WORK & MOTIVATION

Prior work tried to apply the idea of high-dimensional

computing to different classification problems such as lan-

guage recognition, speech recognition, face detection, EMG

gesture detection, human-computer interaction, and sensor

fusion prediction [6], [10], [8], [11], [14], [15], [16]. For

example, work in [12] proposed a simple and scalable alter-

native to latent semantic analysis. Additionally, work in [8]

proposed a new HD encoding based on random indexing for

recognizing a text’s language by generating and comparing

text hypervectors. Work in [17] proposed an encoding method

to map and classify biosignal sensory data in high dimensional

space. Work in [7], [10] proposed a general encoding module

that maps feature vectors into high-dimensional space while

keeping most of the original data. Prior work also accelerated

HD computing by binarizing the class hypervectors [18],

[13], removing dimensions of the class hypervectors [19], or

compressing the HD model [20]. [21] extended the idea of

binarizing to instead use a ternary model to achieve higher

accuracies. Work in [22] also proposed a dynamic dimension-

ality model to improve energy efficiency.
Prior work also tried to design hardware acceleration for

HD computing by mapping its operations into hardware,

En
er

gy
 C

on
su

m
.(μ

J)

Fig. 1. Energy consumption of HD encoding, training, and inference.

e.g., in-memory architecture [23], [24], [25], [26], [27], [28],

[29], [30], and tried to accelerate HD computing in hardware

by binarizing the class hypervectors [18], [13] or removing

dimensions of the class hypervectors [19], [31]. Work in [32]

designed an FPGA implementation to accelerate HD compu-

tation in the binary domain. However, the application of these

approaches is limited to simple classification problems such as

language recognition [8]. To provide acceptable classification

accuracy, all of these approaches have to train the model

using non-binary (integer) vectors. However, using non-binary

vectors requires a large memory footprint and computation

cost in both training and inference.

Model quantization is a widely used technique in machine

learning applications to improve energy efficiency. For in-

stance, Google’s TPU for performing inference on DNNs

utilizes reduced bit representations [33]. Furthermore, [34]

proposes a quantization method for SVMs. Model quantization

has also been used to reduce the memory requirement for a

more efficient hardware design [35], [36]. Work has also been

done to adaptively change the precision of the model to reduce

the accuracy loss online [37]. [38] proposes a method to use

multiple precision levels during inference to achieve a balance

between efficiency and accuracy loss. [39] tries to alleviate

accuracy loss from quantization by compensating for com-

putational errors. Other methods such as model compression

have also been used to improve the energy efficiency of neural

networks [40].

In this work, we observe that the existing encoding modules

are algorithmically and computationally inefficient. In addi-

tion, to get high accuracy, the encoding needs to map data into

vectors with integer values which significantly increases the

data size [10], [11]. This large memory requirement is often

not available on embedded devices with limited resources.

Figure 1 shows the energy consumption of encoding, training,

and inference (associative search) when running a single data

point on five practical applications. Our evaluation shows

that the encoding module on average takes 4.7× and 3.8×
higher energy than HD training and inference. In this work,

we propose a novel encoding approach that (i) significantly

reduces the encoding computation cost by introducing com-

putation locality and (ii) provides high classification accuracy

while mapping data into binary vectors with much lower

dimensionality than existing algorithms.

III. ENCODING WITH REHD

In this paper, we propose ReHD, a novel hardware friendly

framework for efficient classification. ReHD consists of three

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

3

Similarity check

Test
 Data hD Query

Class 1

Class 2

Class k

h2 h1

c1
D c1

2 c1
1

c2
D

ck
D ck

2 ck
1

c2
2 c2

1

T
ra

in
in

g
&

R
et

ra
in

in
g

E
nc

od
in

g

M
in

im
um

 D
is

ta
nc

e

Encoded
Train
Data

Train
Data

Error<ε

A

B

C

D

Fig. 2. Overview of how ReHD is constructed and how ReHD performs
inference.

main modules shown in Figure 2: encoding, training, and in-

ference. The encoding module maps each data point to binary

high-dimensional space. Our encoding has been designed to

map the maximum amount of information to high dimensional

space with the minimum computation cost. ReHD accumulates

every encoded binary training hypervector to create an integer

model. This integer model is then used to create a quantized

model. ReHD accordingly proposes a training approach that

enables the values to stay quantized during training. During

inference, cosine similarity has been used as the similarity

metric in prior work to achieve the best accuracy in HD

computing applications [28]. Quantizing the model enables

ReHD inference to be supported using a more efficient n-

bit cosine similarity rather than full 32-bit precision. In the

following, we explain the details of ReHD functionality.

A. Baseline Encoding

Figure 2•A shows the overview of ReHD performing the

classification task. Before we can work in high dimension

space, we first need to encode the data to hypervectors.

Consider a feature vector F = {f1, f2, . . . , fn}. The

encoding module takes this n-dimensional vector and converts

it into a D-dimensional hypervector (D >> n). The encoding

is performed in three steps, which we describe below. The

encoding scheme assigns a unique channel ID to each feature

position. These IDs are hypervectors which are randomly

generated such that all features will have orthogonal channel

IDs, i.e., δ(IDi, IDj) < 5, 000) for D = 10, 000 and i �= j;

where the δ measures the element-wise similarity between

the vectors. The HD computing encoder also generates a set

of level hypervectors to consider the impact of each feature

value [7]. To create these level hypervectors, we compute the

minimum and maximum feature values among all data points,

vmin and vmax, then quantize the range of [vmin,vmax]

into Q levels, L = {L1, · · · , LQ}. Each of these quantized

scalars corresponds to a D-dimensional hypervector [7]. To

encode a feature vector, the encoder looks at each position

of the feature vector and element-wise multiplies the channel

ID (IDi) with the corresponding level hypervector (Li). The

following equation shows how an n length feature vector is

mapped into HD space with this encoding scheme:

H = [hv1 ∗ ID1 + hv2 ∗ ID2 + . . . + hvn ∗ IDn]

hvj ∈ {L1, L2, . . . , Lm}, 1 � j � n

It is clear that this encoding scheme is inefficient due to

consistent random memory accesses to find the corresponding

level hypervector for each feature value. In addition, the

amount of computations needed is large and does not take

advantage of hardware optimizations like data sparsity.

B. Random Projection

We desire a fast and hardware-friendly algorithm that can

take a vector of real-valued data and generate a binary code

such that the encoding preserves the cosine similarity. Let us

assume A,B ∈ R
n are two feature vectors in the original

domain with real values. We wish to define an encoding

operation λ(∗) such that:

{X = λ(A),Y = λ(B) , X,Y ∈ {1,−1}D}
δ(A,B) = δ(X,Y)

where δ(∗) is the cosine similarity. Since the cosine angle

of binary vectors is determined by how many bits match, the

cosine angle and Hamming distance are proportional. This type

of encoding can be performed using Locality Sensitive Hash

algorithms, such as Random Projection [41]. Let us assume

a feature vector F = {f1, f2, . . . , fn}, with n features

(fi ∈ N) in original domain. The goal of random projection

is to map this feature vector to a D dimensional space vector:

H = {h1, h2, . . . , hD}. As Figure 3a shows, random

projection generates D dense bipolar vectors with the same

dimensionality as original domain, {P1,P2, . . . ,PD}, where

Pi ∈ {−1, 1}n. The inner product of a feature vector with

each randomly generated vector gives us a single dimension

of a hypervector in high-dimensional space. For example, we

can compute the i− th dimension of the encoded data as:

hi = sign(Pi · F)
where sign is a sign function which maps the result of the dot

product to +1 or -1 values. This type of hashing involves a

large amount of multiplications/additions which is inefficient

in hardware. For example, to map a feature vector from n to

D dimensions, this encoding involves n × D multiplication

and addition operations.

C. Sparse Random Encoding

The efficiency of random projection can be improved by

sparsifying each projection vector. Instead of generating dense

projection vectors, we can generate sparse projection vec-

tors(Figure 3b). Consider s as a sparsity of each projection

vector. Then, for each sparse projection vector, only s% of the

vector’s elements are randomly generated and the rest are set to

zero. For example, if s = 5%, each projection vector only has

0.05×n non-zero elements. Therefore, each dimension of the

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

4

encoded hypervector can be computed with only 0.05×n mul-

tiplication/addition operations. Therefore, encoding a single

hypervector takes s×n×D multiplication/addition operations,

compared to n × D multiplication/addition operations with

dense projection vectors. Although the sparsity significantly

reduces the number of arithmetic operations, it introduces

random accesses to the algorithm, which is hard on the cache

and slows down the computation.

D. Locality-based Sparse Random Projection

Here we propose a novel approach that keeps the advantages

of a sparse projection matrix, i.e., fewer operations while

removing random accesses to make the algorithm more hard-

ware friendly. We propose a locality-based random projection

encoding that uses a predictable access pattern. Instead of

selecting s% random indices of the projection matrix to

be non-zero, we approximate sparse random projection by

selecting pre-defined indices to be non-zero. Figure 3c shows

the structure of the locality-based matrix. Our approach selects

the first s × n of the P1 vector to be non-zero (indices

[1...s×n]). Similarly, P2 projection vector only has s×n non-

zero elements on indices [2...s×n− 1]. Finally, PD contains

non-zero elements on the last s× n dimensions. This creates

a clear spacial locality pattern that hardware accelerators can

take advantage of.

Figure 4 shows the overview of ReHD encoding mapping

each n dimensional feature vector to a D dimensional binary

hypervector. ReHD simplifies the projection matrix to a single

dense random projection vector with D bipolar values. Our

approach first replicates the feature vector, F, such that it

extends to D dimensions, the same as our desired high-

dimensional vector. For example, to encode a feature vector

with n = 500 features to D = 4, 000 dimensions, we need

to concatenate 8 copies of a feature vector together. Then,

it generates a random D dimensional projection vector, P ,

next to the extended feature vector (as shown in Figure 4).

To compute the dimensions of the high-dimensional vector,

ReHD takes the dot product of the extended feature vector

with each projection vector in an N -gram window. The first

N -gram calculates the dot product of the first N features and

N projection vector elements:

h1 = sign(f1 ∗ p1 + f2 ∗ p2 + ...+ fN ∗ pN)

Similarly, the N -gram window shifts by a single position

to generate the next feature values. So, we can compute the

ith dimension of an encoded hypervector using:

hi = sign(fi ∗ pi + fi+1 ∗ pi+1 + ...+ fi+N ∗ pi+N)

Each step of the N -gram window corresponds to a mul-

tiplication with a sparse projection vector in the projection

matrix. Although this encoding has the same number of

computations as sparse random projection, it provides the

following advantages: (i) it removes random accesses from

the feature selection by introducing spacial locality, which

significantly reduces the cost of hardware implementation.

(ii) There is an opportunity for computation reuse, as every

neighboring dimension shares N − 1 terms.

-1 +1 -1 -1 +1 … -1

-1 +1 -1 -1 +1 … -1

-1 +1 -1 -1 +1 … -1

-1 +1 -1 -1 +1 … -1

 0 +1 0 0 -1 … 0

 -1 0 0 -1 0 … 0

 0 0 0 -1 0 … +1

 0 +1 -1 0 0 … 0

 -1 +1 0 0 0 … 0

 0 +1 -1 0 0 … 0

 0 0 -1 -1 0 … 0

 0 0 0 0 … -1 +1

Random Projection
Matrix

Sparse Random
Projection Matrix

Locality-based Sparse
Projection Matrix

D
: P

ro
je

ct
ed

D

im
en

si
on

n: feature size

f1
f2
f3

fn

h1

h2

h3

hD

=

P1

P2

P3

PD

(a) (b) (c)

Fig. 3. Random projection encoding using dense, sparse, and locality-based
projection matrix.

f3f2 fnf4f1 f3f2 fnf4f1

+1+1 -1-1-1 +1 -1+1 -1+1-1 -1 +1+1

f1f2f1

+1+1-1

f1f2f1

-1+1+1

f1f2f1

+1+1-1

Sign(x) Sign(x) Sign(x)

Extended Feature Vector

h1 h2 hD

Encoded Hypervector

N=3

D

Projection Vector

D
ot

 P
ro

du
ct

Fig. 4. Locality-based random projection encoding.

FACE
CARDIO IOT

UCIHAR
ISOLET

10-2

100

102

E
n

er
g

y
C

o
n

su
m

p
. (

J) Encoding Training Inference

Fig. 5. Energy consumption of HD encoding, training, and inference after
utilizing the proposed encoding module.

IV. TRAINING IN REHD

After utilizing our new hardware-friendly encoding, we ob-

serve that training and inference are now the energy-intensive

parts of the HD algorithm. Figure 5 shows the updated energy

consumption of encoding, training, and inference (associative

search) when running a single data point on five practical

applications when utilizing the proposed encoding. Our eval-

uation shows that training and inference on average take 43%
and 55% of the total energy when using the new proposed

encoding. This is mainly due to the usage of full precision

32-bit HD models. In this work, we propose a novel approach

which (i) allows the HD computing model hypervectors to

be represented with n-bit integers, where n ranges from 1 to

32, and (ii) allows for fine-grained control between accuracy

and energy efficiency compared to the previous approach of

utilizing full 32-bit precision or 1-bit binary models.

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

5

A. Baseline HD Computing

Initial Training: Figure 2•B shows the functionality of

Baseline HD Computing during training. In baseline HD

computing, the model used in training is initialized through

by element-wise addition of all encoded hypervectors in each

existing class. The result of training is k hypervectors each

with D dimensions, where k is the number of classes. For

example, the ith class hypervector can be computed as:

Ci =
∑

∀j∈classi
Hj. This training operation involves a large

number of integer additions, which makes the HD computation

costly [10].

Retraining: HD computing performs model adjustment by

iterating through the training dataset. Figure 2•B shows the

functionality of baseline HD computing during retraining. In

a single iteration of model adjustment, HD computing checks

the cosine similarity of all training data points, say H, with the

class hypervectors in the trained binary model. If a data point

is incorrectly classified by the model, HD updates the model

by (i) adding the incorrectly classified hypervector to the class

the input data point belongs to (C̃correct = Ccorrect+H), and

(ii) subtracting it from the class to which it is wrongly matched

(C̃wrong = Cwrong −H). After each retraining iteration, we

check the classification accuracies from the last three iterations

and stop the retraining if the change in error is less than 0.1%
(Figure 2•C). The retraining stops after 20 iterations if the

convergence condition is still not satisfied. We are able to

stop after just 20 retraining iterations as prior work has shown

that HD is a fast learning algorithm and often only needs 10

iterations of retraining compared to 100s for DNNS [42].

B. Binary Model Quantization

Previous work proposed quantization to a binary model for

improved speed and efficiency [43].

Initial Training: An integer model is first initialized

through element-wise addition of all encoded hypervectors in

each existing class. Like in Baseline HD Computing, the result

is k hypervectors, each with D dimensions, where k is the

number of classes. For example, ith class hypervector can be

computed as Ci =
∑

∀j∈classi
Hj. We then binarize each class

hypervector from the integer model to create the binary model.

We perform this binarization operation by taking the sign bit

of each dimension from the accumulated class HVs.

Retraining: We train the binarized model by iterating

through the training set. Throughout training, we maintain both

a binary model and an integer model of the class hypervectors.

In a single iteration of model adjustment, HD computing

checks the similarity of all training data points, say H, with

the class hypervectors in the trained binary model. The data

point is assigned to the class with which it has the closest

Hamming distance. If a data point is incorrectly classified by

the model, HD updates the model by (i) adding the incorrectly

classified hypervector to the class the input data point belongs

to (C̃correct = Ccorrect +H), and (ii) subtracting it from the

class to which it is wrongly matched (C̃wrong = Cwrong−H).

These changes are made to the integer model saved from

training because adding to and subtracting from the binary

model would drastically change the model. To update the

binary model, the updated class hypervectors from the integer

model are binarized via the same process described in training.

C. N-Bit Model Quantization

The Binary Model results in faster and more efficient train-

ing because the model is represented with integers smaller than

32 bits, but a sharp decline in accuracy often accompanies the

increase in speed and efficiency. The binary model quantiza-

tion, where we represent the dimensions of model hypervectors

with 1 bit, maximizes efficiency but also yields the lowest

classification accuracy. This forces us to choose between two

extremes: low accuracy but high efficiency (binary), and high

efficiency but low accuracy (32-bit). To solve the problem of

having to choose between two extremes, we can achieve more

granular control over this trade-off by representing dimensions

with n bits, where n ranges from 1 to 32. Hence, we no longer

have to choose between 1-bit and 32-bits. As we represent

dimensions with more bits, we increase the accuracy but make

classification less efficient.

Initial Training: The initial training for model quantization

is very similar to the initial training for the binary model,

as the integer model is created through the same process.

The training process for model quantization diverges from

that of past work after the initial addition, as rather than an

adjacent binary model, we create an adjacent n-bit model. To

represent the dimensions with n-bits, we utilize the integer

model and clip all dimensions that fall outside of the range

of integer values we can represent with n bits. For an n-bit

model quantization, we can represent the range [−2n, 2n−1].
Therefore, for all elements of class hypervectors, we discard

any overflow beyond this range.

Retraining: The retraining process for model quantization is

also similar to the retraining process for the binary model.

Throughout training, we store both an integer model and an

n-bit representation model of the class hypervectors. Model

quantization performs model adjustment by iterating through

the training dataset, making changes to the integer model,

and reflecting those changes to the n-bit representation model

similar to the initial training process.

D. Model Quantization Inference

After training and retraining, the HD model can now be

used for inference (Figure 2•D). The input data is encoded as

a binary query hypervector. Model quantization then computes

the similarity between the binary query hypervector and each

n-bit class hypervector. 1-bit model quantization computes

similarity using Hamming distance and n-bit model quanti-

zation using cosine similarity over n bits. The input data is

classified into the class whose hypervector it is most similar to.

As the number of bits used to represent dimensions increases,

so does the inference accuracy, but the training, retraining, and

inference processes become more complex.

V. ONLINE DIMENSION REDUCTION

The gradient descent during retraining gives equal weight

to all features when the data is binarized. This includes

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

6

noisy, low strength features as well as features with high

intra-class differences. In fact, gradient descent moves the

hyperplane in the direction of these features with equal

strength as the important features, which results in possible

overfitting. The challenge is to amplify the learning rate of

”significant” dimensions, while not amplifying the learning

rate of ”insignificant” or ”noisy” features. Online dimension

reduction attempts to remove insignificant ”noisy” dimensions

from the model to improve energy efficiency. We can define

insignificant dimensions using either high absolute values

or low variance as a metric. We define s as the sparsity

level denoting what percentage of the dimensions will be

removed, regardless of which metric is used, dropping the s%
most insignificant dimensions from the model, results in an

efficiency improvement of approximately s%.

We drop the s% most insignificant dimensions from the

model rather than using a thresholding technique because the

range of values varies between datasets, as it depends on

how many samples there are. Datasets with larger amounts of

samples result in significantly larger accumulated dimensions

compared to those with fewer samples. This is because of how

the initial model is created by accumulating all the encoded

samples. Therefore, with more samples, the dimensions that

agree across all samples will accumulate much higher values.

However, we can account for this difference in datasets by

removing a proportion rather than an absolute threshold.

To use high absolute values as a metric of insignificance, we

first compute the element-wise addition of all binarized sample

hypervectors and examine the sum of each dimension. Because

all training hypervectors are initially binary with +1 or -1,

dimensions with a very high sum indicate that most training

instances have a +1 for that dimension, and dimensions with

a very low sum indicate that most training instances have a -1

for that dimension. Such dimensions have low differentiation

between training instance data points and low differentiation

between classes, so we declare dimensions with high absolute

value sums to be ”insignificant”, as Figure 6 shows. This is

because to distinguish the classes from each other, we want

to emphasize their differences and not their similarities.

We can choose insignificant dimensions more intelligently

by using low variance as a metric of noise and low-strength.

Before the encoded hypervectors are binarized by taking the

sign bit, we calculate the variance of each dimension. The

dimensions with low variances indicate that those dimensions

contain mutual information among all the samples, and thus do

not help the model differentiate between classes. Dimensions

with high variance are declared ”significant’, while dimensions

with low variances are ”insignificant”. As stated above, we

must emphasize inter-class differences rather than similarities.

This method drops the dimensions with the lowest variances

from the model as shown in Figure 7. Comparing the distribu-

tions of the variances shown in Figure 7 and the distributions

of absolute values in Figure 6, we can see that the variance

metric can cluster and identify more insignificant dimensions

compared to the absolute value metric. Thus, using variance

as the metric to determine insignificant dimensions is able

to reduce dimensionality further with less accuracy loss than

using high absolute values.

Fig. 6. Online dimension reduction with absolute value.

Fig. 7. Online dimension reduction with variance.

Indexing

h1

fNf1

A
dd

/s
ub

+- +-

N-gram windows

p1 pN

+ +
+ Tr

ee
-b

as
ed

A

cc
um

ul
at

io
n

hD

fn

+- +-

pD-N pD

+ +
+

Counter
Class k

Counter
Class 1

Counter
Class 2

Tree-based C
om

parator

D bits

Pre-stored Class hypervectors

XOR Array

(b) Associative Search Module

En
co

de
d

Hy
pe

rv
ec

to
r

Encoded Hypervector

fn-N

N-gram windows

(a) Encoding Module

Feature Vector

Projection Vector

Fig. 8. FPGA implementation of the encoding and associative search block.

VI. FPGA ACCELERATION

ReHD can be accelerated on different platforms such as

CPU, GPU, FPGA, or ASIC. FPGA is one of the best options

as ReHD computation involves bitwise operations among long

vector sizes. General strategies of optimizing the performance

of ReHD are (i) using a pipeline and partial unrolling on

low levels (dimension levels) to speed up each task and (ii)

using dataflow design on a high level (task level) to build

a stream processing architecture that lets different tasks run

concurrently. In the following, we explain the functionality of

ReHD in encoding, training, retraining, and inference phases.

A. Encoding Implementation

As we explained in Section III-C, we used the locality-

based random projection encoding to implement the encoding

module. Due to the sequential and predictable memory access

patterns as well as the abundance of binary operations, this en-

coding approach can be implemented efficiently on an FPGA.

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

7

In the hardware implementation, we represent all {−1,+1}
values with {0, 1} respectively. This enables us to represent

each element of the projection vector using a single bit.

Figure 8a shows the hardware implementation of the ReHD

encoding module. The encoding process includes reading a

feature vector from off-chip DDR memory and generating a

binary hypervector from them.

Calculating the inner product of a feature vector and a

projection vector, P ∈ {1,−1}D, can be implemented with

no multiplications. Each element of the projection vector

decides the sign of each dimension of the feature vector in

the accumulation of the dot product. Thus, the dot product can

be simplified to the addition/subtraction of the feature vector

elements. Right after the encoding, the hypervectors are used

for initial model training. We also need to store the encoded

hypervectors for retraining. However, the FPGA does not have

enough BRAM blocks to store all encoded hypervectors, so,

our design stores them into DDR memory.

B. Training Implementation

Initial Training: Like previously, initial training for ReHD

with model quantization is a single-pass process. The training

module accesses the encoded hypervectors and accumulates

them in order to create a hypervector representing each class.

When the training module accumulates the encoded hypervec-

tor to one of the class hypervectors, the encoding module maps

the next training data into high-dimensional space, improving

data throughput by increasing resource utilization. After going

through all of the training data, our implementation creates an

n-bit quantized representation of the model. We iterate through

all hypervectors in the training and test datasets, and clip

values greater than 2n-1 to 2n-1 and values less than −2n

to −2n. Finally, the quantized n-bit model is stored in the

BRAM blocks to be used for inference or retraining.

Retraining: The retraining phase first sequentially reads al-

ready encoded training hypervectors from the off-chip memory

in batches to help hide the latency of reading from the off-chip

memory. This is necessary as each read has a latency of about

15ns, which would slow down the retraining process. Next,

we check the similarity of each data point with all trained class

hypervectors. Each data point gets a tag of a class in which

it has the highest Hamming distance (1-bit quantized model)

or cosine similarity (n-bit quantized models with n �= 1). In

the case of misclassification, ReHD needs to update the model

by adding and subtracting a data hypervector with two class

hypervectors as defined before.

C. Inference Implementation

After the retraining, the quantized ReHD model has a stable

model that can be used in the inference phase. The encoding

module is integrated with the similarity check module as the

entire inference part. Each test data point is first encoded

to high-dimensional space using the same encoding block

explained in Section VI-A. Next, the quantized ReHD model

checks the cosine similarity of the data point with all pre-

stored class hypervectors, in order to find a class with the

highest similarity. One unique advantage of our approach is its

Fig. 9. Classification accuracy of ReHD and the baseline HD using binary
and integer models.

capability to enable online training during the inference phase.

Our implementation stores two HD models: one with integer

values used for retraining and an n-bit quantized model which

is used to perform the classification task. ReHD quantizes

the integer model to an n-bit model periodically to update

the inference model. While the previous model computes

similarity with Hamming distance, the updated quantized

ReHD model computes cosine similarity. cosine similarity

with n-bit quantized models may seem much more energy

intensive than utilizing Hamming distance for binary models

because cosine similarity involves multiplications. However,

we can use the same optimization in encoding that removed

the multiplications between the feature vector and a projection

vector to remove the multiplications between the encoded

query hypervector and n-bit quantized class hypervector. This

is because each element of the encoded query hypervector is

binary. Each element of the query hypervector decides the sign

of each dimension of the feature vector in the accumulation of

the dot product step of cosine similarity. Although Hamming

distance is still faster and more computationally efficient,

cosine similarity results in higher accuracy when we represent

the dimensions of class and instance with hypervectors with

n bits rather than 1-bit.

VII. EVALUATION

A. Experimental Setup

We implemented ReHD training, retraining, and inference

in both software and hardware. In software, we implemented

ReHD with Python. In hardware, we fully implemented ReHD

using Verilog. We verify the timing and the functionality

of the models by synthesizing them using Xilinx Vivado

Design Suite [44]. The synthesis code has been implemented

on the Kintex-7 FPGA KC705 Evaluation Kit. We evalu-

ated the efficiency of the proposed ReHD on four practi-

cal classification problems listed below: Speech Recognition

(ISOLET) [45], Activity Recognition (UCIHAR) [46], Face

Detection (FACE) [47], Cardiotocography (CARDIO) [48],

and Attack Detection in IoT systems (IoT) [49]. We compare

ReHD with, baseline HD, an FPGA implementation of [7].

B. Comparison With Other State-of-the-Art Light-Weight
Classifiers

Table I compares HD computing with other light-weight

classifiers including support vector machines (SVM), gradient

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

8

Fig. 10. Energy consumption and execution time of ReHD and the baseline
HD during training.

TABLE I
CPU-BASED COMPARISON OF HD AND OTHER CLASSIFIERS.

SVM Perceptron MLP HD

Training Exe.(ms) 480.3 320.2 1,229.2 168.3
Testing Exe.(μs) 813.7 102.4 286.2 59.4

boosting classifiers (Boosting), perceptrons, and multi-layer

perceptrons (MLP) in terms of accuracy and training/inference

efficiency. All results are reported when applications are run-

ning on an embedded device (Raspberry Pi 3) using an ARM

Cortex A53 CPU. Our evaluation shows that HD computing

can provide comparable accuracy to algorithms such as SVM

and MLP. In terms of efficiency, HD computing can provide

much faster computation in both training and testing. For

example, in a CPU implementation, HD computing is 7.3×
and 4.8× (2.9× and 13.6×) faster than MLP (SVM) during

training and testing respectively. These results demonstrate

that HD computing is the clear choice among light-weight

classifiers for low-powered energy efficient machine learning.

C. ReHD Accuracy and Memory Requirement

Figure 9 compares the impact of hypervector dimensions

on the classification accuracy of ReHD and the baseline HD

computing encoding [10]. As we explained, ReHD always en-

codes data points into D binary dimensions. However, for the

baseline HD computing encoding, we consider two cases when

HD encodes data points to binary and integer domains. Our

results in Figure 9 indicate that ReHD requires significantly

fewer dimensions to provide the same accuracy as the baseline.

For example, ReHD using D = 4, 000 binary dimensions

provides the same accuracy as the baseline with D = 10, 000
integer dimensions. In addition, the baseline with a binarized

model provides significantly lower accuracy than ReHD and

the baseline with an integer model. ReHD is on average 11.5%

more accurate than the baseline using a binary encoding and

binary model. However, as we explore in Section VII-E, ReHD

is able to achieve even higher accuracies when utilizing n-bit

quantization compared to binary quantization.

Here we compare ReHD and the baseline in terms of

the training memory requirement. As we explained in Sec-

tion IV-A, the baseline/ReHD store all encoded training data in

memory. Going into high dimensional space intuitively means

increasing the data size, since we map each feature vector from

n into D dimensional space, where D >> n. Let us assume a

feature vector with n = 500 integer features. For the baseline

with integer values, the data size increases by approximately

of Features
10 20 100 300 600

E
n

er
g

y
C

o
n

su
m

p
. (
μ

J)

10-2

100

102

of Features
10 20 100 300 600

E
xe

cu
ti

o
n

 T
im

e
(μ

s)

10-2

10-1

100

101

Fig. 11. Scalability of the encoding module in ReHD and the baseline HD
with the feature size.

20×. Even the baseline with a binary encoding (D = 10, 000)

increases the data size by 2.5×, while it provides much lower

accuracy. In contrast, the proposed ReHD encodes data points

to a much lower dimensionality, e.g., D = 4000, in order

to provide the same accuracy as the baseline. Our evaluation

shows that ReHD can ensure 1:1 ratio of high-dimensional

data to original data, while providing the same accuracy as

baseline HD [10], proving that ReHD is more capable to run

on embedded devices with limited memory.

D. Hardware Efficiency

We compare the efficiency of ReHD with the state-of-the-art

HD computation algorithms on a Kintex-7 FPGA. To have a

fair comparison, we consider an optimized implementation of

the baseline [10], running on the same architecture as ReHD

(explained in Section VI).

Encoding & Training: Due to the predictable memory

access pattern and lower ReHD dimensionality, ReHD en-

coding can process with higher efficiency as compared to the

baseline. For instance, to get maximum accuracy, the baseline

needs to work with D = 10, 000 dimensionality while ReHD

can provide the same accuracy with D = 4, 000. Figure 11

shows the scalability of ReHD and the baseline efficiency

in terms of the feature size. Our evaluation shows that the

execution time of the baseline increases with the number of

features, while it takes the same time for ReHD to encode any

size feature vector. For applications with 600 features, ReHD

provides 282× more energy efficiency and a 22.7× speed up

as compared to the baseline.

In training, to create class hypervectors, the baseline ac-

cumulates integer hypervectors, while ReHD training accu-

mulates binary hypervectors. Figure 10 compares the energy

consumption and execution time of ReHD and the baseline

during initial training. The results are reported when both

designs encode and train the model in a pipeline structure. For

the baseline, encoding dominates the execution time, thus the

training execution hides under the encoding module. However,

in ReHD, the encoding can process faster than the training,

thus the training is the bottleneck of the execution time (as it

is shown in Figure 10). Our evaluation shows that ReHD can

provide 64.1× more energy efficiency and a 9.8× speed up as

compared to the baseline during training.

Retraining/Inference Efficiency: ReHD stores all encoded

hypervectors in order to perform iterative retraining. The

existing HD computing algorithms map data points to integer

values, where each encoded data is around 20 times larger than

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

9

Fig. 12. Energy consumption and execution time of ReHD and the baseline
HD running (a) a single retraining iteration, and (b) a single query at inference.

1 2 3 4 5 32
Bitwidth

0

0.5

1

1.5

2

A
cc

u
ra

cy
 L

o
ss

 (
%

) ISOLET UCIHAR CARDIO FACE IoT

Fig. 13. Accuracy loss of ReHD utilizing n-bit model quantization.

the data in the original domain. During retraining, the FPGA

needs to sequentially access the encoded values which are pre-

stored on off-chip memory. The limited memory bandwidth

between the off-chip memory and the FPGA BRAM blocks

significantly slows down the baseline computation during

retraining. In contrast, ReHD maps the training data to lower

dimensions, where each dimension can be represented using

a binary value. This enables ReHD to speed up the retraining

by loading hypervectors faster than the baseline.

During inference and retraining, HD checks the similarity of

each encoded hypervector with all existing class hypervectors.

To achieve a high classification accuracy, the existing HD com-

puting algorithms generate an integer model. Therefore, they

require the use of an expensive similarity metric such as cosine

to find the most similar class. In contrast, ReHD performs

the similarity check with Hamming distance. Figure 12 shows

the energy consumption and execution time of the FPGA

accelerating a single retraining iteration and a single query

during inference. The results show that ReHD can achieve

on average a 61.6× energy efficiency improvement and a

7.9× speed up as compared to the existing HD computation

algorithms. Similarly, in inference, the FPGA implementation

of ReHD can achieve on average a 43.8× energy efficiency

improvement and a 6.1× speed up running a single query

(Figure 12b).

E. Model Quantization Trade-off

In Figure 13, we explore the impact of representing the

HD Computing model with bit lengths ranging from 1 to

32 on quality loss. Due to significant information loss when

FACE
CARDIO IOT

UCIHAR
ISOLET

20

50
100
200

E
n

g
. I

m
p

ro
v.

 (
x) 1-bit 2-bit 3-bit 4-bit 5-bit

Fig. 14. Energy improvement of ReHD utilizing n-bit model quantization
normalized to a 32-bit integer model.

converting to a binary hypervector, 1-bit model quantization,

which computes with binary hypervectors, yielded the lowest

inference accuracy. 1-bit quantization leads to an accuracy loss

of up to 1.7%. However, because the 1-bit model quantization

enables using Hamming distance as the similarity function,

it is the most efficient quantized model. Figure 14, shows

the energy improvement of n-bit model quantization over

a 32-bit model. The 32-bit model uses the same encoding

method as the n-bit models proposed in ReHD. The only

difference is that there is no quantization during training and

retraining. 1-bit model quantization results in 150× less energy

consumption as compared to a 32-bit model. Therefore, 1-

bit model quantization is most useful in scenarios when we

primarily prioritize computational efficiency, such as on very

low-resource devices. We also primarily prioritize computa-

tional efficiency when the classification task is trivial, as is

the case with the IoT and UCIHAR datasets.

In scenarios where resources are constrained, but high

accuracy is still required, larger bitwidth model quantization

is required. By allowing for less efficiency in training and

inference, higher bit models allot higher inference accuracy.

Using larger bit widths, hypervector dimensions take on an

exponentially larger range of values, allowing for more infor-

mation to be preserved. Larger bit widths yield better inference

accuracy, but at the cost of less efficiently than 1-bit model

quantization. This is because we have to use cosine similarity

as our similarity metric, which is much more expensive

than Hamming distance. Larger bitwidth model quantization

is useful for datasets that are sufficiently complex that a

certain number of information needs be preserved, such as for

ISOLET and FACE. On ISOLET, 1-bit model quantization

achieves 1.8% lower accuracy than the full 32-bit model.

However, but just increasing to a 2-bit model, we are able to

reduce the quality loss to 0.25% and use 93× less energy. In

our experiment, models which represented hypervectors with

5 or more bits performed with comparable accuracy to models

which represented hypervectors with 32 bits. Representing

hypervectors with more than 5 bits is more computationally

expensive, but yields no accuracy increase. Therefore, by

utilizing 5-bit model quantization, we can achieve on average,

15× less energy consumption at no accuracy loss.

F. Online Dimension Reduction

Table II compares the online dimension reduction tech-

niques of (i) computing the element-wise sum of training hy-

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10

TABLE II
AVERAGE CHANGE IN CLASSIFICATION ACCURACY DUE TO ONLINE

DIMENSION REDUCTION.

Dimension Reduction 20% 40% 60% 70% 80% 90% 95%

ABS +0.38% 0% -0.54% -4.1% -5.64% -9.6% -14.2%
VARIANCE +0.4% 0% 0% 0% -0.3% -0.8% -4.4%

pervectors and removing dimensions with high absolute value

sums (ABS) and (ii) computing the variance across all di-

mensions and removing dimensions with low variance (VARI-

ANCE). The values compute the average quality loss(accuracy

drop) over the five datasets described in Section VII-A. More

directly, Table II shows the impact of each dimension reduc-

tion technique on classification accuracy. When using ABS as

a metric of insignificance, our results indicate that dropping

20% of ”insignificant” dimensions slightly improves accuracy

because we remove noisy features. As listed in Table II,

dropping up to 60% of ”insignificant” dimensions almost no

impact on accuracy, but dropping further dimensions will lead

to a decline in accuracy because we begin to drop significant

dimensions.

Dropping dimensions with low intra-class differences allow

for a more intelligent selection of ”insignificant” dimensions

than summing all training hypervectors and dropping dimen-

sions with high absolute values. With ABS, we were able

to drop 70% dimensions before we started losing significant

dimensions. But since VARIANCE selects dimensions to drop

more intelligently, we can drop the 90% most insignificant

dimensions with only a 0.3% average loss in accuracy as a

result, meaning we improve training efficiency by 90% with

only a negligible decline in accuracy. The energy efficiency

improves proportionally with the dropped dimensions because

operations in HD are done with hypervectors. Therefore, by

reducing the dimensionality of all hypervectors, all operations

reduce in complexity. When we drop more than 90% dimen-

sions, we begin to drop too many significant dimensions and

lose a significant amount of accuracy.

Figure 15b shows the classification probability over an

image, where yellow and blue colors indicate low and high

face probability respectively. The results show that ReHD

working with D = 4, 000 dimensions can perfectly detect

the faces in the image. ReHD in lower dimensionality after

online dimension reduction has lower quality and detects ”non-

face” regions. Online dimension reduction improves ReHD

efficiency linearly during both retraining and inference. For

example, an 80% dimension reduction results in approximately

80% energy efficiency improvement and a 5× speed up while

providing less than 0.3% quality loss as compared to ReHD

with full dimensionality.

VIII. CONCLUSION

In this paper, we propose ReHD, a novel HD comput-

ing framework that significantly improves the computation

efficiency of HD computing. ReHD exploits the predictable

memory access of our proposed encoding to design an efficient

encoding approach that maps data into binary hypervectors.

ReHD enables quantized training and retraining on the en-

coded hypervectors and simplifies the inference similarity

D=500

(a) Face Detection (b) Windows probability over
dimensionality

D=2,000D=4,000

D=1000

Fig. 15. Visualization of ReHD face detection accuracy over different
dimensionality.

metric. N-bit model quantization, allows us to represent our

model hypervectors with n-bits where n ranges from 1 to

32, whereas previously designs chose between 1-bit or 32-bit

representations. This enables more granular control over the

trade-off between model classification accuracy and efficiency.

We additionally implemented a dimension reduction technique

that removes unnecessary dimensions to further improve the

efficiency of ReHD. We also designed a fully pipelined FPGA

implementation to accelerate ReHD. Our evaluations show that

ReHD can achieve 64.1× and 9.8× (43.8× and 6.1×) energy

efficiency and speed up as compared to the baseline during

training (inference) while providing the same classification

accuracy.

ACKNOWLEDGEMENTS

This work was supported in part by CRISP, one of six

centers in JUMP, an SRC program sponsored by DARPA, in

part by SRC-Global Research Collaboration grant Task No.

2988.001, and also NSF grants 1527034, 1730158, 1826967,

1830331, 1911095, 2003277, and 2003279.

REFERENCES

[1] J. Gubbi et al., “Internet of things (iot): A vision, architectural elements,
and future directions,” Future generation computer systems, vol. 29,
no. 7, pp. 1645–1660, 2013.

[2] M. Hassanalieragh et al., “Health monitoring and management using
internet-of-things (iot) sensing with cloud-based processing: Opportuni-
ties and challenges,” in IEEE SCC, pp. 285–292, IEEE, 2015.

[3] Y. Sun et al., “Internet of things and big data analytics for smart and
connected communities,” IEEE Access, vol. 4, pp. 766–773, 2016.

[4] S. Sicari et al., “Security, privacy and trust in internet of things: The
road ahead,” Computer networks, vol. 76, pp. 146–164, 2015.

[5] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognitive Computation, vol. 1, no. 2, pp. 139–159, 2009.

[6] O. Rasanen and J. Saarinen, “Sequence prediction with sparse distributed
hyperdimensional coding applied to the analysis of mobile phone use
patterns,” IEEE Transactions on Neural Networks and Learning Systems,
vol. PP, no. 99, pp. 1–12, 2015.

[7] M. Imani et al., “Voicehd: Hyperdimensional computing for efficient
speech recognition,” in ICRC, pp. 1–6, IEEE, 2017.

[8] A. Rahimi et al., “A robust and energy-efficient classifier using brain-
inspired hyperdimensional computing,” in ISLPED, pp. 64–69, ACM,
2016.

[9] B. Khaleghi, M. Imani, and T. Rosing, “Prive-hd: Privacy-preserved
hyperdimensional computing,” arXiv preprint arXiv:2005.06716, 2020.

[10] M. Imani et al., “Hierarchical hyperdimensional computing for energy
efficient classification,” in DAC, p. 108, ACM, 2018.

[11] Y. Kim et al., “Efficient human activity recognition using hyperdimen-
sional computing,” in IoT, p. 38, ACM, 2018.

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

11

[12] P. Kanerva et al., “Random indexing of text samples for latent semantic
analysis,” in CogSci, vol. 1036, Citeseer, 2000.

[13] M. Imani, X. Yin, J. Messerly, S. Gupta, M. Niemier, X. S. Hu, and
T. Rosing, “Searchd: A memory-centric hyperdimensional computing
with stochastic training,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2019.

[14] M. Imani et al., “Hdcluster: An accurate clustering using brain-inspired
high-dimensional computing,” in DATE, IEEE/ACM, 2019.

[15] M. Imani et al., “Hdna: Energy-efficient dna sequencing using hyperdi-
mensional computing,” in IEEE BHI, pp. 271–274, IEEE, 2018.

[16] M. Imani et al., “A framework for collaborative learning in secure high-
dimensional space,” in IEEE CLOUD, pp. 1–6, IEEE, 2019.

[17] A. Rahimi et al., “Hyperdimensional biosignal processing: A case study
for emg-based hand gesture recognition,” in ICRC, pp. 1–8, IEEE, 2016.

[18] M. Imani et al., “A binary learning framework for hyperdimensional
computing,” in DATE, IEEE/ACM, 2019.

[19] M. Imani et al., “Sparsehd: Algorithm-hardware co-optimization for
efficient high-dimensional computing,” in IEEE FCCM, pp. 1–6, IEEE,
2019.

[20] J. Morris, M. Imani, S. Bosch, A. Thomas, H. Shu, and T. Rosing, “Com-
phd: Efficient hyperdimensional computing using model compression,”
in 2019 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), pp. 1–6, IEEE, 2019.

[21] M. Imani, S. Bosch, S. Datta, S. Ramakrishna, S. Salamat, J. M. Rabaey,
and T. Rosing, “Quanthd: A quantization framework for hyperdimen-
sional computing,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2019.

[22] Y.-C. Chuang, C.-Y. Chang, and A.-Y. A. Wu, “Dynamic hyperdimen-
sional computing for improving accuracy-energy efficiency trade-offs,”
in 2020 IEEE Workshop on Signal Processing Systems (SiPS), pp. 1–5,
IEEE, 2020.

[23] T. Wu et al., “Brain-inspired computing exploiting carbon nanotube fets
and resistive ram: Hyperdimensional computing case study,” in IEEE
ISSCC, IEEE, 2018.

[24] H. Li et al., “Hyperdimensional computing with 3d vrram in-
memory kernels: Device-architecture co-design for energy-efficient,
error-resilient language recognition,” in IEDM, pp. 16–1, IEEE, 2016.

[25] S. Gupta et al., “Felix: Fast and energy-efficient logic in memory,” in
IEEE/ACM ICCAD, pp. 1–7, IEEE, 2018.

[26] M. Imani et al., “Fach: Fpga-based acceleration of hyperdimen-
sional computing by reducing computational complexity,” in ASPDAC,
pp. 493–498, ACM, 2019.

[27] S. Salamat et al., “F5-hd: Fast flexible fpga-based framework for
refreshing hyperdimensional computing,” in FPGA, pp. 53–62, ACM,
2019.

[28] M. Imani et al., “Exploring hyperdimensional associative memory,” in
HPCA, pp. 445–456, IEEE, 2017.

[29] G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi,
and A. Sebastian, “In-memory hyperdimensional computing,” Nature
Electronics, pp. 1–11, 2020.

[30] S. Salamat, M. Imani, and T. Rosing, “Accelerating hyperdimensional
computing on fpgas by exploiting computational reuse,” IEEE Transac-
tions on Computers, 2020.

[31] M. Imani, S. Salamat, B. Khaleghi, M. Samragh, F. Koushanfar, and
T. Rosing, “Sparsehd: Algorithm-hardware co-optimization for efficient
high-dimensional computing,” in 2019 IEEE 27th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 190–198, IEEE, 2019.

[32] M. Schmuck et al., “Hardware optimizations of dense binary hy-
perdimensional computing: Rematerialization of hypervectors, bina-
rized bundling, and combinational associative memory,” arXiv preprint
arXiv:1807.08583, 2018.

[33] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture,
pp. 1–12, 2017.

[34] B. Lesser, M. Mücke, and W. N. Gansterer, “Effects of reduced preci-
sion on floating-point svm classification accuracy,” Procedia Computer
Science, vol. 4, pp. 508–517, 2011.

[35] M. Wess, S. M. P. Dinakarrao, and A. Jantsch, “Weighted quantization-
regularization in dnns for weight memory minimization toward hw
implementation,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 11, pp. 2929–2939, 2018.

[36] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling low-
power, highly-accurate deep neural network accelerators,” in Proceed-

ings of the 43rd International Symposium on Computer Architecture,
pp. 267–278, IEEE Press, 2016.

[37] Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard,
“Adaptive quantization for deep neural network,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[38] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware
automated quantization with mixed precision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 8612–
8620, 2019.

[39] S. Jain, S. Venkataramani, V. Srinivasan, J. Choi, P. Chuang, and
L. Chang, “Compensated-dnn: Energy efficient low-precision deep
neural networks by compensating quantization errors,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6, IEEE,
2018.

[40] S. Ye, T. Zhang, K. Zhang, J. Li, J. Xie, Y. Liang, S. Liu, X. Lin,
and Y. Wang, “A unified framework of dnn weight pruning and weight
clustering/quantization using admm,” arXiv preprint arXiv:1811.01907,
2018.

[41] T. I. Cannings et al., “Random-projection ensemble classification,”
Journal of the Royal Statistical Society, vol. 79, no. 4, pp. 959–1035,
2017.

[42] M. Imani, J. Morris, S. Bosch, H. Shu, G. De Micheli, and T. Rosing,
“Adapthd: Adaptive efficient training for brain-inspired hyperdimen-
sional computing,” in 2019 IEEE Biomedical Circuits and Systems
Conference (BioCAS), pp. 1–4, IEEE, 2019.

[43] M. Imani, J. Morris, J. Messerly, H. Shu, Y. Deng, and T. Rosing,
“Bric: Locality-based encoding for energy-efficient brain-inspired hy-
perdimensional computing,” in Proceedings of the 56th Annual Design
Automation Conference 2019, pp. 1–6, 2019.

[44] T. Feist, “Vivado design suite,” White Paper, vol. 5, 2012.
[45] “Uci machine learning repository.”

http://archive.ics.uci.edu/ml/datasets/ISOLET.
[46] “Uci learning repository.” https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Acti
[47] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category

dataset,” 2007.
[48] “Uci machine learning repository.”

https://archive.ics.uci.edu/ml/datasets/cardiotocography.
[49] “Uci machine learning repository.”

https://archive.ics.uci.edu/ml/datasets/detection of IoT botnet attacks N BaIoT.

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

