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Abstract—Energy Disaggregation at substations (EDS) is chal-
lenging because measurements are mostly aggregated over mul-
tiple types of loads, and the existence of some loads such as
behind-the-meter solar is unknown to the operator. This paper
for the first time addresses this so-called “partial labels” issue in
energy disaggregation and develops a model-free EDS method
to separate individual loads, including BTM solar, from the
total energy consumption in real-time. Our approach learns the
patterns of all loads offline from recorded historical datasets with
partial labels. Compared with conventional model-free methods
that require either pure measurements of each load for training
or full labels of each training sample, our method can extract load
patterns from partially labeled aggregated data and thus, is more
applicable to practical scenarios and alleviates the annotation
burden for the operator. Specifically, we propose to solve a
new dictionary learning problem, where column-sparsity and
incoherence regularization terms are added to identify unlabeled
loads and learn distinctive patterns of each load. In real-
time disaggregation, our approach solves an improved sparse
decomposition problem where one decomposes the aggregated
measurements as a linear combination of some representative
recorded measurements with known disaggregation learned in
the offline stage. Numerical experiments are reported to validate
our method.

Index Terms—Energy disaggregation, behind-the-meter solar
generation, dictionary learning, sparse coding

I. INTRODUCTION

Although modern meters are installed at some residential
households, commercial buildings, and the output of solar
farms and wind turbines, the coverage in distribution systems
is still very sparse such that the visibility is not comparable
to that of transmission systems. The power consumption
measured at a substation is the net consumption of all the
industrial loads, residential users, and renewable (like solar or
wind) generations that are connected to this substation, and the
operator does not have separate measurements for each type of
load1. The objective of energy disaggregation at the substation
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1Both loads and renewable generations are referred to as “load” to simplify
the presentation in this paper. Renewable generation is considered as a
negative load.

level (EDS) is to extract the energy consumption of each type
of load from the aggregated net load measurements. EDS
becomes increasingly challenging due to behind-the-meter
(BTM) solar generations, which are not directly measured by
the operator. Accurate real-time estimation of various loads,
especially BTM solar, is necessary for distribution systems
planning and operations such as hosting capacity analysis [1],
distribution network reconfiguration [2], Volt Var control [3],
load forecasting [4], and demand response [5].

One recent line of works estimates the BTM solar gen-
eration from the aggregate measurements. Both model-based
methods and data-driven methods have been proposed. The
model-based methods such as [6]–[13] usually require me-
teorological data and physical models of PV characteristics.
The estimation accuracy largely depends on the availability
and accuracy of model parameters. Data-driven methods do
not require model information but require either high time-
resolution measurements [9], [14]–[17] or some fully observ-
able customers with known PV generations [18]. Moreover,
all these works focus on estimating BTM solar only and does
not disaggregate other loads, while profiles of different loads
such as residential loads and industrial sites are needed for
accurate load forecasting and demand response. A few works
such as [19], [20] disaggregate multiple loads at the substation
of feeder level. These methods require parametric models for
all loads and the types of loads in the aggregate data need to
be available.

Other related works focus on non-intrusive load monitor-
ing, which has two directions: energy disaggregation at the
household level (EDH) [21]–[26], and load classification [27]–
[29]. EDH estimates the status and power consumption of
different home appliances from the total household energy
consumption. Existing approaches mostly require estimating
the patterns of individual appliances from recorded historical
data. Various methods have been explored, such as modeling
using hidden Markov Chain [30], [31] or on/off steady states
[32], training deep learning models [33], [34], choosing proper
features based on the domain knowledge [35], and learning
a discriminative dictionary of load patterns by non-negative
matrix factorization [21]. Among these methods, dictionary
learning-based approaches have the advantage of no mod-
eling of the load patterns and no training of complicated
learning models needed. One major challenge that limits the
disaggregation accuracy is that different types of loads may
share similar patterns, resulting in ambiguity in disaggregation.
Various techniques have been proposed to increase disaggre-
gation accuracy including discriminative dictionary learning
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[21], [36], [37] and adding regularization terms [35]. All these
methods require recorded data of individual loads separately
to learn the respective patterns and do not generalize to the
case of aggregate data of multiple types of loads.

At the substation level, most meters only measure at the net
point so the obtained measurements are aggregated loads [12].
With the recent installation of smart meters at households, in
principle one can disaggregate the solar generation of each
house and sum them up to obtain the feeder level solar gener-
ation [11]. In scenarios when smart meters are not available or
when the large number of households make solving individual
EDH problems time consuming, an alternative approach is to
solve the EDS problem directly using the net load measure-
ments. Note that most electric appliances at the household
level are single-state or multi-state and demonstrate repeatable
characteristics [29], [38], while very few of them (like power
drills and dimmer lights) have continuous power draw and do
not have the repeatable patterns [38]. The energy consumption
measured at a substation is the sum of all the loads connected
and often not repeatable, making the disaggregation problem
challenging [38]. In addition, it may be difficult to identify a
set of pure measurements of a certain type of load (such as
BTM solar) at the substation level to estimate its patterns.
Furthermore, the approaches for EDH are often based on
high resolution data (one sample every few seconds), which
is very rare in the substation level [18]. Thus, the existing
methods for EDH do not directly generalize to EDS. Another
challenge for EDS is that although the distribution operator
may know all the loads connected to a substation, it may not
know whether a particular type of load is consuming energy
or not within a given time interval. For instance, the operator
does not know whether the BTM solar panels are generating
power or not at a given time considering cloud coverage and
PV malfunction, while residential loads are expected to exist
between 5 pm to 10 pm. Thus, each aggregate measurement is
the total consumption of multiple types of loads, and the types
that exist in this measurement are not fully known. We call it
“partially labeled aggregate data.” One fundamental distinction
of our problem from dictionary learning with incomplete label
information for applications like image classification [39]–
[42] is that each measurement here is the sum of energy
consumption of different types of loads, and the patterns of
different loads are obfuscated in the aggregate measurements.

The contributions of this paper are as follows. (1) We
formulate the substation load disaggregation problem from
partially labeled aggregate data, and this particular aspect of
partial labels has not been studied before for load disaggre-
gation. (2) We develop a data-driven disaggregation method
to disaggregate all loads including hidden loads like BTM
solar generations. Our model-free approach includes the offline
learning of load patterns from partially labeled aggregate data
and online disaggregation of different loads from the obtained
real-time measurements. (3) In the offline training, we exploit
the sparsity of unlabeled loads in the measurements to address
the issue of partial labels. We also add an incoherence term
to discriminate features of different loads. Compared with
conventional dictionary learning methods that require either
pure measurements for each type of load or fully labeled

aggregate measurements, our method can extract information
from aggregate measurements with partial labels. (4) In on-
line disaggregation, we propose to decompose the total load
into a sparse combination of some recorded historical data
rather than the sparse combination of dictionary atoms in the
conventional approach. That exploits the repetitive patterns of
loads and enhances the disaggregation accuracy. Our method
outperforms existing methods in numerical experiments.

The rest of the paper is organized as follows. Section II
introduces our problem formulation. We present our approach
in Section III, and the evaluations of our method are in Section
IV. Section V concludes the paper. Table I lists the major
notations in this paper.

Table I: Major notations

N the number of training data
T the length of time window
n the total number of load types
X̄ the T ×N data matrix for training
X̄i the load i component in X̄ , X̄ =

∑n
i=1 X̄i

x̄j the jth column of X̄
zj the indices of loads in x̄j

yj partial labels in zj

Di the dictionary of load type i
Ai the coefficients that correspond to load type i, X̄i = DiAi

Ki the number of columns in dictionary Di

dm the mth column of D = [D1, ..., Dn]
x the testing aggregate data

II. PROBLEM FORMULATION AND DISCUSSION

A. Problem Formulation

We assume that n types of loads in total are connected
to a substation. The consumption2 of a load is positive if it
consumes power and is negative if generates power. Here, the
consumption is the total value of all the users of the same type.
For example, the consumption of the residential load is the
total consumption of some residential users. At a given time
interval, some types of loads may not appear, e.g., solar panels
are not producing power at night. Let X̄ ∈ RT×N contain the
recorded measurements of real power3 consumption in a time
window of length T at N different time intervals. The jth
column of X̄ , denoted by x̄j ∈ RT , represents a time series
of the aggregate consumption of all loads during T consecutive
time steps. Let set zj ⊆ {1, ..., n} denote the indices of loads
that appear in x̄j . The operator may only know partial labels
in zj . Let yj ⊆ zj denote the types of loads that are known
to exist in x̄j to the operator. If the operator does not know
which load or loads out of n total loads are nonzero in x̄j ,
then yj is an empty set.

Our proposed model characterizes the two properties of
energy consumption at the substation. First, each time series

2We remarked that the power loss in the distribution systems is not directly
modeled in this paper. The energy consumption discussed here is the net
consumption observed at a substation and can include both the actual load
consumption and some power loss in the system.

3We focus on real power because oftentimes only real power is measured.
Our approach can also disaggregate loads based on reactive power if measures
are available. If both real and reactive power consumptions are measured, our
method can be easily modified by using a complex value to represent the
power consumption.
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of energy consumption in a time interval is usually aggregated
over multiple types of loads rather than measuring individual
loads only. Second, at the substation level, it is sometimes
difficult to know if a certain type of load, such as BTM
solar, generates/consumes a significant amount of energy or
not during a given time interval. The distribution operator may
have partial information of the loads that exist.

Fig. 1: An example of partially labeled aggregate data. The aggregate
data may contain load 1, load 2 and 3. All four aggregate data are
labeled as load 3. (a) all loads exist; (b) load 1 and 3 exist; (c) load
2 and 3 exist; (d) only load 3 exists.

Fig. 2: Decomposition of data in Fig. 1. A1 and A2 are column-
sparse. Load 3 is labeled in all four data samples, while load 1 and
load 2 are not labeled in any data.

The example in Fig. 1 illustrates our model. The time
window is 8:00 am-4:00 pm with a 5-minute resolution. There
are three types of loads, two industrial loads and one solar
generation. Each column shows the aggregate data and the
corresponding individual loads at one time window. These
four different aggregate data are all labeled as load 3 (Solar),
although the other two loads may also exist. The existence of
loads 1 and 2 in these data are not known from the partial
labels. Note that in practice, the power consumption of a load
type might not be exactly zero in a time interval in Fig. 1. In
this paper, we treat loads consuming a very small amount of
power during a time interval as zero when disaggregating the
loads.

We assume the time series of load i share common patterns.
Let D∗i ∈ RT×Ki , i = 1, · · · , n contain Ki representative
patterns of load i. Then the energy consumption of load i in

a window of length T can be written as a linear combination
of columns in D∗i . Specifically, we have4

X̄ = Σn
i=1X̄i = Σn

i=1D
∗
iA
∗
i , (1)

where X̄i ∈ RT×N denotes consumption of load i, and the
jth column of A∗i ∈ RKi×N denotes the pattern coefficients
of load i in x̄j . For example, the dictionary representation
of the four data samples in Fig. 1 is illustrated in Fig. 2.
Di represents the dictionary of load i, and we show three
dictionary atoms for simplification. Because load 1 does not
exist in Fig.1 (c) and (d), the third and fourth columns of A1

in Fig.2 are all zeros, i.e., column-sparse. Similarly, the second
and fourth columns of A2 are all zeros. Because load 3 always
exists, A3 is not column sparse. Note that although some loads
such as solar generation may be variable and intermittent, a
large number of time series indeed share a relatively small
number of dominant patterns. For instance, dictionary learning
algorithm has been exploited to learn the patterns of solar
generation for load forecasting [43].

Given X̄ with partial labels, the objective of this paper is to
develop a disaggregation method such that for any aggregate
measurements in real-time, denoted by x ∈ RT , one can
estimate 5 xi ∈ RT (i = 1, ..., n) where xi is the consumption
of load i, and x =

∑n
i=1 xi.

Note that if load l does not appear in any of the partial
labels of the training data, it is very challenging to identify
and disaggregate load l, because the patterns of load l are all
masked by other loads, and its existence is unknown to the
operator. For example, in Figs. 1 and 2, load 1 and load 2 are
not labeled in any training data, while load 3 is labeled. It is
harder to estimate them accurately than load 3.

B. Examples to Illustrate the Limits of Disaggregation

Before introducing our disaggregation method, we first use
simple examples to illustrate that the disaggregation error, re-
sulting from the similarities of load patterns of different types
of loads, usually exists despite the disaggregation method.

Consider the case of two types of loads with D∗i ∈ RT×Ki

(i = 1, 2). The aggregate data x can be written as

x = x1 + x2 = D∗1a
∗
1 +D∗2a

∗
2, (2)

where a∗1 and a∗2 are the corresponding coefficients for load 1
and 2, respectively. Even if the ground-truth dictionaries D∗1
and D∗2 are known, from basic linear algebra, x1 and x2 can be
accurately estimated if and only if D∗1 and D∗2 are orthogonal
to each other. To see this, consider two simple cases.

Case 1: orthogonal dictionaries. Suppose K1 = K2 = 1, and
T = 3. Let D∗1 = [1, 0, 0]T , D∗2 = [0, 1, 0]T , x = [2, 3, 0]T .
Since D∗1 and D∗2 are orthogonal, there is one unique way to
disaggregate x, i.e., x1 = [2, 0, 0], x2 = [0, 3, 0].

4Eq. (1) is based on the assumption that the power consumption is the
linear function of representative features. This is a general assumption as the
power consumption is indeed additive. The dictionary decomposition might
not provide the most compact representation of load profiles. For example,
if a feature is time-shifted significantly, the resulting time series will likely
be treated as a different feature. That may increase the number of dictionary
atoms for a given time period.

5To disaggregate load i from x, load i should appear in the training data.
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Case 2: nonorthogonal dictionaries. Let β1 = [1, 0, 0]T ,
β2 = [0, 1, 0]T , and α = [0, 0, 1]T . D∗1 = [α, β1], and
D∗2 = [α, β2]. D∗1 and D∗2 are nonorthogonal due to the
common dictionary atom α. Say x = [2, 3, 4]T , then there
exists an infinite number of ways to decompose x with
x1 = [2, 0, c1], x2 = [0, 3, c2], as long as c1 +c2 = 4. Without
further information, one cannot accurately disaggregate x, and
the aggregation error is inevitable.

One can see from the above discussion that dictionaries
of different types of loads should be orthogonal to each
other to avoid disaggregation error. In practice, however, this
condition is rarely met due to the similarities in different load
patterns. Thus, the disaggregation error is inevitable despite the
disaggregation method employed. The objective of this paper
is to reduce but not eliminate the disaggregation error.

C. Related Works

Our disaggregation approach follows the line of research
[21], [37] that first learns the dictionaries from the training
data and then exploits the dictionaries to disaggregate the
real-time aggregate measurements. We defer the discussion
of our proposed approach to Section III and first introduce
the conventional dictionary learning and sparse decomposition
approaches that have been studied in face recognition [44],
[45], image denoising [46], [47] and energy disaggregation
[21], [37].

Given a data matrix X ∈ RT×N , the objective of dictionary
learning is to learn a dictionary D = [d1, · · · , dK ] ∈ RT×K

and a sparse coefficient matrix A ∈ RK×N such that X =
DA. This can be achieved by solving

min
D,A
‖X −DA‖2F + λ‖A‖1 (3)

s.t ‖dm‖2 = 1,m = 1, 2, · · · ,K, (4)

where ‖A‖1 = ΣN
j=1‖aj‖1 is a regulation term that promotes

a sparse solution. aj denotes the jth column of A, and ‖aj‖1
is the `1-norm of vector aj . dm denotes the mth column of
D, and each dictionary atom is normalized to one.

A dictionary is overcomplete if the number of dictionary
atoms K is much larger than the dimension T . A dimension
overcomplete dictionary is desirable to reduce the reconstruc-
tion error ‖X−DA‖. However, for tasks like classification and
disaggregation, an overcomplete dictionary may have similar
dictionary atoms for different classes, and that reduces the
classification and disaggregation accuracy [48]. Discriminative
dictionary learning aims to learn a dictionary such that the
dictionary atoms corresponding to different classes are as
separate as possible [21], [45], [49]. For instance, one ap-
proach is to add the constraint that coefficients corresponding
to the dictionary atoms of class j (j 6= i) should be close
to zero for training data labeled with class i. It can enhance
the classification accuracy but require training data from each
individual class.

After obtaining the estimated dictionary, denoted by D̂, by
solving (3)-(4), sparse decomposition wants to find a sparse

representation of testing data x ∈ RT with respect to the
dictionary D̂. This can be achieved by solving

min
a∈RK

‖x− D̂a‖2F + µ‖a‖1, (5)

where a is a vector that represents the dictionary coefficients
of the testing data x.

When dictionary learning is applied to energy disaggrega-
tion, the dictionary D̂ contains the representative features of
all n loads, with each column being a representative temporal
feature of a certain load. D̂ is learned from (3)-(4) using N
recorded time series of T consecutive time instants. Let â be
the solution to (5). â is usually sparse as not every feature
will be present in x. Then the load i consumption in x can
be estimated by the weighted sum of all load i features in D̂
where the weights are the corresponding coefficients in â.

Due to the issue of “partially labeled aggregate data,”
conventional dictionary learning cannot be directly applied to
solve EDS. Because the measurements include multiple loads,
and load patterns usually share some similar components, a
dictionary learned from (3)-(4) often contains similar features
for different loads, leading to a significant disaggregation
error. This paper will develop a new disaggregation method
to improve the disaggregation accuracy by exploiting the
information in the partial labels.

D. Significance and Applications of the Problem Formulation

At the substation level, the power consumption is usually
aggregated over multiple types of loads. Even when the
measurements contain only one type of load during a certain
time window, the operator may not know such information.
Therefore, it is difficult to obtain measurements of individual
loads as needed in the conventional EDH methods. On the
other hand, one can in principle learn patterns of all loads from
aggregated data simultaneously using conventional dictionary
learning methods, but that requires accurate labels zj for all
training data x̄j . Finding full labels of all the training samples
requires a lot of manpower. Moreover, missing labels and
wrong labels are almost inevitable. Our problem formulation
relaxes the requirement on the training data such that aggregate
measurements with only partial labels can be leveraged for
training. That reduces the burden for the annotator signifi-
cantly.

To obtain labels, one can design a detector for each type of
load separately. Given a training sample x̄j , all these detectors
can be applied in parallel to provide labels for x̄j . For example,
references [50], [51] design detectors for the existence of
solar data from the aggregated measurements. To design a
detector for load i, some aggregated data without load i are
needed [50], [51]. These measurements can be obtained by
communicating with this load to identify some time periods
when this load is off. Note that if one wants to directly label
all the loads in all the training samples, the operator needs
to communicate with all n loads at the same time for each
training sample. Here, the operator only needs to communicate
to one load to obtain the schedule that it is off for designing
the detector of this load. When the number of training samples
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is large, our approach costs much less in communication and
manpower.

The obtained labels are often partial labels rather than full
labels because a detector often mis-detects the existence of
some loads [52], especially when the consumption of this type
of load is relatively low compared with other loads. Moreover,
a detector of some loads might not be available if no data are
available to design the detector.

III. ENERGY DISAGGREGATION USING PARTIALLY
LABELED AGGREGATE DATA

Our proposed energy disaggregation approach includes of-
fline learning of load patterns of loads from partially labeled
aggregate data and online disaggregation of obtained aggregate
measurements, presented in Sections III-A and III-B, respec-
tively.

A. Offline pattern estimation from recorded data

Given recorded data X̄ , we propose to estimate the patterns
of all types of loads by solving the following optimization
problem.

min
A,D

f(A,D) = ‖X̄ − Σn
i=1DiAi‖2F + Σn

i=1λiΣj:i/∈yj
‖Aj

i‖

+ λDTr(DΘDᵀ) (6)
s.t. ‖dm‖2 ≤ 1, dm ≥ 0,m = 1, · · · ,K (7)

ciAi ≥ 0,∀i (8)

where Di ∈ RT×Ki contains Ki representative time series
for load i in T time instants, and Ai ∈ RKi×N represents the
coefficients of these representative features of load i in all the
N time series in X̄ . Aj

i is the jth column of Ai. K = Σn
i=1Ki.

A = [A1;A2; · · · ;An] ∈ RK×N represents all coefficients.
D =

[
D1, D2, · · · , Dn

]
∈ RT×K represents the dictionary of

all loads. Tr(·) is the trace of a matrix, and Dᵀ is the transpose
of D. λj , and λD are given positive regularization parameters.

The first term ‖X̄−DA‖2F of f(A,D) measures the approx-
imation error to the recorded data X̄ by the learned dictionary
D and the corresponding coefficients A. Σj:i/∈yj

‖Aj
i‖ is the

sum of `2-norm of the coefficients that correspond to load i
over all the training data x̄j that do not have label i in the
partial labels. The intuition is that if load i does not exist in
x̄j , then the vector Aj

i shall be all zero. Since non-labeled
loads may not exist in a given training data, the second term
of f(A,D) promotes the group sparsity of the coefficients of
the non-labeled loads. The parameter λi depends on load i
because the consumption level of loads can be very different.
For instance, in the example shown in Figs. 1 and 2, because
there are three loads, and all training data are labeled as load
3, the second term of (6) can be written as

λ1(‖A1
1‖+ ‖A2

1‖+ ‖A3
1‖+ ‖A4

1‖) + λ2(‖A1
2‖+ ‖A2

2‖+ ‖A3
2‖+ ‖A4

2‖).

The last term of (6) is an incoherence regularization term
such that Di and Dj are different from each other for any
two different loads i and j. To see this, let dm denote the
mth column (dictionary atom) of D. We construct a weight
matrix Θ ∈ RK×K with the entry θmp of the mth row and pth
column being value 1 if and only if dm and dp are not in the

same dictionary Di for any i and 0 otherwise. The incoherence
regularization term is defined as

Tr(DΘDᵀ) = ΣK
m=1ΣK

p=1θmp(dm)ᵀdp. (9)

(9) is zero if and only if dm and dp are orthogonal for every
pair of atoms that are not in the same dictionary Di for some i.
As discussed in Section II-B, the dictionaries of different loads
should be orthogonal to each other to avoid disaggregation
error. Minimizing (9) promotes a discriminative dictionary
such that the load patterns of different loads are as different
as possible.

Besides the normalization constraints of the dictionary
atoms, we also impose non-negative constraints on all dictio-
nary atoms in (7). If load i consumes energy, the corresponding
coefficients Ai should be non-negative. If load i provides
energy, e.g., solar panels, then the corresponding Ai should be
non-positive since all the dictionary atoms are non-negative.
We define constants ci = 1 for all load i that consumes
energy and ci = −1 for all load i that supplies energy. We
add constraints ciAi ≥ 0 for all i in (8) to characterize this
property.

Let D̂ = [D̂1, D̂2, ..., D̂n] and Â = [Â1; Â2; · · · ; Ân]
denote the solution to (6)-(8). Then D̂i includes the represen-
tative features of load i, and Âi are the corresponding coeffi-
cients. For example, the load i component in the jth training
data xj can be estimated by D̂iÂ

j
i . D̂ will be used for online

load disaggregation. Note that D̂ records the representative
features as temporal correlations in T time instants rather than
the energy magnitude. It is thus robust to changes that only
affect the magnitude rather than the pattern. For instance, D̂
remains the same when more PV panels sharing the same
characteristics of power consumption are installed.

Note that our proposed approach in (6)-(8) can tolerate a
small portion of wrong labels, e.g., i ∈ yj when load i does not
exist in x̄j . That is because we do not impose hard constraints
on the labels. The label information is used in the sparse
regularization term in (6), and a certain level of inaccuracy in
the regularization term can be tolerated. We also numerically
verify this property in Section IV-B. Similarly, our approach
can also handle the case that the training samples are fully
labeled, i.e., zj is known for all j, by replacing yj with zj in
(6). In this case, the sparse regularization term in (6) promotes
zero coefficients for load i for any i not in zj . For example, if
n = 3, x̄j contains load 1 and 2 only, i.e., zj = {1, 2}, then the
the regularization is imposed over Aj

3 for load 3. Therefore,
our approach can naturally handle a mixture of training data
with full labels and partial labels.

The problem (6)-(8) is nonconvex, and we solve it by
alternatively updating the estimates of D and A, denoted by
D̂ and Â, respectively. In each alternation, we first fix D̂
and update A. When fixing D̂, the optimization problem is
convex in A and can be solved by any off-the-shelf convex
solvers. We then fix Â and update D. Since the problem is
still nonconvex in D, we update D using projected gradient
descent [53]. There is an inner loop of kmax iterations for a
predetermined constant kmax. In the kth iteration, we update
D using gradient descent, and the step size αk is determined
by “Armijo rule along the projection arc” [54]. This approach
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Algorithm 1 Dictionary Learning From Aggregate Data

1: Input: X̄ , the regularization parameters λi, i =
1, 2, · · · , n, the maximum iteration number tmax for the
outer loop, the maximum iteration number kmax for the
inner loop, the tolerance ε, constants β and σ in (0, 1),
and the initial step size α0.

2: Randomly select Kl samples with partial labels containing
l and normalize them as the initialization of D̂l. Other
D̂l’s are randomly samples from the training data. Â is
initialized as a zero matrix. t = 1, ∆f = fpre = f(Â, D̂)

3: while |∆f | ≥ ε and t < tmax do
4: Keep D̂ fixed, update Â by

Â = arg min
A
f(A, D̂) s.t. ciAi ≥ 0, ∀i

5: k = 1;
6: While k < kmax do
7: αk = αk−1
8: While αk satisfies (12):

αk = αk/β
end while

αk = αkβ
9: While αk does not satisfy (12)

αk = αkβ
end while.

10: Set Dk+1 = [Dk − αk∇f(D)]+
11: k = k + 1;
12: end while
13: D̂ = Dkmax . Then normalize each column of D̂ to be

unit norm.
14: ∆f = f(Â, D̂)− fpre

15: fpre = f(Â, D̂)
16: t = t+ 1
17: end while
18: Output: D̂ and Â.

can guarantee the sufficient decrease of objective function with
a fast searching time of the step size. Specifically, the first-
order and second-order gradients of f(Â,D) with respect to
D are

g1(D) = ∇Df(Â,D)

= −2Σn
l=1(X̄(l) −DÂ(l))(Â(l))ᵀ + 2λDΘ (10)

g2(D) = ∇2
Df(Â,D) = 2Σn

l=1Â
(l)(Â(l))ᵀ + 2λDΘ. (11)

Starting from an initial guess of the step size αk, one contin-
uously multiplies it by either 1/β or β for a predetermined β
in (0, 1) while checking if the condition (12) still holds.

(1-σ)
〈
g1(Dk), D −Dk

〉
+ 1

2

〈
D −Dk, g2(Dk)(D −Dk)

〉
≤ 0

(12)

where D = [Dk − αkg1(Dk)]+, [Z]+ sets all the negative
entries of matrix Z to zero, and 〈·, ·〉 takes the inner product.
Dk is the estimate of dictionary in the kth iteration. αk−1 can
be used as an initial guess of αk [55], and α0 is given. After
kmax iterations, we normalize the columns to be unit norm
and let the result be the current estimate of the dictionary D̂.

For initialization, if there exist some data samples con-
taining load l as partial labels, we pick Kl time series to
initialize Dl. Otherwise, Dl is initialized through randomly
sampling the training data. All coefficients A are initialized to
be zero. We repeat the alternating updates until the change of
the objective function is less than a fixed threshold ε or the
maximum number of steps tmax is achieved. The details of
the algorithm are shown in Algorithm 1.
Kl can be selected by experience or approximated by data.

For example, let X̄(l) contain all the time series that have l
as partial labels. Let σi, i = 1, · · · , T be the singular values
of X̄(l) in the descending order. Kl is determined by

Kl = arg min
r

Σr
i=1σi

ΣT
i=1σi

≥ τ, (13)

τ ∈ (0, 1) is a pre-determined approximation accuracy. If load
i is not labeled in any recorded data, one can set Ki to be the
average of Kl’s of all other loads l.

If τ is small, Kl is small. Each load is presented by
only a few dominate patterns, and it is relatively easier to
distinguish different loads. However, if τ is too small, the
approximation error is large, and Dl does not characterize all
the patterns of load l. Therefore, there is a trade-off between
disaggregation and representation accuracy when selecting τ .
We find in numerical experiments that the performance is not
very sensitive to τ . The disaggregation results are similar when
τ varies in a range reasonably large.

We remark that if the training data contain the pure mea-
surements of some loads (not necessarily all types of loads),
the accuracy of the learned dictionary by our method can
be greatly enhanced. In fact, if every training sample is the
aggregate measurement, the performance can be poor by any
method in the worst case. To see this, consider a simple case
that n = 2, and each of these loads has only one pattern.
If every training sample contains both loads, there is no way
to identify which pattern corresponds to which load by any
method, and the disaggregation will fail. The advantage of our
method is that it does not need to know a prior which training
samples measure one load only and can incorporate these
data to enhance the dictionary learning accuracy naturally. For
example, it handles the case that n = 2 and every training
sample is labeled as “load 1” due to partial labels. In contrast,
conventional dictionary learning methods [21] [35] require
pure measurements for all loads with correct labels.

B. Online disaggregation of real-time aggregate measure-
ments

After receiving the aggregate measurements from T time
steps in real-time, represented by x ∈ RT , one can directly
apply the exiting sparse decomposition method in (5) using the
learned dictionary D̂ = [D̂1, · · · , D̂n] from the offline training
by Algorithm 1. Let ai denote the dictionary coefficients that
correspond to D̂i returned by (5), then load i component in x
is D̂iai.

Here we show that one can further exploit the repetitive
patterns of loads to enhance the disaggregation accuracy.
Individual loads such as solar, industrial, and residential loads
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usually have daily or weekly patterns. Thus, the combination
of loads in x may have appeared in the recorded training
data. Instead of disaggregating with respect to D̂ as (5), one
can disaggregate with respect to some representative load
combinations in the training data to enhance the disaggregation
accuracy. Specifically, we propose to solve

min
w∈Rq

‖x− D̂Ãw‖2 + µ‖w‖1, (14)

where Ã = [Ã1; · · · ; Ãn] ∈ RK×q is a submatrix of Â by
selecting q columns of Â returned by Algorithm 1. The idea
is to select q training samples in X̄ with representative load
combinations and represent x as a sparse combination of these
q samples. Let ŵ be the solution to (14), then the load i
component in x can be estimated by D̂iÃiŵ.

The downsampling scale q is chosen to be around K.
Moreover, we uniformly select Ã from Â such that the load
decomposition coefficients of these q samples are as distinct as
possible to cover a large range of possible load combinations.
(14) is convex and can be solved efficiently by any off-
the-shelf solver. The computational complexity is O(q2T/ε)
where ε is the error tolerance.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluate our method for disaggregating three loads, two
different industrial sites and one solar generation in Sections
IV-B and IV-C. We consider both the case that every load is
labeled in partial data samples (Section IV-B) and the case
that the solar load is not labeled in any data samples (Section
IV-C). In Section IV-D, we also disaggregate one industrial
load and the solar generation, where the solar is not labeled
in the training data. The study in Sections IV-C and IV-D
represents estimating BTM solar from aggregate data.

We employ Algorithm 1 to learn the dictionary D̂ from
the aggregate measurements with partial labels. β = 0.1,
α0 = 10−6, and σ = 0.1. We adjust the parameters λi
(i = 1, 2, 3) such that the returned coefficient matrix Â
is column-sparse. We observe numerically that the solutions
returned by Algorithm 1 are not sensitive to these parameters,
and one can select them from a relatively large range. We
then solve (14) to disaggregate the real-time measurement.
The training time for the following experiments varies from
15 seconds to 30 seconds.6

We compare our method with the following methods: the
conventional dictionary learning with sparse decomposition
(DL-SD) ((3)-(4) for dictionary learning and (5) for load
disaggregation), discriminative disaggregation sparse coding
(DDSC) algorithm [21], and sum-to-k non-negative matrix
factorization (S2K-NMF) [35]. Moreover, since our method
improves over DL-SD in both dictionary learning and dis-
aggregation, to further illustrate the improvement, we add a
comparison with using Algorithm 1 to learn the dictionary
and disaggregating using conventional sparse decomposition
in (5). We abbreviate this approach as PropDL-SD. Note that

6The codes are available at : https://github.com/mengwang6308lab/Energy-
Disaggregation

both DDSC and S2K-NMF require recorded measurements
of individual loads to obtain the dictionary of each load. To
apply DDSC, we utilize the training data that are labeled
as load l to learn D̂l, and the regularization coefficient is
selected to be 0.01. We randomly select training time series
with label l as the dictionary for load l when implementing
S2K-NMF. The weight parameter is set to be 0.05. To reduce
the influence of the random selection of the dictionaries over
the disaggregation performance, the performance of S2K-NMF
is averaged over 100 selections.

We employ various metrics to measure the disaggregation
error. Root Mean square error (RMSE) is a standard method
to compute the estimated errors [35], [56],

RMSEi =

√
ΣN ′

j=1‖x̂
j
i − x

j
i‖22

T ×N ′
. (15)

RMSEi measures the average error of disaggregating load i
from N ′ aggregate testing measurements. x̂ji and xji in RT

represent the estimated and ground-truth values of load i
from the jth testing data, respectively. RMSE relies on the
actual values of the loads. To compare the performance on
different datasets, we also define normalized RMSE (NRMSE)
as follows [30],

NRMSEi =

√√√√ΣN ′
j=1‖x̂

j
i − x

j
i‖22

ΣN ′
j=1‖x

j
i‖22

(16)

References [21], [35] define metrics to measure the average
disaggregation performance of all types of loads, assuming
the load consumptions are all positive. Since we also consider
negative loads such as solar generation, we modify the metric
in [21] and define the Total-Error-Rate (TER) as follows,

TER =
ΣN ′

j=1Σn
i=1 min(‖x̂ji − x

j
i‖1, ‖x

j
i‖1)

ΣN ′
j=1Σn

i=1‖x
j
i‖1

(17)

TER is always less than 1.

B. Disaggregate three loads and every type of load is labeled
in partial training data

1) Datasets: We generate the aggregate measurements of
three loads by adding the individual measurements from the
solar dataset by the National Renewable Energy Laboratory
(NREL) [57] and the data of two different industrial sites in
EnerNOC GreenButton Data [58]. The NREL dataset contains
the solar measurements in one year with a 5-minute resolution.
The EnerNoc dataset has 100 different industrial loads from
different sites and also has a 5-minute resolution. We choose
a time window of eight hours from 8:00 am to 4:00 pm (the
method applies to other time windows as well) in selected 220
days and denoise the raw measurements by Gaussian windows.
We choose two different industry loads from two sites as load
1 and load 2. These three loads are scaled to have a similar
power level. The daily power consumption of load 1 ranges
from 23 MW to 73 MW and load 2 ranges from 39 MW to
74 MW. Load 3 generates power between 4MW and 65 MW.
The measurements of these three loads are added together to
obtain aggregate measurements.
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We first verify that time series of the same type of load
indeed share some common patterns on the solar data within an
8-hour time window in one year in dataset [57]. We use (13) to
determine the approximate rank K of a matrix to approximate
the original data matrix with the desirable accuracy τ . One can
see from Table II that the data indeed share a relatively small
number of common patterns. For example, a rank-15 matrix
can approximate the data with an accuracy of 99%.

Table II: The approximate rank of the solar data of one year with
different approximation accuracy τ

τ 99.00% 98.00% 95.00% 90.00%
K 15 12 9 5

To study the influence of the measurements of individual
loads on the disaggregation performance, we vary the per-
centage of the measurements of pure individual loads, denoted
by γ. γ = 30% means 30% measurements labeled as load 1
(similarly load 2 and 3) contain pure load 1 (or 2 or 3) and
remaining 70% measurements contain other types of loads.
The mixture measurements are equally divided for all possible
combinations of loads, i.e., all loads, loads 1 and 2, loads 1
and 3 when the label is load 1. Note that γ is for the analysis
purpose, and the recovery method does not need γ. We use
120 days of data to generate 360 time series (120 labeled as
load i, i = 1, 2, 3) for training. We then pick data from another
100 days and generate 300 testing cases in the same way. τ
is 0.9 except in Table VI. The downsampling scale q is set as
12, which is much less than N .

Because the training problem is nonconvex, we choose
multiple initializations and run Algorithm 1 to obtain multiple
pairs of D̂ and Â. We pick the best one based on the ap-
proximation error of the training data and coefficient sparsity.
For γ = 70%, 50%, and 30%, the number of initializations
are 100, 500, and 5000, respectively. The same number of
initializations are applied to PropDL-SD and DL-SD for a fair
comparison.

Fig. 3: Disaggregation of three loads (every load type is labeled
in partial training data) Left: disaggregation of load 1. Right:
disaggregation of load 3 (solar)

2) Disaggregation Performance: Fig. 3 shows the dis-
aggregation results of three loads in one testing aggregate
measurement. We only show the results of load 1 and load 3
(solar) due to the space limit. One can see that the estimated
individual load components are very close to the ground-
truth. When γ is large, the estimation performance improves.
That coincides with the intuition that if recorded datasets
include more measurements of individual loads, then the
learned dictionary is more accurate, and the disaggregation

Fig. 4: Disaggregation of three loads (one load not labeled) Left:
aggregate data contain load 1 and load 3. Right: aggregate data
contain all loads

Table III: Disaggregation accuracy of three loads (every load is
labeled in partial training data) when γ = 70%

Method Proposed PropDL-SD DL-SD S2K-NMF DDSC
RMSE1 5.19 8.59 14.04 12.07 23.04
RMSE2 5.62 7.15 11.05 9.82 25.39
RMSE3 4.25 5.91 7.67 9.69 15.45

NRMSE1 14.81% 24.50% 40.05% 34.43% 65.73%
NRMSE2 15.04% 19.14% 29.56% 26.28% 67.92%
NRMSE3 13.70% 19.05% 24.72% 31.25% 49.80%

TER 9.00% 11.98% 19.04% 18.04% 37.87%

performance is improved. The point to note is that our method
performs comparably well when most measurements include
unlabeled loads (see the performance when γ = 30%).

Tables III-V show the comparison of our proposed method
with four other methods mentioned in Section IV-A. All the
results are averaged over 100 test cases. Our method (abbrevi-
ated by “proposed”) has the best disaggregation performance
among all the methods, and the corresponding disaggrega-
tion error is significantly lower than DL-SD, S2K-NMF, and
DDSC. Moreover, the improvement of PropDL-SD over DL-
SD results from our proposed dictionary learning method
in (6)-(8). The improvement of “Proposed” over PropDL-
SD results from our proposed disaggregation method in (14).
When γ increases, the disaggregation performance improves.

3) Impact of parameter selections: In Algorithm 1, the
number of dictionary atoms Kl is estimated by τ in (13).

Table IV: Disaggregation accuracy of three loads (every load is
labeled in partial training data) when γ = 50%

Method Proposed PropDL-SD DL-SD S2K-NMF DDSC
RMSE1 7.52 9.33 14.22 16.26 23.31
RMSE2 6.16 7.55 15.50 14.24 24.76
RMSE3 7.30 10.04 20.29 15.62 18.51

NRMSE1 19.50% 24.20% 36.88% 42.17% 60.45%
NRMSE2 15.08% 18.47% 37.92% 34.84% 60.56%
NRMSE3 21.65% 29.78% 60.19% 46.34% 54.90%

TER 10.84% 12.30% 25.56% 26.93% 39.24%

Table V: Disaggregation accuracy of three loads (every load is
labeled in partial training data) when γ = 30%

Method Proposed PropDL-SD DL-SD S2K-NMF DDSC
RMSE1 11.46 12.72 24.90 20.23 23.67
RMSE2 9.05 11.10 17.41 21.46 23.38
RMSE3 12.06 16.37 22.13 22.38 23.93

NRMSE1 27.30% 30.30% 59.34% 48.21% 56.41%
NRMSE2 20.68% 25.36% 39.77% 49.01% 53.40%
NRMSE3 32.95% 44.73% 60.44% 61.13% 65.36%

TER 15.15% 17.88% 38.83% 37.08% 46.05%
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Table VI: The influences of τ on the selected rank K1,K2,K3 and
the corresponding TER when γ = 70%

τ 0.96 0.93 0.9 0.87 0.84 0.78
K1 5 4 3 3 2 2
K2 6 5 4 3 3 2
K3 7 5 4 4 3 3

TER 10.77% 10.67% 9.00% 10.24% 11.66% 14.76%

Table VII: The influence of λD on TER when γ = 30%

λD 0 400 800 1200 1600
TER 20.05% 19.01% 17.70% 16.78% 16.43%
λD 2000 2400 2800 3200 3600
TER 16.06% 16.07% 15.60% 15.15% 15.24%

Table VIII: The influences of λ1 on TER when γ = 50%

λ1 0 0.000001 0.00001 0.0001 0.001 0.01
TER 23.75% 20.46% 15.77% 14.08% 11.25% 16.63%

We learn various dictionaries by varying τ and compare the
TER of the disaggregation results in Table VI. One can see
that the result is not sensitive when τ changes from 0.96 to
0.87. When τ is less than 0.84, two or three dictionary atoms
are not sufficient to represent corresponding loads, and the
performance degrades.

Table VII shows the impact of varying λD while fixing other
parameters. One can see that adding an incoherence penalty
indeed reduces the testing error by about 5%, and λD can be
selected from a wide range.

We also investigate the influence of the column-sparsity
regularization. Table VIII shows the disaggregation result of
varying λ1 while fixing both λ2 and λ3 as 0.0003. One can
see that a nonzero λ1 decreases the disaggregation error. That
indicates the effectiveness of column-sparsity regularization.
Moreover, λ1 can be selected in a wide range.

4) Impact of inaccurate labels: We next study the influence
of inaccurate labels on the disaggregation performance. We
consider the case that γ = 70%. We vary the percentage of
wrong labels, denoted by β. Specifically, β = 10% means
that 10% of data labeled as load 1 are actually pure load
2 measurements; 10% of data labeled as load 2 are actually
pure load 1 measurements; 10% of data labeled as load 3 are
actually pure load 1 measurements. The disaggregation results
are shown in Table XI. Compared with the first column of
Table XI, one can see that the performance degrades only
slightly when β increases. Our method is robust to a small
portion of wrong labels and still obtains reasonable results.

Table IX: Disaggregation of three loads (solar load not labeled) when
γ = 50%

Method Proposed Prop-15min PropDL-SD DL-SD
RMSE1 8.27 9.30 10.38 21.32
RMSE2 10.09 11.76 11.15 47.72
RMSE3 8.52 9.39 12.55 44.71

NRMSE1 19.12% 21.62% 23.99% 49.27%
NRMSE2 22.64% 26.47% 25.02% 107.07%
NRMSE3 33.05% 36.44% 48.69% 173.40%

TER 15.47% 17.53% 19.55% 43.44%

Table X: Disaggregation of two loads (solar load not labeled) when
γ = 50%

Method Proposed Proposed 15min Proposed-SD DL-SD
RMSE1 4.65 4.66 4.85 15.01
RMSE2 4.54 4.56 4.81 15.00

NRMSE1 17.39% 17.44% 18.16% 56.16%
NRMSE2 45.63% 45.86% 48.31% 150.67%

TER 15.90% 17.76% 19.25% 45.48%

Table XI: The disaggregation results of three loads when γ = 70%
with different percentage of wrong labels.

% of wrong labels (β) 0% 5% 10% 15%
RMSE1 5.19 6.76 7.62 7.04
RMSE2 5.62 5.88 6.10 7.13
RMSE3 4.25 6.12 6.30 9.19

NRMSE1 14.81% 19.29% 21.73% 20.08%
NRMSE2 15.04% 15.73% 16.31% 19.09%
NRMSE3 13.70% 19.73% 20.31% 29.63%

TER 9.00% 10.26% 11.22% 13.36%

C. Disaggregate three loads and one load is not labeled

1) Datasets: The training and testing data are obtained by
removing all the samples with the label “load 3” from the
datasets used in Section IV-B. Then load 3 is not labeled in
any training data. This is more challenging to disaggregate
than that in Section IV-B. To study the dependence of our
method on the time resolution of datasets, we also downsample
all the training and testing data from 5 minutes per sample to
15 minutes per sample and evaluate our method on these cases
separately. The number of initializations is 8000.

2) Disaggregation Performance: Fig. 4 shows the disag-
gregation results of three loads when load 3 is not labeled
in any training data. The left figure corresponds to a testing
time series that contains load 1 and load 3. The right figure
corresponds to a testing time series that contains all loads. One
can see that the estimated consumptions of individual loads are
close to the corresponding ground-truth values.

Table IX shows the comparison with DL-SD and PropDL-
SD. Because the solar load is not labeled, S2K-NMF and
DDSC do not apply here. The performance of our method
degrades slightly compared with that in Table IV. That is
because it is challenging to detect the existence of solar and
learn its patterns. Still, our method is able to disaggregate
the solar generation with a reasonable accuracy. The existing
methods either fail (S2K-NMF and DDSC) or have much more
significant error (DL-SD). Table IX also compares our method
on 5-minute resolution and 15-minute resolution datasets.
The performance degrades slightly when the time resolution
becomes lower. Therefore, our method is not sensitive to the
time resolution.

D. Disaggregate two loads and one load is not labeled

1) Dataset: We have the aggregate measurements of indus-
trial loads (a steel factory) and solar loads at one substation
from Lianyungang, Jiangsu, China for one year in 2017 at a
5-minute resolution. That industrial load exists all the time and
the power consumption is significantly higher than the output
of the solar panels. Since the ground-truth disaggregation of
these two loads are unknown, we pick a window of 8 hours
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from 8 pm to 4 am when only the industrial load exists and
add this industrial load data to the solar data in [57] to obtain
the aggregate data. The time window for the solar data is
from 8:00 am to 4:00 pm. Specifically, we pick six typical
solar patterns from [57]. Given a time series of the industrial
load, we randomly select three solar patterns, multiply each
pattern by a random value uniformly selected from 0.1 to 0.9,
and add them together to obtain the aggregate measurements.
The industrial load ranges from 9 to 45 MW, and the solar
generation lies in the range of 5-30 MW. The aggregate power
consumption is always positive at any time. 120 time series
are used for learning, and another 120 time series are used for
testing. γ = 50%. τ is set as 0.9. The number of initializations
is 2000.

Fig. 5: The disaggregation results of industrial load only (left) and
mixed loads (right)

Table X shows the average disaggregation performance
on the testing data. S2K-NMF and DDSC do not apply
here. Similar to the results in Table IX on three loads with
unlabeled solar generation, here our proposed method also
outperforms PropDL-SD and DL-SD and is robust to different
time resolutions of the datasets.

Fig. 5 shows two examples of load disaggregation. The time
window is 8 am to 4pm as that of the solar data. The left case
only has the industrial load, and the estimated solar generation
is close to zero. The right case has both the industrial load and
the solar generation in the aggregate measurements, and the
disaggregation results are close to the ground-truth values.

V. CONCLUSIONS

Load disaggregation at substations is an increasingly impor-
tant problem for system planning and real-time operation with
the integration of the renewable energy. The measurements
at a substation are highly aggregated, and the existence of
certain loads such as solar generations during a specific time
is sometimes unknown. This paper formulated the problem
of load disaggregation with partially labeled aggregate data
and proposed a real-time disaggregation method that includes
offline dictionary learning and online load decomposition. Our
method can disaggregate behind-the-meter solar generations
without any model of the solar generation and achieve a small
disaggregation error.

Based on the proposed framework, we are interested to
disaggregate more loads of other types, such as wind power,
electric vehicles, and residential loads, in the future. The
energy storage systems in distribution systems may further
challenge the disaggregation problem, which is also beneficial

to investigate. We are also investigating the case that the partial
labels contain errors, and the disaggregation method should
correct the wrong labels when separating the loads.
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