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Abstract—To enhance reliability and observability, power
systems in North America have installed a significant number of
Phasor Measurement Units (PMUs) to monitor dynamic behav-
iors. For real-time applications, the PMU data are streamed via
the Internet from the substations to the phasor data concentra-
tors, in the control centers. The transmission of the PMU data
however, is not always reliable and can be subjected to qual-
ity issues and losses due to latency and equipment malfunctions.
In this paper, a temporal version of the OnLine Algorithm for
PMU data processing (OLAP) is proposed to recover the missing
data. The algorithm is geared toward prolonged data outages
and especially signals exhibiting significant temporal patterns.
The method is connected to adaptive filtering and a necessary
stability criterion for the algorithm is derived.The method is
compared against several low rank and streaming data recovery
methods to evaluate its effectiveness.

Index Terms—Synchrophasor, PMU, low rank recovery, adap-
tive filtering, OLAP.

I. INTRODUCTION

HE INCREASING adaptation of PMU technologies
Tacross the Northern American power systems has pro-
vided valuable observability into the dynamics of the grid.
This presents numerous opportunities for novel control room
tools and applications, which enhance the wide area control
capabilities of the grid and the operator’s situational aware-
ness. For an overview of such applications the interested
reader can refer to [1], [2]. PMU applications rely on the time
synchronization of the data and the high sampling rate that
allows relevant system dynamics to be observable. Application
such as dynamical state estimation [3], [4] and modal analy-
sis [5], [6] offer opportunities for more efficient operation and
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analysis of the grid, but can be significantly hindered if there
are significant amounts of missing data from the phasor data
streams.

Missing PMU measurements can be a consequence of
equipment malfunction or the more commonly, network
latency. Data transmission and collection is typically done in
a hierarchical manner. The PMU data collected from a substa-
tion are transmitted to a local Phasor Data Concentrator (PDC)
owned by a transmission company. The collected data are then
sent as a single stream to the regional PDC at the independent
system operator (ISO) level. Such multi-stage transmission
incurs potentially high latency. In order for the high sampling
rate of the PMUs to be relevant in real time applications, a
measurement is transmitted further up the commutation chain
if it is received within a predetermined time window. If not,
the data point is deemed as missing and the remainder is sent
to the regional PDC.

Recognizing the need for high-quality PMU datasets, many
researchers have proposed algorithms for synchrophasor miss-
ing data recovery. In [3] the authors incorporate the data recov-
ery problem in the dynamic state estimator. This approach uses
an Extended Kalman Filter that incorporates the data outage
in the model, such that the problem is transformed to a nonlin-
ear constrained optimization, and is solved by metaheuristics.
In [7] the authors utilize Kalman filtering and smoothing and
incorporate a quadratic predictor, to provide recovery of the
missing data. Learning methods such as neural networks and
ensemble learning appear to attract much attention in PMU
recovery literature. In [8] the problem is tackled utilizing
Gated Recurrent Neural Networks to predict the future states.
In [9] graph convolutional recurrent layers, embedding the
power network structure into the neural network, are utilized
to recover missing data, exploiting spatial and temporal pat-
terns in the data. In [10] generative adversarial learning is
utilized to train a generator network that produces data with
the same distribution as the PMU data, to fill in missing mea-
surements. In [11] author utilized random vector functional
link models, with extreme learning machines, to predict and
validate missing measurements, prior to performing dynamic
stability assessment. In contrast, the method proposed in this
paper requires no offline training and can effectively adapt
to changing grid dynamics. In [12] the authors formulate the
low-rank matrix recovery problem and solve it utilizing the
Alternating Direction Method of Multipliers which can be
parallelized and thus is scalable. In addition, they investi-
gate simultaneous missing points across all PMU channels
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and propose an Order and Cut-Column Reshaping Method.
In [13] the authors utilize Bayesian estimation in conjunction
to the matrix completion formulation for effective recovery
of distribution level synchrophasor data. These methods have
high computation burdens and thus not suitable for real time.
Finally, in [14] block matrix recovery is applied to PMU data
by utilizing nonlinear Hankel structures. The method seems
to perform well especially during disturbances, but is geared
towards processing smaller time windows.

In [15] a spatial OnLine Algorithm for PMU data pro-
cessing (denoted as OLAP-s) has been proposed, based on
low-rank matrix completion ideas such as the Singular Value
Thresholding (SVT) method [16]. Given a matrix with incom-
plete data, low-rank matrix methods aim to recover a full
matrix, retaining the same known elements, but with the min-
imum possible rank. However, the exact matrix recovery with
minimal rank problem is NP-hard. Methods such as the SVT
introduce convex relaxations to make the solution tractable.
OLAP-s translates these concepts in an implementation geared
towards online application, being light weight, efficient and
aiming to exploit patterns present in the PMU data. In con-
trast to other established streaming subspace methods such as
GROUSE [17] and PETRELS [18], the threshold of OLAP-
s is used to adapt the rank of the subspace used for data
recovery. In this paper, we adapt the OLAP-s method to a
temporal OLAP method, called OLAP-t, by reformulating the
method, to exploit time response patterns as captured in the
temporal subspace of the data matrix. This allows efficient
recovery of irregular periodic events and even total outage of
PMU streams can be overcome for short periods of time. An
advantage of the OLAP-t is that although temporal charac-
teristics are exploited, spatial relationships are still implicitly
captured by the dominant temporal features. Another highlight
of the OLAP algorithms is their speed. Since no iterations are
necessary, the method is suitable for real time.

The remainder of the paper is organized as follows.
Section II contains descriptions of the OLAP method.
Section III discusses the OLAP-t’s connection to filtering and
provides a stability condition and a detailed parameter sen-
sitivity analysis. In Section IV the performance of OLAP in
ambient, post disturbance and oscillatory events as captured
in real PMU data, will be presented and discussed.

II. Low-RANK DATA RECOVERY AND OLAP

This section describes the motivation of low-rank miss-
ing data recovery methods and their connection to OLAP
[15], [16]. We initially start by defining the matrix of PMU
data with dimensions p x m, where p denotes the number of
samples contained in a data window and m denotes the number
of channels. That is, each row corresponds to measurements
from the channels captured at the same time stamp as deter-
mined by the GPS clock. To assemble the data matrix we
define

Yk—p+1,j

Yk—p+2,j
= M

Yk.j
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This vector contains the measurements of the j” channel from
time k — p + 1 to time k (p data points). We can assemble
these vectors as to form a data matrix

My = [ou1 e | (2)

Unless otherwise stated, it is assumed that the Mj; matrix
has missing data. In this work, the matrices to be recov-
ered will be comprised by voltage and current measurements.
Phasor measurements, by nature, present low rank patterns.
The power system, although it is subject to non-linearities,
tends to present much lower rank behaviors (strong correla-
tion). Voltages and currents are implicitly connected through
circuit equations, thus the PMU data usually have much lower
numerical ranks than the full rank of the measurement matrix.
Thus, low rank matrix recovery approaches are an appropriate
choice when tackling such datasets.

Ok,2

A. The Temporal OLAP Algorithm

The OLAP-s algorithm proposed in [15] is a light-
weight real-time missing data recovery method, designed
specifically for PMU data processing. While other missing
data recovery methods that operate in real-time (such as
GROUSE [17], PETRELS [18], and MOUSSE [19]), assume a
fixed-dimension subspace, the dimension of the subspace can
change based on the dynamics of the dataset, which dictate the
effective numerical rank. OLAP-s tracks the dimensionality of
the matrix being recovered by updating the dominant singular
vectors of the matrix at every new sampling time.

For a description of the original OLAP, a reader can refer
to [15]. The following algorithm has close connections to the
original algorithm which will be highlighted. For the proposed
temporal extension (OLAP-t), it is also assumed that there are
no missing data points in the initialization. The initialization is
accomplished by performing a Singular Value Decomposition
(SVD) on an initial data matrix My € RP*™, with p being the
length of the sliding window of data specified by the user, as

My =UxvVT (3)

where U € RP*P and V € R™™ are unitary matrices, with
VT the transpose of V, and = € RP*™ is the diagonal singular
value matrix. The initialization algorithm then keeps only the
dominant singular values which are greater than yerr X 01, with
o1 the largest singular value of My, and yerr € [0, 1] a threshold
of relative approximation error set by the user. This process
is equivalent to performing a low-rank matrix approximation
of My

My =uz (v’ (4)

by truncating the matrix My to a specific rank r. An important
observation is that the left singular vectors in U” represent the
temporal variation of the data and the right singular vectors
in V" represent the spatial relationship between the different
PMU channels. Once initialized, as each new set of sample
points is received, the OLAP-t algorithm, with M} being the
most current data matrix, proceeds with the following steps:
1) Receive the new data as a row vector 8 € R!*” which
may contain missing points to be recovered.
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2) Compute By and VY, with W the index of the observed
entries. Thus By is the B vector without its missing
entries, and U, is the U" matrix without the rows
corresponding to the indices of W.

3) Use the least-squares method to find x such that Ujx —
By is minimized.

4) Compute the missing data entries using Uy,.x, with Uy,
the dominant singular vector matrix for erasures. Form
the new row ,é by filling in 8 with the missing data.

5) Update M; by dropping the oldest data row and adding
the newly computed row B and denotes the new data
matrix as Mp41.

6) Perform SVD of the updated My matrix.

7) Update U" to the dominant singular vectors correspond-
ing to singular values above yerr X 01, with o7 the largest
singular value of the new matrix M. Return to Step 1.

Thus the OLAP-t algorithm fills in the missing data points
by using the temporal information in the left singular vec-
tors U. It operates in real-time, efficiently updating the sliding
window of data at every new sampling instant, filling in miss-
ing data points and updating the dominant singular values of
the subspace being considered. The parameters to be chosen
are the sliding window length (p) and the numerical rank
threshold yerr, which allow this algorithm to capture events
with time varying dynamics, making the algorithm more accu-
rate during disturbances, when abrupt rank changes occur. To
highlight the differences with OLAP-s, the algorithm can be
summarized as

1) Fort=1,2,3...do

2) Receive new data B € C”*! with erasures

3) Compute u* = argmin, ||V}, u — By |l2

4) Estimate missing entries from VIZ u*

OLAP-s recovers the missing entries in the row of incoming
measurements from the existing values (8y,) by minimizing the
Frobenius norm between the linear combination of the first
r columns and rows ¥ (rows with complete data). OLAP-s
specifically exploits the spatial patterns in the data (corre-
lation) to estimate the missing points in the measurements.
The method demonstrated very good performance in distur-
bance and ambient data, but can face issues in complete spatial
information outage (no measurements in a time step) and when
long temporal patterns are present in the data but due to the
use of only the V matrix, may not be captured.

III. THE TEMPORAL OLAP AS A FILTER

The process developed in Section II also describes an
AutoRegressive (AR) process where each of the past mea-
surements in the window, is linearly combined to produce the
estimate. From the previous formulation, it is evident that the
only possible row that a missing entry can exist is the lat-
est row of measurements. Thus we partition U € CP*" as
mentioned in the previous section

U
U= [Uz Uo] 5)

where Uy € CP*"~" denotes the less significant singular vec-
tors, and Uy € C'*" is the last row of the first r left singular
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vectors. U € CP~1*" captures the one-step back temporal sin-
gular vectors (corresponding to known measurements). If the
p — | past measurements in step k are

Yk—p+1
Y= : (6)
Yk—1
then

% =a(UlToy) Ul )

Thus OLAP solves a least-squares minimization problem with
a closed from solution as seen in (7). So there are clearly
defined coefficients, mapping all the previous measurements
in the estimate. These coefficients are calculated as

c=(UTU) Ul =[c1 e ... ¢pi] ®)

The missing data recovery can be obtained from the prediction
equation

Yk = ClYk—p+1 + = + Cp—1Vk—1 )

The predictions will be utilized to fill in potential missing data
in the synchrophasor measurements. Compared to a simple
AR process used for prediction based on past measurements,
OLAP-t exploits the low-rank temporal behavior of the mea-
surement matrix (i.e., the system). As a result, the algorithm
has increased robustness to handle high noise levels while
being sensitive enough to rank changes, due to the time-
varying subspace being considered. This makes the filter fast
in adapting to system dynamics while keeping a high level of
recovery accuracy.

A. Filter Stability Bound

Because OLAP-t can be formulated as a filter, this section
provides an initial stability bound that can serve as an indi-
cation of potential instability. From the singular value decom-
position the U matrix is orthonormal, implying ||Uz||2 < 1.
Using the identity and using the partitioning of the U matrix
introduced beforehand the following holds

T
U1 U] T1:/T Ul T T
<U2> <U2> == (Ui) (g, ) = Vit + U U2
(10)
it follows that
ulu,=1-Ulu, (11)

The right hand side of (11) is an identity matrix minus a
rank one matrix. The inverse of this matrix has a closed form
solution

—1 T
(I-U0)" =1+ ———USU, (12)
) 1— U113
So the coefficients ¢ in (8) take the form of
1
! (13)

c= ———— VU]
1—[|U2]13

Due to the nonlinear structure of the filter, only some basic
BIBO criteria can be derived. Assuming that all the previous

Authorized licensed use limited to: Rensselaer Polytechnic Institute. Downloaded on June 27,2021 at 21:56:55 UTC from IEEE Xplore. Restrictions apply.



4324

3 103 : . .
Lo
@
Ee}
3
é 1.025
>
L)
&
£ 10 : . : :
> 30 35 40 45 50 55 60
Time (s) Instability
06 T T
E04
(=]
Z
S 02
O i i 1 A 1
30 35 40 45 50 55 60
Time (s)
Fig. 1. Filter Instability and ||Uz]|; .

measurements are present and that they are bounded, the
estimate has an upper bound (for channel j)

[9kjlloe = llelli max [[¥jloo (14)

where Y; is the column j of Y containing the channel’s past
measurements. L.e., the maximum value of any prediction pro-
duced by the filter is upper bounded by the maximum value
present in the past measurements, stretched by the 1st norm
of the coefficient vector. So, ¢ acts as a gain that maps past
measurements in the estimate: if the norm ¢ remains bounded,
stability can be guaranteed. However, we also can derive a
closed form expression for ||c||% as

2
1
llel3 = ec” = | —— ) v,uTu,ul
1 —|U2l13
1
= U (I -U)U]
2 2 2
(1=11U21B3)
1U2113
= ——2 (15)
L — U213

For stability ||c||; < 1 is needed, thus also ||c|]» < 1 is
implied. This provides a limit of ||U3||> < 1/«/5. Fig. 1 shows
an unstable case of recovery, and the corresponding magnitude
of ||U>]|> is presented. The results indicate that the condition
is necessary but not sufficient.

B. Threshold Sensitivity Analysis and Stability

The effective (numerical) rank of the approximation is deter-
mined by the rank threshold y,,-. A singular value less than
Yerr 18 considered as zero. The threshold needed for each PMU
signal recovered might differ based on the magnitudes of the
signal. An effective way to make the threshold more robust
is normalization of the data, so the magnitudes remain in a
consistent range. In addition, y,, gives us a sense of the
expected error of the approximation of the recovered data.
The sensitivity is dictated mainly by three factors: dynamics in
the dataset (events happening in the examined window, imply
higher rank), preprocessing and normalization of data, and the
length of the window. In ambient conditions, the rank is usu-
ally robust because most of the low frequency dynamics (slow
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load and generation movement) are captured in the first few
eigenvectors of the subspace. However, the situation changes
if disturbances occur in the examined window. Consider the
event depicted in Fig. 6. During the event, the less significant
singular values, will increase. In Fig. 2 shows the numerical
rank for different threshold values.

The selection of the threshold is illustrated by Fig. 3. For
a threshold of 0.1 (top plot), ||Uz||> is small and the filter
is stable, while there may be some compromise in the accu-
racy of the recovered data. For a threshold of 0.0001 (bottom
plot), the filter becomes unstable, as shown in Fig. 1. In this
investigation, the threshold of 0.001 seems to be quite optimal.

The analysis in Fig. 3 uses 100 data point windows.
However, when selecting yery and window length simultane-
ously, additional considerations are required. Fig. 4, depicts
the maximum absolute error, for different window sizes and
threshold values. The maximum absolute error was chosen to
depict the worst case error.

In Fig. 4, the errors were plotted from a tolerance of 0.00001
to 0.1, since the filters become unstable with smaller toler-
ances. The dataset used for this test is a capacitor switching
event (presence of abrupt change of rank). As one can note,
shorter windows achieve in general lower errors if the thresh-
old is tuned accordingly. Fig. 4 indicates that the lowest
recovery error can be achieved using a tolerance between 0.001
and 0.01, and a data window of 50 to 100 points.
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Finally, subtraction of means from the data was examined.
DC biases (i.e., nominal values) in normalized PMU data are
around 1 pu for voltages and up to 10 pu for current. The
presence of such moderate values does not cause rank deter-
mination issues even for ambient signals, with variations of
typically 1 to 5%. The numerical rank determination was the
same with or without the biases.

IV. TESTING ON PMU DATA

The OLAP-t algorithm has been applied to a large number
of PMU data sets. For discussion purposes, these PMU sig-
nals are divided into four categories. Note that the number of
channels (PMUs) analyzed is 139 in the first three cases and
39 in the last. The PMU data reporting rate is 30 Hz.

A. Ambient Condition Testing

Ambient conditions refer to a power system operating with-
out large disruptions, such as a generator trip. Over 90% of
the PMU data are ambient data. Random isolated measure-
ment outages are a common occurrence but hardly challenging
for most data recovery methods. However, long windows of
consecutive missing points can be a more appropriate and
illustrative way to evaluate a recovery algorithm. In order

4325

TABLE I
ERROR FOR INCREASING CONSECUTIVE POINT OUTAGES

Consecutive SROM N}Izean Mean Abs. Missing Max Abs.

Points Drop qua(li(ev) T Error (kV) Data (%) Error (kV)
10 0.0452 0.0334 65.47 0.4251
20 0.0469 0.035 65.12 0.5417
30 0.0402 0.0562 65.31 0.5122
40 0.0394 0.0534 64.98 0.4923
50 0.0437 0.0611 65.33 0.3950
100 0.0476 0.0647 64.38 0.5104
200 0.0703 0.1093 64.20 0.485

TABLE II

AMBIENT CASE COMPARISON OF MEAN ABSOLUTE ERROR IN KV FOR
INCREASING CONSECUTIVE POINT OUTAGES (12% MISSING DATA)

Consecutive

. OLAP-t OLAP-s PETRELS GROUSE SVT
Points Drop
5 0.0301 0.0298 0.0305 0.2321 0.0350
20 0.0301 0.0297 0.0308 0.3625 0.0355
100 0.0306 0.0302 0.0314 0.2342 0.0377
TABLE III

AMBIENT CASE COMPARISON OF MEAN ABSOLUTE ERROR IN KV FOR
INCREASING CONSECUTIVE POINT OUTAGES (30% MISSING DATA)

Consecutive

. OLAP-t OLAP-s PETRELS GROUSE SVT
Points Drop
5 0.0312 0.0309 0.0322 0.1817 0.0351
20 0.0315 0.0312 0.0320 0.1554 0.0358
100 0.0327 0.0324 0.0334 0.1384 0.1858
TABLE IV

AMBIENT CASE COMPARISON OF MEAN ABSOLUTE ERROR IN KV FOR
INCREASING CONSECUTIVE POINT OUTAGES (50% MISSING DATA)

Consecutive )y \p OLAP.s PETRELS GROUSE  SVT
Points Drop
5 00323 0.0320 0.0337 02148 0.0351
20 00329  0.0326 0.0336 0.1547  0.0359
100 0.0345  0.0342 0.0356 0.1840  0.0825

to demonstrate the effectiveness of OLAP-t, random outages
will be introduced in the data, with increasing length. For the
first test, the window of OLAP-t is set to 200 measurement
points, the probability of occurrence to 10% and the consec-
utive points lost to 10. The introduced missing points were
65.72% of the total measurements in the dataset. Fig. 5 shows
the data recovery for the ambient case. One of the challenges
of such cases is that quantization, as the recovery produces
only a smoothed version of the signal. This, however, will
increase the error metrics as presented in Table I. So, the errors
cannot be attributed to failure of OLAP to recover the sig-
nals. The errors across all considered cases are kept to below
0.01 pu (345 kV voltage base) even for prolonged outages.

In order to assess the effectiveness of OLAP-t, the results
will be compared in the same data set against the original
OLAP-s, PETRELS and GROUSE. In addition, the well-
known SVT algorithm will be used as a base line. Note that,
SVT is normally not meant for streaming recovery, so the data
are segmented into 500 (optimal recovery after testing param-
eters) time step blocks and then recovered individually. For
the test, we increase the chance of outage occurrence from
10-50% and for 5, 20 and 100 consecutive drops.
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TABLE V
AMBIENT CASE: COMPARISON OF AVERAGE COMPUTATION TIME PER
WINDOW IN MS FOR INCREASING CONSECUTIVE POINT OUTAGES

Missing )y Ap.t OLAP-s PETRELS GROUSE SVT
Data (%)
2 18840 23772 35.6210 22057 1455313
30 20288 23731 37.7949 22087 207.8846
50 21331 23747 34.2083 22441 2947143

GROUSE in general seems to have the highest error among
the compared methods. On the other hand, PETRELS seems
to have considerably lower error and is comparable with the
SVT, OLAP-s and OLAP-t. Note also that in this dataset,
there is a window of 3 data points that none of the meth-
ods aside from OLAP-t recovered. The reason is that all the
compared methods require at least 1 measurement present in
a time step to produce an estimate. Since, no ground truth was
available the errors were not considered in the above calcula-
tions. However, this highlights the usefulness of OLAP-t, as it
overcomes the shortcoming of methods with similar recovery
philosophies and avoids the potential need to switch methods
if such cases occur. The next issue is computation time, which
is summarized in Table V. OLAP-t is the fastest in average
processing time, recovering each window within around 2 ms.
PETRELS has the same accuracy, but takes 17 times as much
computation to produce comparable results. GROUSE on the
other hand, has comparable speed but lacks the same accu-
racy level. Most methods do not present significant increase
in computation time with the number of outages. These tests
were performed on a PC with an Intel i7 CPU at 3.6 GHz and
32 GB of RAM.

B. Post Disturbance Recovery

As a second case, the recovery of missing data right after
a capacitor switching event will be examined. This case is of
particular interest, since some methods face difficulties with
abrupt changes in the signal. In Fig. 6 the voltage profile
after the event and the recovery results can be noted. It is
worth pointing out that the missing points were not artificially
introduced but were already present in the original data set.
The recovered signal can be noted in red and the original in
blue. The recovery result for OLAP-t was successful since the
response is still low rank and captured in the temporal singular
vectors.

For the same dataset, similar randomized drop testing can
be performed. In this case, the introduced number of outages
is limited to 5 points with increasing chance of occurrence. As
shown in Table VI, OLAP-t performs well against the other
methods. The relative errors remain about the same with the
ambient dataset tests, with GROUSE having the highest errors.
The errors on average tend to increase with the percentage
of missing data. OLAP-t seems to have the smallest increase
across all the methods (except SVT which remains roughly
constant).

C. Recovery of Signal With Irregular Periodicity

In this section, oscillatory and periodic events will be used
to evaluate the OLAP-t algorithm. Initially, an event that was
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TABLE VI
SWITCHING EVENT COMPARISON OF MEAN ABSOLUTE ERROR IN KV
FOR INCREASING CONSECUTIVE POINT OUTAGES

Missing -~ (; Ap.t OLAP-s PETRELS GROUSE SVT
Data( %)
10 0.0406  0.0386 0.0446 02077 0.0769
20 0.0418  0.0401 0.0469 02092  0.0773
30 0.0428  0.0421 0.0488 02042  0.0773
40 0.0440  0.0453 0.0501 02325 00772
50 0.0452  0.0496 0.0524 02132 0.0771

examined in [20] will be presented to illustrate the capabili-
ties of OLAP-t in recovering signals with periodic behavior.
The voltage profiles during the event can be noted in Fig. 7.
The examined channel is the one indicated in red. The same
behavior was observed in a few other channels but with smaller
amplitude variation. The channels with similar oscillatory pat-
terns were highlighted in magenta. In Fig. 7 the artificial
outage of 5 seconds is indicated. The outage was introduced
at the second period of the oscillation event with the intention
of recovering the periodic pattern. Fig. 8 shows the recovery
of the data outage for increasing window sizes of OLAP-t.
The recovery can be deemed successful with windows far
less than the period of the oscillation event (around 600 data
points). However, smaller windows required more tuning of
the threshold parameter to produce satisfactory results, while
the window sizes of 400 or more points seemed to be more
robust towards small threshold variations. Smaller windows
usually result in features of the signals to be captured at higher
rank SVs thus increasing the threshold sensitivity. In general,
due to the low rankness of the event, i.e., the correlated behav-
ior of the voltages in the system, there is enough information
from the left singular vectors to recreate the major temporal
behavior of the signal. The reconstruction also has two addi-
tional characteristics. Initially, the recovered data appear to be
smoother, since the noise subspace of the signals is discarded
and second, there is an one-sample lag in the reconstruction,
which can be rectified in post-processing.

D. Recovery of Data With Prolonged Outages: Forced
Oscillation Event

Further testing was performed on signals exhibiting forced
oscillatory signatures. These signals, however, did not exhibit
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such irregular patterns as the signal in Fig. 7 and are much
closer to sinusoids. The event used for testing, is a Forced
Oscillation (FO) event as recorded by the PMUs across the
New England (NE) power system. The event persisted for over
5 minutes and had a modal component around 1 Hz. The focus
of this test will be prolonged and simultaneous outages across
numerous channels. This is an illustrative way to stress test
the ability of OLAP-t to reproduce the temporal patterns in
the data, when significant portions are missing. In the fol-
lowing plots, the recovered signals are depicted by magenta
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Fig. 9. Voltage Magnitude 1000-Point Outage: 1 Hz Case, 1 Channel Outage,
10sec. Segment.
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Fig. 10. Voltage Magnitude 1000-Point Outage: 1 Hz Case, 20 Channels
Outage, 10 sec. Segment.

dashed lines. For this section, 1000 data points will be dropped
for a single and then for 20 channels (approximately 50% of
available 345 kV channels).

In order to have a better appreciation of the recovery, in
Fig. 9 a 10 sec. segment is presented. The recovery is almost
exact for most of the missing points. The deviations from
the ground truth are observed at the extrema of the oscilla-
tion, where OLAP-t seems to slightly overshoot. However,
the errors are small compared to the amount of temporal
information that was preserved.

Similarly, for the multiple channel drop case, three channels
out of the 20 affected are shown in Fig. 10. Once again, the
results seems to be very close to the original with a very small
DC bias observed (less than 0.01 kV on average).

As it can be noted in Fig. 11, voltage angle reconstruction
is even better, with almost exact recovery. For current magni-
tudes the results can be noted in Fig. 12. The recovery is of
comparable accuracy to that of the voltages. For all the test
cases presented, the window used for recovery is 300 points
or 10 seconds of data. In general, the results involving volt-
age magnitudes and angles did not seem to pose any issues
for OLAP-t and the recovery was successful across. The algo-
rithm seemed to face some slight issues for prolonged current
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angle outages. In the sequel, a discussion on the recovery of
current angles and magnitudes cases will be presented.

For the one channel outage of current magnitudes as it can
be noted in Fig. 12 the recovery has very small errors, how-
ever, the characteristic signature of the signal is still preserved.
However, for the 20 channel outage case, some channels
exhibit higher error in the recovery. An illustrative example
is shown in Fig. 13, in which the oscillation is preserved, but
there seems to be a tracking error of the overall trend. As a
result, the ground truth and the recovered signal seem to drift
apart. However, the error is relatively small, although at some
peaks of the signal it reaches 2 A.

The last signal that was tested for recovery purposes was the
current angles. This signal seems to be the hardest to recover
out of the four. Some possible reasons were the absence of
low-rank behaviour in large parts of the data matrix, and the
erratic behaviour of some current angles potentially due to
control actions. Given the above difficulties, the recovery in
general could be deemed satisfactory but did not seem to have
as low errors as the one observed for voltage angles. Figs. 14
shows the successful recovery of the affected channel. In the
20 channel drop case, Fig. 15 presents one of the channels
that exhibits a slight loss of the trend, that was observed in
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the current magnitudes as well (channel with worse devia-
tion presented). Despite the deterioration of errors in current
angle recovery, the error is normally less than 0.01° meeting
C37.118 error requirements [21].

Table VII summarizes the Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) for all the cases. As
expected, as more data points are missing simultaneously,
errors increase. In the voltage cases, the increases can be
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TABLE VII
ERROR FOR SIMULTANEOUS OUTAGE FOR FORCED OSCILLATION CASE

1 Channel 1 Channel 20 Channel 20 Channel

Case/ Mean Root Mean Mean Root Mean
Signal Type Absolute Square Absolute Square
Error Error Error Error
Vi (kV) 0.0186 0.0238 0.0174 0.0229
Vg (deg.) 0.0258 0.0245 0.0186 0.0232
Im (A) 0.3572 0.4605 0.6328 0.8809
I, (deg.) 0.0241 0.0219 0.2052 0.6513

deemed as minor, however, for currents, the increases are much
more apparent. The MAE increased by 0.28 A and the RMSE
by 0.42 A for current magnitudes. These deviations can be tol-
erable since the oscillatory behavior was mostly kept intact and
the case of outage was extreme. In contrast, for multiple outage
case of current angles, the errors were 10 or 30 times higher,
indicating that the recovery is less accurate. Further investiga-
tion is required, in order to robustly recover signals exhibiting
higher rank patterns, during prolonged missing segments.

Finally, it should be noted that the channels to be dropped,
were chosen at random. Spatially correlated outages will be
investigated in our future work.

V. CONCLUSION

In this paper, the temporal variation of the OLAP-s algo-
rithm was presented and tested in terms of filter stability and
recovery of PMU data for different situations. This method is
based on low-rank matrix recovery concepts and formulated as
a lightweight data-driven filter that aims to recover PMU data
in real time. The algorithm was tested in ambient and switch-
ing event conditions, against well-known subspace methods
and achieved comparable accuracy while being faster. The tests
ranged from random outages of data to 10-200 consecutive
point. Then, the method was then tested on data exhibiting
periodicity, where simultaneous data outages across multiple
channels and intentionally placed outages were introduced, to
test if the method could perform as well. The OLAP-t method
seems to perform very well across all these cases and for
the majority of the PMU signals (voltage and currents). Some
slight issues were observed in recovering current angles as the
abrupt changes and the generally higher rank of the data posed
some trend-following issues. Potential fixes to this problem
could be further division of the signals in correlated subgroups
(i.e., dropping the rank) and attempting recovery again. This
will be one of the topics of future investigation and improve-
ment, in order to make the procedure more robust. However,
the shortcomings of the method are far outweighed by its effi-
ciency in recovering signals with temporal behaviors and more
importantly, prolonged missing data segments.
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