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Recent hurricane events have caused unprecedented amounts of damage on critical infrastructure systems

and have severely threatened our public safety and economic health. The most observable (and severe) impact

of these hurricanes is the loss of electric power in many regions, which causes breakdowns in essential public

services. Understanding power outages and how they evolve during a hurricane provides insights on how to

reduce outages in the future, and how to improve the robustness of the underlying critical infrastructure sys-

tems. In this article, we propose a novel scalable segmentation with explanations framework to help experts

understand such datasets. Ourmethod,CnR (Cut-n-Reveal), first finds a segmentation of the outage sequences

based on the temporal variations of the power outage failure process so as to capture major pattern changes.

This temporal segmentation procedure is capable of accounting for both the spatial and temporal correlations

of the underlying power outage process. We then propose a novel explanation optimization formulation to

find an intuitive explanation of the segmentation such that the explanation highlights the culprit time series

of the change in each segment. Through extensive experiments, we show that our method consistently out-

performs competitors in multiple real datasets with ground truth. We further study real county-level power

outage data from several recent hurricanes (Matthew, Harvey, Irma) and show that CnR recovers important,

non-trivial, and actionable patterns for domain experts, whereas baselines typically do not give meaningful

results.

CCS Concepts: • Networks → Sensor networks; • Information systems → Data mining; Spatial-

temporal systems;
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1 INTRODUCTION

Power outages during several recent hurricanes have had a severe impact on our national security,
economy, and public safety. The 2017 hurricane season was the most expensive in U.S. history,
resulting in huge economic losses (greater than $250 billion). Hurricane Irma caused one of the
largest power outages, which reportedly knocked out power to 4.5 million of the 4.9 million Florida
Power & Light customers. Hence, better understanding of power outages and how they evolve
during hurricanes is a very important task for damage prevention and control.
Domain experts in critical infrastructure systems (CIS) constantly seek solutions and ideas on

how to reduce power outages during hurricanes. For example, the Oak Ridge National Laboratory
(ORNL) Energy Awareness and Resiliency Standardized Services (EARSS) project developed a fully
automated procedure to take wind speed and location estimates provided by hurricane monitoring
experts and provide a geo-spatial estimate on the impact to the electric grid in terms of outage areas
and projected duration of outages [12].
Retrospectively identifying “cut-points” with a sudden change in the number of outages in

historical data can help in many aspects, such as identifying phases and causes through inter-
dependency analysis. This helps disaster management personnel learn from past events and be
better prepared for future contingencies. For example, a retrospective analysis of Hurricane Sandy
highlighted the underlying causes due to inter-dependencies with communication, oil, and natural
gas infrastructures [8]. Further, pinpointing “culprit” counties responsible for each such cut-point
helps domain experts localize points of failure and analyze restorative periods [21]. Hence, such
analysis can be used to shorten restoration periods of vulnerable points in the grid, thereby im-
proving grid resiliency to future disasters.
The preceding analysis goals may be addressed using the time series mining task of “segmen-

tation.” However, computing interpretable “culprits” for each cut-point is a task that has not been
studied before. In this article, we address this issue via a novel segmentation-with-explanations
approach. Our main contributions are the following:

• We propose a novel problem and algorithm CnR (Cut-n-Reveal) for computing segments
of power outage data. CnR captures temporal and spatial relationships between counties
experiencing power outages, modeling the power failure process as a segmentation problem
(see Figure 1). We also propose a novel explanation algorithm that identifies the culprit

counties for each segmentation cut-point.
• Our proposed formulation uses low-dimensional latent factor models and achieves signifi-

cant speedup.
• Experiments were performed withCnR and other popular segmentation algorithms on syn-

thetic and real datasets including historical hurricane power outage data. The other segmen-
tation procedures perform significantly worse relative to CnR on the real hurricane data,
due to their inability to model complex spatial dynamics of the failure process. Although
CnR is developed for power outage data, it can be applied to any multivariate time series.

The rest of the article is organized as follows. In Section 2, we formally state the segmen-
tation and explanation problems. Section 3 introduces our spatially agnostic CnR-V (Temporal
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Fig. 1. An example of the holistic spatial and temporal analysis results from our novel CnR model to analyze

the damage to the power grid during Hurricane Matthew. (a) The overall temporal segmentation over a

dataset where each time series indicates the total number of households that lost power in a single county

over the course of Hurricane Matthew (household count per county is recorded every hour). (b) The spatial

clustering of all counties that experienced significant damage to power infrastructure through the course of

Hurricane Matthew, essentially representing the spatial span of damage.

Cut-n-Reveal) segmentation and explanation model. We then introduce the novel spatio-temporal
CnR-UV (Spatio-temporal Cut-n-Reveal) model in Section 4, designed to incorporate extensive
spatial information for segmenting and explaining failure process dynamics in a multivariate time
series. Section 5 showcases the performance of CnR-UV with respect to other state-of-the-art al-
gorithms and on real-world problems. Section 6 provides a brief review of related literature, and
Section 7 explores avenues for future work. For lack of space, we defer some additional experi-
ments to the appendix [6]. All codes and datasets are made public [7].

2 FOCUS AND SETUP

Motivation. Large power grids usually contain thousands of generators, hundreds of thousands of
transmission lines, and millions of consumers. Grid components have strong inter-dependencies,
such as in the transmission grid where multiple paths exist between generators and consumers,
and these paths typically are arranged in a mesh grid manner. Hence, if one path or line fails, the
electricity instantaneously follows an alternate path governed by Kirchhoff’s voltage and current
laws. If the alternate path, however, cannot handle the overload in flow, it in turn fails and this
failure cascades to neighboring components. Due to the well-studied property of cascading fail-
ures and small-world properties in the power grid [26, 28], a few initial points of failure due to
a hurricane quickly cause network instability in a region, potentially causing millions of people
to suffer the effects of brownouts or blackouts. Natural disasters like hurricanes exhibit multiple
phases of varied intensity along their path, causing failures with different levels of severity at dif-
ferent regions. We model the progression of this grid failure process as a temporal segmentation
problem. Modeling this failure process over time, across different regions (e.g., counties) affected
by a hurricane, is essential for improving the resilience of critical infrastructure to disasters.

Focus. We characterize the severity of this grid failure process by measuring the number of
people in a hurricane-affected region (a county in our case) without power over the entire time
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period of the hurricane. Three critical questions need to be answered for characterization of this
process:

• How can we identify different phases of a hurricane as a function of severity of the damage
to critical infrastructure like the power grid, using sparse customer power loss data?

• Which counties are most important for characterizing each phase?
• How can counties be grouped together based on their overall failure dynamics during the

hurricane?

Our main goal is to help domain experts answer the aforementioned questions.

Notation. We assume that we are given a set of time seriesX = {x1,x2, . . . ,xn }, where each time
series xi = [xi (t1),xi (t2), . . . ,xi (tm )], and xi (tj ) represents the value at timestamp tj for the i

th

time series. We also assume that there is a known underlying graph structureG that captures the
relationship among these time series {xi }. For example, in CIS, the number of electric outages in
all disaster-affected counties form a set of time series, and the relationship among these counties
can be based on their geographical proximity.

Definitions. Our algorithm CnR contains two parts: detecting a good segmentation of the outage
data to capture the main changes and finding the corresponding explanations (subset of important
counties) per segment. With this knowledge of the segmentation and the explanations for each
segment, the expert has a holistic picture of the different phases of the failure process, as well as
the specific time series that contributed significantly to each phase change. We now formally state
our definition of a segmentation and an explanation.

Definition 1 (Segmentation S). A segmentation of X contains a set of distinct temporal cut-points
S = {c1, c2, . . . , ck }, where ci ∈ {t1, t2, . . . , tm }.

Definition 2 (Explanations E). E = {e1, e2, . . . , ek }, where ei is ann by 1 non-negative explanation
vector. | |ei | |1 = 1, and ei j represents the importance of time series j for explaining the cut-point ci .

Setup. The cut-points of S naturally divide the entire time period in the dataset into a set of
disjoint time segments. The ith time segment is denoted as a set of contiguous timesteps si =
[ci−1, ci ) with i ∈ {1, 2, . . . ,k + 1}, c0 = t1, and ck+1 = tm . Two sets/segments si , sj are said to be
neighboring segments if si = {tl , . . . , tl+Δl } and sj contains tl−1 or tl+Δl+1.
Assuming that we are given a segmentation S ofX , containing a set of cut-points {ci } and corre-

sponding segments, {si }, a desired explanation of the segmentation should be simple yet effective
enough to guide efforts to prevent or curtail the effects of critical infrastructure failure in future
disasters.
To this end, we introduce an explanation vector ei for each cut-point ci in S . Each ei is an n × 1

vector, wheren represents the number of counties and ei j represents the importance of the jth time
series/county in explaining the cut-point. Intuitively, if time series x j shows very different patterns
before and after the cut-point ci , we consider it important in explaining why ci is a good cut-point.
However, if x j remains constant/unchanged across ci , it does not provide useful information in
terms of the cut-point ci and should have low values in ei . In the hurricane outage data where there
are hundreds of time series/counties, such explanation vectors are able to highlight the “culprit”
time series/counties.
We propose two versions of theCnR algorithm, namelyCnR-V andCnR-UV. Sections 3.1 and 3.2

discuss the segmentation and explanation formulations and corresponding solutions usingCnR-V.
Sections 4.1 and 4.2 detail our segmentation and explanation solutions using CnR-UV.
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3 TEMPORAL CUT-N-REVEAL

In this section, we propose our CnR-V model, which performs segmentation on a multivariate
time series only using temporal information and also yields explanations for each segmentation
cut-point.

3.1 CnR-V Segmentation

The segmentation problem addressed by CnR-V is stated as follows.

Problem 1. Given a set of time seriesX and a number k , find the k-segmentation of S that captures
the main pattern changes in X .

3.1.1 Overview of Our Approach. Through the segmentationmodel, wewish to isolate temporal
sequences into discrete segments such that the properties of the failure process in each segment
differ from neighboring segments. The process of manually or algorithmically picking reasonable
segments is non-trivial, as segments that are too small fail to capture significant properties of
the failure process and picking segments that are too large although capturing all failure process
characteristics do not highlight the differences between the various phases of the process. Since
the failure process is highly dynamic and the failure dataset is sparse in nature, methods based
on capturing long-term correlation [25] or invariant learning [37] from the data will be unable to
perform adequately.

3.1.2 Formulation. We consider the different phases of the failure process in the power grid
during natural disasters as a collection of disjoint segments {s1, . . . , sk+1}. We wish to discover
a collection of k cut-points S that minimizes similarity between any two neighboring segments
si , sj . Hence, each segment si would capture a different pattern from its neighboring segments
(si−1, si+1), and thus the segmentation S captures pattern changes in the time series. We employ
the normalized cut framework, which has been shown to work well in subspace clustering and
segmentation tasks [50]. Our goal now is to represent each timestep by allowing for effective
similarity calculation between timesteps so that the continuous evolution of the failure process is
captured by the inter-timestep similarity. In an effort to find a principled approach to capture the
similarity between different timesteps in the failure process, we adopt the formulation provided
by Tierney et al. [52] for video scene segmentation for our purposes of modeling the hurricane
failure process. The model represents each timestep in the dataX , as a function of other important
timesteps. It is through this latent representation V that we attempt to capture the dynamics in
the data X .

min
V

1

2
| |X − XV | |2F + λ1 | |V | |1 + λ2 | |VR | |1,2

subject to diag(V ) = 0
(1)

In Equation (1), V is anm bym matrix whose ith column can be considered the latent represen-
tation of timestep i in terms of all other timesteps. The first term in Equation (1) calculates the
reconstruction error between X and XV , whereas the second term introduces sparsity into the
latent representation, enforcing that each timestep be explained as a function of a small subset of
other important timesteps. The term VR (R is defined in Table 1) calculates the difference of each
timestep with its previous timestep in the latentV space. This term essentially serves as a smooth-
ness constraint penalizing the dissimilarity of neighboring timesteps. The l1,2 norm term forces
whole column similarity between two columns ofV—that is, between neighboring timesteps inV
as opposed to just element-wise similarity in the case of a simpler l1 norm onVR. The solution to
Equation (1) can be obtained by applying the alternating direction method of multipliers (ADMM)
[15].
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Table 1. Definitions

X ∈ Rn×m The data matrix consisting of n time series each withm timesteps.
D ∈ Rn×n Depicts a degree matrix.
A ∈ Rn×n Depicts an adjacency matrix.
L = D −A Represents the Laplacian matrix of A.

U ∈ Rn×l Spatial feature matrix with l latent features.
V ∈ Rl×m Temporal feature matrix with l latent features. In Equation (1) (i.e., in CnR-V),

l =m; otherwise (i.e., in CnR-UV), l << m (Equation (5)).
R ∈ Rm×m−1 A lower triangular matrix with –1’s on the primary diagonal and 1’s on the

second diagonal.

E ∈ Rn×k Represents the explanation matrix to quantify importance of each time series
in explaining each cut-point.

1 ∈ Rn×1 Denotes a vector of 1’s.
λ,α , λi ,γi Scalar hyper-parameters used in the segmentation and explanation

formulations.

Solving Equation (1) yields a temporal weightmatrixV ∈ Rm×m fromwhichwe derive an affinity
matrixW = VVT . The affinity matrix is then segmented using the normalized cuts procedure to
obtain the set of cut-points S .

3.2 CnR-V Explanation

Recently, there has been a push toward making complex machine learning model outputs quantifi-
able, explainable, and simple [45]. Despite the sparsity of our segmentation procedure, the output
is complex and it is often not possible to identify the cause for each segment due to many simul-
taneously changing time series. A domain expert may want to know simply which time series are
changing and which are behaving anomalously at the sudden outage changes (at each segment).
This can help them make decisions about which counties they can use for retrospective analysis
by localizing points of failure. Finding out these “culprit” time series using just the temporal and
spatial segmentation fromV andU matrices seems difficult. Existing time series segmentation al-
gorithms do not provide any explanation of the result in an automatic principled way. Hence, to
design good explanations specifically for hurricane outage data, we consider the characteristics
of the data and the requirements from the domain experts to propose an optimization problem
CnR-V as follows.

Problem 2. Given a set of time series X , the Laplacian matrix L of the underlying network, a

number k , and the k-segmentation of S , find the associated explanations E that capture the main

pattern changes in X .

3.2.1 Overview of Our Approach. We formulate an optimization problem that automatically
learns explanations considering the underlying geographical relation between counties, revealing
to domain experts a small number of truly important “culprit” counties per cut-point.

3.2.2 Formulation. We aim to design an optimization problem that automatically finds a good
set of explanation vectors {ei }. Assume that we have a function d (S, i ), which takes a segmentation
S and a cut-point index i as inputs, and returns an n by 1 vector that captures the difference of each
time series before and after the ith cut-point ci in S . We want ei to assign higher weights to time
series with higher d (S, i )j values (therefore higher difference across cut-point ci ), where d (S, i )j
represents the importance of county j at cut-point i and is defined in Equation (3). The formulation
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also needs to capture the effects of spatial proximity of counties—that is, adjacent counties should
have similar importance, due to the continuous trajectory of a hurricane affecting neighboring
counties at the same time. The explanation needs to be “simple” in the sense of highlighting only
a few culprit counties. With these considerations in mind, the optimization problem we solve to
obtain simple explanations considering the county geography is shown next.

Given: A set of time series X ,L, a segmentation S , α , λ.
Find: E = {ei } such that

argmax
E

k∑
i=1

[
eTi d (S, i ) − αeTi Lei

]
− λ

k∑
i=1

| |ei | |1
subject to 0 ≤ ei j ≤ 1, | |ei | |1 = 1

(2)

The geographical smoothness is introduced in the second term using the Laplacian matrix L (ob-
tained from the underlying county-county network). This term minimizes the difference of ei for
adjacent counties. The third term is an l1 norm regularization on ei , which introduces sparsity in
ei leading to simpler explanations due to only a few important counties having non-zero values in
ei to explain cut ci .

The distance function d (S, i ) captures the difference across a cut-point ci by considering a time
window before the cut-point ci and a time window after ci . The difference of these two time win-
dows is calculated as the difference of the time series across ci . Letw

−
i j represent the sub-sequence

of x j in the time window before ci , and let w+
i j represent the sub-sequence in the time window

after ci . The distance function then calculates the difference ofw−i j andw
+
i j using simple, standard

time series features: the mean value (f1), the standard deviation (f2), the maximum value (f3), and
the minimum value (f4).

d (S, i )j =
1

4

4∑
z=1

| fz (w−i j ) − fz (w
+
i j ) | (3)

As a preprocessing step that we do not elaborate on in the equation, we perform a min-max nor-
malization of | fz (w−i j ) − fz (w

+
i j ) | across all time series to make the scales uniform. As bothw−i j and

w+
i j are of a short length (a deliberate setting since the pattern changes that justify the choice of a

particular cut-point usually lie in the local area), these simple features are enough to capture the
main pattern difference.
Finally, to solve Equation (2), we optimize each ei separately. For each ei , the optimization can

be rewritten as a quadratic programming (QP) problem in the following way.

argmin
ei

αeTi Lei − [d (S, i )T − λ1T ]ei
subject to 0 ≤ ei j ≤ 1, | |ei | |1 = 1

(4)

The QP problem is well studied in the literature, and it is NP-hard in its general form. In our
case, where the QP is convex in ei , it can be solved in polynomial time using an interior point
method [57], and we use the existing Matlab function (quadprog) to solve the problem.

4 SPATIO-TEMPORAL CUT-N-REVEAL

We now augment our CnR methodology to incorporate spatial relationships into the temporal
segmentation and explanation phases and propose our novel CnR-UV model.

4.1 CnR-UV Segmentation

Modeling the power outage failure process using CnR-V presents a few drawbacks. First, the seg-
mentation process in Equation (1) does not account for or attempt to model spatial relationships
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between entities (counties in our case) over which the failure process (power outage) occurs. How-
ever, phenomena like cascading failures indicate the existence of strong spatial interactions be-
tween components in the power grid, and incorporating spatial relationships can aid in more
effective modeling of the power outage process. We update Problem 1 stated in Section 3.1 as
follows.

Problem 3. Given a set of time seriesX , the Laplacian matrix L of the underlying spatial network,

and a number k , find a spatial weight matrixU , a temporal weight matrixV , and the k-segmentation

of S derived from V that captures the main temporal pattern changes in X .

4.1.1 Overview of Our Approach. For effective spatio-temporal modeling, we allow temporal
latent matrixV to consider the underlying spatial relationships between counties. To this end, we
introduce a spatial weight matrix U , jointly learned with V . U ,V are latent weight matrices, and
the latent factor modeling approach is used for our segmentation model because of its success in
similar sparse settings like recommendation systems [30, 38].

4.1.2 Formulation. Wedevelop a temporal segmentation formulation influenced by spatial con-
straints, where the failure process at each timestep is represented in a rich low-dimensional latent
space l such thatV ∈ Rl×m ,U ∈ Rn×l , and l << m, l << n. Let vi ∈ Rl×1 and vj ∈ Rl×1 represent
the ith and jth column vectors of V , respectively, where i, j ∈ {1, . . . ,m} and i � j. We can also
consider vi and vj to be the latent representation for the ith and jth timesteps, respectively. The
goal of this formulation is that the similarity of vi , vj is not solely influenced by the temporal
proximity of vi to vj (a constraint strongly enforced by the | |VR | |1,2 term in Equation (1)) but also
by the underlying spatial behavior of the counties at timesteps i and j. To achieve this goal, we for-
mulate a novel temporal segmentation model in Equation (5) to jointly model spatial and temporal
characteristics of power outage during natural disasters.

min
U ,V

1

2
| |X −UV | |2F + λ1 | |U | |1 + β1

2
Tr (UTLU )

+ λ2 | |V | |1 + λ3 | |VR | |1,2
subject to U ≥ 0,V ≥ 0

(5)

In Equation (5), the matrix U learns the latent representation for each of the n counties. The first
term calculates the reconstruction error wherein the original failure behavior observed in X is re-
created as a combination ofU (latent county outage characteristics) andV (latent temporal outage
characteristics). The l1 norm terms onU and V ensure sparsity, in line with our goal of designing
simple interpretable explanations of our segmentation. The | |VR | |1,2 term has the same effect as
described in Section 3.1. The termTr (UTLU ) represents the Laplacian regularization constraining
the matrix U to be influenced by the underlying geographical layout of the counties in X . Here,
the matrix L represents the Laplacian of the county-county adjacency matrix A.
We once again employ the ADMMmethod to solve Equation (5) using the Lagrangian formula-

tion as represented in Equation (6). To separate each term in Equation (5), we assign J = U ,K = V ,
P = KR.

L (U ,V , J ,K , P ) =
1

2
| |X − JK | |2F + λ1 | |U | |1 + β1

2
Tr(JTLJ )

+ λ2 | |V | |1 + λ3 | |P | |1,2 + 〈G,V − K〉 + γ1
2
| |V − K | |2F

+ 〈H ,U − J 〉 + γ2
2
| |U − J | |2F + 〈F , P − KR〉

+
γ3
2
| |P − KR | |2F

(6)
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We solve forU ,V , J ,K , P in an alternating manner. The update steps for each term in Equation (6)
are discussed next:

(1) Update V:

(a) Fixing U , J ,K , P , we solve for V .

min
V

λ2 | |V | |1 + 〈G,V − K〉 + γ1
2
| |V − K | |2F

This can be restated as follows.

min
V

λ2 | |V | |1 + γ1
2
| |V −

(
K − G

γ1

)
| |2F (7)

Equation (7) has element-level closed-form solutions that can be obtained using the
soft thresholding operator [10, 34, 52]. The element-level closed-form solution is as
defined in Equation (8).

V = siдn

(
K − G

γ1

)
max

(�����K −
G

γ1

����� −
λ2
γ1

)
(8)

(b) Fixing U ,V , J , P , we solve for K .

min
K

1

2
| |X − JK | |2F + 〈G,V − K〉 + γ1

2
| |V − K | |2F

+ 〈F , P − KR〉 + γ3
2
| |P − KR | |2F

(9)

Differentiating Equation (9) w.r.t. K and setting the derivative to zero yields the fol-
lowing.

(XT JT JX + γ1I )K + γ3KRR
T

= XT JX +G + γ1V + FRT + γ3PR
T

(10)

If we set
(i) A = (XT JT JX + γ1I )
(ii) B = γ3RR

T

(iii) C = XT JX +G + γ1V + FRT + γ3PR
T ,

then Equation (10) takes the form of a Sylvester equation.

AK + KB = C (11)

The solution to Equation (11) is a well-studied problem. [13, 24].
(c) Fixing U ,V ,K , J , we solve for P .

min
P

λ3 | |P | |1,2 + 〈F , P − KR〉 + γ3
2
| |P − KR | |2F (12)

This is equivalent to the following.

min
P

λ3 | |P | |1,2 + γ3
2

�����
�����P −
(
KR − F

γ3

) �����
�����
2

F

(13)

LetM = KR − F
γ3
, then Equation (13) has the following closed form solution [52].

P (:, i ) =
⎧⎪⎪⎨⎪⎪⎩
| |M (:,i ) | |− λ3γ3
| |M (:,i ) | | M (:, i ) if | |M (:, i ) | | > λ3

γ3

0 otherwise
(14)
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(2) Update U:
(a) Fixing V , J ,K , P , we solve for U . We can follow a similar procedure to the preceding

V update step and obtain the following element-wise closed-form solution forU .

U = siдn

(
J − H

γ2

)
max

(�����J −
H

γ2

����� −
λ1
γ2

)
(15)

(b) Fixing U ,V ,K , P , we solve for J .

min
J

1

2
| |X − JK | |2F +

β1
2
Tr (JTLJ ) + 〈H ,U − J 〉

+
γ2
2
| |U − J | |2F

(16)

Differentiating Equation (16) w.r.t. J and setting the derivative to 0 similar to the K
update procedure, the expression in Equation (17) is obtained.

β1LJ + J (XKKTX + γ2I ) = XKXT + H + γ2U (17)

We once again solve Equation (17) by reduction to a Sylvester equation:
(i) A = β1L
(ii) B = XKKTX + γ2I
(iii) C = XKXT + H + γ2U

(3) Update G:

G = Gold + γ1 (V − K )

(4) Update H :

H = Hold + γ2 (U − J )

(5) Update F :

F = Fold + γ3 (P − KR)
(6) Update γ1,γ2,γ3:

γ1 = ργ old1 ;γ2 = ργ old2 ;γ3 = ργ old3

Solving Equation (6) yields an l ×m temporal weight matrixV and ann × l spatial weight matrix
U . We construct an affinity matrixW = VTV that is passed to the normalized cuts algorithm to
obtain the temporal segmentation S from V . As an additional step, we also construct a separate
spatial affinity matrixWU = UUT that represents county similarity and obtain a spatial clustering
of WU using the normalized cuts procedure. In addition to the temporal segmentation and the
explanation of each temporal segment, we believe that the spatial clustering of counties provides
an additional level of insight about aggregate county behavior during natural disasters in a given
region.

4.2 CnR-UV Explanation

The explanation procedure for model CnR-V proposed in Section 3.2 incorporates spatial con-
straints through the Laplacian of the county adjacency matrix. In our experience, this approach
overly emphasizes spatial locality as a factor for learning the explanation vector ei for a particular
cut-point ci . It need not always be the case that the effects of a power outage in a particular county
are felt only in the neighboring counties or that only counties directly affected by a hurricane ex-
perience outages. As outlined in the work of Hines et al. [27], the influence graph for a county
power outage need not necessarily be exactly similar to the grid topology or geographical county
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layout. Intuitively, this means that outage in a county in one part of a state can have far-reaching
effects leading to outages or in counties located in a different part of the state in an instantaneous
or delayed manner. Accommodating for such effects in our explanation methodology requires a
smoother, less stringent spatial constraint. This leads to better explanations for domain experts as
well.

4.2.1 Overview of Our Approach. In addition to the V matrix, the segmentation formulation of
the CnR-UV model also learns a rich latent factor representation of each disaster-affected county
U . Due to the richness of the latent factor representation and flexibility of design, theU matrix, in
addition to local spatial effects, is also able to capture far-reaching effects of counties on each other.
Hence, the affinity matrix UUT would capture far-reaching county-county similarities extending
significantly beyond the immediate neighborhood of a county. We utilize this property and con-
structWU = UUT , which can be considered the adjacency matrix of a weighted undirected graph
of counties whose degree matrix D is a diagonal matrix where each D j j represents the weight of
county j and is calculated as the sum of row j ofWU . Matrix LU is the Laplacian calculated as
LU = D −WU .

Problem 4. Given a set of time series X , a number k , the k-segmentations of S , and the Laplacian
LU derived from the spatial latent factor matrix U , find the associated explanations E that capture

the main pattern changes in X .

4.2.2 Formulation. The explanation formulation employed by CnR-UV is defined in Equa-
tion (18). It is similar to Equation (2) but for a smoother Laplacian matrix LU in the regularization
term that allows ei to consider counties in a larger spatial radius as opposed to the explanation
step of CnR-V wherein a strict spatial constraint based on the county graph is imposed through
the Laplacian matrix L.

argmax
E

k∑
i=1

[
ei
Td (S, i ) + αeTi LU ei

]
− λ

k∑
i=1

| |ei | |1
subject to 0 ≤ ei j ≤ 1, | |ei | |1 = 1

(18)

The function d (S, i ) returns an explanation vector ei ∈ Rn×1 and is defined in Equation (3). Equa-
tion (18) can be solved by optimizing each ei as a separate QP problem convex in ei similar to the
explanation formulation for CnR-V in Section 3.2. The complete pseudo-code for CnR-UV is given
next (CnR-V is similar, using Equation (1), Equation (4) instead of Equation (6), and Equation (18)
respectively).

ALGORITHM 1: CnR-UV Segmentation with Explanation

Input: X: Hurricane Power Outage Data, G: Spatial Graph, l : Num. Latent Features

Result: S = {c1, . . . , ck }, Temporal Segmentation

E = {ec1 , . . . , eck }, Temporal Explanation

Init: U = V = 0

while not converged do
Estimate,U ,V using Equation (6)

Retrieve S using Normalized Cuts

Estimate explanation vectors ec1 , . . . , eck using Equation (18)

end

Remark 1. CnR-UV takes worst-case timeO (#iterl2 (X +m2 + n2))) and is quadratic in the num-
ber of time steps and time series. In practice, we found QP to be very fast and total time to be sub-
quadratic on the dataset size. CnR-V takes worst-case time ∼ O (#iter (m2.3 + n2)) (using the best
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Table 2. Datasets Used

Dataset #Time stamps #Time Series Ground Truth

Synthetic 1,000 4 �
NILM 721 17 �
ChickenDance 1 1,590 4 �
ChickenDance 2 322 4 �
WalkJog 1 1,000 2 �
WalkJog 2 303 2 �
GrandMal 1,000 2 �
Harvey 264 250
Irma 169 271
Matthew 252 369

matrix multiplication exponent) and is hence sub-cubic in the number of timesteps and quadratic
in the number of time series. The space complexity of CnR-UV is near-linear O(X + nl +ml ), and
that of CnR-V is O(X +m2 + n2).

5 EMPIRICAL STUDY

We implement CnR in Python and Matlab. Our experiments were conducted on a 4 Xeon E7-4850
CPU with 512 GB of 1,066-Mhz main memory.

5.1 Setup

5.1.1 Datasets. We collect datasets from different domains with the ground-truth segmenta-
tions to quantitatively evaluate our performance. For efficiency purposes, we perform a standard
rolling average as a preprocessing step to all of the data. The final statistics are in Table 2.

ChickenDance. TheChickenDance datasets,ChickenDance1 andChickenDance2 [17], are recorded
as motion capture sequences of 4-dimensional data points with ground-truth segmentation [35]
and is originally from the CMU motion capture database [2]. The ground-truth segmentation is
based on different motions in the chicken dance.

WalkJog. We used two variants of the WalkJog datasets, WalkJog1 where we uniformly sam-
pled 1,000 data points from the WalkJog dataset used in [23] and WalkJog2 used in the work of
Chen et al. [18]. These datasets adapted from the REALDISP activity recognition dataset [11] have
recordings of walking and jogging motions with segments between different motions.

GrandMal Seizures. Gharghabi et al. [23] have 3-minute recordings of neural activity (pre-
seizure, seizure, and post-seizure) of a subject, recorded using a scalp electrode.

Synthetic Data. We also generated synthetic data consisting of four time series sampled from
normal distributions with different means and standard deviations. Time series were perturbed at
different times to cause segments, and the goal is to identify these segments.

NILM. The non-intrusive load monitoring dataset (NILM) consists of real power measurements
for various household appliances like lamps, laptops, and refrigerators, recorded through the use
of measurement and actuation units (MAUs) connected between the device and the wall socket
(more details are found in the work of Reinardt et al. [44]). We use a 24-hour hour snapshot of the
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NILM data from 2012-01-17 00:00:00 to 2012-01-17 23:59:59 sampled at 2-minute intervals and use
the time when a device switches states as the ground-truth cut-points.

Hurricane Outage data. ORNL has developed several grid situational awareness products over
the past decade such as VERDE, EARSS, and EAGLE-I [19] for different stakeholders like DOE
and FEMA, primarily for emergency management. For example, the National Outage Map within
EAGLE-I collects distribution outage data of all customers from utility websites every 15 minutes.
Due to the recent coverage expansion (with more utilities exposing data from their Outage Man-
agement Systems), in this work we consider the more recent hurricane outage data namely for
Matthew, Harvey, and Irma since it covers nearly 90% of the population in the hurricane-affected
areas.

5.1.2 Baselines. We wish to evaluate the segmentation and explanation parts of our CnR-UV
algorithm. We first start with evaluating the performance of the CnR-UV segmentation procedure
and later detail the CnR-UV explanation evaluation.

5.1.3 Segmentation Baselines. First, we compare the segmentation of CnR-UV with several
state-of-the-art multivariate time series segmentation algorithms.
AutoPlait [35] is a hidden Markov model (HMM)-based algorithm that discovers different

regimes in co-evolving time series. Each regime can be thought of as the segments for our problem.
TICC [25] is a recent algorithm for multivariate time series to discover repeated patterns. It

clusters timestamps into segments using their model.
DynaMMo [32] learns a dynamical system (Kalman filter) and segments the time series wherever

the reconstruction error becomes high.
Floss [23] is an unsupervised semantic segmentation algorithm that learns the segmentation

from the local minimas obtained in the matrix profile.

5.1.4 Explanation Baselines. To the best of our knowledge, there is no method that retrieves
explanations for each segment the way CnR-UV does. Hence, we are unable to compare CnR-UV
explanations with those of other state-of-the-art algorithms. We do, however, evaluate explana-
tion performance for the aforementioned datasets with ground-truth segments. The evaluation
procedures for segmentation and explanation are detailed in Section 5.2.

5.2 Quantitative Evaluation

5.2.1 Segmentation. We compareCnR-UV performancewith several segmentation baselines on
datasets with ground-truth segmentations: NILM,ChickenDance,Synthetic,GrandMal, andWalkJog.
We evaluate the detected cut-points by calculating the F1 score based on the ground-truth cut-
points (as in the work of Matsubara et al. [35]). Higher F1 scores indicate better segmentation.
For all of our experiments with CnR-UV, we set l = 2 (our algorithm was robust to varying la-
tent factor dimensions) and chose the hyper-parameters using gridsearch. We show the results in
Table 3, where we observe that CnR-UV outperforms all methods on most datasets except Grand-
Mal and WalkJog1. The F1 score corresponding to the best segmentation model per dataset is
highlighted in bold. To visually inspect the CnR-UV segmentation, we depict segmentation re-
sults in Figure 2 for ChickenDance1,WalkJog2, and Synthetic datasets where CnR-UV performs the
best. For ChickenDance1 in Figure 2(b), CnR-UV is able to isolate all of the different data trends
successfully. It correctly identifies all of the seven ground-truth cut-points, and the remaining cut-
point at timestep 13 (red dashed line) is a false positive. In Figure 2(a), for WalkJog2, we see that
CnR-UV correctly separates the sequences of data generated due to walking from those due to jog-
ging. Time series segmentation models are less affected by the number of time series in the model
and more by the degree and frequency of perturbation of the time series. We can see in Table 3

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 5, Article 53. Publication date: July 2020.



53:14 N. Muralidhar et al.

Table 3. Evaluation of Segmentation (Seg) and Explanation (Exp)

on Ground-Truth Datasets Based on the F1 Score

��������Dataset
Method CnR-UV CnR-V Auto Plait TICC Dyn. Floss

seg exp

Synthetic 1.0 1.0 0.58 0.5 1.0 0.52 0.85
NILM 0.83 1.0 0.56 0.4 0.82 0.71 0.73
Chicken1 0.93 1.0 0.63 0.85 0.92 0.54 0.53
Chicken2 0.85 1.0 0.73 0.73 0.5 0.75 0.71
WalkJog1 0.22 1.0 0.57 0 0.86 0.54 1.0

WalkJog2 0.75 1.0 1.0 0 0.33 0 0
GrandMal 0.86 1.0 0.58 0.5 1.0 0.36 0.5

Fig. 2. CnR-UV segmentation results (vertical dashed lines) for theWalkjog2, ChickenDance1, and Synthetic

datasets. True positive segments are colored black, and false positives are colored red. We consider all seg-

ments within the tolerance window (5% of total timesteps) of the ground-truth segments as true positive.

that CnR-UV performs well in cases where the number of time series is high (e.g., NILM). Each
cut-point discovered by our method lies in a 5% cut-point location tolerance window with respect
to the ground-truth cut-point, and we adopt this practice from previous literature [17, 35].

5.2.2 Explanation. CnR-UV is also able to retrieve reasonable explanations for proposed seg-
mentations in each case. Since there is no existing literature performing explanation in an au-
tomatic and principled way, we were unable to compare our explanation algorithm with other
baselines. In addition, since we did not have any ground truth for explanations, we created a
ground-truth dataset by manually generating explanations for each cut-point. We did this by iden-
tifying a subset ki of the n time series in a dataset that experienced perturbation across a cut-point
ci . This subset ki of time series can be considered the ground-truth explanation for cut-point ci .
We then compare the top |ki | (cardinality of set ki ) values in the explanation vector ei against the
ground-truth explanations using the F1 score. This is repeated for all cut-points, and an average F1
score is calculated for explanations on the dataset. Results of this procedure are outlined for each
dataset in Table 3 (CnR-UV exp). Explanations were evaluated on ChickenDance, WalkJog, NILM,

Synthetic, and GrandMal datasets. We only consider true-positive segments identified by CnR-UV

while calculating explanation F1 scores. For theWalkJog1 dataset, even though CnR-UV segmen-
tation is low (F1 score = 0.22), our explanation performs well (F1 score = 1.0). This is because we
only use the true-positive segments and calculate explanations for those segments because of the
availability of ground-truth explanation data only for true-positive segments.

5.2.3 Discussion of CnR-UV Compared to Other Baselines. For the best performance, CnR-
UV models should be provided with the spatial graph relating the time series being modeled.
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CnR-UV was so designed, bearing in mind the goal of modeling power system failure processes
during hurricanes using real-world data. However, to holistically evaluate temporal segmentation
performance, we compared CnR-UV to many state-of-the-art baselines on several datasets. In this
context, all time series were considered spatially independent (as we did not have prior knowledge
of spatial inter-dependencies). Due to this lack of spatial information, CnR-UV underperformed as
the Umatrix was unable to learn the best possible representation. Despite this, our model matches
or outperforms strong baselines like TICC, DynaMMo, AutoPlait, and Floss in five out of seven
datasets. It must be noted that despite the lack of spatial information, CnR-UV also outperforms
the CnR-Vmodel on five out of seven datasets (Table 3), indicating that the low-dimensional latent
factor U and Vmatrices in CnR-UV are indeed able to learn rich representations of the failure pro-
cess compared to the large sparse square V matrix as in the case of CnR-V. In the datasets where
spatial information is missing, we treat all time series as independent. The reason for the under-
performance of CnR-UV in Walkjog and GrandMal datasets w.r.t. TICC may have to do with this
time series independence assumption being sub-optimal.
DynaMMo performs segmentation based on reconstruction error w.r.t. a tolerance threshold

specified by the user. We found that the segmentation was sensitive to this tolerance threshold
parameter, which directly governs the number of segments allowed. In most cases, DynaMMowas
found to over-segment or under-segment depending on the error tolerance.
In the case of the AutoPlait model, it is found to perform better on datasets with less spiky

(sudden) changes in time series. For example, if we observe Figure 2, the WalkJog and Synthetic

dataset time series have a much more spiky and sudden changing behavior than the Chicken-

Dance dataset. However, in the case of theChickenDance dataset, although Figure 2(b) shows spikes
around timesteps 400 and 1,200, the rest of the patterns are either increasing or decreasing trends
that are relatively non-spiky in nature.
Floss performs segmentation in multivariate time series by finding local minima on the average

CAC curve [23]. Thus, for GrandMal and ChickenDance1 data where multiple groups of time series
exhibit large and sometimes spiky changes at different timesteps, the CAC curve of all time series
do not exhibit local minima at the same or close timesteps. This results in the average CAC curve
not yielding local minima at all of the ground-truth cut-points, which causes the low F1 scores
for Floss in Table 3. In addition, we must note that the ChickenDance2 dataset is smoother than
ChickenDance1 (i.e., changes are smaller/more gradual than ChickenDance1), and we immediately
see a significant performance improvement in this scenario in the F1 score of Floss.

We will now present real-world applications of CnR-UV on several hurricane power outage
datasets as case studies. We characterize both CnR-UV segmentation and explanation procedures
on all hurricane datasets.

5.3 Case Studies: Hurricanes

In Section 2, we set out to design a model to address the following goals:

(1) Identify phases of a hurricane as a function of severity of damage to critical infrastructure
like the power grid.

(2) Identify the most important counties that characterize each phase (i.e., “explain” each
phase).

(3) Group counties together based on their overall failure dynamics through the hurricane,
to allow for overall assessment of the spatial span of the damage.

With the aforementioned goals in mind, we ran CnR-UV for power outage failure data from three
recent hurricanes.We show thatCnR-UV can findmeaningful pattern changes and insightful asso-
ciated explanations. Specifically, the current culprit definition can be used to distinguish between
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Fig. 3. Segmentation and the corresponding explanations for Irma. (a) All counties with grid failures during

Hurricane Irma are shown. Each county is represented by a time series with an individual color in a solid line.

The vertical dashed lines are the cut-points obtained by CnR-UV. (b) The spatial clustering result shows the

spatial span of grid failure, based on spatial proximity of counties and similarity in failure patterns of their

time series. (c–g) The most important time series for each cut-point in the segmentation obtained from ei
whose explanation weight is >0.1. (h–l) ei visualizations in geographical space for each cut-point. Counties

with higher ei values (higher values represented by darker red) are more important for the cut-point and are

marked with a color closer to red.

regimes while also being applicable to the hurricane failure setting where the failure process of
each county follows a typical increasing, peak, decreasing trend pattern. This is because multi-
variate hurricane failure time series are highly complex. Although the failure pattern (increasing
failure rate, peak, decreasing failure rate) is consistent across counties, the time of failure and rate
of failure differ widely across counties requiring a formulation as defined by us in Equation (5)
to capture the complexities (and local changes around cut-points) of this spatio-temporal multi-
variate failure process. The effectiveness of our model in capturing complex patterns in multiple
hurricanes will be demonstrated in the following section. For the segmentation model, we set the
number of latent dimensions (l ) to 5, and for each cut-point, we consider counties with explanation
weight > 0.1 as important.

5.3.1 Hurricane Irma. We show the results in Figure 3. Figure 3(a) represents the overall seg-
mentation that CnR-UV yields for Hurricane Irma, whereas Figure 3(c) through (g) show the ex-
planations yielded by CnR-UV across each cut-point in the segmentation. All explanation figures
(except those for the first and last cut-point) consist of three cut-points—that is, the cut-point being
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explained, along with the previous and the next cut-point. Each explanation figure is accompanied
with a spatial visualization of the important counties highlighted by the explanation of the cut-
point. Figure 3(h) through (l) are spatial depictions of the explanations in Figure 3(c) through (g),
respectively. Finally, Figure 3(b) represents clustering results of the spatial matrix U . All of the
following hurricane result visualizations are organized in the same manner.
The first cut-point (showcased in Figure 3(c)) at timestep 35 (around September 10) shows hur-

ricane landfall when the outages of a few counties seem to rise sharply. Indeed, Figure 3(h) shows
these counties at the southern tip of Florida indicating the location of landfall of Hurricane Irma.
The second and the third cut-points in Figure 3(a) might seem redundant owing to their close prox-
imity. However, the second cut-point (showcased in Figure 3(d)) is capturing a small rising trend
of county power outages for the counties highlighted in Figure 3(i). However, the third cut-point
captures fluctuations and plateaus in a different set of counties. The fourth cut-point c4 (and the
corresponding explanation e4) (Figure 3(f) and (k)) is interesting: first, it captures a short rising
outage trend (of smaller magnitude) at Dekalb, Fulton, and Gwinnett counties in the Northwest.
One report [3] suggest that this is due to a separate tropical storm. At the same time, it also cap-
tures the start of the decrease in outages at Miami and Broward counties, both of which rise at the
beginning in the first cut-point. Thus, CnR-UV can correctly capture the power restoration period
of these counties (Miami and Broward) automatically. The last cut-point c5 (and corresponding
explanation e5) at timestep 93 (around September 12) captures the date when Hurricane Irma was
downgraded to a category 2 storm and the outages of the counties started to decrease. Note that
these cut-points and explanations are non-trivial, and are successfully modeled since CnR-UV is
able to capture the diverse trends in power outages of different magnitudes including in faraway
counties that do not follow the hurricane trajectory. As mentioned in Section 1, retrospective anal-
ysis of hurricanes through CnR-UV helps capture failure and restorative phases (e.g., Miami and
Broward counties) through segmentation, which can help experts understand grid resilience and
restoration patterns. At the same time,CnR-UV explanations in addition to pin-pointing hurricane-
affected regions that incurredmajor power outages can also uncover subtle trends in regionswhere
consequential events occur, such as the tropical storm at Dekalb, Fulton, and Gwinnett that was
caught by CnR-UV explanations. Such insights can alert grid maintainers about the potential for
such situations in the future.

Spatial clusters. Figure 3(b) shows the spatial clustering of all counties affected byHurricane Irma
(i.e., the clustering based onWU , whereWU = UUT is the spatial affinity matrix as explained in
Section 4.2.1). It turns out that the green cluster contains counties most affected by power outages,
whereas the red cluster shows the counties whose power outages were comparatively lower. This
extent of the green cluster (toward the western/northwestern part) is challenging to estimate by
hand or through physical surveys but has been uncovered by CnR-UV solely based on time series
dynamics and spatial constraints. This ultimately can aid disaster management experts and power
companies to plan recovery for future hurricanes [16, 39].

5.3.2 Hurricane Harvey. The CnR-UV results for Hurricane Harvey are depicted in Figure 4.
The spatial depiction of explanations in Figure 4(g) through (j) broadly trace the trajectory of the
hurricane along the eastern coast of Texas, with a few additional non-coastal counties also being
highlighted as important in the northern and northwestern parts of Texas.
In Figure 4(a), the first and the second cut-point might seem redundant owing to their close

proximity, and their both capturing increasing outage trends. However, upon closer investigation,
we find that the first cut-point is detected when there is a sharp spike in El Paso and Howard coun-
ties at the very beginning of the hurricane. As no other counties have begun to experience outages
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Fig. 4. Segmentation and the corresponding explanations and spatial clustering for Hurricane Harvey ob-

tained by CnR-UV analogous to Figure 3. See detailed discussions in Section 5.3.2.

at this point, even the relatively low absolute values of power outages (around 1,600 homes) are
captured by our segmentation model, leading to the first cut-point.
The spatial explanation Figure 4(g) depicts as important a few disconnected counties in the

northern and northwestern part of Texas, which might seem counter-intuitive at first. However,
reports [1, 4] suggest that these counties were hit by floods as a result of Hurricane Harvey causing
major damage.
Similarly, the explanation of the second cut-point (Figure 4(d)) highlights the spike in outages

at Nueces and Aransas (around 100,000 homes) but also captures Fort Bend, Brazoria, and Harris
(Figure 4(h) groups three counties highlighted in the northern part of the east coast of Texas) as
important. Although their outages are low (around 2, 000) compared to Nueces, they have a very
sharp peak at this cut-point. One report [5] states that the sudden rise of this peak is due to an
EF1-level tornado on August 26, which caused major damage at Fort Bend and also potentially
affecting the surrounding counties.
The explanation for the third cut-point (Figure 4(e)) captures two different patterns: the high

outage spike of Harris County (green line) and the declining trend at Victoria and Nueces coun-
ties. Finally, for the last cut-point (Figure 4(f)), although the outages in many counties are decreas-
ing, our algorithm correctly highlights a sudden rise of outages in Orange, Jefferson, and Hardin
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Fig. 5. Segmentations and the corresponding explanations and spatial cluster results for HurricaneMatthew

obtained by CnR-UV analogous to Figure 3.

counties. The main reason for this increase is due to the rising water of the Neches River, which
causes the city to lose service from its major pump stations. As in the case of Irma, spatial cluster-
ing results for Hurricane Harvey (Figure 4(b)) also help us glean the overall picture of the spread of
damage due to the hurricane. This explanation is beneficial for doing an inter-dependency study.
Note thatCnR-UV captures long-range county dependencies even if the counties are not geograph-
ically close to each other; such information of subtle county relationships is often buried deep in
the original set of hundreds of time series and cannot be uncovered through simple models or
through rudimentary visual or statistical analysis of the original data.

5.3.3 Hurricane Matthew. Similar to previous results, CnR-UV is able to extract insightful cut-
points and explanations of all of the major regimes of Hurricane Matthew.
Cut-point 1 (Figure 5(c)) captures the phase of hurricane landfall (October 2). However, CnR-

V does not capture the bottom-most southern county depicted in Figure 5(g), whereas CnR-UV
successfully captures this, thereby yielding a more holistic explanation of the cut-point.
Cut-point 2 (Figure 5(d)) is detected because of the high rise of peak outages in Chatham

(October 4). The spatial representation of the explanation in Figure 5(h) highlights counties along
the trajectory of the hurricane.
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Fig. 6. Segmentations and explanations results of CnR-V for Hurricane Harvey analogous to Figure 3.

Cut-point 3 (Figure 5(e)) captures the high decrease of outages, which captures the restoration
of Chatham, Duval, and so forth. At the same time, this cut-point is capturing a sudden rise of
outages of Horry County, which is colored as bright red (in Figure 5(i)) at top right). This county
is influenced in the previous cut-point and has now been severely affected (after October 4), and
the influence has spread to nearby counties as well.
Cut-point 4 (Figure 5(f)) was captured when power outages of the counties started to abate. The

explanation results in Figure 5(j) show the important counties whose outages started to decrease
at this cut-point.
In addition, interestingly, although both hurricanes Irma andMatthewhave similar geographical

trajectories, CnR-UV learns very different spatial clusters, which captures counties with variable
dynamics (Figure 5(b)).

5.3.4 Details of Baseline Algorithms onHurricane Data. In contrast to theCnR-UV performance,
the baseline algorithms all consistently either fail to converge or under-segment, giving low quality
unexplainable cut-points. TICC and AutoPlait under-segment on some and fail to converge in the
case of other hurricane datasets, whereasDynaMMo yields over-segmented results. Floss, although
avoiding convergence and over-segmentation problems, yields segments that only capture the
initial rise and final fall of the time series in the case of all of the hurricanes, completely missing
out on phases of power failure in between.

5.4 Comparison with CnR-V

We characterized the performance of CnR-V on hurricanes Harvey, Irma, and Matthew power
outage data, where there are long-range spatial dependencies, and found that CnR-V gives lower
quality cut-points and explanations as expected. As an example, see Figure 4(e) and (i): although
CnR-V is able to capture this cut-point (Figure 6(d) and (g)), its explanations only point to the
sudden rise in a small cluster of spatially close counties; it fails to capture the large decrease in
Nueces County (cyan line) (which CnR-UV is able to) because Nueces is not geographically close
to the other ones.
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Fig. 7. Segmentations and explanations results of CnR-V for Hurricane Irma analogous to Figure 3.

5.4.1 Comparison Results of Hurricane Harvey. Cut-point 1 (Figure 4(c)) is only captured by
CnR-UV and not captured by CnR-V. In this cut-point, El Paso, Howard, and other counties in
central Texas were considered important in Figure 4(g) because they were flood affected due to
Hurricane Harvey. Cut-point 2 (Figure 4(d)) captured by CnR-UV is similar to the first cut-point of
Figure 6(b) captured by CnR-V. However, some counties (Fort Bend, Harris, and Brazoria) are also
considered important (from reports, it was found that some major damage occurred in those spots
due to a tornado; see details in Section 5.3.2) by CnR-UV but not captured by CnR-V. Cut-point 3
(Figure 4(e)) by CnR-UV is similar to the cut-point depicted in Figure 6(c) discovered by CnR-V.
Montgomery (orange line) is also considered as an important county in CnR-V but not highlighted
in Figure 4(e) by CnR-UV. Upon further investigation, we found that this county did not face any
major damage around this time, but it was shown to be important by CnR-V only because it is
geographically close to Harris. Cut-point 4 (Figure 4(f)) discovered by CnR-UV is similar to the
cut-point depicted in Figure 6(d) discovered by the CnR-V model. However, Figure 6(d) does not
capture Nueces (green line), which has a high decrease of outage. Hence, CnR-V only captures
increase of outages at this cut-point, whereas CnR-UV captures both increasing and decreasing
trends simultaneously.

5.4.2 Comparison Results of Hurricane Irma. For better understanding, the figures for CnR-V
are shown in Figure 7 for segmentation and explanation. CnR-V could not capture the small rising
trend in Figure 3(d) and fluctuation of outages in Figure 3(e) separately as CnR-UV. CnR-V only
identifed a cut-point near 50 (Figure 7(c)), which did not explain the counties that had fluctuation
of outages (see Section 5.3.1 for a detailed description). Moreover, if we compare the geographical
explanation of counties of CnR-V in Figure 7(f) through (i) with CnR-UV in Figure 3(h) through
(l), we observe that CnR-V could not capture the long-range spatial dependencies of counties, and
they were sparse.

5.4.3 Comparison Results of Hurricane Matthew. We were unable to run the entire Matthew
dataset on CnR-V and hence considered a sub-sampled version to obtain cut-points using CnR-V.
We notice that CnR-V is unable to capture cut-point 1 (Figure 5), where it fails to capture a few
important counties (Figure 5(g)) on the southern tip of Florida that are captured by CnR-UV. It
must be noted that in the case of each hurricane, there is no notion of spatial clustering in the
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Table 4. Scalability Experiment Varying the

Number of Time Series Keeping Timesteps

Constant at 720

No. of Time Series CnR-V CnR-UV
15 734.37 179.07
30 733.39 180.35
60 822.99 173.44
120 835.65 184.50
240 863.03 190.47
480 952.81 210.45

(Wall clock time seconds).

Table 5. Scalability Experiment Varying the

Number of Timesteps Keeping Time Series

Constant at 15

No. of Timesteps CnR-V CnR-UV
500 285.19 64.63
1,500 7,388.49 115.38
2,500 25,755.02 3,660.25

(Wall clock time seconds).

case of CnR-V, and spatial clusters similar to those represented in Figures 3(b), 4(b), and 5(b) are
obtained only by CnR-UV.

5.4.4 Scalability Comparison. We also recorded the runtimes (in seconds) for CnR-V and CnR-
UV after varying both the number of timesteps and time series in the dataset. We get better scaling
in practice (from our worst-case complexities): in both cases,CnR-UV (due to the low-dimensional
latent factor representation) scales quadratically, whereas CnR-V is significantly more expensive
(sub-cubic in the number of timesteps). We performed two kinds of experiments, one wherein the
number of timesteps in the dataset was maintained constant (720 timesteps) while the number of
time series were varied (Table 4), and the other where we maintained the number of time series
constant (15 time series) and the number of timesteps were varied (Table 5). The results indicate
that in both cases, CnR-UV is more scalable with increasing numbers of time series and increasing
numbers of timesteps. This can be attributed to our choice of representingU andV in Equation (5)
as low-dimensional latent factor weight matrices instead of full square matrices where U ∈ Rn×n
and V ∈ Rm×m as in the case of CnR-V. We also include scalability comparisons of CnR-UV with
other state-of-the-art baselines in the appendix [6]. In these comparisons, we noticed that CnR-
UV scaled equally as well as the Flossmodel and better than the TICC and DynaMMomodels with
increasing numbers of time series. CnR-UV scales quadratically in the number of timesteps; future
work will be aimed at caching and smart computational strategies to scale it to larger datasets.

5.5 Summary of Observations

(1) CnR-UV consistently outperforms the baseline algorithms (up to 0.79x) in all datasets (in-
cluding with ground truth) for both time series segmentations and explanations (for hur-
ricanes, the baselines heavily under-segment or do not even finish).

(2) For hurricane datasets, CnR-UV discovers non-trivial cut-points capturing the overall tra-
jectory, as well as subtle anomalies like a combination of sudden increasing and/or de-
creasing clusters of outage trends and plateaus across regions. CnR-UV also discovers
useful spatial clusters of counties based on their location and outages.

(3) Most importantly, we are also able to identify an informative set of culprit time series
for each cut-point, providing valuable insights to the domain experts aiding management,
recovery, and resource allocation efforts.

(4) CnR-UV scales quadratically with the number of timesteps as opposed to CnR-V, which
scales sub-cubically.

6 RELATEDWORK

We will now review lines of research that have attempted to answer questions similar to our goals
in this article.
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Time series segmentation. There has been an abundance of work on time series segmentation
based on monitoring changing temporal patterns, such as modeling co-evolving time series and
segmenting them using multi-level HMMs [35] on motion capture data, discovering patterns in
data streams [46] using distributed video data, developing online algorithms for frequent sequence
mining [36] on different application domains (i.e., robotics, wild life, and health monitoring), and
time series segmentation using a temporal mixture model and Bayesian information criterion on
railway data [48] and Kalman filters on motion capture sequences and chlorine measurement
data [32]. GOALIE [42] is another algorithm applied in the context of biological process data that
produces segmentations of multivariate time series, but its focus is on finding cut-points where
significant shifts of clusters (of time series) occur, in contrast to CnR-UVwherein the focus is both
on recovering the major segments and explaining the segments while leveraging the underlying
spatial structure of the data.
Change point detection has also been a popular topic in the climate sciences [43, 49]. Charac-

terizing the dynamics of natural disasters like hurricanes lends itself naturally to a change point
detection approach, but there has been little work conducted in this regard. Zhao and Chu [58] pro-
pose a hierarchical Bayesian framework for detecting shifts in annual hurricane counts, whereas
Ruggieri [47] introduces a Bayesian change point detection algorithm to detect changes in temper-
ature using climate data records. The other line of work on modeling failure cascading on CIS [18]
does not explicitly segment the time series. Despite the extensive research conducted in time series
segmentation and change point detection, we have found that little prior work exists in leveraging
them to characterize the dynamic effect natural disasters have on CIS.
Two limitations of previous work in temporal segmentation are that not many of them easily

incorporate spatial information into temporal segmentation, and none of the existing models pro-
vide any explanation framework wherein “culprit” counties (at each segment of a hurricane failure
process) can be identified in space and time. Most change point work is focused only on identifying
temporal cut-points [9] with a few applications in computer vision and video analysis modeling
spatial relationships [14, 51], but no work has identified important time series (i.e., spatial) thereby
providing an explanation of each identified temporal segment. Such a model that identifies “cul-
prit” counties is helpful to experts involved in maintenance of cyber-physical infrastructure and
teams responsible for disaster management and planning.
Another line of related work in time series corresponds to subspace clustering–based tech-

niques. Many applications in multivariate time series analysis exist wherein the temporal data
is drawn from multiple spaces and hence exhibits multi-segment behavior. It is often useful to de-
velop techniques to represent the data in a subspace to capture richer temporal relationships and
apply clustering to explicitly demarcate these multiple segments. This approach called subspace

clustering has been applied to video and image segmentation [33, 52, 55], image compression [29],
and spatio-temporal action segmentation [20, 31]. A comprehensive review about the different
types of subspace clustering methods is provided by Vidal [53]. There has been extensive work
in subspace clustering in data mining [40], but to the best of our knowledge, it has not been ap-
plied on hurricane outage data for finding the temporal relation among timesteps. Further, these
subspace clustering techniques do not provide explanations of the results.

Simple interpretable models. There has recently been a push toward quantifying model uncer-
tainty [22] and making machine learning model outputs quantifiable, explainable, and simple [45].
Poursabzi-Sangdeh et al. [41] presented literature where they designed several quantitative and
qualitative experiments to investigate the impact of features andmodel transparency onmodel pre-
diction, a measure of trust and explainability. These models and their explanations are specific to
the underlying machine learning models and cannot be applied to our segmentation problem. We
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find that temporal segmentation is inherently unsupervised, and the intuition behind the segments
might not be readily apparent or explainable in certain applications. To the best of our knowledge,
our explanation optimization problem is the first attempt at designing simple explanations for time
series segments. In such cases, producing interpretable, simple segmentation results are effective
in addressing the explainability problem.

Spatio-temporal models. Yao et al. [56] developed the spatio-temporal dynamic network (STDN)
for traffic flow prediction. Our CnR-UV model is designed to recover explainable segments of
the major failure phases in data containing bursty time series that do not contain periodic, cyclical
effects like traffic flow patterns. Wu et al. [54] propose an urban anomaly prediction (UAPD) model
with a change point detection facet to detect evolving anomaly patterns. In contrast, CnR-UV, in
addition to detecting the major change points (i.e., segments) of the data, is able to return sparse
explanations about each retrieved change point yielding a holistic representation of the change
point.
In this article, we propose a dual-objective segmentation framework designed to provide spatio-

temporal segments of the data and simple explanations of the generated segments. Our proposed
framework optimizes the segmentation and explanation to obtain simple interpretable and sparse
segmentations of the data. We demonstrate our model on the dynamic degradation of critical in-
frastructure during natural calamities. To the best of our knowledge, this is the first attempt toward
designing simple explainable segments of time series data.

7 CONCLUSION

In this work, we developed a novel effective and scalable combined framework CnR for providing
segmentations and simple interpretable explanations for multivariate time series like outage data.
We evaluated the performance of our methodology against state-of-the-art segmentation and time
series clustering procedures on open ground-truth datasets. We also conducted an extensive anal-
ysis on the failure of the power grid during three hurricane events. There are many avenues for
future work. Methodologically, we can explore performing a joint learning of segmentations and
explanations, and more complex explanations. We can also explore integrating CnR with existing
analysis tools, such as the URBANNET toolkit [18] in use in national laboratories.
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