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—— Abstract

Being a fully automated technique for resource analysis, automatic amortized resource analysis
(AARA) can fail in returning worst-case cost bounds of programs, fundamentally due to the
undecidability of resource analysis. For programmers who are unfamiliar with the technical details of
AARA, it is difficult to predict whether a program can be successfully analyzed in AARA. Motivated
by this problem, this article identifies classes of programs that can be analyzed in type-based
polynomial AARA. Firstly, it is shown that the set of functions that are typable in univariate
polynomial AARA coincides with the complexity class PTIME. Secondly, the article presents a
sufficient condition for typability that axiomatically requires every sub-expression of a given program
to be polynomial-time. It is proved that this condition implies typability in multivariate polynomial
AARA under some syntactic restrictions.
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1 Introduction

There exists a wide range of effective techniques for automatically or semi-automatically
analyzing the resource consumption of programs. These techniques derive symbolic bounds
on the worst-case [24], best-case [10, 28], or expected [7, 29] resource consumption and are
based on type systems [8, 33, 9, 26, 2, 6, 12], recurrence relations [34, 11, 1, 25, 23], relational
reasoning [6, 31], and term rewriting [3, 5, 19].

State-of-the-art resource analyses can automatically derive complex bounds for large
programs, and making analyses more practical by improving their efficiency and range is a
main driving force in this area. However, resource analysis for Turing-complete languages
is undecidable, and even for the most sophisticated tools there will remain programs that
cannot be analyzed automatically. Diagnosing the cause and modifying the program so
that the analysis can derive a bound often require in-depth knowledge of the implemented
techniques. As a result, the usability of more sophisticated analysis tools is hampered by
their complexity.
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To improve the usability of automatic resource analysis for non-experts, this article
develops easy-to-understand characterizations of the programs that can be analyzed with
automatic amortized resource analysis (AARA). Such characterizations can serve as explana-
tions for an unsuccessful resource analysis and guide program development without revealing
technical details of the underlying analysis.

AARA is a type-based analysis that is based on the potential method of amortized analysis.
It has been first introduced by Hofmann and Jost [18] for deriving linear heap-space bounds
for a first-order language with lists. AARA has subsequently been extended to univariate
polynomial bounds [16], multivariate polynomial bounds [13, 14], and exponential bounds
[22]. Furthermore, AARA has been extended to other language features such as higher-order
and polymorphic functions [20, 15], lazy evaluation [21], and probabilistic programming
[29]. The analysis has been implemented in the programming language Resource-Aware ML
(RaML) [15]. An overview of polynomial AARA can be found in Section 2. We are not aware
of previous work that studies the characterization of typable fragments of AARA.

Our first contribution (Section 3) is a characterization of the (mathematical) functions
that can be implemented in AARA. We demonstrate that it is possible to embed every
polynomial-time Turing machine in AARA. That is, for every such Turing machine, there
exists an equivalent polynomial-time program that is typable in polynomial AARA. This
result shows that polynomial AARA corresponds to the complexity class PTIME and is in
the tradition of implicit computational complexity (ICC) [4, 27, 17], which studies linguistic
characterizations of complexity classes. For a user of RaML, this result means that an
implementation of a PTIME function can always be rewritten so that a worst-case cost bound
can be automatically derived. However, it does not provide guidance on how to rewrite an
implementation.

An ideal resource analysis should automatically derive a cost bound for every program
that has a polynomial bound. However, such an analysis does not exist, because the
problem of deciding whether a given program runs in polynomial time is undecidable [13].
Moreover, AARA is a type-based analysis that derives the bound of an expression from
its sub-expressions. So we can only expect to derive a bound for an expression which is
inherently polynomial time, that is, every subexpression is in PTIME if viewed as a function.

Our second contribution is an axiomatic definition of inherently polynomial time that
implies typability in multivariate polynomial AARA for a Turing-complete first-order language
with lists (Section 2) under some restrictions: Programs can only use primitive recursion
instead of general recursion, some variables are affine, and the use of nested lists is restricted.
Although this characterization is far from being a necessary condition, we believe that it can
be a valuable guide to users. A key concept is the notion of uniform resource annotations
which is essential in the proof that inherently polynomial time is a sufficient condition for
typability in multivariate polynomial AARA.

2  Automatic Amortized Resource Analysis (AARA)

Among approaches to resource analysis is AARA. Given a program P, consider its history of
execution, that is, a sequence of transitioning program states. As in Sleator and Tarjan’s
potential method in amortized analysis [32], we assign a certain (non-negative) amount
of potential to the initial state of this sequence. If we can ensure that (i) the amount of
potential never becomes negative throughout P’s run and (ii) the actual computational cost
in each transition of P is less than or equal to the change in the amount of potential, then
we know that the total resource usage of P is bounded above by the initial potential. This is
essentially how AARA works.
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More concretely, each sub-expression of P is assigned a resource-annotated type: a con-
ventional (i.e. simple) type augmented with an expression that indicates how much potential
is stored. In polynomial AARA [16, 14], we use polynomial functions to express potential.
Initially, AARA only assigns templates of resource-annotated types where coefficients of
polynomials are left blank. AARA then collects constraints on these coefficients that respect
the cost semantics of P. Finally, as these constraints are all linear, we can simply solve them
using an off-the-shelf liner program solver, thereby inferring resource-annotated types. A
worst-case cost bound of P can be extracted from its resource-annotated type.

2.1 Resource-Aware ML

Resource-Aware ML (RaML) is a Turing-complete functional programming language used in
the study of AARA [16].

The original version of RaML is first-order (i.e. no higher-order types or functions appear
in RaML) and only offers a relatively small set of language features. Subsequent versions
of RaML support more language features such as higher-order functions and polymorphic
functions [15]. In this section, we describe a variant of RaML that only differs from the
original version in a few minor details; e.g. the tick construct and the support for sum types.

The base types (denoted by b) and simple types (denoted by 7) of RaML are formed by

bu=1 unit type Tu=b base type
b1 + by sum type b1 — bs arrow type
b1 X by product type
L(b) list type.
The set of all base types will be denoted by B.

Fix a set V = {z,y, 21, x2,...} of variable symbols and a set F = {f,...} of function
symbols. The grammar of RaML is

en=x variable
| () unit element
|-z |r-x|casex{l-y—e|r-y—e.} sum constructors and destructor
| (x1,22) | case z {{x1,z2) < e} pair constructor and destructor
[ []] 21 2| casex {[] — eo | (z1 ::@2) — €1} list constructors and destructor
|fun fx=e function definition
| fx function application
| tick ¢ resource consumption; g € Q
|let z = eq in eg let-binding
| share z as z1, 25 ine variable sharing.

In a function definition, e is allowed to mention f. Therefore, we can implement not only
primitive recursion but also general recursion. As standard, we use the let-normal form,
where we only permit function application of the form x; x as opposed to e; es. For
convenience in resource analysis, we require each variable symbol to be used in a affine
manner (i.e. can only be used at most once). To use a variable symbol multiple times, we
duplicate the symbol with the share construct.

In the interest space, we will not present a type system of this language here. It is
available in Appendix B.1 of the full version of this article [30].
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RaML programs are evaluated using the call-by-value strategy. Computational costs
accrue only when tick ¢ is executed, and this cost metric is known as the tick metric. The
general cost semantics of RaML can be found in [16]. In the case of the running time, which
is a specific cost metric, of RaML, the judgment of the cost semantics has the form

VEelwv|n,

where V' is an environment (i.e. a set of pairs of variable symbols and semantic values), v is
a semantic value, and n € N is the running time of evaluating program e to v. The running
time is formally defined in Appendix B.2 of [30].

2.2 Univariate AARA

In univariate AARA, each list is annotated with a polynomial indicating the amount of the
potential stored in the list. Univariate AARA does not let us mix potential of two lists,
that is, multiply polynomials of two lists’ potential. This is why univariate AARA is called
univariate.

Resource-annotated base types (denoted by b) and resource-annotated simple types
(denoted by 7) are formed by the following grammar:

b:=1 unit type B :=(b,q) q€ Q>0
b1 + by sum type Tu=0b base type
b1 X by product type By — By arrow type
Li(b) list type.

Here, ¢ is a finite vector of Q>¢.
Given a semantic value v : b, where b is a resource-annotated base type, the potential
stored in v is inductively defined as

P(v:1):=0 ®([]: LI(b)) :=

D(l-v:by+by):=P(v:by) ®(vy :ivg s LIU(D)) :=
D(r-v:by +bo) :=D(v: ba),

(=

(v1:0) + ¢(|vg = v2l,q)

where |-| denotes the length of an input list. Given n € N and ¢ = (q1,-..,q%), ¢#(n,q) is
defined as ¢(n, q) := Zle ¢ (7). If n <, then () = 0.
The typing judgment of univariate AARA has the form

lannospFe: B,

where I'ynpo is @ resource-annotated typing context and p € Q>¢. We sometimes write
Yanno; Lanno; P F € @ B, where a resource-annotated typing context is split into X, for
arrow-type variables and ',y for base-type variables. The type system of univariate AARA
is available in Appendix C.1 of [30].

To give examples of judgments in univariate AARA, consider two programs: (i) append
that appends the first input list to the second, and (ii) quicksort that performs quicksort.
The running time of append is proportional to the size of the first input, and the running
time of quicksort is bounded by the square of the input size. For simplicity, we will not work
out the exact coeflicients of polynomial bounds. Instead, we simply assume that the running
time of append is bounded by the function n,m +— n, where n and m are the lengths of
the two input lists. Likewise, we assume that the running time of quicksort is bounded by
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n — n?, respectively. It then makes sense that these two programs can be typed in univariate
AARA as

append : ((L*(b), L°(b)),0) — (L°(b),0)  quicksort : (LY (b),0) — (L°(b),0).

The univariate resource annotation (1,2) of quicksort represents polynomial n — 1 - (71’) +2-
(72’) = n?. The implementations of append and quicksort are given in Appendix C.3 of [30].
Univariate AARA is sound with respect to the cost semantics (specifically, the running

time) of RaML:

» Theorem 1 (Soundness of univariate AARA [16]). Given term e, suppose I gnno;p b € :
(bannosq) s derived in univariate AARA. Let V be an environment such that V e | v | n;

that is, e runs in n units of time under V. We then have
n § p + (I)(V : Fanno) —q— (I)(U : banno)7

where ®(V : T opno) = Ewedom(f‘w”m) O(V(z) : Tanno(x)).

2.3 Multivariate AARA

In contrast to univariate AARA, multivariate AARA allows us to mix potential of different
lists. For example, we can have |¢1]-|¢2|’s worth of potential, where |-| denotes the length of a
list, in multivariate AARA. Due to this multivariate nature, multivariate AARA has a single
global resource annotation represented by a multivariate polynomial over all size variables
occurring in a given term. This global resource annotation is separate from individual types
in a typing context.

Multivariate AARA is strictly more expressive than univariate one. This is surprising
in light of the fact that multivariate polynomials can always be bounded by univariate
polynomials; e.g. zy is bounded by 2 + y2. Examples of programs that cannot be typed in
univariate AARA but are typable in multivariate AARA are in Section 4.1 and Section 5.

Resource-Annotated Types

Resource-annotated types in multivariate AARA are formed by

b:=1 unit type B :=(b,Q)
by + bo sum type Tu=b base type
b1 X by product type B1 — Bs arrow type
L(b) list type.

In (b, Q), Q is a multivariate resource annotation over the size variables inside b. This will
be formalized shortly.
Given a base type b € B, its base polynomial is a function of type [o] — N, where [b]

is the set of semantic values of type b. The set of base polynomials associated with type b,

denoted by B(b), is inductively defined as follow:

B(1
B(by + bs) :
B(bl X b2

B(L(b)) :

{Aw.1}

{A(-v).pv) | p € B(b1)} U{A(r-v).p(v) | p € B(b2)}
{Mvr,v2) pi(vr) - pa(v2) | pi € B(bi)}

{A[v1, ..., 0] Z H pi(vj,) | k€ N,p; € B(b)}.

1< < <jr<n 1<i<k

\./\./\_/\./
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For b, + bs, we have a set of base polynomials for the /-tag and another set for the r-tag. If
a base polynomial is applied to a value with a wrong tag, we assume that the output is 0.
For instance, if we feed a value £- () to A(r - v).1, the output should be 0. In the definition
of B(L(b)), if n < k, the function should return 0 since it is the identity of summation.

Given base type b, a resource polynomial p : [b] — Q> is a non-negative linear combina-
tion of finitely many base polynomials from B(b). It is straightforward to prove that B(b)
for any b contains A\v.1. Therefore, a resource polynomial is always capable of expressing
constant potential.

For convenience, it is desirable to have a succinct notation for base polynomials. This is
achieved by introducing indexes of base polynomials:

I(1):={*}

I(by+bo) i={Ci|i€T(b)}U{r-i|ieL(bs)}
) =
):

(b1 X by {<Zl7i2> | 11 € I(bl),ig S I(bg)}
T(L(b) {li1, ... i) | ke N,ij € Z(b)}.

An index is usually used as a subscript for a (meta)-variable representing a coefficient of

a base polynomial. For instance, g, ., € Q>¢ is a meta-variable representing a coefficient of
base polynomial A(vq,v2).1. For any base type b, we will write 0p for the index Av.1.

For example, consider Z(L(1)) = {x, [*], [*, *], [*, %, %], ...}. The index [*, x] represents the
polynomial function

Aor,.vn] > I (o) wp) =Awr,.va >0 1

1<j1<g2<n 1<:<2 1<j1<g2<n

:)\[vl,...,vn](;l).

Thus, the multivariate index [, %] represents a quadratic function on the input list’s length.
The degree of an index is defined by

deg(*) :=0 deg((i1,i2)) := deg(i1) + deg(iz)
deg (¢ - i), deg(r - i) := deg(i) deg([i1, ... i) :=k+ »_ deg(i;)
1<5<k

Intuitively, deg(i) is equal to the degree of the polynomial function that index ¢ represents.
Because a resource polynomial can only have non-zero coefficients for finitely many base
polynomials, any resource polynomial (or a finite set of resource polynomials) has a bounded
degree. In practice, we ask a user of AARA to supply an upper bound on the degree of base
polynomials.

Resource Annotations of Typing Contexts

Given a base-type typing context I' = {1 : by,..., 2, : by}, its multivariate resource
annotation is given by a resource polynomial of type b1 X - -+ X b,. In other words, we treat
a typing context as one big tuple and assign a single multivariate annotation to this tuple.

With regard to an arrow-type typing context ¥ = {f1 : b11 = b1.2,..., fm : bm,1 = b2},
its multivariate resource annotation has the form

Zanno = {fl : Bl,l — B1,27 ey fm : Bm,l — Bm,2};

where each B; ; is a pair (b; j, Q) such that @ is a multivariate resource annotation of b; ;.
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Typing Judgment
The typing judgment of multivariate AARA takes the form

ITPEe:(bQ),

where I' and b are free of resource annotations. P and () are multivariate annotation over I'
and b, respectively. The type system of multivariate AARA is available in Appendix D.2 of
[30].

To give examples of judgments in multivariate AARA, consider append (¢1,¢5), which
appends ¢; to £». Suppose that the output must store n — n? much potential, where n is
the output’s length. It is reasonable that the total potential required for this program is
[61] + (J€1] + |¢2])?, out of which |¢1] is used to account for the running time. This can be
expressed by the judgment ¢; : L(1),¢s : L(1); P - append (¢1,43) : (L(1),Q), where the
positive coefficients of P and () are

P(([+, %)) = P(([*,+], %)) = P({[+], [])) = P((x, [*,%])) = 2 P((x, [%])
Q[ +) =

[\)
)
=
*
=
[
NG

P amounts to 2 - ((‘le )+ (lezll) + (\411\) . (Mf‘) + (legl)) +1- (lefl), which is equal to |[£1] +
(|61] + [¢2])* as desired. Similarly, @ amounts to 2- (3) + 1 - (}) = n? as desired, where
The multivariate equivalent of the soundness theorem (Theorem 1) holds [14].

3 Embedding Polynomial-Time Turing Machines in AARA

In this section, we show that every polynomial-time Turing machine can be expressed as a
typable RaML program while preserving the semantics and worst-case cost bounds. More
formally, we have

» Theorem 2 (Embedding of polynomial-time Turing machines in RaML). Let M be a
polynomial-time Turing machine that inputs and outputs bit strings from {0,1}*. There
exists a RaML program M’ :{0,1}* — {0,1}* such that

For every input w € {0,1}*, we have M (w) = M'(w);

The computational cost of M’ (according to the tick metric) is larger than or equal to the

running time of M ;

Univariate AARA can infer a polynomial upper bound of the computational cost of M'.

Theorem 2 only tells us the existence of a RaML program M’ that is typable in univariate
AARA and that simulates M faithfully. In our proof of the theorem, we assume that a
polynomial bound on the running time of M is known. Thus, if we do not have access to this
polynomial bound, we cannot construct M’. In fact, the problem of determining whether a
given Turing machine runs in polynomial time or not is undecidable [13].

It is fairly easy to prove that the cost of any program according to the tick metric is
asymptotically bounded by its running time. Therefore, in the statement of Theorem 2, we
can replace the “tick metric” with the “running time” of RaML.

A detailed proof of Theorem 2 is available in Appendix A of [30].

3.1 Preliminaries

» Definition 3 (Turing machine). A (deterministic) Turing machine M is specified by an
8—tupl€ (Q7 27 Fa }_a ua 57 q0, Qﬁnal); where
Q is a finite set of machine states.
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Y is a finite input alphabet. T is a finite alphabet for symbols written on M ’s tape. Since

an input will be initially placed on the tape, every input symbol is also a tape symbol.

F e T\ X is the left end marker that demarcates the left end of a semi-infinite working

tape, and U € T'\ X is the blank symbol for the tape.

§:QxT = QxT x{L,R} is the transition function.

qo € Q 1s the initial state, and qfinq € Q s the final state.

In the initial configuration of a Turing machine, an input string w is placed immediately
after the left end marker - on the tape. The state of the machine is initially gg, and the
read/write head is positioned on the first symbol of w. The rest of the tape is filled with LI.

The Turing machine first (i) reads the content of the cell currently under the tape head
and (ii) identifies the current state of the machine. The machine then overwrites the current
cell (if necessary), updates the machine’s state, and moves the head to the left or right
according to the transition function 6. The machine terminates as soon as it enters ggpai-
Upon termination, the content of the tape before the first blank symbol is considered as the
machine’s output. The running time is defined as the number of steps the Turing machine
makes before termination.

Without loss of generality, we will henceforth only consider Turing machines with X =
{0,1} and I' = X U {F,U}.

To enhance clarity, we will introduce two type aliases, State and Sym, which are defined
as L(1 4+ 1); i.e. bit strings or natural numbers. The type State represents machine states of
M, and Sym represents tape symbols of M. In fact, because M has finitely many machine
states and tape symbols, State and Sym can alternatively be encoded as 1 + --- + 1.

3.2 Embedding

Fix a polynomial-time Turing machine M = (Q, %, T,F,U, 0, g0, gina1). Assume that the
running time of M is bounded above by p(n) for some polynomial p : N — N. The target
program of the translation will be denoted by M’, and this is what we are about to define.
M’ works as described in Algorithm 1. A RaML implementation of M’ is available in
Appendix A.3 of [30].

Algorithm 1 Operational working of target RaML program M.
Require: w € {0,1}*

1. procedure M’ (w)

2: Create a singleton list ¢; : L(Sym) containing

3 Create a list £5 : L(Sym) of size p(Jw|) filled with U

4 Prepend {5 with w

5: Create a list ps: L(1) of size p(|w|) > Reservoir of potential
6 s+ qo > Initialize the current state
7 while s # gana A ps # [] do

8 ps <+ tail ps > Potential is released
9: Compute d(s, ¢2[0])

10: Update s and ¢3[0] appropriately

11: Update the tape head’s position by moving the head of ¢; or ¢5 to the other

12: return append(reverse {1, {5)

The list ¢; represents the region on M’s tape to the left of the tape head (in the reverse
order and excluding the cell where the tape head is currently on), and {5 represents the
region to the right of the head (including the current cell). Since it is assumed that p(jw)),
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where |w| denotes the length of input list w, is an upper bound on M’s running time, we
are assured that M requires at most p(Jw|) many cells on the working tape. This is why /o
initially has size p(|w|). In fact, because we prepend {5 with w in line 4, we have |w| more
cells than necessary.

The list ps acts as a reservoir of potential, storing constant potential in each element. As
the head of ps is removed in line 8, the potential stored in this element is freed and will be
consumed in subsequent lines inside the loop’s body.

It is technically possible to store potential directly in ¢; and ¢5, which together simulate
M’s working tape. However, not all cells on the working tape of M are accessed equally
often — some cells are accessed more often than others, and the maximum number of accesses
to a given cell may not be bounded by a constant. If we are to store potential in ¢; and /5,
each cell of ¢; and ¢5 needs to store p(n) units of potential at the beginning. As a result, the
total amount of potential supplied to M’ is p?(n), which is a gross over-approximation of the
actual running time. Therefore, to have a tighter cost bound, a separate list, namely ps, is
employed as a reservoir of potential.

4  Inherently Polynomial Time

Section 3 investigates the expressive power of AARA from the viewpoint of programming
language semantics, disregarding the issue of how to algorithmically turn an arbitrary Turing
machine into a typable RaML program. By contrast, in this section, we aim to identify
a typable fragment of AARA that is defined statically /axiomatically. Henceforth, we will
call the sufficient condition corresponding to the typable fragment that this section presents
inherently polynomial time.

A key requirement is that the typable fragment should not resemble AARA’s type system,
which itself is also defined axiomatically. Otherwise, it would be trivial to prove that any
term in this fragment is typable in AARA. Because we want users of AARA to benefit from
our findings of the present work, another requirement is that the definition (or at least the
informal definition) of inherently polynomial time should be easy to convey to users of AARA.
On the other hand, it is not our priority to find as large a typable fragment as we can.

In the remaining of the article, we will focus on the running time as a cost metric of
RaML, unless stated otherwise.

4.1 High-Level Design

By Theorem 1 (and its multivariate equivalent), AARA is sound: if a program is typable in
AARA, its resource-annotated type is a correct upper bound on the running time. Hence, to
be typable in AARA, the worst-case running time of a program must be polynomial. To
ensure termination of programs, we first restrict recursion to primitive recursion.

Furthermore, the type system of AARA is compositional: if term e is typable, so is
every sub-expression of e. Hence, in order for e to be typable, not only e but also all of its
sub-expressions must be polynomial-time. This suggests that we should define the sufficient
condition inductively, hence the name inherently polynomial time.

It is straightforward to determine whether each of the base cases of the inductive definition
is typable or not. It remains to work out inductive cases in the inductively defined sufficient
condition for typability. The most interesting case is primitive recursion. A primitive
recursion will be written as

e:=recz {[] = eo| (y:: ys) with z — e1},

349
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where x is matched against y :: ys in the second branch, and z is the result of a recursive call.
The stepping function e; can only contain y, ys, and z as free variables; i.e. FV(e1) C {y, ys, z}.
From compositionality, we know that ey and e; are both typable and hence run in polynomial
time. Under what condition does the entire e run in polynomial time as well?

To answer this question, we first observe the following. Without any restrictions on eg
and e; apart from that they should be typable, AARA may project e’s worst-case time
complexity to be exponential even if the actual running time of e is polynomial. To illustrate
this, consider

e:=recz {[] = []| (y :: ys) with z < share z as z1, 25 in append (z1, z2) }. (4.1)

Although the actual running time of e is O(|z|) and hence is linear, e is untypable in
polynomial AARA. The problem of (4.1) is that the stepping function doubles the input size.
This makes AARA conclude (naively) that the worst-case total running time is O(2/*!), and
this cost bound is beyond the expressive power of AARA (exponential AARA [22], however,
can handle exponential cost bounds).

To preclude the example (4.1), it is reasonable to require the running time of e; (i.e. a
stepping function inside primitive recursion) to be constant in the size of z (i.e. the result
of a recursive call). More concretely, if T'(|y|, |ys|, |z|) is the running time of a stepping
function, we demand T'(|y|, |ys|, |z]) < p(|yl, |ys|), where p(|y|, |ys|) is a polynomial in |y| and
lys| (i.e. the sizes of y’s and ys’s semantic values'). We will adopt this idea in the formulation
of inherently polynomial time.

Although this idea results in a fairly simple inductive definition of inherently polynomial
time, a major drawback is that some realistic programs are not admitted by the current
formulation of inherently polynomial time. For instance, consider multiply that, given input
lists ¢1 and ¢2, produces a list of size |[¢1] - |¢2]:

multiply :== My My.rec b1 {[] <= {a,[]) | (y :: ys) with z < ey}, (4.2)
where the stepping function of primitive recursion is
e1 = case z {(z1, z2) — share z; as 21,1, 21,2 in (21,1, append (z1 2, 22)) }.

The first component of z stores ¢5, while the second component of z acts as an accumulator.
The running time of e; is polynomial in |z1| but constant in |z2|. Therefore, e;’s running
time is only polynomial partially in |z|. This is why the overall time complexity of e remains
polynomial instead of becoming exponential. Nonetheless, (4.2) is not inherently polynomial
time according to the current formulation, since the formulation does not allow e;’s running
time to have any dependence on |z|.

Furthermore, (4.2) can only be typed in multivariate AARA and not in univariate AARA.
This means our formulation of inherently polynomial time fails to capture some of the realistic
programs that are typable only in multivariate AARA. In view of this, one might wonder
whether inherently polynomial time is completely encapsulated by univariate AARA; that
is, every inherently polynomial-time RaML program is typable in univariate AARA. The
answer is negative.

As a counterexample, consider the standard append defined as

append := Mqy.Ma.rec b {[] = L2 | (y :: ys) with z — y =2 z}. (4.3)

LA formal definition of the size of RaML’s base-type semantic values is not provided in this article.
However, the idea is intuitive. For example, the size of a list is given by the sum of all elements’ sizes.
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Note that it is inherently polynomial time. append alone is typable in univariate AARA as
well as multivariate AARA. However, if we require the output of append to carry quadratic
potential (because it will be later fed to a function that demands quadratic potential from
inputs, for example), then univariate AARA cannot type append — we need to resort to
multivariate AARA to type it.

In summary, our formulation of inherently polynomial time goes beyond the remit of
univariate AARA, but does not capture the full range of realistic programs that require
multivariate potential.

4.2 Formulation of Inherently Polynomial Time
Restricting the Syntax of Resource-Aware ML

To ensure termination of programs, we require programs to use primitive recursion in place
of general recursion. Hence, we will from now on work with a fragment of RaML wherein
general recursion is replaced by primitive recursion. This fragment removes fun f x = e from
the original RaML (Section 2.1) and adds the following:

1. A(z : b).e for a lambda abstraction, where b € B;

2. recz {[] < eo | (y :: ys) with z < e1}, where z denotes the result of the recursive call.
In primitive recursion, e; is only allowed to mention {y, ys, z}. If e; needs access to a global
variable v (i.e. a variable from outside the primitive recursion), v should be transferred to e;
by placing v inside z.

The reason why we deny e; access to a global variable is that every variable symbol can
only be accessed at most once in RaML. However, this is in fact already violated by e; having
access to ys (because this means some elements of the input x are accessed multiple times
during primitive recursion). Further, even if we let e; access global variables, AARA can be
easily adapted. Also, it will result in a less strict formulation of inherently polynomial time
that admits multiply in (4.2). Nonetheless, for simplicity, this article assumes that e; can
only mention y, ys, and z.

Primitive recursion can be encoded using general recursion as

fun f (z,T) =case x {[] <> eo | y :: ys < share ys as ys;, ys, in let z = f (ys;, ) in e }.
Here, T is a set/sequence of those variables that do not appear in ey, but eg. Variable ys; is
passed to the recursive call, and ys, is used in e; (if e; mentions ys).
Judgments

The primary judgment of inherently polynomial time is
A;T F e inhpoly(V), (4.4)

where
I’ is a typing context containing both base-type and arrow-type variables such that
I'Fe: b for base type b.
V C dom(T") is a set of variables.

A is a set of f time, where f € dom(T') is an arrow-type variable and time € {const, poly}.

Sometimes we split I' into X for arrow-type variables and I" for base-type variables, writing
the judgment as A;3;T" F e inhpoly(V). (4.4) is only applicable to base-type expressions e.
An informal interpretation of (4.4) is
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f const denotes that the running time of f is constant with respect to the input size, and
likewise, f poly denotes that f’s running time is polynomial? in the input size.

The running time of e is (i) polynomial® in the sizes of those variables in V but (ii)
constant in the sizes of dom(T") \ V.

Every sub-expression of e runs in polynomial time.

The judgments for an arrow-type expression e are
A;T F e const A; T F e poly, (4.5)

A;T F e const means e runs in constant time with respect to the input size, and A;T" F e poly
likewise means e’s running time is polynomial in the input size.

Inference Rules

The most important inference rules defining (4.4) are displayed in Figure 1. Throughout
these rules, b denotes a base type, time is drawn from {const, poly}, and V is a set of variables.
The remaining rules are deferred to Figure 10 in Appendix E of [30].

In (IP:CASE-SUM), the notation V[z — y] refers to the result of replacing = in V' with y
(if x € V); otherwise, V' remains intact. If the running time of case x {{-y — e; | r-y <= e, }
in the rule’s conclusion is allowed to be polynomial in |z| (i.e. z € V'), then e;cy -y in the
two premises is allowed to run in polynomial time in |y| = |z| — 1.

Similarly, in (IP:CASE-PROD), V]z — z1,22] means (V \ {z}) U {z1, 22} if z € V;
otherwise, V remains unchanged.

(IP:REC) is the crux of the notion of inherently polynomial time. Observe that the
stepping function e; must be constant-time in |z| (i.e. the size of z’s semantic value).

In (IP:LET-BASE), we use a finer-grained notation where the typing context of e; is split
into ¥; for arrow-type variables and I'; for base-type variables. V3 is determined by

. dom(T1) U (Vo \ {z}) ifx e Vy;
’ ViuVy otherwise.
If x € V5, it means that e; runs in polynomial time in |z|. In the worst case, not only the
running time of e; but |e1| (i.e. the output size of e;) is polynomial in the sizes of those
variables in V7. Hence, in the worst case, the overall running time of let £ = e in ey is
polynomial in dom(T';), which contains all base-type variables appearing in e;, and V5 \ {z}.
Note that (IP:LET-BASE) considers the worst case — if we had information about the output
size, we might be able to derive a more precise judgment.
Finally, the judgment (4.5) is defined by the following inference rules:

A;z 2 b+ einhpoly()
A;-F Xz 1 b).e const

A;z b einhpoly({z})
A;-F Az : b).e poly

(IP:CoNsT) (IP:PoLy)

In (IP:CONST), because the conclusion indicates that the A-abstraction’s running time is
constant in the input size, the premise states that the running time of the body e can only
be polynomial in dom(T'), which excludes x. By contrast, in the premise of (IP:PoLy), the
set of variables contains x.

2 f’s running time being polynomial does NOT mean that it is strictly polynomial — it can also be constant
in the input size.
3 Again, the running time of e may be constant as well as polynomial in the size of any v € V.



L. Pham and J. Hoffmann

: (IP:BASE) A ={f time}
sz : b xinhpoly(0) N

(IP:ARROW)

a2 b bz inhpoly (D)
2 bk £-x inhpoly(()

b xinhpoly(()
sz bk r-xinhpoly(0)

(IP:SuML) (IP:SuMmR)

;1 @ by = 21 inhpoly(() ;2 : ba F x2 inhpoly(0)

IP:PAIR
L 3 b1,$2 1 by - <:c1,:v2) inhpoly(@) ( )

(IP:UNIT) A = {1 const}
A;x1 by — b, w2 : by 21 22 inhpoly()

5+ = () inhpoly(0) (IP:App-CONST)

(IP:NIL) A = {z; poly}
Aj;x1: b1 — b2, x2 : b1 F 1 x2 inhpoly({z2})

<+ F [] inhpoly(0) (IP:App-PoLY)

;w1 2 b x1 inhpoly(0) ;2 : L(b) F x2 inhpoly(0)
w1t byxe + L(b) b 21 i 22 inhpoly(0)

(IP:Cons)

A;T,y : by F e inhpoly(Vz — y]) A;Ty 2 ba e, inhpoly(V[z — y])
A;Tyz:bi+babcasex {€-y—er|r- -y e} inhpoly(V)

(IP:CASE-SUM)

A;T,x1 by, z2 : b e inhpoly(Vx — z1, z2])
A;T by X by Fcase z {{z1,x2) < e} inhpoly(V)

(IP:CASE-PROD)

A;T F eg inhpoly(V \ {z}) A;T xy b,z 2 L(b) F ey inhpoly(V[z — x1, z2])
AT,z L(b) - case z {[] < eo | (z1 :: z2) < e1} inhpoly(V)

(IP:CasE-LisT)

A;T F eg inhpoly(V) 5y byys: L(b), z : ba F e1 inhpoly({y, ys})
AT,z L(b) Frecz {[] < eo | (y :: ys) with z < e1} inhpoly(V U {z})

(IP:REC)

A1;%1;T1 F eq inhpoly (V1) Ag;Ta,z : b ea inhpoly(V2)
A1 UA2 3N UT1 U F let 2 = eq in ez inhpoly(V3)

(IP:LET-BASE)

AT, 21 :byxe : b e inhpoly(V[z — 1, 22])

—— (IP:SHARE-BASE)
A;T,x : bl share x as z1, z2 in e inhpoly(V)

Figure 1 Key inference rules of inherently polynomial time.

5 Typable Fragment of Resource-Aware ML

It is nontrivial to prove that inherently polynomial time (Section 4.2) implies typability
in multivariate AARA. The chief challenge is to come up with a suitable statement of a
typability theorem (i) that we can prove by induction and (ii) that satisfies the following two
requirements. Firstly, because a term e may later be used as an input to a function, it must
be possible to type e such that a user-specified (i.e. arbitrary) amount of potential remains
in e’s output. Secondly, to type primitive recursion, we need to establish an invariant of
resource annotations that is analogous to a loop invariant in Hoare logic. Specifically, given a
primitive recursion rec x {[] < eg | (y :: ys) with z < e1}, we must give an (almost) identical
annotation to both z, which is the result of a recursive call, and e;, which is a stepping
function.
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Typability Theorem

We have partially overcome this challenge, and this section presents the result that inherently
polynomial time implies typability in multivariate AARA under some restrictions. Detailed
proofs of Theorem 6 and Theorem 9 are available in Appendix E of [30].

» Definition 4 (Variables with zero potential). Let I' U {v : b} be a base-type typing context
and P be its multivariate annotation. Variable v is said to contain zero potential in P if and
only if P(i,5) = 0 for every i € Z(I') and j € Z({v : b}) such that j # 0p. In other words, the
potential represented by P is constant with respect to |v|.

» Assumption 5. Suppose we are given A; ;T et fort € {inhpoly(V), const, poly}. For
every sub-derivation Ag;Yg;Ts F es inhpoly(Vy) inside the derivation of A; 3T e t, we
assume the following:

If e = share v as vy, vg in- -+, then v must be in Vy;

Ifes=casex {[] <= -+ | (y :: ys) <= - -+ }, then the type of x is of the form L(b) where

b € B does not contain a list type; that is, x cannot be a nested list.

The next theorem establishes that inherently polynomial time implies typability in
multivariate AARA under Assumption 5, which restricts variable sharing and pattern
matching on nested lists.

» Theorem 6 (Inherently polynomial time implies typability). Suppose we are given a term
;T F e : b with base type b € B, where A;3;T' F e inhpoly(V') holds for some V' C dom(T).
Additionally, assume Assumption 5. There exist P and Q satisfying X;T; P e : (b, Q) such
that each v € dom(I') \ V' contains zero potential (Definition 4).

Consider an arrow-type term ;- F e : by — by and assume Assumption 5. There exist
P and Q such that ;51 F e : (b1, P) — (ba, Q). Additionally, if A;-;T I e const is true, P
contains constant potential; i.e. by stores zero potential in P.

Given a base-type expression e, if A;Y; T F e inhpoly(V) holds, the running time of e is
constant in the size of any v € dom(I") \ V. In other words, such v does not contribute to
the computational cost of e. Therefore, it intuitively makes sense that such v contains zero
potential in Theorem 6.

However, Theorem 6 cannot be immediately proved by induction on inhpoly(V'), since
the statement of the theorem is not strong enough for an inductive proof to go through.
Specifically, a problem arises in the inductive case for (IP:LET-BASE). In a let-binding
let x = ey in eg, e; must carry sufficient potential to be transferred to es. However, Theorem 6
does not allow us to specify how much potential will remain available in the output of e.

Prior to remedying this issue, we first introduce the notion of uniform resource annotations
for multivariate AARA.

» Definition 7 (Uniform resource annotations for base types in multivariate AARA). Given a
base type b € B, let P be a multivariate resource annotation of b. P is said to be a uniform
multivariate annotation with degree d € N and number n € N if and only if the following
conditions hold

1. The mazimum degree of P is at most d;

2. P(i) = n for every i € Z(b) such that deg(i) = d.

In words, all coefficients of base polynomials with degree d (which should be the maximum
degree) are equal to n. This will be denoted by a judgment P uniform(d,n).
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» Definition 8 (Uniform annotations for typing contexts in multivariate AARA). Consider
a term ;T F e : b of base type. Suppose that A; ;T F e inhpoly(V') holds. Let P be a
multivariate annotation for the base-type typing context I'. We say that P is uniform with
respect to degree d € N, number n € N, and set V' of variables if and only if the following
conditions hold:

1. For any base-type variable v € dom(T') \ 'V of type b,, we have

VieI({v:b,}),j € I\ {v: by}).deg(i) > d = P(i,j) = 0.

In words, for any base polynomial with a non-zero coefficient in P, its projection on v
must have degree at most d.
2. For any v € dom(T)\'V of base type b,, we have

Vi€ Z({v:by}),j € Z(T\ {v:by}).(deg(i) =d A j #0) = P(i,5) = 0.

In words, if a base polynomial has a non-zero coefficient and its projection on v has degree
d, then the base polynomial is not allowed to involve size variables of any other base-type
variables from dom(T").

3. For any v € dom(I') \'V of base type b,, we have

Vie Z({v:by}).deg(i) =d = P(3,0) =n.

That is, every base polynomial whose projection on v has degree d has coefficient n.
If these conditions hold, we denote P being a uniform annotation by a judgment
P uniform(d,n, V).

Note that Definition 8 is a generalization of Definition 7. P uniform(d,n) in Definition 7
is equivalent to P uniform(d,n, () in Definition 8.

Now that we have the notion of uniform annotations in place, we next present Theorem 9
that allows us to specify the amount of potential remaining in the output of a program.
The major difficulty of the proof lies in establishing an invariant for primitive recursion
as explained at the start of Section 5. We employ the notion of uniform annotations to
characterize this invariant.

» Theorem 9 (Existence of a multivariate annotation with arbitrary potential in the output).

Given a term ;T F e : b with b € B, suppose that A;3;T + e inhpoly(V') holds, where
V C dom(T). Also, assume Assumption 5. Fixz a multivariate annotation Q for the base
type b such that Q uniform(d,n). Then there exists a multivariate annotation P such that
;15 PFe: (b,Q) under the cost-free metric. Furthermore, P uniform(d,n, V') holds.

Consider an arrow-type term X;- F e : by — by and assume Assumption 5. Fir a
multivariate annotation @ for base type by such that @ uniform(d,n). Then there exists
P such that ;0 F e : (b1, P) — (b, Q) under the cost-free metric. Furthermore, if
A;Y; -+ e const is true, P uniform(d,n) holds.

The cost-free metric in Theorem 9 refers to the cost metric in which all evaluation costs
are zero. For instance, if f : L(1) — L(1) is a function that doubles the size of an input
list, it can be typed as f : (L%(1),0) — (L!(1),0) under the cost-free metric*. That is, the
potential stored in each element is halved because the length of the list is doubled. If the cost

4 For readability, I use univariate AARA instead of multivariate AARA to denote resource-annotated
types, although Theorem 9 concerns multivariate AARA
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metric is the running time, we instead have f : (L2*¢(1),0) — (L*(1),0), where c is the cost
of processing each list element. The type system of multivariate AARA under the cost-free
metric is provided in Appendix D.2 of [30]. Theorem 9 uses the cost-free metric (as opposed
to the running time) since Theorem 6 has already considers the cost of evaluating programs.

Theorem 9 assumes Assumption 5 as the proof of the theorem poses technical challenges
in variable sharing and pattern matching on nested lists. We will now look at these challenges
more closely.

Variable Sharing

Theorem 9 is false if we impose no restrictions on variable sharing. To illustrate this, consider
e defined as

e:=recx {[] = £, 0) | (y::_) with z < e}, (5.1)

where the stepping function is e; = case z {(z1, 22) < share 21 as 211,212 in (z11,21,2)}.
The typing context of e in (5.1) is I' = {« : L(1),¢: L(1)}. The stepping function satisfies
e1 inhpoly({y, ys}). Hence, (5.1) is indeed inherently polynomial time. However, inside ey,
we have share z1, which Assumption 5 forbids.

Let (€1, ¢2) be the output of (5.1). Suppose that both ¢; and ¢ are to be annotated with
L'(1). To type (5.1) under the cost-free metric such that ¢, ¢y : L'(1), the typing context
T of e needs to be annotated with 2|¢| + |z| - |¢|, where |-| denotes the size of an input list.
Observe that we need to use multivariate AARA rather than univariate AARA to type (5.1).

In the notation® of univariate AARA, the stepping function of (5.1) can be typed as

y:1,ys: L°(1),z: L*(1) x L°(1);0 F ey : (L' (1) x L*(1),0).

Here, the maximum degree is d = 1. It is impossible for both z and e; to have the same
coefficient for all base polynomials of degree d = 1. Therefore, Theorem 9 is false for (5.1).
To accommodate the multivariate annotation of (5.1), it is necessary to relax the notion of
uniform resource annotations, but this will make the typability proof more challenging.

Nested Lists in Pattern Matching

Theorem 9 is false for pattern matching on nested lists. For example, consider e defined as

e:=casex {[] = _| (y:ys) — (y,ys)},

where the first branch is unimportant in the present discussion. The typing context of e
isT'={z: L(L(1))}. Assume that we consider multivariate annotations of degree up to
d = 2. Let P denote a multivariate annotation of I'. The multivariate annotation for context
{y:L(1),ys: L(L(1))} as a result of pattern matching on « : L(L(1)) is given by the additive
shift of P, denoted by <1(P). It is defined as

P(O0py = g) + P(j) ifi=0p);

o . (5-2)
P(i:j) otherwise,

AP (i, g) = {

where i € Z({y : L(1)}) and j € Z({ys: L(L(1))}). The problem is that the base polynomial
(i,7) on the left hand side of (5.2) has degree deg(i)+deg(j), while (¢ :: ) in the second branch

5 Although we are concerned with multivariate AARA, I will use univariate AARA to denote the resource
annotation of e; because it happens to be describable by univariate AARA and it is easier to read.
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of the right hand side has degree 14+-deg(i)+deg(j). As a consequence, if 1+deg(i)+deg(j) = 2,
P(i :: j) is required to be equal to n because Theorem 9 requires P uniform(d,n) to be
true. This means <1(P)(i,5) = n must hold as well. But <1(P)(¢,j) = n is not necessarily
the case, since Theorem 9 imposes no requirements on the coeflicients of lower-degree base
polynomials.

6 Conclusion

In this work, we have shown that polynomial-time Turing machines can be embedded in a

typable fragment of RaML in such a way that the semantics and worst-case cost bounds are

preserved. Moreover, we have proved that if a first-order program P satisfies the following

conditions, it is guaranteed to be typable in multivariate polynomial AARA:

1. P uses primitive recursion instead of general recursion;

2. P is (axiomatically) inherently polynomial-time;

3. No variable sharing is applied to variable v, where P’s running time is (axiomatically)
constant in v;

4. No pattern matching is applied to a nested list.

We have neither found a counterexample to the full typability theorem (i.e. Theorem 6
without Assumption 5) nor proved it. As future work, we are looking to investigate how
to prove or disprove the full typability theorem. To lift the restriction on nested lists, we
expect that it suffices to modify the statement of the theorem such that we can keep track
of the largest coefficient. However, lifting the restriction on variable sharing will be more
challenging because it certainly requires a drastically different inductive hypothesis.
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