Sound Probabilistic Inference via Guide Types

Di Wang Jan Hoffmann Thomas Reps
Carnegie Mellon University Carnegie Mellon University University of Wisconsin
USA USA USA

Abstract

Probabilistic programming languages aim to describe and
automate Bayesian modeling and inference. Modern lan-
guages support programmable inference, which allows users
to customize inference algorithms by incorporating guide
programs to improve inference performance. For Bayesian
inference to be sound, guide programs must be compatible
with model programs. One pervasive but challenging con-
dition for model-guide compatibility is absolute continuity,
which requires that the model and guide programs define
probability distributions with the same support.

This paper presents a new probabilistic programming
language that guarantees absolute continuity, and features
general programming constructs, such as branching and
recursion. Model and guide programs are implemented as
coroutines that communicate with each other to synchronize
the set of random variables they sample during their execu-
tion. Novel guide types describe and enforce communication
protocols between coroutines. If the model and guide are
well-typed using the same protocol, then they are guaranteed
to enjoy absolute continuity. An efficient algorithm infers
guide types from code so that users do not have to specify the
types. The new programming language is evaluated with an
implementation that includes the type-inference algorithm
and a prototype compiler that targets Pyro. Experiments
show that our language is capable of expressing a variety
of probabilistic models with nontrivial control flow and re-
cursion, and that the coroutine-based computation does not
introduce significant overhead in actual Bayesian inference.

CCS Concepts: « Theory of computation — Probabilistic
computation; Type structures; « Mathematics of com-
puting — Probabilistic inference problems.

Keywords: Probabilistic programming, Bayesian inference,
type systems, coroutines

ACM Reference Format:
Di Wang, Jan Hoffmann, and Thomas Reps. 2021. Sound Proba-
bilistic Inference via Guide Types. In Proceedings of the 42nd ACM

Ol

This work is licensed under a Creative Commons Attribution International 4.0 License.

PLDI °21, June 20-25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8391-2/21/06.
https://doi.org/10.1145/3453483.3454077

788

SIGPLAN International Conference on Programming Language Design
and Implementation (PLDI °21), June 20-25, 2021, Virtual, Canada.
ACM, New York,NY, USA, 16 pages. https://doi.org/10.1145/3453483.
3454077

1 Introduction

Probabilistic programming languages (PPLs) [1, 12, 22-24, 45,
48, 53, 58] provide a flexible way of describing statistical
models and automatically performing Bayesian inference: a
method for inferring the posterior of a statistical model from
observed data. Bayesian inference accounts for uncertainty
in latent variables that produce the observed data. It has ap-
plications in many fields, including artificial intelligence [21],
cognitive science [25], and applied statistics [20].

Because there is not a single known inference algorithm
that works well for all models [38], several PPLs have re-
cently added support for programmable inference [7, 16, 19,
38, 43, 59]. This capability allows users to customize infer-
ence algorithms based on the characteristics of a partic-
ular model or dataset. Researchers have shown that pro-
grammable inference enables improved inference perfor-
mance on a variety of modeling problems [7, 16, 18, 38].

Two important families of inference algorithms can be
customized by incorporating guide programs, which are im-
plemented by the user. The first family is Monte-Carlo meth-
ods, such as importance sampling and Markov-Chain Monte
Carlo, where a guide program serves as a proposal, which
generates random samples for latent variables. The second
family is variational inference, where a guide program is a
parameterized program that specifies a collection of approx-
imating distributions on latent variables.

To ensure soundness of programmable inference, the guide
programs have to be compatible with the implemented model
program; incompatible guide programs could crash the in-
ference process or lead to incorrect inference results [36, 37].
Recently, Lee et al. [36] developed a static analysis for find-
ing bugs in model-guide pairs for variational inference in
Pyro [7]. Lew et al. [37] proposed a type system that proves
model-guide compatibility for multiple inference algorithms.
However, neither approach handles general conditional state-
ments that can influence the set of latent variables sampled
by the model, and it is unclear how to extend them to analyze
recursive programs precisely.

In this paper, we develop a new PPL that supports re-
cursion and conditional statements, as well as guarantees
absolute continuity, one of the most pervasive conditions for
ensuring model-guide compatibility. Our PPL uses a new

PLDI 21, June 20-25, 2021, Virtual, Canada

paradigm for writing inference code: users implement the
model and guide programs as coroutines, which can commu-
nicate with each other during their execution. We develop a
new type system, which we dub guide types, to describe the
communication protocols between coroutines. These guide
types can be automatically inferred and are proof certificates
of absolute continuity for model-guide pairs. They apply to
multiple kinds of Bayesian-inference algorithms.

In our development, we follow a common scheme of trace-
based programmable inference that underlies Pyro [7], Ven-
ture [38], Gen [16], etc. These PPLs define the meaning of a
probabilistic program by a probability distribution on sample
traces that record all the random samples that the program
draws during its execution. A program p is absolutely contin-
uous with respect to a program g, if any set of sample traces
with non-zero probability under the program p must also
have non-zero probability under the program q. In this paper,
we reduce the problem of checking absolute continuity to
the following verification task:

Given a model program p and a guide program q, verify that
they define probability distributions with the same support,
i.e., they have the same set of possible sample traces.

The major challenge in our development is to reason about
the sets of possible sample traces for the model and guide
programs, when the two programs can diverge in their ex-
ecution, as always with relational reasoning. Control-flow
constructs make it difficult to keep track of sample sites
precisely; for example, a conditional statement can sample
different sets of random variables in its two branches. It is
intractable to enumerate all possible execution paths in the
two programs and compare the sample sites path-to-path,
especially when the programs are recursive.

The first part of our solution is to think of the model and
guide programs as coroutines that can exchange messages.
Conceptually, we use coroutine-style communication to syn-
chronize each pair of sample sites that represent the same
random variable, as well as each branch selection that in-
fluences control flow. The communication between the two
coroutines should then be conducted according to a proto-
col so that messages always occur in guidance pairs: when
one partner sends, the other receives; and when one partner
offers a selection, the other branches.

The second part of our solution is to develop guide types as
guidance protocols between the model and guide coroutines.
In our formalization, we structure the sequence of messages
between two coroutines, rather than describe it as a collec-
tion of unrelated messages. To handle general recursion, we
parameterize the guide type for each coroutine by a con-
tinuation type that describes the guidance protocol for the
computation that continues after a recursive invocation. We
also develop an efficient algorithm that infers guide types
automatically from the code.

There have been several type systems for coroutines [2, 3,
26], but all of them require that all messages from a coroutine

789

Di Wang, Jan Hoffmann, and Thomas Reps

to another have the same type; thus, they are not sufficient to
handle sample passing and branch selection in our coroutine-
based paradigm. In our development of guide types, we took
inspiration from type systems for communication protocols
in concurrent systems, such as session types [28, 29]. Guide
types have different semantics from and are simpler than
session types, and use a parametrization technique to model
recursive computation.

We then establish formal guarantees of our new PPL. First,
we prove that guide types ensure safety of communication
between coroutines, i.e., the coroutines send and receive
messages in a consistent manner. Second, we prove that
guide types serve as proof certificates of absolute continuity
between the model and guide programs; consequently, we
use guide types to justify soundness of importance sampling,
Markov-Chain Monte Carlo, and variational inference. Note
that for variational inference, the soundness guarantee is
partial, because sound inference requires some additional
conditions (e.g., differentiability), whereas this paper focuses
just on absolute continuity.

We implemented a type-inference algorithm for guide
types and a prototype compiler from our PPL to Pyro. We
evaluated our PPL on a broad suite of probabilistic models,
and our experimental results show that (i) our PPL is more
expressive than a state-of-the-art PPL that ensures sound-
ness of programmable inference [37], and (ii) type inference
completes in several milliseconds, and the performance of
Bayesian inference on the compiled code is similar to hand-
written Pyro code, i.e., coroutine communication does not
introduce significant overhead.

Contributions. We make four main contributions.

e We develop a new PPL with a coroutine-based paradigm
for implementing model and guide programs.

e We propose guide types, which prescribe guidance proto-
cols between the model and guide coroutines, and develop
an efficient inference algorithm for guide types.

e We prove type safety of guide types, and show that guide
types ensure key soundness conditions of model-guide
pairs for multiple kinds of Bayesian-inference algorithms.

e We implemented our PPL and evaluated its effectiveness
on a variety of probabilistic models.

2 Overview

In this section, we first review Bayesian inference and trace-
based programmable inference (§2.1). We then demonstrate
the coroutine-based paradigm for implementing inference
code and the use of guide types to enforce guidance protocols
between coroutines. (§2.2).

2.1 Bayesian Inference

Probabilistic programs specify generative models that sample
random variables. The semantics of a probabilistic program
can be defined as a probability distribution on the sample

Sound Probabilistic Inference via Guide Types

1 proc Model() =
2 v« sample(@x, GAMMA(2;1));
3 if v < 2 then
4 _ « sample(@z, NorMAL(—1;1));
5 return(v)
6 else

7 m « sample(@y, BETA(3;1));

8 _ « sample(@z, NorRMAL(m;1));
9 return(v)

Figure 1. A program Model with a conditional statement.

traces that record all the random values that a program draws
during its execution [9, 35]. Consider the program Model in
Fig. 1; it specifies a probabilistic model on random variables
introduced by commands sample(@¢, d), where ¢ is a la-
bel that identifies a sample site in a program; and d is a
primitive distribution, such as GAMMA distributions whose
support is the positive real line Ry, NORMAL distributions
whose support is the real line R, and BETA distributions
whose support is the unit interval R (o ;). Two possible sam-
ple traces in the program Model are [@x = 1; @z = —0.5]
and [@x = 3; @y = 0.9; @z = 0.7]. More generally, the pro-
gram specifies a distribution on sample traces whose support
is
{[@ex=a;@z=c] |0<a<2}

U{l[@x=a@y=b;@z=c]|a>20<b<1}. W

Bayesian Inference amounts to conditioning a proba-
bilistic model on observations and computing a posterior
distribution on latent variables. For the program Model,
we consider that @z is the single R-valued observation,
while both @x and @y are latent variables. Intuitively,
latent variables encode knowledge about the “ground
truth” that we cannot observe directly, and the model pro-
gram specifies a prior distribution on the “ground truth”
Given a concrete value of the ob-
servation (e.g., @z = 0.8), the ob-
jective of Bayesian inference is to
approximate the posterior distri-
bution of the latent variables (e.g.,
likely values of @x and @y un- {,,
der the condition that @z = 0.8).
Fig. 2 plots the prior distribution |
of the random variable @x, andits ** &
posterior distribution under the
observation @z = 0.8.

It is usually intractable to sam-
ple directly from or even de-
rive posterior distributions. There
have been two popular families of
inference algorithms: Monte-Carlo methods and variational
inference. These inference algorithms usually require some
guide programs, which can have a substantial influence on

—— prior distribution
posterior distribution

4 6 8
value of @x

Figure 2. Probability den-
sities of the prior and poste-
rior distribution of the ran-
dom variable @x.

790

PLDI 21, June 20-25, 2021, Virtual, Canada

the performance of the inference. Although many PPLs pro-
vide mechanisms for automatically generating those guide
programs, the ability to allow users to customize them, has
been shown to be helpful, and sometimes crucial, for ef-
fective inference [7, 16, 18, 38]. However, customizability
introduces non-trivial challenges to ensuring soundness of
Bayesian inference. We now illustrate some mistakes when
programming guide programs for Monte-Carlo methods and
for variational inference.

Monte-Carlo methods. A Monte-Carlo method generates
iteratively random samples such that empirical distribution
of the samples approximates the posterior distribution. Two
popular Monte-Carlo methods are importance sampling (IS)
and Markov-Chain Monte Carlo (MCMC). IS generates in-
dependent and identically distributed samples from a pro-
posal distribution, and reweights the samples by their impor-
tance, which corrects the discrepancy between the posterior

and proposal distributions. MCMC generates iteratively a

new random sample from an old one; that is, it constructs a

Markov chain whose stationary distribution is the posterior

distribution.

We now illustrate a mistake when programming guide
programs for IS. For IS to converge asymptotically to the
posterior distribution, the posterior distribution must be ab-
solutely continuous with respect to the proposal distribution,
i.e., any set of samples with non-zero probability under the
posterior distribution must also have non-zero probability
under the proposal distribution. In §5, we will show that
it suffices to verify if the model program conditioned with
respect to a concrete observation and the guide program
have the same set of possible sample traces. For example, for
the program Model shown in Fig. 1, the support of a sound
guide program could be

{l[@x=a] |0<a<2}
U{l@x=a@y=0>]|a>20<b<1}, @
which is obtained by factoring out the observation @z from

the support of the unconditioned model shown in (1).

Fig. 3 presents two guide programs for performing IS from
the program Model shown in Fig. 1, where the supports of the
Pois and UNTrF distributions are natural numbers N and the
unit interval R g 1), respectively. The support of the program
Guide, is exactly the one shown in (2); thus, Guide, is a sound
guide program; that is, Guide; samples the latent random
variables @x, @y from the same space as Model does. On
the other hand, the support of the program Guide] does not
match (2), and it is actually an unsound guide program for
two reasons:

e In the model program, the latent variable @x can be any
positive real number, whereas the program Guide; only
samples natural numbers for @x.

e In the model program, when the value of v (i.e., the latent
variable @x) is greater than 2, the other latent variable
@y should be present in the sample trace. However, when

PLDI 21, June 20-25, 2021, Virtual, Canada

A sound guide An unsound guide

1 proc Guide;() = 1 proc Guide;() =

2 v« sample(@x,GamMMA(1;1)); 2 v « sample(@x, Pois(4));
3 if v < 2 then 3 if v > 10 then

4 return() 4 return()

5 else 5 else

6 _ < sample(@y, UNIF); 6 _ < sample(@y, UNIF);
7 return() 7 return()

Figure 3. Sound and unsound guide programs for IS.

the value of v is greater than 10, the program Guide] will
not produce a sample for @y.

Variational inference (VI). In contrast to Monte-Carlo
methods, VI uses optimization (e.g., stochastic gradient de-
scent) to find a candidate from an approximating family of
distributions that minimizes the distance between the pos-
terior distribution and the approximating distributions. In
PPLs such as Pyro, users specify the approximating family
by a parameterized probabilistic program called a guide; in-
stantiating the parameters with a concrete valuation that
produces a member of the approximating family. A widely
used distance is the Kullback-Leibler (KL) divergence from
the posterior distribution to the guide distribution. For the
KL divergence to be well-defined, the guide distribution must
be absolutely continuous with respect to the posterior distri-
bution. In §5, we again reduce the verification of absolute
continuity to checking a sufficient condition, namely, that
the model conditioned with respect to a concrete observation
and the guide have the same support. Note that VI requires
several more conditions (such as differentiability) for infer-
ence to be sound [36]. In this paper, we focus on verification
of absolute continuity.

Fig. 4 presents two guide programs for performing VI on
the program Model shown in Fig. 1. The real-valued param-
eters of the guide programs are 0, ..., ;. The support of
the program Guide, (instantiated with concrete parameters)
is exactly the one shown in eq. (2). On the other hand, the
program Guide, defines an unsound guide, because it sam-
ples @x from a normal distribution, whose support is the
whole real line, whereas the program Model always samples
a positive value for @x.

2.2 Sound Bayesian Inference via Guide Types

Programs as coroutines. Our first contribution is a corou-
tine-based paradigm for implementing the model and guide
programs for Bayesian inference. In an inference algorithm,
the model program and its guide program have many con-
nections. The two most significant patterns we can observe
in common inference algorithms are as follows:
e The guide program is used to generate sample traces, and
then the model program is simulated with these traces to
compute likelihoods.

791

Di Wang, Jan Hoffmann, and Thomas Reps

A sound guide An unsound guide

1 proc Guidey(01,02,03,04) = 1 proc Guide}(61,02) =

2 v« sample(@x, 2 v« sample(@x,

3 GaAMMA(07;02)); 3 NorMAL(01; 62));
4 if v < 2then 4 if v < 2 then

5 return() 5 return()

6 else 6 else

7 _ <« sample(@y, 7 _ <« sample(@y,

8 BETA(03;04)); 8 UNIF);

9 return() 9 return()

Figure 4. Sound and unsound guide programs for V1.

e The guide program needs to have similar control-flow
structure to that of the model program. For example, if
the model program has a conditional command whose
two branches sample different sets of latent variables, the
guide program should also have a conditional command
with an equivalent branch condition.

The first pattern illustrates a form of sample passing from

the guide program to the model program, and the second

pattern indicates that the model program should provide
branch selection to the guide program. Such bidirectional
guidance inspired us to treat the model and guide programs
as coroutines that communicate with each other during their
execution, rather than as totally independent programs. On
the other hand, we do not want the coroutines to be tightly
coupled: Bayesian practitioners usually maintain a separa-
tion between the model and the guide so that they can refine
the guide iteratively to improve inference performance.
Therefore, we use message-passing communication to im-
plement the coroutines; this formalism allows us to separate
the model and the guide as individual programs, but connect
them via channels over which coroutines exchange mes-
sages. Fig. 5 reimplements the model and guide programs
in Fig. 1 and Fig. 3, respectively, by making the guidance
communication explicit. The sample(-) commands and con-
ditional commands are annotated with rv (i.e., “receive”) or
sd (i.e., “send”) to indicate the direction of communication,
and associated with a name of the channel on which the
communication is carried out. In this example, we use two
channels: latent for communication between the guide and
the model, and obs for identifying observations in the model.

Every channel has a unique provider and a unique consumer.

Note that in this way we do not need to use labeled samples—

as Pyro and some other PPLs do—because the sampling sites

are synchronized through guidance communication.
Operationally, when a coroutine is executing a command

associated with a channel c, it resumes the other coroutine

that accesses channel c, until the other coroutine encounters

a command that also communicates on channel c. Then they

perform synchronization; for example,

e When Model executes sample, {latent}(GaMMA(2;1)),
it resumes the other end of the latent channel, ie.,

Sound Probabilistic Inference via Guide Types

Model
1 proc Model() consume latent provide obs =
2 v« sample, {latent}(GAMMA(2;1));
3 ifgq{latent} v < 2 then
4 _ < sample ,{obs}(NorRMAL(—1;1));
5 return(v)
6 else
7 m < sample, {latent}(BETA(3;1));
8 _ <« sampleq{obs}(NorRMAL(m;1));
9 return(v)
Guide
1 proc Guidei() consume . provide latent =
2 v < sample y{latent}(GAMMA(1;1));
3 if, {latent} x then
4 return()
5 else
6 _ < sample {latent}(UNIF);
7 return()

Figure 5. Probabilistic programs as coroutines.

the coroutine Guide;, until Guide; reaches the com-

mand sample {latent}(GamMMA(1;1)). Recall that the

guide program is used in importance sampling; thus,
the coroutine Guide; draws a sample from the distri-
bution GAMMA(1;1), and then sends it to the coroutine

Model, which uses the sample and the prior distribution

GaMMA (2; 1) to calculate the importance weight.

e When Guide; executes the conditional command on line
3 (where the * symbol indicates that the branch selection
is received from the other coroutine), it resumes the other
end of the latent channel, i.e., the coroutine Model, until
Model reaches the conditional command on line 3. The
coroutine Model is the sender of the branch selection;
thus, it evaluates the branch predicate v < 2, and sends
the result back to Guide;.

When the synchronization is completed, either coroutine

can continue to execute.

Guide types. Our second contribution is guide types that en-

force guidance protocols between coroutines, and an efficient

algorithm that infers guide types from code.

We take inspiration from type systems for communication
protocols in concurrent systems, such as session types [28,
29]. The key idea is to structure the sequence of guidance
messages on a channel, rather than describe it as a collection
of unrelated messages.

We sketch some type constructors in our development of
guide types. The type 1 types an ended channel, where no
messages can be exchanged. The type A & B types a channel
whose provider waits for a branch selection, and continues
with a protocol of type A or a protocol of type B based on
the received selection. The type 7 A A types a channel whose
provider samples and sends a random value of type 7, and
then continues with a type A protocol. The guide type for a

792

PLDI ’21, June 20-25, 2021, Virtual, Canada

channel is the same for the provider and the consumer of the
channel, but the two ends of a channel interpret the guide
type for the channel dually (e.g., sends as receives).

With these three type constructors, we can express the
protocols for the latent and obs channels shown in Fig. 5 as

latent: Ry A (1 & (Reg1) A 1)), ®3)
obs: R A1, (4)

The provider and the consumer of the channel latent are
the coroutines Guide; and Model, respectively. From the
provider Guide;’s perspective, the protocol shown as type
(3) guides Guide; to draw a R,-valued sample and send it
on latent, then wait for a branch selection, and finally end
the communication on latent if the received branch selection
is then-branch, otherwise draw an R g 1)-valued sample be-
fore ending the communication. The coroutine Guide; imple-
ments this guidance protocol exactly. Meanwhile, from the
consumer Model’s perspective, the type constructors have
dual semantics, i.e., send becomes receive and vice versa; thus,
the protocol for latent guides Model to receive an R.-valued
sample, and then send out a branch selection on channel la-
tent; if Model selects the else-branch, then it further receives
an R g 1)-valued sample on channel latent.

The channel obs, whose provider is the coroutine Model,
is used to identify observations in the probabilistic model.
The coroutine Model accesses obs on lines 4 and 8, each of
which lies in a branch of the conditional command on line 3.
Because the conditional command is associated with latent,
it should not bother with the communication on channel
obs; thus, we require that the two branches of the condi-
tional command have the same guidance protocol for obs.
The protocol shown as type (4) specifies that the coroutine
Model produces a single R-valued observation, and Model
implements this protocol exactly.

Recursion. Probabilistic programs can use recursion to ex-
press complex generative models, such as a probabilistic
context-free grammar (PCFG), which is a popular model for
constructing languages [33]. Fig. 6 shows a recursive model
that generates a random expression tree with two construc-
tors: Const(-) for leaf nodes and Add(; -) for internal nodes.

To support recursion in probabilistic programs, we add a
standard recursive-type constructor to guide types. However,
composition of the guide types from multiple procedure calls
in a non-tail-recursive program remains a challenge. One
straightforward approach is to add a sequencing type A § B
that types a channel whose provider starts with a type A
protocol and then continues with a type B protocol, but such
sequencing types will complicate the type system, because
they allow a guidance protocol to be described by different
types. For example, both (R AR A1) and (R A1) (R A
1)) describe a channel whose provider sends two R-valued
random samples.

PLDI 21, June 20-25, 2021, Virtual, Canada

proc Pcfg() consume latent provide . =
k < sample, {latent}(BETA(3;1));
call PcfgGen(k)

proc PcfgGen(k) consume latent provide . =
u < sample, {latent}(UNIF);
ifsq{latent} u < k then
v « sample,, {latent} (NORMAL(0; 1));
return(Const(v))
else
lhs « call PcfgGen(k);
rhs « call PcfgGen(k);
return(Add(lhs; rhs))

== = =
W N R O OO0 U WD =

Figure 6. A recursive probabilistic model.

To sidestep the need for a nontrivial equivalence check
in the type system, we adapt the idea of type-level poly-
morphism, and parameterize the guide type for a recursive
coroutine by a continuation type that describes the commu-
nication after a procedure call to this coroutine returns. For
example, consider the following parametric type R[-].

def

RIXT = Ron) A (RAX) &R[R[X]]),

It specifies a guidance protocol by prepending messages to the
continuation protocol defined by the type parameter X. The
type R[X] precisely describes the behavior of the PcfgGen
coroutine shown in Fig. 6: the coroutine first receives an
R(0,1)-valued random sample (line 6); evaluates and sends
out a branch selection (line 7); and then based on the branch
selection, the coroutine either receives an R-valued random
sample (line 8) and then returns (i.e., continues with the
continuation protocol X), or makes two recursive procedure
calls (lines 11 and 12). The guide type of the else-branch can
be justified by backward reasoning: at line 13, the coroutine
returns (i.e., continues with the continuation protocol X);
at line 12, because the guide type after the procedure call
is X, we obtain the guide type before the procedure call by
instantiating R with X; and at line 11, because the guide
type after the procedure call is R[X], we again instantiate R,
but with R[X], to derive the guide type of the else-branch.
Finally, for the coroutine Pcfg shown in Fig. 6, we derive
R0,1) A R[1] as the guidance protocol for channel latent.
Control-flow divergence. In Fig. 5, the model program
Model and the guide program Guide; have very similar con-
trol flow. In general, our type system permits the guide’s
control-flow structure to diverge from the model’s, as long
as the two programs communicate with each other in a con-
sistent way, i.e., the two programs follow the same guidance
protocol for the channel over which they communicate. For
example, the program below implements a part of a Bayesian
linear-regression model with outliers [16], where the latent
variable prob_outlier describes how likely a data point does
not conform to the linear relationship, and is_outlier is a
Boolean-valued latent variable that indicates if a data point
is an outlier.

793

Di Wang, Jan Hoffmann, and Thomas Reps

1 prob_outlier < sample, {latent}(UNIF);
2 is_outlier < sample, {latent}(BER(prob_outlier));
3 return()

For MCMC algorithms, the guide program generates a new
random sample from an old one; thus, for better inference
performance, an MCMC guide usually behaves differently for
different old samples. The following program implements
a part of a guide that branches on is_outlier from the old
sample [16]. Intuitively, this guide proposes the negation
(with a small amount of noise) of the old is_outlier, which
is bound to a program variable old_is_outlier; i.e., if the old
is_outlier is true (resp., false), then the guide is likely to
propose false (resp., true).

1 prob_outlier « sampley{latent}(BETA(2;5));
2 if old_is _outlier then
3 is_outlier < sampley{latent}(BER(0.1));
4 return()
5 else

6 is_outlier « sample y{latent}(BER(0.9));
7 return()

Although the model and the guide have divergent control-
flow structures, in our type system, we can express the guid-
ance protocol for channel latent as R g 1) A2 A1; that is, both
programs sample an R (o ;)-valued random variable and then
sample a Boolean-valued one.

Type inference. Guide types can be automatically inferred
from code; in practice, they can still be used as specifications
of the programs for better understanding. Our implementa-
tion can infer guide types for the examples mentioned so far,
including the recursive one shown in Fig. 6.

3 A Coroutine-Based PPL

In this section, we formulate a core monadic calculus for
coroutine-based probabilistic programming,.

Syntax. Fig. 7 presents the grammar of basic types 7, ex-
pressions e, values v, commands m, and programs D in the
core calculus via abstract binding trees [26]. There is a modal
distinction in the core language: expressions describe purely
deterministic computations, while commands describe prob-
abilistic computations. Intuitively, we treat randomness as a
kind of monadic effect [42].

The purely deterministic fragment is a simply-typed
lambda calculus augmented with scalar types (i.e., nullary
products 1, Booleans 2, unit interval R), positive real
numbers R, real numbers R, integer rings N,,, and natural
numbers N), as well as a distribution type dist(r). The syn-
tactic form op, (e;; e;) represents expressions that perform
built-in binary operations < on scalar values. Inhabitants of
dist(7) are the primitive distributions from which probabilis-
tic programs can draw a random value of type 7; for example,
Bernoulli distributions BER(-) have type dist(2), the uniform
distribution on unit interval UNIF has type dist(R o 1)), and
geometric distributions GEo(+) have type dist(N). For each
primitive distribution d, we assume that it admits two fields:

Sound Probabilistic Inference via Guide Types

«_
|

=112 R |Re RNy [N |71 — 72 | dist(r)

x | triv | true | false | if(e;e;e2) | 7 | 72 | opg (e15€2)

[
| |

Il(x e) | app(er;ez) | let(er; x.e2)
| BEr(e) | UNIF | BETA(e1; €2) | GAMMA((eq; €2)
,en) | GEo(e) | Pors(e)

v u= triv | true | false | 7 | i1 | clo(V, A(x.e))

| NormAL(es;e2) | CaT(eq, - -+

| BER(v) | UNIF | BETA(01;02) | GAMMA(071;02)
| NormAL(v1;02) | CAT(v1, - -+ ,0p) | GEO(v) | Pois(v)
m = ret(e) | bnd(my;x.my) | call(f;e)

| sample,,{a}(¢) | sample,g{a}(e)
| condry{a}(mq;my2) | condsyq{a}(e;my;ms)

D := fix{a; b} (f.x.m)

Figure 7. Syntax of the core calculus.

d.support and d.density are the support and the density func-
tion of the distribution, respectively. In the core calculus, the
type of a primitive distribution characterizes the support of
the distribution precisely: for a distribution d of type dist(r)
and a value v, it holds that v € d.support if and only if v is an
inhabitant of type 7. Primitive distributions can be general-
ized to density-carrying expressions [5, 6] to further improve
language expressibility.

The probabilistic fragment is a monadic calculus aug-
mented with probabilistic constructs and communication
primitives for coroutine-based programming. The sampling
commands sample4{a}(e) and sample,, {a}(e) first evalu-
ate the expression e to a primitive distribution d. Then the
send version sample, {a}(d) draws a value from d and sends
it on channel a, whereas the receive version sample,, {a}(d)
receives a value from channel g and treats it as a sample
from d. The random samples can influence the likelihoods
of computations; thus, randomness can be seen as a source
of side effects. The branching commands also have a send
version condsg{a} (e; my; my), which evaluates e to a Boolean
value and sends it as the branch selection on channel g; and a
receive version cond,,{a}(my; m,), which receives a branch
selection from channel a. The syntactic form call(f;e) rep-
resents a procedure call, where f is a procedure name and e
is the argument.

A probabilistic program D is a collection of (mutu-
ally recursive) procedures, each of which has the form
fix{a; b}(f.x.m), where f is the procedure name, x is the
parameter, m is a command that represents the procedure
body, a is the name of the channel consumed by f, and b is
the name of the channel provided by f. Note that both a and
b are optional; that is, the procedure f might not consume
any channel, and it might not provide any channel.

Semantics. We develop a big-step operational semantics for
the core calculus. Details of the semantics are included in the

794

PLDI ’21, June 20-25, 2021, Virtual, Canada

technical report [55]. The evaluation judgments for expres-
sions have the form V + e || v, where V is an environment
that maps program variables to values. The evaluation rules
for expressions are skipped here because they are standard.

We adopt a trace-based approach [9, 35] in our semantics
of probabilistic computations. A guidance trace o is a finite
sequence of guidance messages exchanged on a channel;
each guidance message has the form val® (v) (resp., dir’ (v))
for a sample value v (resp., a branch selection v) from the
provider to the consumer, the form val®(v) (resp., dir®(v))
for a sample value v (resp., a branch selection v) from the
consumer to the provider, or a procedure-call indicator fold.'
The evaluation judgments for commands have the form
V| (a: 04); (b: 0p) + m ||” v, where V is an environment, m
is a command that consumes channel a and provides channel
b, 0, and o}, are guidance traces on the channels, v is the
evaluation result, and w > 0 is a weight that expresses how
likely the guidance traces are. Intuitively, a probabilistic pro-
gram specifies a probability distribution on guidance traces,
and the weights represent probability densities with respect
to the distribution.

Fig. 8 shows the evaluation rules for selected commands.
We use the following notational conventions. We denote the
empty environment by 0, and updating a binding of x in an
environment V to v by V[x +— v]. We use the # operator
to concatenate two traces. We write ite as a shorthand for
if-then-else. The Iverson brackets [-] are defined by [¢] =1
if ¢ is true and otherwise [¢] = 0.

The (EM:SAamPLE:”) rules take a value from the guidance
traces as the result of the sampling, and use the density func-
tions of primitive distributions to calculate the weight for
the guidance traces. The (EM:CoND:SEND:L) rule evaluates
the branch predicate to obtain a Boolean value, and enforce
that the branch selection from the guidance trace of the con-
sumed channel must be the same as the predicate’s value;
if the guidance trace sets the branch selection to a different
value, we simply set the weight of this trace to zero. The
(EM:CALL) rule requires the guidance traces start with a fold
message, and proceeds by evaluating the body of the callee.

Example 3.1. Consider the command

m; £ bnd(sample,,{a}(NorMAL(0; 1)); x.
bnd(sample {5} (NoRMAL(x;1)); y.
ret(op,(x;y)))),

which consumes a channel a and provides a channel b. Let
def

Ax. Fe =3 be the probability density function of

the standard normal distribution NorRMAL(0; 1). Let o,

The fold message is only useful in the theoretical development; it can be
seen as the introduction form for guidance traces whose type is a type-
operator instantiation (see §4).

PLDI 21, June 20-25, 2021, Virtual, Canada

(EM:RET)
Vielo

VI (a: (1 (b: [1) Fret(e) U1 o

(EM:BND)
V | (a: 0q); (b: o) + my J™ vy
Vx> o1] | (a: 0); (b: ap) F my | ™ v

V| (a:0q ‘H'O'cll); (b: op -H-O'I;) F bnd(my;x.mz) ™2 vy

(EM:SamPLE:RECV:L)
Vield v € d.support w = d.density(v)
V| (a: [val® (0)]); (b: []) + sample,, {a}(e) |¥ v
(EM:SAaMPLE:SEND:R)
Vield v € d.support w = d.density(v)
V| (a: []); (b: [val® (0)]) + samplegq{b}(e) |V v
(EM:ConD:SEND:L)
Vieloe i =ite(vg, 1,2) V| (a:0q);(b:op) Fm; ™o

V | (a: [dir®(va)] + 0a); (b: o) F condsg{a}(e; my;mp) | [0a=%] o

(EM:ConD:RECV:R)
i = ite(vp, 1,2) V| (a:aq);(b:op) Fm; ™o

V | (a: 60); (b: [dir®(vy)] 4 op) + condpy{b} (m1;mz) L™ v

(EM:CALL)
D(f) = fix{a; b} (f.xp.mp)
Vielo Olxp = v1] | (a: 0q); (b: 0p) - my Y 0y

V | (a: [fold] + o,); (b: [fold] + o) + call(f;e) ™ vy

Figure 8. Selected evaluation rules for commands.

[val’(1)] and 0}, & [val®(2)]. Then we can derive the eval-
uation judgment

0| (a: 0q); (b: 63) F my 20D 3

for the command m; and the guidance traces o, 0p.

Communication. There are a lot of formalisms for com-
munication in (concurrent) programming systems, such as
CCS [39], Theoretical CSP [27], and z-calculus [40, 41]. In
this paper, we use a lightweight approach to handling com-
munication; that is, in the semantics, we assume we have all
the messages exchanged on all the communication channels.
We use this formalism because (i) our focus is to reason about
soundness of Bayesian inference, rather than concurrency-
related properties (e.g., deadlock freedom); and (ii) the infer-
ence algorithms we study in §5 involve only two coroutines—
one for the model and the other for the guide—so the commu-
nication in our system is much simpler than that in general
concurrent systems.

Example 3.2. Consider the command

m; & bnd(sample y{a}(NORMAL(3;1)); _. ret(triv)),

which provides a channel a that is consumed by the com-
mand m; in Ex. 3.1. To model the communication between

795

Di Wang, Jan Hoffmann, and Thomas Reps

my and my, we simply use the guidance trace o, = [val" (1)]
as the sequence of messages exchanged on channel a in the
semantics, and derive evaluation judgments for m, and m;
separately. We showed the judgment for m; in Ex. 3.1; here,
we can derive the judgment

0| @;(a: o) Fm’ 202 triv,
for command m;, and guidance trace o,. We use the @ symbol
to indicate that m, does not consume any channel.

4 Guide Types

Type formation. We take inspiration from a structuring
principle in session types [28, 29], and develop guide types to
enforce protocols for guidance traces. The grammar shown
below formulates the syntax of guide types. We write A, B for
guide types, X for type variables, T for unary type operators,
and F for procedure signatures.

AB:=X|1|T[A] |tAA|t>A|A®B|A&B
Fui=1~ 10| (a:T,);(b:Tp)

T = typedef(T.X.A)

The type 1 indicates an ended channel, where the guidance
trace is empty. The type T[A] instantiates a unary type op-
erator T with a guide type A. For sample passing and branch
selection, each type constructor has a dual version that re-
verses the role of the provider and the consumer. The type
7 A A types a channel whose provider samples a random
value , sends it on the channel, and then continues with a
type A guidance protocol; dually, the type 7 O A types a
channel whose consumer samples and sends a random value.
Similarly, the type A @ B types a channel whose provider
evaluates a branch predicate, sends a branch selection on the
channel, and then continues with a type A guidance protocol
or a type B protocol based on the branch selection; dually,
the type A & B types a channel whose consumer evaluates
and sends a branch selection.

Remark 4.1. In the rest of this paper, we will not use the
dual typest D A and A @ B. We introduce these types here for
theoretical completeness, and they may be used in some future
development.

Type operators prescribe guidance protocols for proce-
dures by parameterizing with a continuation type that de-
scribes the guidance protocol after a procedure call. A proce-
dure signature 7; ~ 7, | (a: T,); (b: Tp) types a procedure
that takes a parameter of type 7y, returns a result of type 73,
consumes a channel g, and provides a channel b, such that if
the guidance protocols for a and b after a procedure call are
A and B, respectively, then the guidance protocols for a and
b before the procedure call are T,[A] and T; [B], respectively.

A type definition typedef(T.X.A) declares a unary type
operator T that takes a type parameter X and produces a
guide type A, which can reference X. Because type operators
are used to prescribe procedure signatures, we assume that a

Sound Probabilistic Inference via Guide Types

(TM:RET)
F're:r

T'| (a: A);(b: B) rret(e) + 7| (a: A); (b: B)

(TM:BND)
T|(a:A);(b:B)rmi+1n|(a:A);(b:B)
Ix:1 | (a:A");(b:B) rmy 412 | (a: A”); (b: B”)

T | (a: A); (b: B) + bnd(my;x.m2) + 72 | (a: A”); (b: B”)

(TM:SampLE:RECV:L)
T +e:dist(r)

I'| (a: T ANA); (b: B) + sample,, {a}(e) + 7| (a: A); (b: B)

(TM:SAMPLE:SEND:R)
T+ e:dist(r)

I'| (a: A); (b: 7 A B) + samplegy{b}(e) + 7| (a: A); (b: B)

(TM:CoND:SEND:L)
T'rte:2 T|(a:A1);(b:B)+-my+7| (a:A”);(b:B)
T'|(a:A2);(b:B)Fmy+1|(a:A);(b:B)

T'|(a: Ay & Az); (b: B) + condgg{a}(e;m1;mz) + 7| (a: A'); (b: B')

(TM:CoND:RECV:R)
T | (a:A);(b:By)+rmy+7|(a:A”);(b:B)
T'|(a:A);(b:By)rmy+t|(a:A’);(b:B)

T | (a: A); (b: By & Bp) + condry{b}(m1;mz) % 7| (a: A"); (b: B')

(TM:CaALr)
2(f) =1~ | (a: Ty); (b: Tp) Tre:ny

I'| (a: To[A]); (b: Ty [B]) + call(fse) + 72 | (a: A); (b: B)

Figure 9. Selected typing rules for commands.

probabilistic program is always accompanied by a collection
T of (mutually recursive) type definitions.

Example 4.2. We can formally declare the type opera-
tor Recur for the PcfgGen procedure shown in Fig. 6 as
typedef(R. X. Ro1) A (R A X) &R[R[X]])).

Typing rules. The typing judgments for expressions have
the form I' + e : 7, where I' is a typing context that maps
program variables to basic types (defined in Fig. 7). A full
list of typing rules is included in the technical report [55].
The typing rules for expressions are skipped here because
they are standard.

The typing judgments for commands have the form

T'|(a:A);(b:B)rsm+t|(a:A); (b: B),

where ¥ maps procedure identifiers to procedure signatures.
The intuitive meaning of the typing judgment is that if the
channels a and b are of the guidance protocols A and B,
respectively, then we can evaluate the command m to a value
of type 7, and after the evaluation, the channels a and b are
of the guidance protocols A” and B’, respectively.

Fig. 9 presents the typing rules for commands. We assume
a fixed global X that we omit from the rules. Intuitively, the
rules formulate a backward-reasoning system: we start with

796

PLDI ’21, June 20-25, 2021, Virtual, Canada

continuation types A’ and B’ for the channels a and b, re-
spectively, and then prepend the guidance messages sent or
received by the command m to A” and B’, to obtain the guide
types A and B for the channels a and b before the evaluation
of m, respectively. For sample passing and branch selection,
each guide type has two derivation rules: one for the con-
sumed channel a, and the other for the provided channel
b. For example, the type 7 A A represents a channel whose
provider sends a sample of type ; thus, if the consumed chan-
nel a has such a type, the rule (TM:SamPLE:RECV:L) receives a
sample from the provider of a, and if the provided channel b
has such a type, the rule (TM:SAMPLE:SEND:R) sends a sample
to the consumer of b.

The rule (TM:Catr) handles procedure calls. For a pro-
cedure call call(f;e), the rule fetches from X the procedure
f’s signature 71 ~ 1z | (a: T,); (b: Tp), and then instanti-
ates the type operators T,, T, with continuation types A, B,
respectively, to obtain the guide types T,[A] and T, [B] for
the channels a and b before the procedure call, respectively.

Example 4.3. Consider the command
d

ms < bnd(call(f;k); _.

bnd(sample,, {NorMAL(0;1)}(a); _.

bnd(call(f;k); _.

ret(triv)))),
where the variable k has type R ;) and the procedure f
has signature Rg1) ~ 1| (a: T); @, i.e, the procedure f
consumes channel a but does not provide any channel, and
channel a is associated with a type operator T. Now we show
that we can derive a typing judgment for ms by backward
reasoning. First, by (TM:RET), we have

k:Rq | (a:1); @ ks ret(triv) + 1| (a: 1); 2.
Then by (TM:CaLL), we derive
k:R | (a:T[1]); @ Fs call(f3k) + 1] (a:1); 2.

def

Define m4 = bnd(call(f;k); _.ret(triv)). Thus, by (TM:BND),
k:Ren | (a:T[1]);@ Fs my+ 1| (a:1);@.

Define ms = bnd(sample, {a}(NorMAL(0; 1)); _.m4). By
(TM:SampLE:RECV:L) and (TM:BND), we have
k:Rpy | (a:RAT[]);@ s ms+ 1] (a:1);2.
Finally, we again apply (TM:CaLL) and (TM:BND) to derive
k:Ren | (a: T[RAT[1]]);@ +x ms+ 1| (a:1);2.

Type safety. We present some theoretical results about type
safety of guide types. Proofs are included in the technical
report [55].

We first formulate two judgments for well-formedness of
values and guidance traces. The judgment v : 7 means that
value v has type 7. The judgment ¢ : A means that the guid-
ance trace is a sequence of messages that satisfies protocol
A. Rules for these judgments are straightforward; we omit
them here but include them in the technical report [55].

PLDI 21, June 20-25, 2021, Virtual, Canada

The theorem below states that if m is a well-typed closed
command, and it evaluates to a value v under guidance traces
0a, Op, then v is a well-typed value, and o,, oy, are well-typed
guidance traces.

Theorem 4.4. If- | (a: A);(b: B) ks m+ 1| (a: 1);(b: 1)
and 0 | (a: 04);(b: op) + m Y v, theno, : A, 0p : B, and
v:T.

Furthermore, we can show some normalization properties
of guide types. The theorem below states that if m is a well-
typed closed command, and o, 0}, are well-typed guidance
traces, then m can evaluate to some well-typed v under o, op.

Theorem 4.5. If- | (a: A); (b: By rxs m 4 7| (a: 1);(b: 1),
o, : A, and oy : B, then there exist w,v such that 0 | (a:
04);(b:op) Fm ¥ vando:r.

We can strengthen the normalization property when a
command will not send out any branch selections. The theo-
rem below states that if a well-typed command m consumes
a channel a with a type A that does not contain & and pro-
vides a channel b with a type B that does not contain @, and
04, 0p are well-typed guidance traces, then m can evaluate to
some well-typed value v under o,, 0, with a strictly positive
weight w.

Theorem 4.6. If- | (a: A); (b: By rs m 4 7| (a:1);(b: 1),
A is &-free, B is @-free, 0, : A, and oy, : B, then there exist
w,v such that 0 | (a: 0,);(b:op) Fm ™ v,0:7,andw > 0.

Type-inference algorithm. We now sketch a type-inference
algorithm that derives guide types automatically from the
implementation. In the algorithm, we assume we have infor-
mation about basic types—such as the parameter and result
types for procedures and the typing contexts that map pro-
gram variables to basic types—because without guide types,
our core language is a simply-typed lambda calculus, for
which type inference is decidable.

First, for each procedure fix{a; b} (f.x.m) in the program,
we create two fresh type operators T, and T, for the channels
a and b, respectively, and obtains 7; ~ 1, | (a: T,); (b: Tp)
as the signature of this procedure. Then we collect signatures
of all the procedures in the program to obtain the map 3.

Now the task is to derive definitions of the type operators.
We observe that the rules in Fig. 9 are syntax directed, and
they can be turned into an algorithmic system by interpreting

T'|(a:A);(b:B)rsm+t]| (a: A");(b: B)
as a function from >,I',m,7,a,b,A’, B’ to A, B; i.e., we as-
sume we know all the basic types, and we perform backward
reasoning to infer guide types. Therefore, for each procedure
fix{a; b}(f.x.m) with signature 7y ~ 7, | (a: T,); (b: Tp),
we create two fresh type variables X, and X;, derive two
guide types A and B through

x:1 | (a:A);(b:B)rxy m+ 1o | (a: Xp); (b: Xp),
and then add type definitions typedef(T,.X,.A) and
typedef(Ty.Xp.B).

797

Di Wang, Jan Hoffmann, and Thomas Reps

5 Soundness of Bayesian Inference

In this section, we use guide types to reason about Bayesian
inference. We first present a measure-theoretic formulation
of Bayesian inference in the coroutine-based PPL, and prove
that guide types are certificates of absolute continuity (§5.1).
We then sketch how guide types ensure key soundness condi-
tions for multiple Bayesian-inference algorithms (§5.2). The
technical report [55] includes the details (e.g., formalizations
and proofs) of this section.

5.1 Verification of Absolute Continuity

We use the following notions from measure theory: o-
algebras, measurable spaces, measurable functions, measures,
and Lebesgue integration.

Semantic domains. For each scalar type 7, we equip it with
a standard Borel space [1] on the inhabitants of 7, i.e., [r] is
a measurable space isomorphic to a countable set or the real
line. We then equip each type 7 with a stock measure A[]:
if [7] is a countable set, we define A[] to be the counting
measure; otherwise, [7] is a subset of the real line, so we
define Af;] to be the Lebesgue measure.

Because guidance traces are finite sequences of messages
that contain values of scalar types, we can define [A] as a
standard Borel space on guidance traces that satisfy protocol
A. We then construct the stock measure Ap4) for A by decom-
posing A to products and/or sums of scalar types, and then
combining the stock measures for scalar types via product
and/or coproduct measures.

Denotation of commands. For a well-typed closed com-
mand m, ie., - | (a: A);(b: B) rxy m+ 7| (a:1);(b: 1), we
define the density function of m as
{w if 0| (a:0,);(b:op) Fm ™o

0

otherwise
We can prove that P, is a measurable function from [A] ®
[B]—the product measurable space of [A] and [B]—to non-
negative real numbers. Thus, we construct a measure deno-
tation [m] for m, by integrating P, with respect to the stock
measure on the product space [A] ® [B], i.e.,
def

[m](Sap) =/S P (04, o) Aja)e[8] (d(04, 0b)),

where S, is a measurable set in [A] ® [B].

def
Pm(o-as O'b) =

Bayesian inference. Let us fix a well-typed model program
mm that consumes latent random variables on a channel
latent and provides observations on a channel obs, i.e.,

- | (latent: A); (obs: B) bs my % 7, | (latent: 1); (obs: 1).
Usually, the program my, does not receive any branch se-

lections, i.e., A is @-free and B is &-free. Given a concrete
observation o, : B such that /Pmm (0v, 00)Apay(doy) > 0,

Sound Probabilistic Inference via Guide Types

Bayesian inference is the problem of approximating the pos-
terior [mm]s,, @ measure conditioned with respect to o,, de-
fined by

def /S(Pp,, (o0, O-O)AHA]] (doy)
[[mm]]O'D (St’) = s

/ Pp,, (00, O’o)/l[[A]] (doy)
where S; is a measurable set in [A], ie., a set of guid-
ance traces of type A. Note that if we fix the observation
0o, then the denominator of eq. (5) is a constant indepen-

dent of S;. Thus, it is sufficient for an inference algorithm
to ignore the denominator and approximate the measure

Se /S, Py, (00, O'o)/l[[A]] (doy).

®)

Guide programs. Bayesian-inference algorithms usually
require some guide programs, such as proposals for impor-
tance sampling and approximating families for variational
inference. These guide programs specify measures on latent
random variables; in our system, we implement a guide pro-
gram my as a coroutine that works with the model program
mp, and provides the latent channel with guide type A that
mm, consumes, i.e.,
- | @; (latent: A) +s mg + 74 | @; (latent: 1),

- | (latent: A); (obs: B) by my % T | (latent: 1); (obs: 1).
The guide and model have the same guide type A on channel
latent. Because the guide provides the channel and the model
consumes the channel, the two programs interpret the guide
type A dually; thus, their communication is compatible.

The coroutine-based paradigm folds the model and guide
programs into a single entity; thus, during the inference, both
the model and guide coroutines execute. To model possible
combinations of traces for a model-guide system, we intro-
duce a reduction relation V | (a: 04);(b: 0p) Freq m | 0,
where V is an environment, m is a command, ¢, and o}, are
guidance traces on channel a and channel b, respectively, and
v is the reduction result. The reduction relation is essentially
the same as the evaluation relation for the operational seman-
tics, except that reduction does not account for probabilities.
Below are two example rules.

(RM:SAMPLE:SEND:R)
Vield v € d.support
V[(a: [1): (b: [val® (9)]) Freq samplegg (b} (e) v
(RM:CoND:SEND:L)
Vieloe i = ite(ve, 1,2) V| (a: 0q); (b: op) Freq mi J 0

V| (a: [dirc(ve)] +H 04); (b: 0p) Fred condgq{a}(e;mi;mz) | v
With the reduction relation, we say that a combination of
traces (oy, 0,) is possible for the model program m,, and the
guide program mg, if @ | (latent: o;); (0bs: 0,) Fred Mm | Om
and 0 | @; (latent: oy) Freq mg | vg for some values vy, and
vg. We prove a lemma that connects the reduction relation
with command denotations.

798

PLDI ’21, June 20-25, 2021, Virtual, Canada

Lemma 5.1. Suppose that A is @-free, B is &-free, and
- | @; (latent: A) +5 mg + 14 | @; (latent: 1),
- | (latent: A); (obs: B) rsx mm % Tm | (latent: 1); (obs: 1).
Then a combination of traces (o, 0,) is possible for the model
My and the guide mg if and only if Py, (0, 0,) # 0.

We can now define a denotation for the guide mg, ac-
companied by the model my, and conditioned on a concrete
observation o, : B, as a measure defined on possible traces:

g (S0) /S [Py (02, 05) # 0] - Py (07)Agay (doy),

where S; is a measurable set in [A].

def

Absolute continuity. A measure y is said to be absolutely
continuous with respect to a measure v, if y and v are de-
fined on the same measurable space, and v(S) # 0 for every
measurable set S for which u(S) # 0.

We prove that for a model-guide pair, guide types serve
as certificates for absolute continuity.

Theorem 5.2. Suppose that A is ®-free, B is &-free,
- | @; (latent: A) +5 mg + 1, | @; (latent: 1),
- | (latent: A); (obs: B) ks mm + T | (latent: 1); (0bs: 1),

and o, : B such thatmem (0v, 00)Afay(doy) > 0. Then the
measure [my]o, is absolutely continuous with respect to the
measure [mg] ", and vice versa.

5.2 Soundness of Inference Algorithms

We now describe how guide types can help us reason about
inference algorithms.

Importance sampling (IS). 1S approximates the posterior
distribution by drawing latent variables using the guide pro-
gram, and then reweights the samples by their importance.
The operational rule below formulates a single step in the
algorithm: given a model program mp,, a guide program my,
and a concrete observation o,, IS performs joint execution
of the two programs to draw a sample o, with density wg
and compute ‘:’v—’;‘ as the importance of oy.

0 | @; (latent: op) ¥ mg |™s _
0 | (latent: oy); (obs: 6o) F mpy "™ _

Wg
Mg; Mm; 0o kg (op, ¥ [w,)
By Thm. 5.2, if the model and guide programs are well-typed,
then the posterior [mn],, is absolutely continuous with
respect to [mg]s."; thus, IS is able to sample any possible
latent variables oy in the posterior. With the importance
ratios, IS can be seen as generating o, with density wy - ‘fv—:

wp. Thus, IS generates a measure proportional to [mp]o,

Markov-Chain Monte Carlo (MCMC). MCMC uses a tran-
sition kernel to generate iteratively a new random sample
from an old one. A popular MCMC algorithm is Metropolis-
Hastings (MH), which constructs the transition kernel from
a proposal subroutine. To implement proposal subroutines in
our system, we extend the core calculus such that guidance

PLDI 21, June 20-25, 2021, Virtual, Canada

traces can be used as first-class data. Then we implement
the proposal subroutine as a procedure g whose argument is
a guidance trace on the channel for latent random variables.
The operational rule below formulates a single step in the
MH algorithm; given a proposal procedure g, a model mp,,
an observation o,, and the current latent trace o,, MH first
performs joint execution of call(g; oy) and m,, to generate
a new latent trace o, with density wg,q4, and then uses the
new o, and the old oy to calculate a backward density wyyq.

. def . W
MH then computes an acceptance ratio ¢ = min(1, D Phwd)
Wm * Wiwd

and accepts the new sample o, with probability a.
0 | @; (latent: o;) + call(g; op) || _
0 | (latent: o;); (0bs: 65) F mm e
0 | @; (latent: oy) + call(g; o;) P4 _
0 | (latent: op); (obs: 0p) F mm "™ _

Wiwd " ,
g;Mm; 0o by Of = 0,

Similar to IS, MH requires that the command call(g; o;) be
able to sample any possible latent variables o; in the posterior.
We prove the soundness of MH by a variant of Thm. 5.2,
where the programs do not need to be closed so that they
can reference data in the environment (e.g., the old samples).

Variational inference (VI). VI uses optimization to find a
candidate from an approximating family of guide programs
that minimizes the distance from the posterior distribution
to the guide distribution. We focus on verifying if the dis-
tance is well-defined, whereas VI requires extra conditions
for the optimization problem to be well-formed. Here, we
parameterize the guide mg g by a vector 6 € © of parameters,
and use KL divergence as the distance, which is defined by

KL(u || v) £ / pu(ar)(log py(ar) —log py (7)) Apay (dov),

where y and v are measures on [A] with densities p, and p,,
respectively, and p is absolutely continuous with respect to v.
The rule below formulates the computation of KL divergence
for a specific 0, via joint execution of the two programs.
0 | @; (latent: o¢) F mgg I _
0 | (latent: oy); (obs: 0p) F my "™ _

We
Mg 0; Mm; 0o by (or, log wm — log wg)

The rule can be seen as defining a map o,
(log W, — log wg), which is the integrand of the divergence
KL([mg0]o Il [Mmm]s,)- By Thm. 5.2, if the model and guide
programs are well-typed, then [mg 5" is absolutely contin-
uous with respect to [mm],,; thus, the KL divergence used
in VI is well-defined.

= W -

6 Experimental Evaluation

Implementation. We implemented the coroutine-based PPL
in OCaml. Our implementation consists of about 2,000 LOC;
it contains a parser, a type checker with automatic inference
of guide types, and a prototype compiler from our PPL to
Pyro [7]. Our implementation extends the core calculus with

799

Di Wang, Jan Hoffmann, and Thomas Reps

tensors (i.e., multi-dimensional matrices) and primitive iter-
ation operators for them. The prototype compiler supports
code generation for importance sampling and variational in-
ference. We use the Python package greenlet [57] to support
coroutines in the compiled code.

Evaluation setup. We evaluated our implementation to

answer the following two research questions:

1. How expressive is the coroutine-based PPL, compared to a
state-of-the-art probabilistic programming language that
ensures soundness of programmable inference [37]?

2. How efficient is our implementation, in terms of the time
for type inference, and the performance of Bayesian infer-
ence on the compiled code?

For the first question, we obtained 23 benchmarks from prior

work [37] and collected 6 new benchmarks. The 29 bench-

mark programs consist of (i) example models from Angli-
can [58], Turing [19], and Pyro [7], as well as (ii) PCFG mod-
els, including a Gaussian-process domain-specific language

(DSL) [46] and synthetic models (such as examples shown in

this paper). Compared to prior work [37], a larger subset of

benchmark models are expressible and type-checked in our

PPL. Particularly, our PPL is capable of expressing models

with recursion and general conditional branches, whereas

prior work [37] is not.

For the second question, we ran Bayesian inference on
the compiled code, and compared the performance with non-
coroutine-based, but equivalent, Pyro code. We obtained
guide programs from where we obtained the benchmark
models, and then reimplemented them in our PPL; for exam-
ple, we implemented the encoder component of a variational
autoencoder as the guide program [7]. For those benchmark
models without guides, we first invoked our PPL to type-
check the model program and infer a guide type for the
model, and then implemented a guide program whose type
was the guide type. The compiled model and guide use Pyro’s
primitives (such as pyro.sample) to sample random data
and condition on given data, as well as exchange messages
and switch control with each other using the concurrent-
programming package greenlet. We leveraged Pyro’s infer-
ence engines to carry out importance sampling or variational
inference. Type inference is very fast in practice; our imple-
mentation completed the type-inference phase in several mil-
liseconds on all of the benchmarks. Our experiments showed
that coroutines (implemented via messaging passing) do not
introduce significant overhead in actual Bayesian inference.

The experiments were performed on a machine with an
Intel Core i7 3.6GHz processor and 16GB of RAM under
macOS Catalina 10.15.7.

Results. Tab. 1 gives an overview of selected benchmark
models. Our benchmarks cover a wide range of Bayesian
models, such as linear regression, Gaussian mixtures, hidden
Markov models, Bayesian networks, and variational autoen-
coders. Our benchmarks also include the classic Marsaglia

Sound Probabilistic Inference via Guide Types

proc Ptrace(1) consume latent provide obs =
k « call PtraceHelper(e_A, 0, 1);
sample {obs} (NoRMAL(k;0.1))

proc PtraceHelper(l, k, p) consume latent provide . =
u < sample, {latent}(UNIF);
ifsq{latent} p - u < I then
return(k)
else
call PtraceHelper(l, k + 1, p - u)

1
2
3
4
5
6
7
8
9

10

Figure 10. An algorithm to generate Poisson-distributed
numbers given by Knuth [34].

Table 1. Selected benchmark descriptions. T? = is type-
checked in our PPL; LOC = #lines of code of the model
in our PPL; TP? = is type-checked by prior work [37].

Program Description T? LOC TP?
Ir Bayesian Linear Regression v/ 16 v
gmm Gaussian Mixture Model o4 v
kalman Kalman Smoother v 32 v
sprinkler ~ Bayesian Network v oo22 v
hmm Hidden Markov Model v 31 v
branching Random Control Flow 4 19 X
marsaglia Marsaglia Algorithm v 22 X
dp Dirichlet Process X NA X
ptrace Poisson Trace 4 11 X
aircraft Aircraft Detection v 32 v
weight Unreliable Weigh v 8 v
vae Variational Autoencoder v 26 v
ex-1 Fig. 5 13 X
ex-2 Fig. 6 v 21 X
gp-dsl Gaussian Process DSL 4 58 X

algorithm (which generates a normal distribution from a
uniform distribution), a Poisson-trace algorithm (shown in
Fig. 10, which generates a Poisson distribution from a uni-
form distribution), and a Gaussian-process DSL (which uses a
PCFG to generate the kernel function of a Gaussian process).

As shown in Tab. 1, our coroutine-based PPL is capable of
expressing most of the benchmarks, except those involving
stochastic memoization [23], such as the program dp. The
programs branching, marsaglia, ptrace, and ex-1 have non-
trivial branching, and the programs marsaglia, ptrace, ex-2,
and gp-dsl define recursive models; our implementation suc-
cessfully inferred guide types for these programs, whereas
prior work [37] could not express them. Our implementation
derived guide types for 25 of the 29 benchmarks, whereas
prior work was able to express only 18 of them.

For all the benchmarks, we assume that each guide pro-
gram samples random variables in the same order as its
corresponding model program does. However, this assump-
tion can sometimes be too restrictive: it has been shown
that the ability to allow the model and the guide to sample
random variables in different orders is desirable for inference

800

PLDI ’21, June 20-25, 2021, Virtual, Canada

Table 2. Selected performance statistics. BI = Bayesian-
inference algorithm (IS or VI); CG (ms) = time for type in-
ference and code generation in milliseconds; GLOC = #lines
of code in compiled code (model + guide); GI (s) = time for
Bayesian inference on compiled code in seconds; HLOC =
#lines of code in handwritten code (model + guide); HI (s) =
time for Bayesian inference on handwritten code in seconds.

Program | BI CG(ms) GLOC GI(s) | HLOC HI(s)
ex-1 IS 0.75 57 5.44 16 5.27
branching | IS 1.74 58 8.49 16 7.48
gmm IS 8.03 185 64.13 38 56.00
weight VI 0.66 35 2.76 7 2.66
vae VI 10.36 72 34.96 26 32.69

amortization methods [56]. Prior work [37] allows different
sampling orders in the model and the guide, whereas our
system cannot handle such scenarios.

Tab. 2 presents performance statistics of selected bench-
mark programs. We evaluated our PPL’s performance under
two criteria: (i) the time for type inference and code gener-
ation, and (ii) the time for Bayesian inference compared to
handwritten inference code under the same set of hyperpa-
rameters (e.g., iteration rounds, optimization algorithms, and
initial values of parameters). Our experiments showed that
our implementation usually completes type inference and
code generation in several milliseconds, and the compiled
code, although using coroutines, has similar performance to
handwritten inference code.

7 Related Work

Sound Bayesian inference. Most closely related to our
work are techniques for reasoning about soundness of trace-
based programmable inference. Lee et al. [36] developed a
static analysis of stochastic variational inference with guide
programs, which describe custom approximating families
in Pyro. Their analysis supports nontrivial features of Pyro,
such as tensor manipulation and plates, i.e., vectors of condi-
tionally independent samples. Their approach aims at prov-
ing that the model and guide programs have the same sup-
port and satisfy differentiability-related conditions. Their
static analysis does not handle the case when a conditional
statement determines the set of random samples. Lew et al.
[37] proposed trace types as precise signatures for sampling
traces of probabilistic programs, and then used the type
system to prove absolute continuity in multiple kinds of
inference algorithms. Trace types can be seen as a type-and-
effect system, where a trace type records the precise set of
samples drawn by a single program. Trace types support
higher-order functions, stochastic branches that can influ-
ence the set of random samples, as well as three forms of
loops, including stochastic while-loops with an unbounded
number of iterations, but not general recursion. Because the
value of a conditional predicate cannot be determined in

PLDI 21, June 20-25, 2021, Virtual, Canada

general at static-analysis time, trace types do not support
general conditional statements that can influence the set of
random samples. Both Lee et al. [36]’s and Lew et al. [37]’s
approach allow the model and the guide to sample random
variables in different orders. In this paper, we propose a new
PPL that guarantees absolute continuity between a model-
guide pair, and features general programming constructs,
including recursion and branching. A key innovation of our
work is the coroutine-based paradigm of writing inference
code; this paradigm makes the relational reasoning of the
support-match property explicit, and in particular enables
precise analysis of complex control flow. However, compared
to prior work, our system only supports scenarios where the
model and the guide sample random variables in the same
order.

There has been a line of work on validating Monte-Carlo
inference algorithms. Scibior et al. [49] developed a semantic
framework to verify the soundness of Monte-Carlo inference
algorithms with generic proposal distributions. Atkinson
et al. [4] presented a type system for verifying hand-coded
Monte-Carlo algorithms that explicitly manipulate densities,
rather than use proposal distributions. For MCMC methods,
Borgstrom et al. [9] and Hur et al. [32] developed provably
correct MH algorithms. Castellan and Paquet [13] proposed
an intensional semantics, which captures execution traces of
programs, to validate an incremental MH algorithm. Several
systems [4, 8, 31, 37] studied sound combinators for kernels
used by MCMC. In contrast to the aforementioned work,
our PPL is based on trace-based programmable inference. It
would be interesting to develop programmable versions of
those sound inference algorithms in our PPL.

Narayanan et al. [44] and Zinkov and Shan [59] validated
the soundness of program transformations in Hakaru, which
contains a programmable MH algorithm. The development
of Hakaru is not centered around sample traces, and it uses
symbolic disintegration [14, 50] to calculate the marginal
densities for computing the acceptance ratio in an MH step.
In this paper, we focus on a trace-based scheme for pro-
grammable inference. Establishing the relationship among
different schemes of programmable inference is an interest-
ing future research direction.

Session types. Honda et al. [28, 29] introduced session types
to prescribe binary communication protocols for message-
passing processes. Session types can be interpreted either
classically [54], or intuitionistically [10, 11]. To enable non-
binary communication, researchers proposed multiparty ses-
sion types [15, 30, 47]. The tail-recursive structure of stan-
dard session types imposes communication protocols that
can be described by a regular language. Recently, several
systems have been developed to go beyond tail-recursive
protocols, such as context-free [51], label-dependent [52],
and nested [17] session types.

801

Di Wang, Jan Hoffmann, and Thomas Reps

In our development of guide types, we took inspiration
from the structuring principle of session types. Compared
to session types, guide types have different semantics (i.e.,
sending and receiving random samples drawn from prob-
ability distributions), have simpler forms (i.e., no process
spawning or higher-order channels), and enjoy an efficient
type-inference algorithm, which can also analyze non-tail-
recursive communication protocols. Developing a truly con-
current probabilistic programming system, and concurrent
Bayesian inference algorithms with general session types,
would be interesting future work.

8 Conclusion

We have presented a new probabilistic programming lan-
guage that supports programmable Bayesian inference, and
guarantees model-guide absolute continuity, thereby ensur-
ing key soundness properties of multiple kinds of inference
algorithms. Our language implements the model and guide
programs as coroutines, and we develop guide types to pre-
scribe the communication protocols between coroutines. We
have proved that well-typed model and guide coroutines ex-
ecute safely, and they are guaranteed to enjoy absolute con-
tinuity. We have also developed an efficient type-inference
algorithm that reconstructs guide types directly from the
code. Finally, we have implemented our language with a pro-
totype compiler to Pyro, and evaluated our implementation
on a suite of diverse probabilistic models.

Acknowledgments

This article is based on research supported, in part, by a gift
from Rajiv and Ritu Batra; by ONR under grants N00014-
17-1-2889 and N00014-19-1-2318; by DARPA under AA con-
tract FA8750-18-C0092; and by the NSF under SaTC award
1801369, SHF awards 1812876 and 2007784, and CAREER
award 1845514. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of
the authors, and do not necessarily reflect the views of the
sponsoring agencies.

References

[1] Jessica Ai, Nimar S. Arora, Ning Dong, Beliz Gokkaya, Thomas Jiang,
Anitha Kubendran, Arun Kumar, Michael Tingley, and Narjes Torabi.
2019. HackPPL: A Universal Probabilistic Programming Language. In
Int. Workshop on Machine Learning and Prog. Lang. (MAPL’19). https:
//doi.org/10.1145/3315508.3329974

Konrad Anton and Peter Thiemann. 2010. Towards Deriving Type
Systems and Implementations for Coroutines. In Asian Symp. on Prog.
Lang. and Systems (APLAS’10). https://doi.org/10.1007/978-3-642-
17164-2_6

Konrad Anton and Peter Thiemann. 2010. Typing Coroutines. In Trends
in Functional Programming (TFP’10). https://doi.org/10.1007/978-3-
642-22941-1_2

Eric Atkinson, Cambridge Yang, and Michael Carbin. 2018. Verifying
Handcoded Probabilistic Inference Procedures. https://arxiv.org/abs/
1805.01863

[2

—

[4

[l

Sound Probabilistic Inference via Guide Types

(5]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

Sooraj Bhat, Ashish Agarwal, Richard Vuduc, and Alexander Gray.
2012. A Type Theory for Probability Density Functions. In Princ. of
Prog. Lang. (POPL’12). https://doi.org/10.1145/2103656.2103721
Sooraj Bhat, Johannes Borgstrém, Andrew D. Gordon, and Claudio
Russo. 2013. Deriving Probability Density Functions from Probabilistic
Functional Programs. In Tools and Algs. for the Construct. and Anal. of
Syst. (TACAS’13). https://doi.org/10.1007/978-3-642-36742-7_35

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer,
Neeraj Pradhan, Theofanis Karaletsos, Rishabh Singh, Paul Szerlip,
Paul Horsfall, and Noah D. Goodman. 2018. Pyro: Deep Universal
Probabilistic Programming. J. Machine Learning Research 20, 1 (January
2018). https://dl.acm.org/doi/10.5555/3322706.3322734

Keith A. Bonawitz. 2008. Composable Probabilistic Inference with Blaise.
Ph.D. Dissertation. Massachusetts Institute of Technology.

Johannes Borgstrom, Ugo Dal Lago, Andrew D. Gordon, and Marcin
Szymczak. 2016. A Lambda-Calculus Foundation for Universal
Probabilistic Programming. In Int. Conf. on Functional Programming
(ICFP’16). https://doi.org/10.1145/2951913.2951942

Luis Caires and Frank Pfenning. 2010. Session Types as Intuitionistic
Linear Propositions. In Int. Conf. on Concurrency Theory (CONCUR’10).
https://doi.org/10.1007/978-3-642-15375-4_16

Luis Caires, Frank Pfenning, and Bernardo Toninho. 2016. Linear Logic
Propositions as Session Types. Math. Struct. Comp. Sci. 26, 3 (March
2016). https://doi.org/10.1017/S0960129514000218

Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben
Goodrich, Michael Betancourt, Marcus Brubaker, Jigiang Guo, Peter Li,
and Allen Riddell. 2017. Stan: A Probabilistic Programming Language.
J. Statistical Softw. 76, 1 (2017). https://doi.org/10.18637/jss.v076.i01
Simon Castellan and Hugo Paquet. 2019. Probabilistic Programming In-
ference via Intensional Semantics. In European Symp. on Programming
(ESOP’19). https://doi.org/10.1007/978-3-030-17184-1_12

J. T. Chang and D. Pollard. 1997. Conditioning as disintegration. Nether-
lands Society for Statistics and Operations Research 51, 3 (November
1997). https://doi.org/10.1111/1467-9574.00056

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and
Nobuko Yoshida. 2015. A Gentle Introduction to Multiparty Asynchro-
nous Session Types. In Formal Methods for Eternal Networked Software
Systems (SFM’15). https://doi.org/10.1007/978-3-319-18941-3_4
Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and
Vikash K. Mansinghka. 2019. Gen: A General-Purpose Probabilistic
Programming System with Programmable Inference. In Prog. Lang.
Design and Impl. (PLDI’'19). https://doi.org/10.1145/3314221.3314642
Ankush Das, Henry DeYoung, Andreia Mordido, and Frank Pfenning.
2020. Nested Session Types. https://arxiv.org/abs/2010.06482

Adam Foster, Martin Jankowiak, Eli Bingham, Paul Horsfall, Yee Whye
Teh, Tom Rainforth, and Noah D. Goodman. 2019. Variational Bayesian
Optimal Experimental Design: Efficient Automation of Adaptive Ex-
periments. In Neural Info. Processing Syst. (NIPS’19). https://arxiv.org/
abs/1903.05480

Rong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: A Language
for Flexible Probabilistic Inference. In Artificial Intelligence and Statis-
tics (AISTATS’18).

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki
Vehtari, and Donald B. Rubin. 2013. Bayesian Data Analysis. Chapman
and Hall/CRC. https://doi.org/10.1201/b16018

Zoubin Ghahramani. 2015. Probabilistic machine learning and arti-
ficial intelligence. Nature 521 (May 2015). https://doi.org/10.1038/
nature14541

W.R. Gilks, A. Thomas, and D. J. Spiegelhalter. 1994. A Language and
Program for Complex Bayesian Modelling. J. Royal Statistical Society
43, 1 (January 1994). https://doi.org/10.2307/2348941

Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith A.
Bonawitz, and Joshua B. Tenenbaum. 2008. Church: A language for
generative models. In Uncertainty in Artificial Intelligence (UAI'08).

802

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

PLDI ’21, June 20-25, 2021, Virtual, Canada

https://dl.acm.org/doi/10.5555/3023476.3023503

Noah D. Goodman and Andreas Stuhlmiiller. 2014. The Design and
Implementation of Probabilistic Programming Languages. Available
on http://dippl.org.

Thomas L. Griffiths, Charles Kemp, and Joshua B. Tenenbaum. 2008.
Bayesian Models of Cognition. In The Cambridge Handbook of Com-
putational Psychology. Cambridge University Press. https://doi.org/10.
1017/CB0O9780511816772.006

Robert Harper. 2016. Practical Foundations for Programming Languages.
Cambridge University Press. https://dl.acm.org/doi/book/10.5555/
3002812

C. A. R. Hoare. 1978. Communicating Sequential Processes. Commun.
ACM 21, 8 (August 1978). https://doi.org/10.1145/359576.359585
Kohei Honda. 1993. Types for Dyadic Interaction. In Int. Conf. on
Concurrency Theory (CONCUR’93). https://doi.org/10.1007/3-540-
57208-2_35

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language
Primitives and Type Discipline for Structured Communication-Based
Programming. In European Symp. on Programming (ESOP’98). https:
//doi.org/10.1007/BFb0053567

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty
Asynchronous Session Types. In Princ. of Prog. Lang. (POPL’08). https:
//doi.org/10.1145/1328438.1328472

Daniel Huang, Jean-Baptiste Tristan, and Greg Morrisett. 2017. Compil-
ing Markov Chain Monte Carlo Algorithms for Probabilistic Modeling.
In Prog. Lang. Design and Impl. (PLDI’'17). https://doi.org/10.1145/
3062341.3062375

Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, and Selva Samuel.
2015. A Provably Correct Sampler for Probabilistic Programs. In Leibniz
International Proceedings in Informatics (LIPIcs’15). https://doi.org/10.
4230/LIPlcs.FSTTCS.2015.475

F. Jelinek, J. D. Lafferty, and R. L. Mercer. 1992. Basic Methods of
Probabilistic Context Free Grammars. In Speech Recognition and Un-
derstanding. https://doi.org/10.1007/978-3-642-76626-8_35

Donald E. Knuth. 1997. The Art of Computer Programming, Volume 2
(3rd Ed.): Seminumerical Algorithms. Addison-Wesley. https://dl.acm.
org/doi/book/10.5555/270146

Dexter Kozen. 1981. Semantics of Probabilistic Programs. J. Comput.
Syst. Sci. 22, 3 (June 1981). https://doi.org/10.1016/0022-0000(81)90036-
2

Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. 2019.
Towards Verified Stochastic Variational Inference for Probabilistic
Programs. Proc. ACM Program. Lang. 4, POPL (December 2019). https:
//doi.org/10.1145/3371084

Alexander K. Lew, Marco F. Cusumano-Towner, Benjamin Sherman,
Michael Carbin, and Vikash K. Mansinghka. 2019. Trace Types and
Denotational Semantics for Sound Programmable Inference in Prob-
abilistic Languages. Proc. ACM Program. Lang. 4, POPL (December
2019). https://doi.org/10.1145/3371087

Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey
Radul, Yutian Chen, and Martin C. Rinard. 2018. Probabilistic Pro-
gramming with Programmable Inference. In Prog. Lang. Design and
Impl. (PLDI'18). https://doi.org/10.1145/3296979.3192409

Robin Milner. 1989. Communication and Concurrency. Prentice-Hall,
Inc. https://dl.acm.org/doi/book/10.5555/534666

Robin Milner, Joachim Parrow, and David Walker. 1992. A Calculus of
Mobile Processes, 1. Information and Computation 100, 1 (September
1992). https://doi.org/10.1016/0890-5401(92)90008-4

Robin Milner, Joachim Parrow, and David Walker. 1992. A Calculus of
Mobile Processes, II. Information and Computation 100, 1 (September
1992). https://doi.org/10.1016/0890-5401(92)90009-5

Eugenio Moggi. 1989. Computational lambda-calculus and monads.
In Logic in Computer Science (LICS’89). https://doi.org/10.1109/LICS.
1989.39155

PLDI 21, June 20-25, 2021, Virtual, Canada

(43]

[44]

(45]

[46]

[47

—

(48]

(49]

(50]

Lawrence M. Murray. 2015. Bayesian State-Space Modelling on High-
Performance Hardware Using LibBi. }. Statistical Softw. 67, 10 (2015).
https://doi.org/10.18637/jss.v067.i10

Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh
Shan, and Robert Zinkov. 2016. Probabilistic Inference by Program
Transformation in Hakaru (System Description). In Int. Symp. on Func-
tional and Logic Programming (FLOPS’16). https://doi.org/10.1007/978-
3-319-29604-3_5

Martyn Plummer. 2003. JAGS: A Program for Analysis of Bayesian
Graphical Models using Gibbs Sampling. In Int. Workshop on Dis-
tributed Statistical Comp. (DSC’03).

Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Mar-
tin C. Rinard, and Vikash K. Mansinghka. 2019. Bayesian Synthesis of
Probabilistic Programs for Automatic Data Modeling. Proc. ACM Pro-
gram. Lang. 3, POPL (January 2019). https://doi.org/10.1145/3290350
Alceste Scalas and Nobuko Yoshida. 2019. Less Is More: Multiparty
Session Types Revisited. Proc. ACM Program. Lang. 3, POPL (January
2019). https://doi.org/10.1145/3290343

Adam Scibior, Zoubin Ghahramani, and Andrew D. Gordon. 2015.
Practical Probabilistic Programming with Monads. In Symp. on Haskell
(Haskell’15). https://doi.org/10.1145/2887747.2804317

Adam Scibior, Ohad Kammar, Matthijs Vakar, Sam Staton, Hongseok
Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss, Chris Heunen, and
Zoubin Ghahramani. 2017. Denotational Validation of Higher-Order
Bayesian Inference. Proc. ACM Program. Lang. 2, POPL (December
2017). https://doi.org/10.1145/3158148

Chung-chieh Shan and Norman Ramsey. 2017. Exact Bayesian Infer-
ence by Symbolic Disintegration. In Princ. of Prog. Lang. (POPL’17).

803

[51]

[52]

[53]

[54]
[55]

[56]

[57]

[58]

[59]

Di Wang, Jan Hoffmann, and Thomas Reps

https://doi.org/10.1145/3009837.3009852

Peter Thiemann and Vasco T. Vasconcelos. 2016. Context-Free Session
Types. In Int. Conf. on Functional Programming (ICFP’16). https://doi.
org/10.1145/2951913.2951926

Peter Thiemann and Vasco T. Vasconcelos. 2019. Label-Dependent
Session Types. Proc. ACM Program. Lang. 4, POPL (December 2019).
https://doi.org/10.1145/3371135

Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo,
Kevin Murphy, and David M. Blei. 2017. Deep Probabilistic Program-
ming. In Int. Conf. on Learning Representations (ICLR’17).

Philip Wadler. 2012. Propositions as Sessions. In Int. Conf. on Functional
Programming (ICFP’12). https://doi.org/10.1145/2364527.2364568

Di Wang, Jan Hoffmann, and Thomas Reps. 2021. Sound Probabilistic
Inference via Guide Types. https://arxiv.org/abs/2104.03598

Stefan Webb, Adam Golinski, Robert Zinkov, N. Siddharth, Tom Rain-
forth, Yee Whye Teh, and Frank Wood. 2018. Faithful Inversion of Gen-
erative Models for Effective Amortized Inference. In Neural Info. Pro-
cessing Syst. (NIPS’18). https://dl.acm.org/doi/10.5555/3327144.3327229
Website. 2020. greenlet: Lightweight concurrent programming. Avail-
able on https://greenlet.readthedocs.io.

Frank Wood, Jan Willem van de Meent, and Vikash K. Mansinghka.
2014. A New Approach to Probabilistic Programming Inference. In
Artificial Intelligence and Statistics (AISTATS 14).

Robert Zinkov and Chung-chieh Shan. 2017. Composing Inference
Algorithms as Program Transformations. In Uncertainty in Artificial
Intelligence (UAI'17). https://arxiv.org/abs/1603.01882

	Abstract
	1 Introduction
	2 Overview
	2.1 Bayesian Inference
	2.2 Sound Bayesian Inference via Guide Types

	3 A Coroutine-Based PPL
	4 Guide Types
	5 Soundness of Bayesian Inference
	5.1 Verification of Absolute Continuity
	5.2 Soundness of Inference Algorithms

	6 Experimental Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

