This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Locality-based Encoder and Model Quantization for
Efficient Hyper-Dimensional Computing

Justin Morris*T, Yilun Hao*, Roshan Fernando*, Mohsen Imanit,
Baris Aksanlif, and Tajana Rosing*
*University of California San Diego, La Jolla, CA 92093, USA
fSan Diego State University, San Diego, CA 92182, USA
jFUniversity of California Irvine, Irvine, CA 92697, USA
{justinmorris, yih301, rdf004} @ucsd.edu, m.imani @uci.edu, baksanli@sdsu.edu, tajana@ucsd.edu

Abstract—Brain-inspired Hyperdimensional (HD) computing
is a new computing paradigm emulating the neuron’s activity
in high-dimensional space. The first step in HD computing is to
map each data point into high-dimensional space (e.g., 10,000),
which requires the computation of thousands of operations
for each element of data in the original domain. Encoding
alone takes about 80% of the execution time of training. In
this paper, we propose, ReHD, an entire rework of encoding,
training, and inference in HD computing for a more hardware
friendly implementation. ReHD includes a fully binary encoding
module for HD computing for energy-efficient and high-accuracy
classification. Our encoding module based on random projection
with a predictable memory access pattern can be efficiently
implemented in hardware. ReHD is the first HD-based approach
that provides data projection with a 1:1 ratio to the original data
and enables all training/inference computation to be performed
using binary hypervectors. After the optimizations ReHD adds to
the encoding process, retraining and inference become the energy
intensive part of HD computing. To resolve this, we additionally
propose model quantization. model quantization introduces a
novel method of storing class hypervectors using n-bits, where n
ranges from 1 to 32, rather than at full 32-bit precision, which
allows for fine-grained tuning of the trade-off between energy
efficiency and accuracy. To further improve ReHD efficiency, we
developed an online dimension reduction approach that removes
insignificant hypervector dimensions during training.

Index Terms—DBrain-inspired computing, Hyperdimensional
computing, Machine learning, Energy efficiency

I. INTRODUCTION

The emergence of the Internet of Things (IoT) has led
to a copious amount of small connected embedded devices.
Many of these devices need to perform classification tasks
such as speech recognition, activity recognition, face detec-
tion, and medical diagnosis [1], [2]. However, these small
embedded devices do not have the computing power to run
sophisticated classification algorithms such as Deep Neural
Networks(DNN) [3]. To resolve this, many devices send the
data they collect to the cloud and the cloud performs the
inference task, sending the result back to the embedded device.
This leads to new problems such as network usage and user
security [4]. In order to solve these new issues and still provide
a way for these embedded devices to perform classification
tasks, we need a light-weight classification algorithm that
can achieve comparable accuracy to sophisticated resource-
intensive algorithms.

Brain-inspired Hyperdimensional (HD) computing has been
proposed as the alternative computing method that processes
the cognitive tasks in a more light-weight way [5]. HD com-
puting is developed based on the fact that brains compute with
patterns of neural activity [5]. Recent research utilized high
dimension vectors (e.g., more than a thousand dimensions),
called hypervectors, to represent the neural activities and
showed successful progress for many cognitive tasks such as
activity recognition, object recognition, language recognition,
and bio-signal classification [6], [7], [8]. HD computing offers
an efficient learning strategy without overcomplex computa-
tion steps such as back propagation in neural networks. In
addition, it builds upon a well-defined set of operations with
random HD vectors which makes the learning model extremely
robust in the possible presence of hardware failures. HD has
even recently been used for more secure learning [9].

In HD computing, training data points are combined into a
set of hypervectors, called an HD model, through light-weight
computation steps. Each hypervector in the model represents a
class of the target classification problem. Most of the proposed
HD computing work exploits binarized hypervectors to reduce
the computational/memory intensity in HD computing [10],
[11]. However, the existing HD computing algorithms [10]
have two main challenges: (i) the encoding is computationally
expensive, as it requires the computation of thousands (e.g.,
10,000) of operations to map each element of data from the
original domain to high-dimensional space [8], [12]. For exam-
ple, our experiments on five practical applications (described in
Section VII) show that in HD computing the encoding module
takes about 79% and 74% of the training and inference time.
(i1) In addition, HD computing using binary encoded vectors
provides significantly lower classification accuracy. In other
words, HD computing requires non-binary (integer) vectors
in order to provide acceptable accuracy. However, working
with non-binary vectors significantly increases the memory
requirement, and the computation complexity of training and
inference.

Designs were previously constrained to two methodologies
for performing all training and inference computation. In the
first methodology, we represent the encoded training data
and model class hypervectors using binary hypervectors. This
process is much more efficient because we compute the

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

similarity between query hypervectors and model hypervectors
via Hamming distance. However, binary representation results
in significant information loss and therefore lower classifi-
cation accuracy [13]. In the second methodology, we per-
form all training/inference computation with 32-bit integers.
When using a 32-bit model, we need to utilize the more
computationally expensive cosine similarity between the query
hypervector and class hypervectors. However, information is
preserved and we maintain high classification accuracy. In
other words, there existed a trade-off between two extremes:
high efficiency and low accuracy or inefficiency and high
accuracy. However, many situations call for more nuanced
control over the trade-off between computational efficiency
and classification accuracy.

In this paper, we propose ReHD, a full rework of Brain-
Inspired HD computing to make it more hardware friendly
and achieve energy-efficient and high-accuracy classification.
ReHD introduces a novel encoding module based on random
projection with a predictable memory access pattern that
can be efficiently implemented in hardware. In contrast to
existing HD computing algorithms that increase the size of
encoded data by 20x [10], ReHD is the first HD-based
approach which provides data projection with a 1:1 ratio
to the original data. In addition, ReHD encodes all data
to binary hypervectors, simplifying computation in training
and inference. The low memory requirement and computation
cost makes ReHD a suitable candidate for embedded devices
with limited resources. To address systems that need more
control over the trade-off between computational efficiency
and classification accuracy, we propose n-bit model quantiza-
tion. With our new model quantization method, we represent
hypervector elements with n-bit integers. To further improve
ReHD efficiency, we improve online dimension reduction by
intelligently choosing insignificant dimensions to remove.

II. RELATED WORK & MOTIVATION

Prior work tried to apply the idea of high-dimensional
computing to different classification problems such as lan-
guage recognition, speech recognition, face detection, EMG
gesture detection, human-computer interaction, and sensor
fusion prediction [6], [10], [8], [11], [14], [15], [16]. For
example, work in [12] proposed a simple and scalable alter-
native to latent semantic analysis. Additionally, work in [8]
proposed a new HD encoding based on random indexing for
recognizing a text’s language by generating and comparing
text hypervectors. Work in [17] proposed an encoding method
to map and classify biosignal sensory data in high dimensional
space. Work in [7], [10] proposed a general encoding module
that maps feature vectors into high-dimensional space while
keeping most of the original data. Prior work also accelerated
HD computing by binarizing the class hypervectors [18],
[13], removing dimensions of the class hypervectors [19], or
compressing the HD model [20]. [21] extended the idea of
binarizing to instead use a ternary model to achieve higher
accuracies. Work in [22] also proposed a dynamic dimension-
ality model to improve energy efficiency.

Prior work also tried to design hardware acceleration for
HD computing by mapping its operations into hardware,

2 ‘-Encoding [Training Dlnferentﬂ

g 10

5

(7]

c

3

O 10°

>

2

@

ii 107t

- e ~d .* Cv“
200" o0 W0 e ot
Ce oot oo® NG o ™
© o\ O 0% O
O Q<@ ?&G <

Fig. 1. Energy consumption of HD encoding, training, and inference.

e.g., in-memory architecture [23], [24], [25], [26], [27], [28],
[29], [30], and tried to accelerate HD computing in hardware
by binarizing the class hypervectors [18], [13] or removing
dimensions of the class hypervectors [19], [31]. Work in [32]
designed an FPGA implementation to accelerate HD compu-
tation in the binary domain. However, the application of these
approaches is limited to simple classification problems such as
language recognition [8]. To provide acceptable classification
accuracy, all of these approaches have to train the model
using non-binary (integer) vectors. However, using non-binary
vectors requires a large memory footprint and computation
cost in both training and inference.

Model quantization is a widely used technique in machine
learning applications to improve energy efficiency. For in-
stance, Google’s TPU for performing inference on DNNs
utilizes reduced bit representations [33]. Furthermore, [34]
proposes a quantization method for SVMs. Model quantization
has also been used to reduce the memory requirement for a
more efficient hardware design [35], [36]. Work has also been
done to adaptively change the precision of the model to reduce
the accuracy loss online [37]. [38] proposes a method to use
multiple precision levels during inference to achieve a balance
between efficiency and accuracy loss. [39] tries to alleviate
accuracy loss from quantization by compensating for com-
putational errors. Other methods such as model compression
have also been used to improve the energy efficiency of neural
networks [40].

In this work, we observe that the existing encoding modules
are algorithmically and computationally inefficient. In addi-
tion, to get high accuracy, the encoding needs to map data into
vectors with integer values which significantly increases the
data size [10], [11]. This large memory requirement is often
not available on embedded devices with limited resources.
Figure 1 shows the energy consumption of encoding, training,
and inference (associative search) when running a single data
point on five practical applications. Our evaluation shows
that the encoding module on average takes 4.7x and 3.8x
higher energy than HD training and inference. In this work,
we propose a novel encoding approach that (i) significantly
reduces the encoding computation cost by introducing com-
putation locality and (ii) provides high classification accuracy
while mapping data into binary vectors with much lower
dimensionality than existing algorithms.

III. ENCODING WITH REHD

In this paper, we propose ReHD, a novel hardware friendly
framework for efficient classification. ReHD consists of three

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

[a 1]
Similarity check

Ao Query

~

cp[Class 1 [ch[¢c)

Encoding

C21)| Class 2 |022| Czl

Training &
Retraining

Minimum Distance

Error<g

Fig. 2. Overview of how ReHD is constructed and how ReHD performs
inference.

main modules shown in Figure 2: encoding, training, and in-
ference. The encoding module maps each data point to binary
high-dimensional space. Our encoding has been designed to
map the maximum amount of information to high dimensional
space with the minimum computation cost. ReHD accumulates
every encoded binary training hypervector to create an integer
model. This integer model is then used to create a quantized
model. ReHD accordingly proposes a training approach that
enables the values to stay quantized during training. During
inference, cosine similarity has been used as the similarity
metric in prior work to achieve the best accuracy in HD
computing applications [28]. Quantizing the model enables
ReHD inference to be supported using a more efficient n-
bit cosine similarity rather than full 32-bit precision. In the
following, we explain the details of ReHD functionality.

A. Baseline Encoding

Figure 2@ shows the overview of ReHD performing the
classification task. Before we can work in high dimension
space, we first need to encode the data to hypervectors.

Consider a feature vector F = {f1, fo,..., fn}. The
encoding module takes this n-dimensional vector and converts
it into a D-dimensional hypervector (D >> n). The encoding
is performed in three steps, which we describe below. The
encoding scheme assigns a unique channel /D to each feature
position. These IDs are hypervectors which are randomly
generated such that all features will have orthogonal channel
IDs, ie., 6(ID;, ID;) < 5,000) for D = 10,000 and ¢ # j;
where the & measures the element-wise similarity between
the vectors. The HD computing encoder also generates a set
of level hypervectors to consider the impact of each feature
value [7]. To create these level hypervectors, we compute the
minimum and maximum feature values among all data points,
Vimin and v,q., then quantize the range of [Viin, Vinazl
into @ levels, L = {Lj,---,Lg}. Each of these quantized
scalars corresponds to a D-dimensional hypervector [7]. To
encode a feature vector, the encoder looks at each position
of the feature vector and element-wise multiplies the channel
ID (ID;) with the corresponding level hypervector (L;). The

following equation shows how an n length feature vector is
mapped into HD space with this encoding scheme:

H = [hUl*IDl + hUQ*IDQ—l-...

b Lm})

It is clear that this encoding scheme is inefficient due to
consistent random memory accesses to find the corresponding
level hypervector for each feature value. In addition, the
amount of computations needed is large and does not take
advantage of hardware optimizations like data sparsity.

+ hv, x IDy,]

hUjE{Ll, LQ,... 1<j<n

B. Random Projection

We desire a fast and hardware-friendly algorithm that can
take a vector of real-valued data and generate a binary code
such that the encoding preserves the cosine similarity. Let us
assume A,B € R" are two feature vectors in the original
domain with real values. We wish to define an encoding
operation A(x) such that:

{(X=XA),Y=AB), X,Yc{1,-1}"}
5(A,B) = §(X,Y)

where 0(x) is the cosine similarity. Since the cosine angle
of binary vectors is determined by how many bits match, the
cosine angle and Hamming distance are proportional. This type
of encoding can be performed using Locality Sensitive Hash
algorithms, such as Random Projection [41]. Let us assume
a feature vector F = {fi, fa,..., fn}, with n features
(fi; € N) in original domain. The goal of random projection
is to map this feature vector to a D dimensional space vector:
H = {hi, hs,..., hp}. As Figure 3a shows, random
projection generates DD dense bipolar vectors with the same
dimensionality as original domain, {Py,Ps,...,Pp}, where
P, € {—1,1}". The inner product of a feature vector with
each randomly generated vector gives us a single dimension
of a hypervector in high-dimensional space. For example, we
can compute the ¢ — th dimension of the encoded data as:

h; = sign(P; - F)

where sitgn is a sign function which maps the result of the dot
product to +1 or -1 values. This type of hashing involves a
large amount of multiplications/additions which is inefficient
in hardware. For example, to map a feature vector from n to
D dimensions, this encoding involves n x D multiplication
and addition operations.

C. Sparse Random Encoding

The efficiency of random projection can be improved by
sparsifying each projection vector. Instead of generating dense
projection vectors, we can generate sparse projection vec-
tors(Figure 3b). Consider s as a sparsity of each projection
vector. Then, for each sparse projection vector, only s% of the
vector’s elements are randomly generated and the rest are set to
zero. For example, if s = 5%, each projection vector only has
0.05 x n non-zero elements. Therefore, each dimension of the

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

encoded hypervector can be computed with only 0.05 X n mul-
tiplication/addition operations. Therefore, encoding a single
hypervector takes s xn x D multiplication/addition operations,
compared to n x D multiplication/addition operations with
dense projection vectors. Although the sparsity significantly
reduces the number of arithmetic operations, it introduces
random accesses to the algorithm, which is hard on the cache
and slows down the computation.

D. Locality-based Sparse Random Projection

Here we propose a novel approach that keeps the advantages
of a sparse projection matrix, i.e., fewer operations while
removing random accesses to make the algorithm more hard-
ware friendly. We propose a locality-based random projection
encoding that uses a predictable access pattern. Instead of
selecting s% random indices of the projection matrix to
be non-zero, we approximate sparse random projection by
selecting pre-defined indices to be non-zero. Figure 3c shows
the structure of the locality-based matrix. Our approach selects
the first s x n of the Py vector to be non-zero (indices
[1...s x n]). Similarly, P> projection vector only has s x n non-
zero elements on indices [2...s x n — 1]. Finally, Pp contains
non-zero elements on the last s x n dimensions. This creates
a clear spacial locality pattern that hardware accelerators can
take advantage of.

Figure 4 shows the overview of ReHD encoding mapping
each n dimensional feature vector to a D dimensional binary
hypervector. ReHD simplifies the projection matrix to a single
dense random projection vector with D bipolar values. Our
approach first replicates the feature vector, F, such that it
extends to D dimensions, the same as our desired high-
dimensional vector. For example, to encode a feature vector
with n = 500 features to D = 4,000 dimensions, we need
to concatenate 8 copies of a feature vector together. Then,
it generates a random D dimensional projection vector, P,
next to the extended feature vector (as shown in Figure 4).
To compute the dimensions of the high-dimensional vector,
ReHD takes the dot product of the extended feature vector
with each projection vector in an N-gram window. The first
N-gram calculates the dot product of the first N features and
N projection vector elements:

hy = sign(fi *p1 + faxpa+ ...+ fn *pN)

Similarly, the N-gram window shifts by a single position
to generate the next feature values. So, we can compute the
it" dimension of an encoded hypervector using:

hi = sign(fi * pi + fix1 * Dig1 + .. + firN * DitN)

Each step of the N-gram window corresponds to a mul-
tiplication with a sparse projection vector in the projection
matrix. Although this encoding has the same number of
computations as sparse random projection, it provides the
following advantages: (i) it removes random accesses from
the feature selection by introducing spacial locality, which
significantly reduces the cost of hardware implementation.
(ii) There is an opportunity for computation reuse, as every
neighboring dimension shares N — 1 terms.

4
(a) (b) (c)
Random Projection l Sparse Random l Locality-based Sparse
Matrix Projection Matrix Projection Matrix
#A LA G100 40N @ 100 0.0 hy
° fy h,
35 #1414+ .11 00-10.0][][o+1100.0]| |f
22 R X f h;
= +#14+ .o 001 o0.+][0o0-1-10..0 3
o€ H °
a0 X l oeeo eee . :

L T I B [| |0+1 -1 00..0 I 000 0..-1+1 hp

—
n: feature size | |

Fig. 3. Random projection encoding using dense, sparse, and locality-based
projection matrix.

D

Extended Feature Vector

"'lfnl"'lfllleﬁlﬁl"' |f"

alrelnlal

[T Taal=ala)eee [# [+ a[-1]+1]+1]
Projection Vector

1l 1l
| |
| |

E\ |

silalelnll (lalels]

= | |

I~ L] - L] |

FHEI IR R T) cee

S T T
72 (st]
5""&-}; ”””””” ﬁ- ’ w eee [m]
T Encoded Hypervector

Fig. 4. Locality-based random projection encoding.

-
o
N

\ \ \
[Encoding [l Training [Jinference

Energy Consump. (uJ)
3

s
S
)

op‘?&)\o \o" \)G\\’\Pﬁ \50\,6‘

Fig. 5. Energy consumption of HD encoding, training, and inference after
utilizing the proposed encoding module.

IV. TRAINING IN REHD

After utilizing our new hardware-friendly encoding, we ob-
serve that training and inference are now the energy-intensive
parts of the HD algorithm. Figure 5 shows the updated energy
consumption of encoding, training, and inference (associative
search) when running a single data point on five practical
applications when utilizing the proposed encoding. Our eval-
uation shows that training and inference on average take 43%
and 55% of the total energy when using the new proposed
encoding. This is mainly due to the usage of full precision
32-bit HD models. In this work, we propose a novel approach
which (i) allows the HD computing model hypervectors to
be represented with n-bit integers, where n ranges from 1 to
32, and (ii) allows for fine-grained control between accuracy
and energy efficiency compared to the previous approach of
utilizing full 32-bit precision or 1-bit binary models.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

A. Baseline HD Computing

Initial Training: Figure 2@ shows the functionality of
Baseline HD Computing during training. In baseline HD
computing, the model used in training is initialized through
by element-wise addition of all encoded hypervectors in each
existing class. The result of training is k hypervectors each
with D dimensions, where k is the number of classes. For
example, the " class hypervector can be computed as:
Ci = > vjcelass, Hj- This training operation involves a large
number of integer additions, which makes the HD computation
costly [10].

Retraining: HD computing performs model adjustment by
iterating through the training dataset. Figure 2@ shows the
functionality of baseline HD computing during retraining. In
a single iteration of model adjustment, HD computing checks
the cosine similarity of all training data points, say H, with the
class hypervectors in the trained binary model. If a data point
is incorrectly classified by the model, HD updates the model
by (i) adding the incorrectly classified hypervector to the class
the input data point belongs to (C¢°""¢¢t = Ceorrect L H), and
(i) subtracting it from the class to which it is wrongly matched
(Cwrend = Cwrond — H). After each retraining iteration, we
check the classification accuracies from the last three iterations
and stop the retraining if the change in error is less than 0.1%
(Figure 2@). The retraining stops after 20 iterations if the
convergence condition is still not satisfied. We are able to
stop after just 20 retraining iterations as prior work has shown
that HD is a fast learning algorithm and often only needs 10
iterations of retraining compared to 100s for DNNS [42].

B. Binary Model Quantization

Previous work proposed quantization to a binary model for
improved speed and efficiency [43].

Initial Training: An integer model is first initialized
through element-wise addition of all encoded hypervectors in
each existing class. Like in Baseline HD Computing, the result
is k hypervectors, each with D dimensions, where k is the
number of classes. For example, i*" class hypervector can be
computed as C; = Zw celass, Hj- We then binarize each class
hypervector from the integer model to create the binary model.
We perform this binarization operation by taking the sign bit
of each dimension from the accumulated class HVs.

Retraining: We train the binarized model by iterating
through the training set. Throughout training, we maintain both
a binary model and an integer model of the class hypervectors.
In a single iteration of model adjustment, HD computing
checks the similarity of all training data points, say H, with
the class hypervectors in the trained binary model. The data
point is assigned to the class with which it has the closest
Hamming distance. If a data point is incorrectly classified by
the model, HD updates the model by (i) adding the incorrectly
classified hypervector to the class the input data point belongs
to (Ceorreet = Ceorrect + H), and (ii) subtracting it from the
class to which it is wrongly matched (C*"°"9 = C*"°"9 —H).
These changes are made to the integer model saved from
training because adding to and subtracting from the binary
model would drastically change the model. To update the

binary model, the updated class hypervectors from the integer
model are binarized via the same process described in training.

C. N-Bit Model Quantization

The Binary Model results in faster and more efficient train-
ing because the model is represented with integers smaller than
32 bits, but a sharp decline in accuracy often accompanies the
increase in speed and efficiency. The binary model quantiza-
tion, where we represent the dimensions of model hypervectors
with 1 bit, maximizes efficiency but also yields the lowest
classification accuracy. This forces us to choose between two
extremes: low accuracy but high efficiency (binary), and high
efficiency but low accuracy (32-bit). To solve the problem of
having to choose between two extremes, we can achieve more
granular control over this trade-off by representing dimensions
with n bits, where n ranges from 1 to 32. Hence, we no longer
have to choose between 1-bit and 32-bits. As we represent
dimensions with more bits, we increase the accuracy but make
classification less efficient.

Initial Training: The initial training for model quantization
is very similar to the initial training for the binary model,
as the integer model is created through the same process.
The training process for model quantization diverges from
that of past work after the initial addition, as rather than an
adjacent binary model, we create an adjacent n-bit model. To
represent the dimensions with n-bits, we utilize the integer
model and clip all dimensions that fall outside of the range
of integer values we can represent with n bits. For an n-bit
model quantization, we can represent the range [—2",2" — 1].
Therefore, for all elements of class hypervectors, we discard
any overflow beyond this range.

Retraining: The retraining process for model quantization is
also similar to the retraining process for the binary model.
Throughout training, we store both an integer model and an
n-bit representation model of the class hypervectors. Model
quantization performs model adjustment by iterating through
the training dataset, making changes to the integer model,
and reflecting those changes to the n-bit representation model
similar to the initial training process.

D. Model Quantization Inference

After training and retraining, the HD model can now be
used for inference (Figure 2@). The input data is encoded as
a binary query hypervector. Model quantization then computes
the similarity between the binary query hypervector and each
n-bit class hypervector. 1-bit model quantization computes
similarity using Hamming distance and n-bit model quanti-
zation using cosine similarity over n bits. The input data is
classified into the class whose hypervector it is most similar to.
As the number of bits used to represent dimensions increases,
so does the inference accuracy, but the training, retraining, and
inference processes become more complex.

V. ONLINE DIMENSION REDUCTION

The gradient descent during retraining gives equal weight
to all features when the data is binarized. This includes

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

noisy, low strength features as well as features with high
intra-class differences. In fact, gradient descent moves the
hyperplane in the direction of these features with equal
strength as the important features, which results in possible
overfitting. The challenge is to amplify the learning rate of
“significant” dimensions, while not amplifying the learning
rate of “insignificant” or “noisy” features. Online dimension
reduction attempts to remove insignificant "noisy” dimensions
from the model to improve energy efficiency. We can define
insignificant dimensions using either high absolute values
or low variance as a metric. We define s as the sparsity
level denoting what percentage of the dimensions will be
removed, regardless of which metric is used, dropping the s%
most insignificant dimensions from the model, results in an
efficiency improvement of approximately s%.

We drop the s% most insignificant dimensions from the
model rather than using a thresholding technique because the
range of values varies between datasets, as it depends on
how many samples there are. Datasets with larger amounts of
samples result in significantly larger accumulated dimensions
compared to those with fewer samples. This is because of how
the initial model is created by accumulating all the encoded
samples. Therefore, with more samples, the dimensions that
agree across all samples will accumulate much higher values.
However, we can account for this difference in datasets by
removing a proportion rather than an absolute threshold.

To use high absolute values as a metric of insignificance, we
first compute the element-wise addition of all binarized sample
hypervectors and examine the sum of each dimension. Because
all training hypervectors are initially binary with +1 or -1,
dimensions with a very high sum indicate that most training
instances have a +1 for that dimension, and dimensions with
a very low sum indicate that most training instances have a -1
for that dimension. Such dimensions have low differentiation
between training instance data points and low differentiation
between classes, so we declare dimensions with high absolute
value sums to be “insignificant”, as Figure 6 shows. This is
because to distinguish the classes from each other, we want
to emphasize their differences and not their similarities.

We can choose insignificant dimensions more intelligently
by using low variance as a metric of noise and low-strength.
Before the encoded hypervectors are binarized by taking the
sign bit, we calculate the variance of each dimension. The
dimensions with low variances indicate that those dimensions
contain mutual information among all the samples, and thus do
not help the model differentiate between classes. Dimensions
with high variance are declared ”significant’, while dimensions
with low variances are “insignificant”. As stated above, we
must emphasize inter-class differences rather than similarities.
This method drops the dimensions with the lowest variances
from the model as shown in Figure 7. Comparing the distribu-
tions of the variances shown in Figure 7 and the distributions
of absolute values in Figure 6, we can see that the variance
metric can cluster and identify more insignificant dimensions
compared to the absolute value metric. Thus, using variance
as the metric to determine insignificant dimensions is able
to reduce dimensionality further with less accuracy loss than
using high absolute values.

Insignificant
Encoded Samples 8 3000 i ;
I - I | I . I - }— 52000 More Significant
H Samplel |HY; |H 3 H
o P e & 1000 D
o
3

0
0 2000 4000 6000
Accumilated Values,

[H%] sample2 [H2, [H2 |-
[J

°
| H", I Sample n | H", I H", }— Ap |

Significant Dimensions
MIN(A)

4
Drop Insignificant [
Dimensions

A see A

Fig. 6. Online dimension reduction with absolute value.

Insignificant
Encoded Samples 84000
. §3000: R : More Significant
| HY, | Sample 1 | H, | HY | 32000 : P—

81000

0 5 10 15 20
Variances

[H2% [sample2 [HZ, [H2 |—
L]

[
| H", | Sample n | H", | H", |— Vp |

eee [v,[v]
4
Significant Dimensions
Drop Insignificant MAX(V)
Dimensions

Vo o0 [v,]

Fig. 7. Online dimension reduction with variance.

Pre-stored Class hypervectors

=i

Add/sub

GI]' o I (<
<) -+] |t

Sy

XOR Array

=
S
§
-3
]
@
o
a
o
)
3
H
g
2
g
S

Tree-based
Accumulation

Encoded Hypervector

(a) Encoding Module (b) Associative Search Module

Fig. 8. FPGA implementation of the encoding and associative search block.

VI. FPGA ACCELERATION

ReHD can be accelerated on different platforms such as
CPU, GPU, FPGA, or ASIC. FPGA is one of the best options
as ReHD computation involves bitwise operations among long
vector sizes. General strategies of optimizing the performance
of ReHD are (i) using a pipeline and partial unrolling on
low levels (dimension levels) to speed up each task and (ii)
using dataflow design on a high level (task level) to build
a stream processing architecture that lets different tasks run
concurrently. In the following, we explain the functionality of
ReHD in encoding, training, retraining, and inference phases.

A. Encoding Implementation

As we explained in Section III-C, we used the locality-
based random projection encoding to implement the encoding
module. Due to the sequential and predictable memory access
patterns as well as the abundance of binary operations, this en-
coding approach can be implemented efficiently on an FPGA.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

In the hardware implementation, we represent all {—1,+1}
values with {0, 1} respectively. This enables us to represent
each element of the projection vector using a single bit.
Figure 8a shows the hardware implementation of the ReHD
encoding module. The encoding process includes reading a
feature vector from off-chip DDR memory and generating a
binary hypervector from them.

Calculating the inner product of a feature vector and a
projection vector, P € {1,—1}, can be implemented with
no multiplications. Each element of the projection vector
decides the sign of each dimension of the feature vector in
the accumulation of the dot product. Thus, the dot product can
be simplified to the addition/subtraction of the feature vector
elements. Right after the encoding, the hypervectors are used
for initial model training. We also need to store the encoded
hypervectors for retraining. However, the FPGA does not have
enough BRAM blocks to store all encoded hypervectors, so,
our design stores them into DDR memory.

B. Training Implementation

Initial Training: Like previously, initial training for ReHD
with model quantization is a single-pass process. The training
module accesses the encoded hypervectors and accumulates
them in order to create a hypervector representing each class.
When the training module accumulates the encoded hypervec-
tor to one of the class hypervectors, the encoding module maps
the next training data into high-dimensional space, improving
data throughput by increasing resource utilization. After going
through all of the training data, our implementation creates an
n-bit quantized representation of the model. We iterate through
all hypervectors in the training and test datasets, and clip
values greater than 2"-1 to 2"-1 and values less than —2"
to —2". Finally, the quantized n-bit model is stored in the
BRAM blocks to be used for inference or retraining.

Retraining: The retraining phase first sequentially reads al-
ready encoded training hypervectors from the off-chip memory
in batches to help hide the latency of reading from the off-chip
memory. This is necessary as each read has a latency of about
15ns, which would slow down the retraining process. Next,
we check the similarity of each data point with all trained class
hypervectors. Each data point gets a tag of a class in which
it has the highest Hamming distance (1-bit quantized model)
or cosine similarity (n-bit quantized models with n # 1). In
the case of misclassification, ReHD needs to update the model
by adding and subtracting a data hypervector with two class
hypervectors as defined before.

C. Inference Implementation

After the retraining, the quantized ReHD model has a stable
model that can be used in the inference phase. The encoding
module is integrated with the similarity check module as the
entire inference part. Each test data point is first encoded
to high-dimensional space using the same encoding block
explained in Section VI-A. Next, the quantized ReHD model
checks the cosine similarity of the data point with all pre-
stored class hypervectors, in order to find a class with the
highest similarity. One unique advantage of our approach is its

lBasecline HD (Non-binary,D=10,000) [IlBaseline HD (Binary,D=10,000)
[l Baseline HD (Binary,D=4000) [IProposed ReHD(D=4000)

100 T T T T

90

80 ’7
o'

< P‘Ge GP’@O\O

Accuracy (%)

\)G\\'\P‘“ \so\«e‘

Fig. 9. Classification accuracy of ReHD and the baseline HD using binary
and integer models.

capability to enable online training during the inference phase.
Our implementation stores two HD models: one with integer
values used for retraining and an n-bit quantized model which
is used to perform the classification task. ReHD quantizes
the integer model to an n-bit model periodically to update
the inference model. While the previous model computes
similarity with Hamming distance, the updated quantized
ReHD model computes cosine similarity. cosine similarity
with n-bit quantized models may seem much more energy
intensive than utilizing Hamming distance for binary models
because cosine similarity involves multiplications. However,
we can use the same optimization in encoding that removed
the multiplications between the feature vector and a projection
vector to remove the multiplications between the encoded
query hypervector and n-bit quantized class hypervector. This
is because each element of the encoded query hypervector is
binary. Each element of the query hypervector decides the sign
of each dimension of the feature vector in the accumulation of
the dot product step of cosine similarity. Although Hamming
distance is still faster and more computationally efficient,
cosine similarity results in higher accuracy when we represent
the dimensions of class and instance with hypervectors with
n bits rather than 1-bit.

VII. EVALUATION
A. Experimental Setup

We implemented ReHD training, retraining, and inference
in both software and hardware. In software, we implemented
ReHD with Python. In hardware, we fully implemented ReHD
using Verilog. We verify the timing and the functionality
of the models by synthesizing them using Xilinx Vivado
Design Suite [44]. The synthesis code has been implemented
on the Kintex-7 FPGA KC705 Evaluation Kit. We evalu-
ated the efficiency of the proposed ReHD on four practi-
cal classification problems listed below: Speech Recognition
(ISOLET) [45], Activity Recognition (UCIHAR) [46], Face
Detection (FACE) [47], Cardiotocography (CARDIO) [48],
and Attack Detection in IoT systems (IoT) [49]. We compare
ReHD with, baseline HD, an FPGA implementation of [7].

B. Comparison With Other State-of-the-Art Light-Weight
Classifiers

Table I compares HD computing with other light-weight
classifiers including support vector machines (SVM), gradient

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

-Basellne HD(Tralnmg)

lBaseline HD(Encoding)

[l Proposed BRIC(Encoding) [p d D(Tralnlng

5108 1

= 5

E ot g 102

7] -

g -

2 102 5

> 1

o

§ E

w400 W

< (o} y* 3 A) € \Oo)
b GF“O\ \© \)G\\\P‘ \50\,"— p& e “c_* 50\‘€

Fig. 10. Energy consumption and execution time of ReHD and the baseline
HD during training.

TABLE I
CPU-BASED COMPARISON OF HD AND OTHER CLASSIFIERS.
| SVM Perceptron ~ MLP HD
Training Exe.(ms) | 480.3 320.2 1,229.2 168.3
Testing Exe.(uts) 813.7 102.4 286.2 59.4

boosting classifiers (Boosting), perceptrons, and multi-layer
perceptrons (MLP) in terms of accuracy and training/inference
efficiency. All results are reported when applications are run-
ning on an embedded device (Raspberry Pi 3) using an ARM
Cortex A53 CPU. Our evaluation shows that HD computing
can provide comparable accuracy to algorithms such as SVM
and MLP. In terms of efficiency, HD computing can provide
much faster computation in both training and testing. For
example, in a CPU implementation, HD computing is 7.3x
and 4.8x (2.9x and 13.6x) faster than MLP (SVM) during
training and testing respectively. These results demonstrate
that HD computing is the clear choice among light-weight
classifiers for low-powered energy efficient machine learning.

C. ReHD Accuracy and Memory Requirement

Figure 9 compares the impact of hypervector dimensions
on the classification accuracy of ReHD and the baseline HD
computing encoding [10]. As we explained, ReHD always en-
codes data points into D binary dimensions. However, for the
baseline HD computing encoding, we consider two cases when
HD encodes data points to binary and integer domains. Our
results in Figure 9 indicate that ReHD requires significantly
fewer dimensions to provide the same accuracy as the baseline.
For example, ReHD using D = 4,000 binary dimensions
provides the same accuracy as the baseline with D = 10, 000
integer dimensions. In addition, the baseline with a binarized
model provides significantly lower accuracy than ReHD and
the baseline with an integer model. ReHD is on average 11.5%
more accurate than the baseline using a binary encoding and
binary model. However, as we explore in Section VII-E, ReHD
is able to achieve even higher accuracies when utilizing n-bit
quantization compared to binary quantization.

Here we compare ReHD and the baseline in terms of
the training memory requirement. As we explained in Sec-
tion I'V-A, the baseline/ReHD store all encoded training data in
memory. Going into high dimensional space intuitively means
increasing the data size, since we map each feature vector from
n into D dimensional space, where D >> n. Let us assume a
feature vector with n = 500 integer features. For the baseline
with integer values, the data size increases by approximately

‘-Baseline HD [JProposed ReHD

=)
®

o

A

=) —
K] 2
g 3
£ E 10°
73 0 =
£ 10 5
o
o 2107
> =
o o
w102 102
10 20 100 300 600 10 20 100 300 600
of Features # of Features
Fig. 11. Scalability of the encoding module in ReHD and the baseline HD

with the feature size.

20x. Even the baseline with a binary encoding (D = 10, 000)
increases the data size by 2.5x, while it provides much lower
accuracy. In contrast, the proposed ReHD encodes data points
to a much lower dimensionality, e.g., D = 4000, in order
to provide the same accuracy as the baseline. Our evaluation
shows that ReHD can ensure 1:1 ratio of high-dimensional
data to original data, while providing the same accuracy as
baseline HD [10], proving that ReHD is more capable to run
on embedded devices with limited memory.

D. Hardware Efficiency

We compare the efficiency of ReHD with the state-of-the-art
HD computation algorithms on a Kintex-7 FPGA. To have a
fair comparison, we consider an optimized implementation of
the baseline [10], running on the same architecture as ReHD
(explained in Section VI).

Encoding & Training: Due to the predictable memory
access pattern and lower ReHD dimensionality, ReHD en-
coding can process with higher efficiency as compared to the
baseline. For instance, to get maximum accuracy, the baseline
needs to work with D = 10,000 dimensionality while ReHD
can provide the same accuracy with D = 4,000. Figure 11
shows the scalability of ReHD and the baseline efficiency
in terms of the feature size. Our evaluation shows that the
execution time of the baseline increases with the number of
features, while it takes the same time for ReHD to encode any
size feature vector. For applications with 600 features, ReHD
provides 282x more energy efficiency and a 22.7x speed up
as compared to the baseline.

In training, to create class hypervectors, the baseline ac-
cumulates integer hypervectors, while ReHD training accu-
mulates binary hypervectors. Figure 10 compares the energy
consumption and execution time of ReHD and the baseline
during initial training. The results are reported when both
designs encode and train the model in a pipeline structure. For
the baseline, encoding dominates the execution time, thus the
training execution hides under the encoding module. However,
in ReHD, the encoding can process faster than the training,
thus the training is the bottleneck of the execution time (as it
is shown in Figure 10). Our evaluation shows that ReHD can
provide 64.1x more energy efficiency and a 9.8 speed up as
compared to the baseline during training.

Retraining/Inference Efficiency: ReHD stores all encoded
hypervectors in order to perform iterative retraining. The
existing HD computing algorithms map data points to integer
values, where each encoded data is around 20 times larger than

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

B HD[_JProposed ReHD|
o o
I 30
a g
£ 102 5
2 2 10°
8 0 3
10
> >
2 2
Q Q
0 0 of P o i oa®
o N o < G \ o <
€% 0 O o oM fh e® O o oM
7 210
E =
3 19 ey
£ E 10°
F i
4
S 100 -
S §10
Qo
] &
d g2 Y02
SO LR UL I IR R I
¢ e © \)c\\'\P" \50\«"‘ ¢ e® © \)c\\'\p" \g,()\'e

(a) Retraining (b) Inference

Fig. 12. Energy consumption and execution time of ReHD and the baseline
HD running (a) a single retraining iteration, and (b) a single query at inference.

2.

|[—o—ISOLET —o—UCIHAR —>—CARDIO —o—FACE —o—IoT]|

-
o
.

Accuracy Loss (%)
o
o -

I

3 Bitwidth® 5 32

Fig. 13. Accuracy loss of ReHD utilizing n-bit model quantization.

the data in the original domain. During retraining, the FPGA
needs to sequentially access the encoded values which are pre-
stored on off-chip memory. The limited memory bandwidth
between the off-chip memory and the FPGA BRAM blocks
significantly slows down the baseline computation during
retraining. In contrast, ReHD maps the training data to lower
dimensions, where each dimension can be represented using
a binary value. This enables ReHD to speed up the retraining
by loading hypervectors faster than the baseline.

During inference and retraining, HD checks the similarity of
each encoded hypervector with all existing class hypervectors.
To achieve a high classification accuracy, the existing HD com-
puting algorithms generate an integer model. Therefore, they
require the use of an expensive similarity metric such as cosine
to find the most similar class. In contrast, ReHD performs
the similarity check with Hamming distance. Figure 12 shows
the energy consumption and execution time of the FPGA
accelerating a single retraining iteration and a single query
during inference. The results show that ReHD can achieve
on average a 61.6x energy efficiency improvement and a
7.9% speed up as compared to the existing HD computation
algorithms. Similarly, in inference, the FPGA implementation
of ReHD can achieve on average a 43.8x energy efficiency
improvement and a 6.1x speed up running a single query
(Figure 12b).

E. Model Quantization Trade-off

In Figure 13, we explore the impact of representing the
HD Computing model with bit lengths ranging from 1 to
32 on quality loss. Due to significant information loss when

I 1-bit I 2-bit [3-bit I 4-bit I5-bit|

Eng. Improv. (x)

Fig. 14. Energy improvement of ReHD utilizing n-bit model quantization
normalized to a 32-bit integer model.

converting to a binary hypervector, 1-bit model quantization,
which computes with binary hypervectors, yielded the lowest
inference accuracy. 1-bit quantization leads to an accuracy loss
of up to 1.7%. However, because the 1-bit model quantization
enables using Hamming distance as the similarity function,
it is the most efficient quantized model. Figure 14, shows
the energy improvement of n-bit model quantization over
a 32-bit model. The 32-bit model uses the same encoding
method as the n-bit models proposed in ReHD. The only
difference is that there is no quantization during training and
retraining. 1-bit model quantization results in 150x less energy
consumption as compared to a 32-bit model. Therefore, 1-
bit model quantization is most useful in scenarios when we
primarily prioritize computational efficiency, such as on very
low-resource devices. We also primarily prioritize computa-
tional efficiency when the classification task is trivial, as is
the case with the IoT and UCIHAR datasets.

In scenarios where resources are constrained, but high
accuracy is still required, larger bitwidth model quantization
is required. By allowing for less efficiency in training and
inference, higher bit models allot higher inference accuracy.
Using larger bit widths, hypervector dimensions take on an
exponentially larger range of values, allowing for more infor-
mation to be preserved. Larger bit widths yield better inference
accuracy, but at the cost of less efficiently than 1-bit model
quantization. This is because we have to use cosine similarity
as our similarity metric, which is much more expensive
than Hamming distance. Larger bitwidth model quantization
is useful for datasets that are sufficiently complex that a
certain number of information needs be preserved, such as for
ISOLET and FACE. On ISOLET, 1-bit model quantization
achieves 1.8% lower accuracy than the full 32-bit model.
However, but just increasing to a 2-bit model, we are able to
reduce the quality loss to 0.25% and use 93 x less energy. In
our experiment, models which represented hypervectors with
5 or more bits performed with comparable accuracy to models
which represented hypervectors with 32 bits. Representing
hypervectors with more than 5 bits is more computationally
expensive, but yields no accuracy increase. Therefore, by
utilizing 5-bit model quantization, we can achieve on average,
15x less energy consumption at no accuracy loss.

E. Online Dimension Reduction

Table II compares the online dimension reduction tech-
niques of (i) computing the element-wise sum of training hy-

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE II
AVERAGE CHANGE IN CLASSIFICATION ACCURACY DUE TO ONLINE
DIMENSION REDUCTION.

Dimension Reduction | 20% 40% 60% 70% 80% 90% 95%

ABS +0.38% 0% -0.54% -4.1% -5.64% -9.6% -142%
VARIANCE +0.4% 0% 0% 0% -0.3% -0.8% -4.4%

pervectors and removing dimensions with high absolute value
sums (ABS) and (ii) computing the variance across all di-
mensions and removing dimensions with low variance (VARI-
ANCE). The values compute the average quality loss(accuracy
drop) over the five datasets described in Section VII-A. More
directly, Table II shows the impact of each dimension reduc-
tion technique on classification accuracy. When using ABS as
a metric of insignificance, our results indicate that dropping
20% of “insignificant” dimensions slightly improves accuracy
because we remove noisy features. As listed in Table II,
dropping up to 60% of “insignificant” dimensions almost no
impact on accuracy, but dropping further dimensions will lead
to a decline in accuracy because we begin to drop significant
dimensions.

Dropping dimensions with low intra-class differences allow
for a more intelligent selection of “insignificant” dimensions
than summing all training hypervectors and dropping dimen-
sions with high absolute values. With ABS, we were able
to drop 70% dimensions before we started losing significant
dimensions. But since VARIANCE selects dimensions to drop
more intelligently, we can drop the 90% most insignificant
dimensions with only a 0.3% average loss in accuracy as a
result, meaning we improve training efficiency by 90% with
only a negligible decline in accuracy. The energy efficiency
improves proportionally with the dropped dimensions because
operations in HD are done with hypervectors. Therefore, by
reducing the dimensionality of all hypervectors, all operations
reduce in complexity. When we drop more than 90% dimen-
sions, we begin to drop too many significant dimensions and
lose a significant amount of accuracy.

Figure 15b shows the classification probability over an
image, where yellow and blue colors indicate low and high
face probability respectively. The results show that ReHD
working with D = 4,000 dimensions can perfectly detect
the faces in the image. ReHD in lower dimensionality after
online dimension reduction has lower quality and detects “non-
face” regions. Online dimension reduction improves ReHD
efficiency linearly during both retraining and inference. For
example, an 80% dimension reduction results in approximately
80% energy efficiency improvement and a 5x speed up while
providing less than 0.3% quality loss as compared to ReHD
with full dimensionality.

VIII. CONCLUSION

In this paper, we propose ReHD, a novel HD comput-
ing framework that significantly improves the computation
efficiency of HD computing. ReHD exploits the predictable
memory access of our proposed encoding to design an efficient
encoding approach that maps data into binary hypervectors.
ReHD enables quantized training and retraining on the en-
coded hypervectors and simplifies the inference similarity

10

N TR

D=4,000 ™ D=2,000
LY Ly
Raan N
]

! D=500 f
- .,

(b) Windows probability over
dimensionality

D=1000

(a) Face Detection

Fig. 15. Visualization of ReHD face detection accuracy over different
dimensionality.

metric. N-bit model quantization, allows us to represent our
model hypervectors with n-bits where n ranges from 1 to
32, whereas previously designs chose between 1-bit or 32-bit
representations. This enables more granular control over the
trade-off between model classification accuracy and efficiency.
We additionally implemented a dimension reduction technique
that removes unnecessary dimensions to further improve the
efficiency of ReHD. We also designed a fully pipelined FPGA
implementation to accelerate ReHD. Our evaluations show that
ReHD can achieve 64.1x and 9.8 (43.8x and 6.1 x) energy
efficiency and speed up as compared to the baseline during
training (inference) while providing the same classification
accuracy.

ACKNOWLEDGEMENTS

This work was supported in part by CRISP, one of six
centers in JUMP, an SRC program sponsored by DARPA, in
part by SRC-Global Research Collaboration grant Task No.
2988.001, and also NSF grants 1527034, 1730158, 1826967,
1830331, 1911095, 2003277, and 2003279.

REFERENCES

[1] J. Gubbi et al., “Internet of things (iot): A vision, architectural elements,
and future directions,” Future generation computer systems, vol. 29,
no. 7, pp. 1645-1660, 2013.

[2] M. Hassanalieragh et al., “Health monitoring and management using
internet-of-things (iot) sensing with cloud-based processing: Opportuni-
ties and challenges,” in IEEE SCC, pp. 285-292, IEEE, 2015.

[3] Y. Sun et al., “Internet of things and big data analytics for smart and
connected communities,” IEEE Access, vol. 4, pp. 766-773, 2016.

[4] S. Sicari et al., “Security, privacy and trust in internet of things: The
road ahead,” Computer networks, vol. 76, pp. 146-164, 2015.

[5] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognitive Computation, vol. 1, no. 2, pp. 139-159, 2009.

[6] O. Rasanen and J. Saarinen, “Sequence prediction with sparse distributed
hyperdimensional coding applied to the analysis of mobile phone use
patterns,” IEEE Transactions on Neural Networks and Learning Systems,
vol. PP, no. 99, pp. 1-12, 2015.

[71 M. Imani et al., “Voicehd: Hyperdimensional computing for efficient
speech recognition,” in /CRC, pp. 1-6, IEEE, 2017.

[8] A. Rahimi et al., “A robust and energy-efficient classifier using brain-
inspired hyperdimensional computing,” in ISLPED, pp. 64-69, ACM,
2016.

[9]1 B. Khaleghi, M. Imani, and T. Rosing, “Prive-hd: Privacy-preserved
hyperdimensional computing,” arXiv preprint arXiv:2005.06716, 2020.

[10] M. Imani et al., “Hierarchical hyperdimensional computing for energy
efficient classification,” in DAC, p. 108, ACM, 2018.

[11] Y. Kim et al., “Efficient human activity recognition using hyperdimen-
sional computing,” in IoT, p. 38, ACM, 2018.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3069139, IEEE

[12]

[13]

[14]
[15]
[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Transactions on Computer-Aided Design of Integrated Circuits and Systems

P. Kanerva et al., “Random indexing of text samples for latent semantic
analysis,” in CogSci, vol. 1036, Citeseer, 2000.

M. Imani, X. Yin, J. Messerly, S. Gupta, M. Niemier, X. S. Hu, and
T. Rosing, “Searchd: A memory-centric hyperdimensional computing
with stochastic training,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2019.

M. Imani et al., “Hdcluster: An accurate clustering using brain-inspired
high-dimensional computing,” in DATE, IEEE/ACM, 2019.

M. Imani et al., “Hdna: Energy-efficient dna sequencing using hyperdi-
mensional computing,” in /JEEE BHI, pp. 271-274, IEEE, 2018.

M. Imani et al., “A framework for collaborative learning in secure high-
dimensional space,” in IEEE CLOUD, pp. 1-6, IEEE, 2019.

A. Rahimi et al., “Hyperdimensional biosignal processing: A case study
for emg-based hand gesture recognition,” in /CRC, pp. 1-8, IEEE, 2016.
M. Imani et al., “A binary learning framework for hyperdimensional
computing,” in DATE, IEEE/ACM, 2019.

M. Imani et al., “Sparsehd: Algorithm-hardware co-optimization for
efficient high-dimensional computing,” in IEEE FCCM, pp. 1-6, IEEE,
2019.

J. Morris, M. Imani, S. Bosch, A. Thomas, H. Shu, and T. Rosing, “Com-
phd: Efficient hyperdimensional computing using model compression,”
in 2019 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), pp. 1-6, IEEE, 2019.

M. Imani, S. Bosch, S. Datta, S. Ramakrishna, S. Salamat, J. M. Rabaey,
and T. Rosing, “Quanthd: A quantization framework for hyperdimen-
sional computing,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2019.

Y.-C. Chuang, C.-Y. Chang, and A.-Y. A. Wu, “Dynamic hyperdimen-
sional computing for improving accuracy-energy efficiency trade-offs,”
in 2020 IEEE Workshop on Signal Processing Systems (SiPS), pp. 1-5,
IEEE, 2020.

T. Wu et al., “Brain-inspired computing exploiting carbon nanotube fets
and resistive ram: Hyperdimensional computing case study,” in /EEE
ISSCC, 1EEE, 2018.

H. Li et al., “Hyperdimensional computing with 3d vrram in-
memory kernels: Device-architecture co-design for energy-efficient,
error-resilient language recognition,” in /EDM, pp. 16—1, IEEE, 2016.
S. Gupta et al., “Felix: Fast and energy-efficient logic in memory,” in
IEEE/ACM ICCAD, pp. 1-7, IEEE, 2018.

M. Imani et al., “Fach: Fpga-based acceleration of hyperdimen-
sional computing by reducing computational complexity,” in ASPDAC,
pp. 493-498, ACM, 2019.

S. Salamat et al., “F5-hd: Fast flexible fpga-based framework for
refreshing hyperdimensional computing,” in FPGA, pp. 53-62, ACM,
2019.

M. Imani et al., “Exploring hyperdimensional associative memory,” in
HPCA, pp. 445-456, IEEE, 2017.

G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi,
and A. Sebastian, “In-memory hyperdimensional computing,” Nature
Electronics, pp. 1-11, 2020.

S. Salamat, M. Imani, and T. Rosing, “Accelerating hyperdimensional
computing on fpgas by exploiting computational reuse,” IEEE Transac-
tions on Computers, 2020.

M. Imani, S. Salamat, B. Khaleghi, M. Samragh, F. Koushanfar, and
T. Rosing, “Sparsehd: Algorithm-hardware co-optimization for efficient
high-dimensional computing,” in 2019 IEEE 27th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 190-198, IEEE, 2019.

M. Schmuck et al., “Hardware optimizations of dense binary hy-
perdimensional computing: Rematerialization of hypervectors, bina-
rized bundling, and combinational associative memory,” arXiv preprint
arXiv:1807.08583, 2018.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture,
pp. 1-12, 2017.

B. Lesser, M. Miicke, and W. N. Gansterer, “Effects of reduced preci-
sion on floating-point svm classification accuracy,” Procedia Computer
Science, vol. 4, pp. 508-517, 2011.

M. Wess, S. M. P. Dinakarrao, and A. Jantsch, “Weighted quantization-
regularization in dnns for weight memory minimization toward hw
implementation,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 11, pp. 2929-2939, 2018.
B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernandez-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling low-
power, highly-accurate deep neural network accelerators,” in Proceed-

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]
[47]

(48]

[49]

11

ings of the 43rd International Symposium on Computer Architecture,
pp. 267-278, IEEE Press, 2016.

Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard,
“Adaptive quantization for deep neural network,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware
automated quantization with mixed precision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 8612—
8620, 2019.

S. Jain, S. Venkataramani, V. Srinivasan, J. Choi, P. Chuang, and
L. Chang, “Compensated-dnn: Energy efficient low-precision deep
neural networks by compensating quantization errors,” in 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1-6, IEEE,
2018.

S. Ye, T. Zhang, K. Zhang, J. Li, J. Xie, Y. Liang, S. Liu, X. Lin,
and Y. Wang, “A unified framework of dnn weight pruning and weight
clustering/quantization using admm,” arXiv preprint arXiv:1811.01907,
2018.

T. 1. Cannings ef al., “Random-projection ensemble classification,”
Journal of the Royal Statistical Society, vol. 79, no. 4, pp. 959-1035,
2017.

M. Imani, J. Morris, S. Bosch, H. Shu, G. De Micheli, and T. Rosing,
“Adapthd: Adaptive efficient training for brain-inspired hyperdimen-
sional computing,” in 2019 IEEE Biomedical Circuits and Systems
Conference (BioCAS), pp. 1-4, IEEE, 2019.

M. Imani, J. Morris, J. Messerly, H. Shu, Y. Deng, and T. Rosing,
“Bric: Locality-based encoding for energy-efficient brain-inspired hy-
perdimensional computing,” in Proceedings of the 56th Annual Design
Automation Conference 2019, pp. 1-6, 2019.

T. Feist, “Vivado design suite,” White Paper, vol. 5, 2012.
“Uci machine learning
http://archive.ics.uci.edu/ml/datasets/ISOLET.

“Uci learning repository.” https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Acti
G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category

dataset,” 2007.

repository.”

“Uci machine learning repository.”
https://archive.ics.uci.edu/ml/datasets/cardiotocography.
“Uci machine learning repository.”

https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaloT.

0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: San Diego State University. Downloaded on June 27,2021 at 23:00:04 UTC from IEEE Xplore. Restrictions apply.

