
Multi-label HD Classification in 3D Flash
Justin Morris⇤†, Yilun Hao⇤, Saransh Gupta⇤, Ranganathan Ramkumar⇤, Jeffrey Yu⇤, Mohsen Imani‡,

Baris Aksanli†, and Tajana Rosing⇤
⇤University of California San Diego, La Jolla, CA 92093, USA

†San Diego State University, San Diego, CA 92182, USA
‡University of California Irvine, Irvine, CA 92697, USA

{justinmorris, yih301, sgupta, rramkuma, jey070}@ucsd.edu, m.imani@uci.edu, baksanli@sdsu.edu, tajana@ucsd.edu

Abstract—Many classification problems in practice map each
sample to more than one label - this is known as multi-
label classification. In this work, we present Multi-label HD,
an in 3D storage multi-label classification system that uses
Hyperdimensional Computing (HD). Multi-label HD is the first
HD system to support multi-label classification. We propose two
different mappings of HD to Multi-label HD. The first, Power
Set HD, transforms the multi-label problem into single-label
classification by creating a new class for each label combination.
The second, Multi-Model HD, creates a binary classification
model for each possible label. Our evaluation shows that Multi-
Model HD achieves, on average, 47.8⇥ higher energy efficiency
and 47.1⇥ faster execution time while achieving 5% higher
classification accuracy as state-of-the-art light-weight multi-label
classifiers. Power Set HD achieves 13% higher accuracy than
Multi-Model HD, but is 2⇥ slower. Our 3D-flash acceleration
further improves the energy efficiency of Multi-label HD training
by 228⇥ and reduces the latency by 610⇥ vs training on a CPU.

I. INTRODUCTION

The emergence of the Internet of Things (IoT) has created
an abundance of small embedded devices [1]. Many of these
devices perform classification tasks, such as speech recog-
nition, image classification, etc. More and more devices are
now required to perform more complex multi-label classifica-
tion [2], [3]. However, they have very limited resources such
as limited battery lifetime and a small amount of memory,
which is not enough to train and run Deep Neural Networks
(DNN) [4]. We need a light-weight classification algorithm to
perform such tasks on embedded systems.

Brain-inspired Hyperdimensional (HD) computing has been
proposed as the alternative light-weight computing method to
perform cognitive tasks on devices with limited resources [5].
Inspired by the pattern of neural activity in the brain [6], HD
computing maps each data point into high dimension vectors,
called hypervectors (HVs). HD computing has three main
stages, 1) Encoding: mapping data into HVs. 2) Training: com-
bining encoded HVs to create a model representing each class
with a HV. 3) Inference: comparing the incoming sample with
the trained model to find the most similar class. HD computing
shows promising progress for many cognitive tasks such as
activity recognition, object recognition, language recognition,
and bio-signal classification [7], [8], [9]. However, there has
been no work yet on mapping HD computing to multi-label
classification tasks.

While HD provides improvements in performance and en-
ergy consumption over conventional machine learning algo-
rithms, it still involves fetching each and every data from
memory/disk and processing it on CPUs/GPUs. This is ex-
aserbated by the fact that HD expands the dimensionality
of the input data into high dimensional space. This massive
amount of data needed for HD cannot always fit into the
memory. Recent work has introduced computing capabilities
to solid-state disks (SSDs) to process data in storage [10],
[11], [12], [13], [14]. This not only reduces the computation
load from the processing cores but also processes raw data
where it is stored. HD computing has compelling properties
for efficient hardware acceleration in flash. For instance, HD
is highly parallelizable with D = 10, 000 dimensions where
each dimension is independent. Furthermore, HD is comprised
of simple operations such as addition, multiplication, and
comparisons. With these two properties, HD computing is a
prime candidate for acceleration in flash.

In this paper, we design a new Multi-label HD computing
in storage system. Our system efficiently accelerates the data-
intensive steps of HD, encoding and training, in 3D storage,
thus, making it possible to run multi-label classification with
HD in the IoT domain. We propose two different mappings
of HD to multi-label classification, Power Set HD and Multi-
Model HD. Power Set HD, transforms the multi-label problem
into classical classification by creating a new class for each
label combination. Multi-Model HD that creates a binary
classification model for each possible label. Our evaluation
shows that Multi-Model HD achieves, on average, 47.8⇥
higher energy efficiency and 47.1⇥ faster execution time
while achieving 5% higher classification accuracy as state-
of-the-art light-weight multi-label classifiers such as multi-
label kNNs. Power Set HD achieves 13% higher accuracy
than Multi-Model HD, but is 2⇥ slower. Using our in-3D-
flash acceleration, we further improve the energy efficiency of
Multi-label HD training by 228⇥ and reduce the latency by
610⇥.

II. RELATED WORK

A. Hyperdimensional Computing
Prior work tried to apply the idea of high-dimensional

computing to different classification problems such as lan-
guage recognition, speech recognition, face detection, EMG
gesture detection, human-computer interaction, and sensor978-1-7281-5409-1/20/$31.00 ©2020 IEEE

fusion prediction [7], [15], [16], [17]. Additionally, work in [9]
proposed a new HD encoding based on random indexing for
recognizing a text’s language by generating and comparing
text hypervectors. Work in [18] proposed an encoding method
to map and classify biosignal sensory data in high dimensional
space. Work in [8] proposed a general encoding module
that maps feature vectors into high-dimensional space while
keeping most of the original data. There is no work to date
that handles multi-label classification in HD.

B. Multi-label Classification

Prior work applied problem transformation methods to
transform multi-label classification problems into multiple
single-label classification problems [2], [3]. The most widely
used transformation method is PT3. PT3 combines each differ-
ent set of labels into a single label so that the new label set L

0

is the power set of the old label set L. For a dataset with three
binary labels, the new label set would be 000, 001, 010, 011,
100, 101, 110, 111. This causes an exponential increase in the
number of labels in the dataset. This transformation method is
popular for other light-weight classifiers as their complexities
mostly scale with the number of features and not with the
number of labels. However, in HD computing, the complexity
of inference does scale with the number of labels. Therefore,
in this paper we propose a new Multi-Model transformation
method that is designed for scalable HD computing.

C. Hardware Acceleration

HD Acceleration on other Platforms: Prior work tried
to design different hardware accelerators for HD computing.
This includes accelerating HD computing on existing FPGA,
ASIC, and processing in-memory platforms [19]. However,
these solutions do not scale well with the number of classes
and dimensions, primarily due to the data movement issue.
Therefore, a new solution is needed that can scale with the
dimensionality and number of classes. ISC is a promising
acceleration architecture in this aspect. Computing in 3D
Flash: The current 3D flash-based storage systems suffer
from slow flash array read latency and storage to host I/O
latency. To alleviate these issues prior work introduced
in-storage computing (ISC) architectures [12]. These works
exploit the embedded cores present in the SSD controller to
implement ISC. Another set of work in [11], [20] used ASIC
accelerators in SSDs. The work in [13] proposed a full-stack
storage system to reduce the host-side I/O stack latency.
While these works propose single-level computing in storage,
[14] on the other hand exploited computing at flash die and
in top level accelerator to provide multi-layer computing. It
also allows for high parallelism in computation. In this work,
we adapt the ISC design in [14] to enable multi-label HD in
3D flash.

III. MULTI-LABEL CLASSIFICATION WITH HD

Multi-label classification is the problem of finding a model
that maps inputs x to binary vectors y, and each element in

y is a label that is assigned a value either 0 or 1. This is in
contrast to single-label classification, where y is a single value,
not a vector of labels. Although HD computing performs well
for single-label classification tasks, we can’t directly apply
it to solve multi-label classification problems, as only one
label output is chosen. Therefore, we transform the multi-
label problem into a single-label problem and then modify the
HD computing algorithm to solve the multi-label classification
problem. We propose two different mappings of HD to Multi-
label HD. The first, Power Set HD, transforms the multi-
label problem into single-label classification by creating a new
class for each observed label combination. We additionally
propose Multi-Model HD that creates a binary classification
model for each possible label. By doing this, we can leverage
the efficiency of HD computing to complete the multi-label
classification task faster and with less energy consumption.

A. Problem Transformation Methods

Power Set: Prior work[2] mapped multi-label classification
to single label classification by creating a new label set that
was the power set of the multi-labels. For instance, if a multi-
label problem had 3 possible labels for every sample, then
prior work would transform the 3 multi-labels into 8 single
labels. Where each single label represents each possible com-
bination of the 3 individual labels. This exponential increase in
the number of labels does not cause challenges for classifiers
that do not scale in complexity with the number of labels.
However, HD computing complexity does scale with the num-
ber of labels. We address this issue with a binary classification
transformation for HD computing explained below.

Multi-Model: We propose Multi-Model HD, a method
of building a binary classification model for each label as
the problem transformation method. Suppose [l1...lh] are the
labels of the dataset, then after mapping each data point into
hypervectors [v1...vn], we build h binary classification models,
since each label only has a true or false value, i.e., 0 or 1. For
example, if a dataset has h = 3, we create 3 different HD
models, one for each label. Then upon inference, we feed the
input data into all 3 of the models, independently checking
for the existence of each label. This transformation method is
better for HD in multiple ways: 1) HD model size, execution
time, and energy scale with the number of classes, so when
using Power Set HD, if there is a large number of possible
label combinations, Power Set HD will not be as efficient as
Multi-Model HD. 2) If a new label is introduced, in Multi-
Model HD, we simply need to train a newly added binary
classification HD model. However, with Power Set HD, or
other models that use the power set transformation method, the
entire model needs to be retrained to accommodate the new
label combinations. The rest of Section III is mainly focused
on Multi-Model HD, while we additionally provide a compar-
ison with Power Set HD in Section V. Now that the problem
has been transformed into k binary classification problems, we
describe the algorithmic changes to HD computing blow.

Fig. 1. An example of how the Multi-Model HD model is created

B. Encoding
HD computing encoding maps each n dimensional feature

vector to a D dimensional binary hypervector. We utilize a
random projection encoding presented in [21]. Let us assume a
feature vector F = {f1, f2, . . . , fn}, with n features (fi 2 N)
in original domain. The goal of encoding is to map this feature
vector to a D (e.g. D = 10, 000) dimensional space vector:
H = {h1, h2, . . . , hD}. The encoding first generates D
dense bipolar vectors with the same dimensionality as original
domain, P = {p1,p2, . . . ,pD}, where pi 2 {�1, 1}n. Thus,
to encode a feature vector into a hypervector, we perform a
matrix vector multiplication between the projection matrix and
the feature vector using:

H = sign(PF)

.
Where sign is a sign function which maps the result of the

dot product to +1 or -1. In Section IV-A we discuss how we
accelerate encoding in flash.

C. Training
In HD computing, the model used in training is initialized

through element-wise addition of all encoded hypervectors in
each existing class. The result of training are k hypervectors
each with D dimensions, where k is the number of classes. For
example, the ith class hypervector can be computed as: Ci =P

8j2classi
Tj. However, to map this algorithm to Multi-label

classification, we need to modify how we create the initial
HVs.

As stated in Section III-A, since the multi-label classifica-
tion problem is transformed into multiple binary classifica-
tion problems with Multi-Model HD, we build two classes
for each label (one for value 0 and one for value 1). As
shown in Figure 1, after the same encoding process as stated
in Section III-B, each data point is classified into either
Classlabeli=0 or Classlabeli=1 for each label i according to
the values of its labels [l1...lh]. As shown in Figure 2•A , for
a dataset that has h labels, the binary model of this dataset

Fig. 2. Overview of how Multi-Model HD is constructed and how Multi-
Model HD performs inference.

would contain 2h class HVs in total, one binary classification
model for each label where each model contains 2 class HVs.

Unlike in single label classification, in Multi-Model HD,
each data point is element wise added to multiple class HVs.
For instance, in Figure 1, after the sample is encoded, it
is added to the Classlabel1=0 class HV for the first label,
as the first label is 0. It is then additionally added to the
Classlabel2=0 class HV for the second label, as the second
label is 0. This is continued for all the labels until it is added to
the Classlabelh=1 class HV for the last label, as the last label
is 1. After this procedure is repeated for the entire training
set, we are left with k classification models for each label.

This training procedure also results in integer values for the
dimensions of the class HVs, requiring the use of a costly
cosine similarity during inference to find the best matching
class HV to the query HV. We can reduce this computation
to a binary operation of Hamming distance by binarizing
the model, which is done by changing the class hypervector
elements to +1 if they are positive and -1 if they are negative
or 0. Hamming distance is desirable because it reduces each
multiplication and addition in cosine similarity to a simple
bitwise XOR and accumulation, which is significantly more
efficient in acceleration circuits. The class with the least
mismatching bits to the query is then chosen as the output.

D. Inference
After training, the HD model for single-label classification

can now be used for inference. Upon inference, an input data
is encoded to a query hypervector using the same encoding
module used for training. HD Computing then computes
the similarity between the query hypervector and each class
hypervector. It then uses consine similarity to find a class hy-
pervector with the most similarity with the query hypervector.

Multi-Model HD performs inference in a similar way, how-
ever, we need to output h labels instead of just 1. Figure 2•C
shows how inference is performed in Muti-Model HD. Upon
inference, an input data is encoded to a query hypervector
using the same encoding module used for training, just like
baseline HD. However, since Multi-Model HD contains h
different classification models, the query HV is input into

BUFFER BUFFER

PLANE PLANE

BLOCK BLOCK

PAGE PAGE

DIE ACCEL. DIE ACCEL.

W
O

R
D

LI
N

E

FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

CTRL.

FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

CTRL.
FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

CTRL.

FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

CTRL.
FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

FLASH
CHIP

CTRL.
CHANNEL

DIE

DMA STORAGE
UNIT

FIRMWARE

SCRATCHPAD

TOP ACCEL.

CONTROLLER

Fig. 3. Overview of Multi-label HD in 3D flash-based storage. ISC enabling
components of the design are shown in green.

each classification model independently. For each model, if
the query HV is more similar to the 0 label HV, then that
label output is chosen as 0, and vice versa if the query is
more similar to the 1 label HV. This generates our h different
labels for output in a multi-label classification problem. In
Multi-label HD, inference is performed on the host CPU.

IV. ACCELERATION WITH 3D NAND FLASH

Here, we present an ISC design that performs Multi-label
HD encoding and training completely in 3D flash. Figure 3
shows an overview of the SSD architecture we adopt from
THRIFTY [14]. It uses a die-level accelerator (green on the
right in Figure 3), in each plane to encode every read page
into a hypervector. These hypervectors are then sent to a
SSD-level FPGA, which accumulates the hypervectors in the
top-level accelerator (green on bottom left in Figure 3) to
perform training. The scratchpad (green on top left in Figure
3) in the controller stores the encoding projection matrix,
which it receives as an application parameter from the host.
The top-level accelerator is an FPGA which uses INSIDER
acceleration cluster [13] to implement HDC accumulation
and other operations. We utilize THRIFTY’s adaptation of
INSIDER’s software stack to connect our ISC architecture to
the rest of the system.

A. Encoding in 3D Flash

As shown in Figure 3, the flash chip may consist of several
flash dies which are further divided into flash planes, each
plane consisting of a group of blocks, each of which store
multiple pages. Each plane has a page buffer to write the
data to. Operations in SSD happen in page granularity where
the size of the pages usually ranges from 2KB-16KB. Hence,
we use accelerators for each flash plane to exploit the flash
hierarchy. These accelerators are multiplexed to the page read
path.

The die-accelerator in [14] encodes an entire page with raw
data to generate a D dimensional hypervector. We assume that
the feature vectors are page-aligned, with each page storing
one full feature vector. Multi-label HD encoding multiplies
an n-size feature vector with a projection matrix containing
D ⇥ n 1-bit elements. The accelerator calculates the dot
product between the two vectors, one read from the flash array
and another being a row-vector of the projection matrix. This
involves element-wise multiplication of the two vectors and
adding together all the elements in the product. Since the

weights in the projection matrix 2 {1,�1}, we map them
to {0, 1} respectively. We use 2’s complement to break the
multiplication into an inversion using XOR gates and then add
the total number of inverted inputs to the accumulated sum of
XOR outputs. With the assumption that each page consists of
a maximum 1K feature elements, the accelerator consists of
an array of 32K XOR gates followed by a 1024 input tree
adder. It reduces 1024 inputs to 2, which is followed by a
carry look ahead addition to get the final dot product. The
sign bit (MSB) of the output is the value of one dimension
of the encoded hypervector. Complementary to the projection
matrix, the output 0 �! 1 and 1 �! (�1). The accelerator
is iteratively run D times to generate D dimensions. Each
encoded hypervector is appended with the corresponding label
vector. We write the output of the accelerator to the page buffer
of the plane, which serves as the response to the original read
request.

B. Training at Top-Level in Storage
The encoded hypervectors from flash chips are input into

the top-level accelerator, which is implemented on an FPGA
present in the SSD. During training, they are accumulated into
the corresponding label hypervectors. At the end of training
we obtain two output hypervector for every label (labeli), one
each for Classlabeli=0 and Classlabeli=1.

The design in [14] utilized input queues for each class
to increase parallelism between different classes. However in
Multi-label HD, each encoded hypervector is added to one
of the two classes of each label, i.e. 50% of the classes.
Moreover, ideally an encoded hypervector has just one label as
’1’ while rest are ’0’s. Hence, all but one classes corresponding
to labeli = 0 would receive an incoming hypervector. There
is negligible parallelism in training between multiple encoded
hypervectors. In this case, the input queues of [14] are an
overkill. Hence, we remove input queues from the FPGA
design of [14]. The label vector of an incoming hypervector
is used to input it to the corresponding class (Classlabeli=0

or Classlabeli=1) of each label. The inputs to the remaining
classes are set to zero. An accumulator is present for each
class, which simply needs to read the input and operate on the
corresponding data. The accumulators for each class operates
in parallel to add an input hypervector to the corresponding
class hypervector. While the computation can also be fully
parallelized over all dimensions, the large size of hypervectors
and the limited read ports of the memory make it impractical.
Hence, we utilize the partition-based approach used in [14] to
allow partial parallelism. The final class hypervectors are sent
to the host.

V. EXPERIMENTAL RESULTS

A. Experiment Setup
We tested Multi-label HD training and inference using an

optimized C++ implementation. For comparison, we utilized
the open source Mulan multi-label package, which is im-
plemented in Java [22]. We compare Multi-label HD with
multi-label versions of k-nearest neighbors (kNN), Sequential

TABLE I
MULTI-LABEL HD 3D STORAGE PARAMETERS

Capacity 1TB Channels 32
Page Size 16KB Chips/Channel 4

External BW 3.2GBps Planes/Chip 8
BW/Channel 800MBps Blocks/Plane 512
Flash Latency 53us Pages/Block 128

FPGA XCKU025 Scratchpad Size 4MB
Avg Power/DA 8mW DA Latency 1.02ns

*DA: Die-accelerator

genbase scene yeast
0

20

40

60

80

100

A
c

c
u

ra
c

y
 (

%
)

SMO C4.5 kNN NB Multi-Model HD Power Set HD

Fig. 4. Classification accuracy of Multilabel HD and other multi-label
classification algorithms.

minimal optimization (SMO), C4.5, and Naive Bayes (NB).
We also developed a simulator for Multi-label HD in flash
which supports parallel read and write accesses to the flash
chips. We utilized Verilog and Synopsys Design Compiler to
implement and synthesize the die-level accelerator at 45nm
and scale it down to 22nm. The top-level FPGA accelerator
has been synthesized and simulated in Xilinx Vivado. For
drive simulation, we assume the characteristics similar to
1TB Intel DC P4500 PCIe-3.1 SSD connected to an Intel(R)
Xeon(R) CPU E5-2640 v3 host. The parameters for our 3D
flash implementation are shown in Table I. We compare flash
implementation with 6th Gen 3.2GHz Sky Lake Intel Core
i5-6300HQ CPU with 8GB of RAM and a 256 GB SSD.

We tested our proposed approach on three applications:
Genbase (Genbase) [23]: The protein classes considered are
the 27 most important protein families. The training and testing
datasets are taken from the Genbase dataset. This dataset
consists of 662 samples, each with 1186 attributes.
Scene (Scene) [24]: This dataset contains characteristics about
images and their classes. One image can belong to one or more
classes. The training and testing datasets are taken from the
Scene dataset. This dataset contains 2407 samples, each with
294 attributes.
Yeast (Yeast) [25]: This database contains information about
a set of Yeast cells. The task is to determine the localization
site of each cell. The training and testing datasets are taken
from the Yeast dataset. This dataset consists of 2417 samples,
each with 103 attributes.

B. Multi-label HD Comparison with State-of-the-Art
1) Accuracy:
Figure 4 compares the multi-label classification accuracy of

current state-of-the-art multi-label classifiers with Multi-label
HD. The accuracy for multi-label is calculated by first getting

genbase scene yeast
10-2

100

102

104

106

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Execution Time during training

genbase scene yeast

100

102

104

106

108

E
n

e
rg

y
 C

o
n

s
u

m
p

.
(m

J
)

Energy Consumption during training

genbase scene yeast
10-2

100

102

104

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Execution Time during inference

(a) Execution Time

genbase scene yeast
10-2

100

102

104

E
n

e
rg

y
 C

o
n

s
u

m
p

.
(m

J
)

Energy Consumption during inference

(b) Energy

Fig. 5. Energy consumption and execution time of Multi-label HD during
Encoding and Training.

the accuracy of the model on each label individually. Then
to aggregate them, we average each label’s accuracy together
to get one overall accuracy number for each dataset. As the
figure shows, Multi-label HD (Multi-Model HD and Power
Set HD) are comparable in accuracy to state-of-the-art multi-
label classifiers. In fact, Power Set HD is always better than
the state-of-the-art on these three datasets. On the other hand,
Multi-model is slightly less accurate than other multi-label
classifiers on the genbase dataset by 10%. However, Multi-
Model HD is able to achieve higher accuracy on the scene
and yeast datasets. This could be attributed to mapping the
data into HD space, offering better separability than in the
low dimensional data. However, more theoretical analysis on
HD Computing is necessary in order to understand why Multi-
label HD is more accurate. Overall, on average, Multi-Model
HD is 5% more accurate and Power Set HD is 14% more
accurate than the highest accuracy state-of-the-art multi-label
classifier.

Although Power Set HD achieves higher accuracy than
Multi-Model HD, Figure 5, demonstrates that the improvement
in accuracy comes at a significant cost in execution time and
energy. This is because of the exponential increase in class
HVs as discussed in Section III-A. As mentioned before,
the exception is the genbase dataset because there is only
a small subset of possible combinations that appear in the
dataset. On the other hand, when there is a large portion
of possible combinations in the dataset, Power Set HD is
3.6⇥ slower than Multi-Model HD. This offers a trade-off
between execution time and energy efficiency vs accuracy. If
an application requires the highest accuracy, Power Set HD
should be used. However, if the key metric is execution time
and energy efficiency, for a loss in accuracy compared to
Power Set HD, but still comparable with other state-of-the-
art multilabel classifiers, Multi-Model HD is the clear choice.
If the dataset does not have a diverse combination of labels,
such as in genbase, Power Set HD can potentially be more
accurate and energy efficient compared to Multi-Model HD.

2) CPU Execution Time and Energy:
Figure 5 compares the execution time and energy consump-

tion of state-of-the-art multi-label classifiers with Multi-label
HD on CPU. The data demonstrates that both Multi-Model HD
and Power Set HD training are significantly faster than most
other multi-label classifiers. On average, Multi-label HD is
60.8⇥ faster and 61.8⇥ more energy efficient than other multi-
label classifiers during training. The one exception is Naive
Bayes on the yeast dataset, however, although Naive Bayes
trains significantly faster than Multi-Model HD on the yeast
dataset, Multi-Model HD is 8.6⇥ faster and 8.7⇥ more energy
efficient than Naive Bayes during inference. Additionally,
Power Set HD is only 3.5⇥ slower than Multi-Model HD on
datasets with a large portion of label combinations.

Figure 5 also demonstrates that Multi-Model HD is also
significantly faster than kNNs and Naive Bayes multi-label
models during inference. Although Multi-Model HD is compa-
rable in execution time and energy efficiency to SMO and C4.5
during inference, Multi-Model HD is 174.4⇥(42.8⇥) faster
and 178.1⇥(43.1⇥) more energy efficient than SMO(C4.5)
during training. Overall, combining training and one iteration
of inference, Multi-Model HD is 47.1⇥ faster and 47.8⇥ more
energy efficient than state-of-the-art multi-label classifiers on
average, while providing 5% higher classification accuracy.
On the other hand, Power Set HD is 24⇥ faster than state-of-
the-art multi-label classifiers on average or approximately 2⇥
slower than Multi-Model HD for 13% higher accuracy.

C. Multi-label HD in 3D Flash
Figure 5 also shows the latency and energy consumption

of Multi-label HD when accelerated in flash. We implement
Multi-label HD encoding and training in flash over the three
datasets. We observe that our 3D-flash implementation of
Multi-label HD is on average 610⇥ faster and 228⇥ more
energy-efficient than CPU. Our evaluations show that the
performance and energy consumption of Multi-label HD in
3D-flash increases linearly with an increase in the number of
training samples. This happens because more data samples
result in more huge hypervectors to generate and process.
In conventional systems, this translates to a huge amount of
data transfers between the core and memory. In contrast, our
3D-flash implementation generates hypervectors (encoding)
while reading data out of the slow flash arrays and processes
(training) them on the disk itself, reducing data movement.

VI. CONCLUSION

In this paper, we design the first accelerator for multi-label
HD classification in 3D storage. We also propose two different
transformation methods to map HD single label classification
to multi-label classification: Power Set HD and Multi-Model
HD. Overall, combining training and one iteration of inference,
Multi-Model HD is 47.1⇥ faster and 47.8⇥ more energy
efficient than state-of-the-art multi-label classifiers, while also
achieving 5% higher accuracy on average. Power Set HD can
achieve 13% higher accuracy than Multi-Model HD, but is 2⇥
slower. We additionally propose in-3D-flash acceleration that

further improves the energy efficiency of Muilti-Model HD
training by 228⇥ and speedup by 610⇥.

ACKNOWLEDGEMENTS

This work was supported by NSF grants #1527034,
#1730158, #1826967, and #1911095.

REFERENCES

[1] J. Gubbi et al., “Internet of things (iot): A vision, architectural elements, and future
directions,” Future generation computer systems, vol. 29, no. 7, pp. 1645–1660,
2013.

[2] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,” Interna-
tional Journal of Data Warehousing and Mining (IJDWM), vol. 3, no. 3, pp. 1–13,
2007.

[3] T. Durand, N. Mehrasa, and G. Mori, “Learning a deep convnet for multi-label
classification with partial labels,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 647–657, 2019.

[4] Y. Sun et al., “Internet of things and big data analytics for smart and connected
communities,” IEEE Access, vol. 4, pp. 766–773, 2016.

[5] M. Imani et al., “Exploring hyperdimensional associative memory,” in HPCA,
pp. 445–456, IEEE, 2017.

[6] P. Kanerva, “Hyperdimensional computing: An introduction to computing in
distributed representation with high-dimensional random vectors,” Cognitive Com-
putation, vol. 1, no. 2, pp. 139–159, 2009.

[7] O. Rasanen and J. Saarinen, “Sequence prediction with sparse distributed hyper-
dimensional coding applied to the analysis of mobile phone use patterns,” IEEE
Transactions on Neural Networks and Learning Systems, vol. PP, no. 99, pp. 1–12,
2015.

[8] M. Imani et al., “Voicehd: Hyperdimensional computing for efficient speech
recognition,” in ICRC, pp. 1–6, IEEE, 2017.

[9] A. Rahimi et al., “A robust and energy-efficient classifier using brain-inspired
hyperdimensional computing,” in ISLPED, pp. 64–69, ACM, 2016.

[10] I. Jo, D.-H. Bae, A. S. Yoon, J.-U. Kang, S. Cho, D. D. Lee, and J. Jeong,
“Yoursql: a high-performance database system leveraging in-storage computing,”
Proceedings of the VLDB Endowment, vol. 9, no. 12, pp. 924–935, 2016.

[11] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang, M. Kwon,
C. Yoon, S. Cho, et al., “Biscuit: A framework for near-data processing of big
data workloads,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 153–165, 2016.

[12] G. Koo, K. K. Matam, I. Te, H. K. G. Narra, J. Li, H.-W. Tseng, S. Swanson,
and M. Annavaram, “Summarizer: trading communication with computing near
storage,” in 2017 50th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pp. 219–231, IEEE, 2017.

[13] Z. Ruan, T. He, and J. Cong, “Insider: designing in-storage computing system for
emerging high-performance drive,” in Proceedings of the 2019 USENIX Conference
on Usenix Annual Technical Conference, pp. 379–394, 2019.

[14] S. Gupta, J. Morris, M. Imani, R. Ramkumar, J. Yu, A. Tiwari, B. Aksanli,
and T. Rosing, “Thrifty: Training with hyperdimensional computing across flash
hierarchy,” in Proceedings of the IEEE/ACM 2020 International Conference on
Computer-Aided Design (ICCAD), 2020.

[15] Y. Kim et al., “Efficient human activity recognition using hyperdimensional
computing,” in IoT, p. 38, ACM, 2018.

[16] M. Imani et al., “Hdcluster: An accurate clustering using brain-inspired high-
dimensional computing,” in DATE, IEEE/ACM, 2019.

[17] M. Imani et al., “Hdna: Energy-efficient dna sequencing using hyperdimensional
computing,” in IEEE BHI, pp. 271–274, IEEE, 2018.

[18] A. Rahimi et al., “Hyperdimensional biosignal processing: A case study for emg-
based hand gesture recognition,” in ICRC, pp. 1–8, IEEE, 2016.

[19] M. Schmuck, L. Benini, and A. Rahimi, “Hardware optimizations of dense
binary hyperdimensional computing: Rematerialization of hypervectors, binarized
bundling, and combinational associative memory,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 15, no. 4, pp. 1–25, 2019.

[20] V. S. Mailthody, Z. Qureshi, W. Liang, Z. Feng, S. G. De Gonzalo, Y. Li, H. Franke,
J. Xiong, J. Huang, and W.-m. Hwu, “Deepstore: In-storage acceleration for
intelligent queries,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 224–238, 2019.

[21] M. Imani, J. Morris, J. Messerly, H. Shu, Y. Deng, and T. Rosing, “Bric: Locality-
based encoding for energy-efficient brain-inspired hyperdimensional computing,”
in Proceedings of the 56th Annual Design Automation Conference 2019, pp. 1–6,
2019.

[22] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas, “Mulan: A java
library for multi-label learning,” Journal of Machine Learning Research, vol. 12,
pp. 2411–2414, 2011.

[23] S. Diplaris, G. Tsoumakas, P. A. Mitkas, and I. Vlahavas, “Protein classification
with multiple algorithms,” in Panhellenic Conference on Informatics, pp. 448–456,
Springer, 2005.

[24] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-label scene
classification,” Pattern recognition, vol. 37, no. 9, pp. 1757–1771, 2004.

[25] A. Elisseeff and J. Weston, “A kernel method for multi-labelled classification,” in
Advances in neural information processing systems, pp. 681–687, 2002.

