

PLDI ’21, June 20ś25, 2021, Virtual, Canada Di Wang, Jan Hoffmann, and Thomas Reps

paradigm for writing inference code: users implement the
model and guide programs as coroutines, which can commu-
nicate with each other during their execution. We develop a
new type system, which we dub guide types, to describe the
communication protocols between coroutines. These guide
types can be automatically inferred and are proof certificates
of absolute continuity for model-guide pairs. They apply to
multiple kinds of Bayesian-inference algorithms.

In our development, we follow a common scheme of trace-
based programmable inference that underlies Pyro [7], Ven-
ture [38], Gen [16], etc. These PPLs define the meaning of a
probabilistic program by a probability distribution on sample

traces that record all the random samples that the program
draws during its execution. A program 𝑝 is absolutely contin-
uous with respect to a program 𝑞, if any set of sample traces
with non-zero probability under the program 𝑝 must also
have non-zero probability under the program 𝑞. In this paper,
we reduce the problem of checking absolute continuity to
the following verification task:

Given amodel program 𝑝 and a guide program𝑞, verify that

they define probability distributions with the same support,
i.e., they have the same set of possible sample traces.

Themajor challenge in our development is to reason about
the sets of possible sample traces for the model and guide
programs, when the two programs can diverge in their ex-
ecution, as always with relational reasoning. Control-flow
constructs make it difficult to keep track of sample sites
precisely; for example, a conditional statement can sample
different sets of random variables in its two branches. It is
intractable to enumerate all possible execution paths in the
two programs and compare the sample sites path-to-path,
especially when the programs are recursive.

The first part of our solution is to think of the model and
guide programs as coroutines that can exchange messages.
Conceptually, we use coroutine-style communication to syn-
chronize each pair of sample sites that represent the same
random variable, as well as each branch selection that in-
fluences control flow. The communication between the two
coroutines should then be conducted according to a proto-
col so that messages always occur in guidance pairs: when
one partner sends, the other receives; and when one partner
offers a selection, the other branches.

The second part of our solution is to develop guide types as
guidance protocols between the model and guide coroutines.
In our formalization, we structure the sequence of messages
between two coroutines, rather than describe it as a collec-
tion of unrelated messages. To handle general recursion, we
parameterize the guide type for each coroutine by a con-

tinuation type that describes the guidance protocol for the
computation that continues after a recursive invocation. We
also develop an efficient algorithm that infers guide types
automatically from the code.

There have been several type systems for coroutines [2, 3,
26], but all of them require that all messages from a coroutine

to another have the same type; thus, they are not sufficient to
handle sample passing and branch selection in our coroutine-
based paradigm. In our development of guide types, we took
inspiration from type systems for communication protocols
in concurrent systems, such as session types [28, 29]. Guide
types have different semantics from and are simpler than
session types, and use a parametrization technique to model
recursive computation.

We then establish formal guarantees of our new PPL. First,
we prove that guide types ensure safety of communication
between coroutines, i.e., the coroutines send and receive
messages in a consistent manner. Second, we prove that
guide types serve as proof certificates of absolute continuity
between the model and guide programs; consequently, we
use guide types to justify soundness of importance sampling,
Markov-Chain Monte Carlo, and variational inference. Note
that for variational inference, the soundness guarantee is
partial, because sound inference requires some additional
conditions (e.g., differentiability), whereas this paper focuses
just on absolute continuity.
We implemented a type-inference algorithm for guide

types and a prototype compiler from our PPL to Pyro. We
evaluated our PPL on a broad suite of probabilistic models,
and our experimental results show that (i) our PPL is more
expressive than a state-of-the-art PPL that ensures sound-
ness of programmable inference [37], and (ii) type inference
completes in several milliseconds, and the performance of
Bayesian inference on the compiled code is similar to hand-
written Pyro code, i.e., coroutine communication does not
introduce significant overhead.

Contributions. We make four main contributions.
• We develop a new PPL with a coroutine-based paradigm
for implementing model and guide programs.
• We propose guide types, which prescribe guidance proto-
cols between the model and guide coroutines, and develop
an efficient inference algorithm for guide types.
• We prove type safety of guide types, and show that guide
types ensure key soundness conditions of model-guide
pairs for multiple kinds of Bayesian-inference algorithms.
• We implemented our PPL and evaluated its effectiveness
on a variety of probabilistic models.

2 Overview

In this section, we first review Bayesian inference and trace-
based programmable inference (ğ2.1). We then demonstrate
the coroutine-based paradigm for implementing inference
code and the use of guide types to enforce guidance protocols
between coroutines. (ğ2.2).

2.1 Bayesian Inference

Probabilistic programs specify generativemodels that sample
random variables. The semantics of a probabilistic program
can be defined as a probability distribution on the sample

789

PLDI ’21, June 20ś25, 2021, Virtual, Canada Di Wang, Jan Hoffmann, and Thomas Reps

A sound guide

1 proc Guide1() =
2 𝑣 ← sample(@𝑥,Gamma(1; 1));
3 if 𝑣 < 2 then

4 return()
5 else

6 _← sample(@𝑦,Unif);
7 return()

An unsound guide

1 proc Guide′1() =
2 𝑣 ← sample(@𝑥, Pois(4));
3 if 𝑣 > 10 then

4 return()
5 else

6 _← sample(@𝑦,Unif);
7 return()

Figure 3. Sound and unsound guide programs for IS.

the value of 𝑣 is greater than 10, the program Guide′1 will
not produce a sample for@𝑦.

Variational inference (VI). In contrast to Monte-Carlo
methods, VI uses optimization (e.g., stochastic gradient de-
scent) to find a candidate from an approximating family of
distributions that minimizes the distance between the pos-
terior distribution and the approximating distributions. In
PPLs such as Pyro, users specify the approximating family
by a parameterized probabilistic program called a guide; in-
stantiating the parameters with a concrete valuation that
produces a member of the approximating family. A widely
used distance is the Kullback-Leibler (KL) divergence from
the posterior distribution to the guide distribution. For the
KL divergence to be well-defined, the guide distribution must
be absolutely continuous with respect to the posterior distri-
bution. In ğ5, we again reduce the verification of absolute
continuity to checking a sufficient condition, namely, that
the model conditioned with respect to a concrete observation
and the guide have the same support. Note that VI requires
several more conditions (such as differentiability) for infer-
ence to be sound [36]. In this paper, we focus on verification
of absolute continuity.

Fig. 4 presents two guide programs for performing VI on
the program Model shown in Fig. 1. The real-valued param-
eters of the guide programs are 𝜃1, . . . , 𝜃4. The support of
the program Guide2 (instantiated with concrete parameters)
is exactly the one shown in eq. (2). On the other hand, the
program Guide′2 defines an unsound guide, because it sam-
ples @𝑥 from a normal distribution, whose support is the
whole real line, whereas the program Model always samples
a positive value for @𝑥 .

2.2 Sound Bayesian Inference via Guide Types

Programs as coroutines. Our first contribution is a corou-
tine-based paradigm for implementing the model and guide
programs for Bayesian inference. In an inference algorithm,
the model program and its guide program have many con-
nections. The two most significant patterns we can observe
in common inference algorithms are as follows:
• The guide program is used to generate sample traces, and
then the model program is simulated with these traces to
compute likelihoods.

A sound guide

1 proc Guide2(𝜃1,𝜃2,𝜃3,𝜃4) =
2 𝑣 ← sample(@𝑥,

3 Gamma(𝜃1;𝜃2));
4 if 𝑣 < 2 then

5 return()
6 else

7 _← sample(@𝑦,

8 Beta(𝜃3;𝜃4));
9 return()

An unsound guide

1 proc Guide′2(𝜃1,𝜃2) =
2 𝑣 ← sample(@𝑥,

3 Normal(𝜃1;𝜃2));
4 if 𝑣 < 2 then

5 return()
6 else

7 _← sample(@𝑦,

8 Unif);
9 return()

Figure 4. Sound and unsound guide programs for VI.

• The guide program needs to have similar control-flow
structure to that of the model program. For example, if
the model program has a conditional command whose
two branches sample different sets of latent variables, the
guide program should also have a conditional command
with an equivalent branch condition.

The first pattern illustrates a form of sample passing from
the guide program to the model program, and the second
pattern indicates that the model program should provide
branch selection to the guide program. Such bidirectional

guidance inspired us to treat the model and guide programs
as coroutines that communicate with each other during their
execution, rather than as totally independent programs. On
the other hand, we do not want the coroutines to be tightly
coupled: Bayesian practitioners usually maintain a separa-
tion between the model and the guide so that they can refine
the guide iteratively to improve inference performance.
Therefore, we use message-passing communication to im-

plement the coroutines; this formalism allows us to separate
the model and the guide as individual programs, but connect
them via channels over which coroutines exchange mes-
sages. Fig. 5 reimplements the model and guide programs
in Fig. 1 and Fig. 3, respectively, by making the guidance
communication explicit. The sample(·) commands and con-
ditional commands are annotated with rv (i.e., łreceivež) or
sd (i.e., łsendž) to indicate the direction of communication,
and associated with a name of the channel on which the
communication is carried out. In this example, we use two
channels: latent for communication between the guide and
the model, and obs for identifying observations in the model.
Every channel has a unique provider and a unique consumer.
Note that in this way we do not need to use labeled samplesÐ
as Pyro and some other PPLs doÐbecause the sampling sites
are synchronized through guidance communication.

Operationally, when a coroutine is executing a command
associated with a channel 𝑐 , it resumes the other coroutine
that accesses channel 𝑐 , until the other coroutine encounters
a command that also communicates on channel 𝑐 . Then they
perform synchronization; for example,
• When Model executes samplerv{latent}(Gamma(2; 1)),
it resumes the other end of the latent channel, i.e.,

791

Sound Probabilistic Inference via Guide Types PLDI ’21, June 20ś25, 2021, Virtual, Canada

Model

1 proc Model() consume latent provide obs =
2 𝑣 ← samplerv{latent}(Gamma(2; 1));
3 ifsd{latent} 𝑣 < 2 then

4 _← samplesd{obs}(Normal(−1; 1));
5 return(𝑣)
6 else

7 𝑚← samplerv{latent}(Beta(3; 1));
8 _← samplesd{obs}(Normal(𝑚; 1));
9 return(𝑣)

Guide

1 proc Guide1() consume . provide latent =
2 𝑣 ← samplesd{latent}(Gamma(1; 1));
3 ifrv{latent} ★ then

4 return()
5 else

6 _← samplesd{latent}(Unif);
7 return()

Figure 5. Probabilistic programs as coroutines.

the coroutine Guide1, until Guide1 reaches the com-
mand samplesd{latent}(Gamma(1; 1)). Recall that the
guide program is used in importance sampling; thus,
the coroutine Guide1 draws a sample from the distri-
bution Gamma(1; 1), and then sends it to the coroutine
Model, which uses the sample and the prior distribution
Gamma(2; 1) to calculate the importance weight.
• When Guide1 executes the conditional command on line
3 (where the ★ symbol indicates that the branch selection
is received from the other coroutine), it resumes the other
end of the latent channel, i.e., the coroutine Model, until
Model reaches the conditional command on line 3. The
coroutine Model is the sender of the branch selection;
thus, it evaluates the branch predicate 𝑣 < 2, and sends
the result back to Guide1.

When the synchronization is completed, either coroutine
can continue to execute.

Guide types. Our second contribution is guide types that en-
force guidance protocols between coroutines, and an efficient
algorithm that infers guide types from code.

We take inspiration from type systems for communication
protocols in concurrent systems, such as session types [28,
29]. The key idea is to structure the sequence of guidance
messages on a channel, rather than describe it as a collection
of unrelated messages.

We sketch some type constructors in our development of
guide types. The type 111 types an ended channel, where no
messages can be exchanged. The type 𝐴N 𝐵 types a channel
whose provider waits for a branch selection, and continues
with a protocol of type 𝐴 or a protocol of type 𝐵 based on
the received selection. The type 𝜏 ∧𝐴 types a channel whose
provider samples and sends a random value of type 𝜏 , and
then continues with a type 𝐴 protocol. The guide type for a

channel is the same for the provider and the consumer of the
channel, but the two ends of a channel interpret the guide
type for the channel dually (e.g., sends as receives).
With these three type constructors, we can express the

protocols for the latent and obs channels shown in Fig. 5 as

latent : ℝ+ ∧ (111 N (ℝ(0,1) ∧ 111)), (3)

obs : ℝ ∧ 111. (4)

The provider and the consumer of the channel latent are
the coroutines Guide1 and Model, respectively. From the
provider Guide1’s perspective, the protocol shown as type
(3) guides Guide1 to draw a ℝ+-valued sample and send it
on latent, then wait for a branch selection, and finally end
the communication on latent if the received branch selection
is then-branch, otherwise draw an ℝ(0,1) -valued sample be-
fore ending the communication. The coroutine Guide1 imple-
ments this guidance protocol exactly. Meanwhile, from the
consumer Model’s perspective, the type constructors have
dual semantics, i.e., send becomes receive and vice versa; thus,
the protocol for latent guidesModel to receive an ℝ+-valued
sample, and then send out a branch selection on channel la-
tent; ifModel selects the else-branch, then it further receives
an ℝ(0,1) -valued sample on channel latent.
The channel obs, whose provider is the coroutine Model,

is used to identify observations in the probabilistic model.
The coroutine Model accesses obs on lines 4 and 8, each of
which lies in a branch of the conditional command on line 3.
Because the conditional command is associated with latent,
it should not bother with the communication on channel
obs; thus, we require that the two branches of the condi-
tional command have the same guidance protocol for obs.
The protocol shown as type (4) specifies that the coroutine
Model produces a single ℝ-valued observation, and Model

implements this protocol exactly.

Recursion. Probabilistic programs can use recursion to ex-
press complex generative models, such as a probabilistic

context-free grammar (PCFG), which is a popular model for
constructing languages [33]. Fig. 6 shows a recursive model
that generates a random expression tree with two construc-
tors: Const(·) for leaf nodes and Add(·; ·) for internal nodes.

To support recursion in probabilistic programs, we add a
standard recursive-type constructor to guide types. However,
composition of the guide types from multiple procedure calls
in a non-tail-recursive program remains a challenge. One
straightforward approach is to add a sequencing type 𝐴 # 𝐵
that types a channel whose provider starts with a type 𝐴
protocol and then continues with a type 𝐵 protocol, but such
sequencing types will complicate the type system, because
they allow a guidance protocol to be described by different

types. For example, both (ℝ ∧ ℝ ∧ 111) and ((ℝ ∧ 111) # (ℝ ∧
111)) describe a channel whose provider sends two ℝ-valued
random samples.

792

PLDI ’21, June 20ś25, 2021, Virtual, Canada Di Wang, Jan Hoffmann, and Thomas Reps

1 proc Pcfg() consume latent provide . =
2 𝑘 ← samplerv{latent}(Beta(3; 1));
3 call PcfgGen(𝑘)
4
5 proc PcfgGen(𝑘) consume latent provide . =
6 𝑢 ← samplerv{latent}(Unif);
7 ifsd{latent} 𝑢 < 𝑘 then

8 𝑣 ← samplerv{latent}(Normal(0; 1));
9 return(Const(𝑣))
10 else

11 lhs← call PcfgGen(𝑘);
12 rhs← call PcfgGen(𝑘);
13 return(Add(lhs; rhs))

Figure 6. A recursive probabilistic model.

To sidestep the need for a nontrivial equivalence check
in the type system, we adapt the idea of type-level poly-
morphism, and parameterize the guide type for a recursive
coroutine by a continuation type that describes the commu-
nication after a procedure call to this coroutine returns. For
example, consider the following parametric type R[·].

R[𝑋] def
= ℝ(0,1) ∧ ((ℝ ∧ 𝑋) N R[R[𝑋]]),

It specifies a guidance protocol by prependingmessages to the
continuation protocol defined by the type parameter 𝑋 . The
type R[𝑋] precisely describes the behavior of the PcfgGen
coroutine shown in Fig. 6: the coroutine first receives an
ℝ(0,1) -valued random sample (line 6); evaluates and sends
out a branch selection (line 7); and then based on the branch
selection, the coroutine either receives an ℝ-valued random
sample (line 8) and then returns (i.e., continues with the
continuation protocol 𝑋), or makes two recursive procedure
calls (lines 11 and 12). The guide type of the else-branch can
be justified by backward reasoning: at line 13, the coroutine
returns (i.e., continues with the continuation protocol 𝑋);
at line 12, because the guide type after the procedure call
is 𝑋 , we obtain the guide type before the procedure call by
instantiating R with 𝑋 ; and at line 11, because the guide
type after the procedure call is R[𝑋], we again instantiate R,
but with R[𝑋], to derive the guide type of the else-branch.
Finally, for the coroutine Pcfg shown in Fig. 6, we derive
ℝ(0,1) ∧ R[111] as the guidance protocol for channel latent.
Control-flow divergence. In Fig. 5, the model program
Model and the guide program Guide1 have very similar con-
trol flow. In general, our type system permits the guide’s
control-flow structure to diverge from the model’s, as long
as the two programs communicate with each other in a con-
sistent way, i.e., the two programs follow the same guidance
protocol for the channel over which they communicate. For
example, the program below implements a part of a Bayesian
linear-regression model with outliers [16], where the latent
variable prob_outlier describes how likely a data point does
not conform to the linear relationship, and is_outlier is a
Boolean-valued latent variable that indicates if a data point
is an outlier.

1 prob_outlier ← samplerv{latent}(Unif);
2 is_outlier ← samplerv{latent}(Ber(prob_outlier));
3 return()
For MCMC algorithms, the guide program generates a new
random sample from an old one; thus, for better inference
performance, anMCMC guide usually behaves differently for
different old samples. The following program implements
a part of a guide that branches on is_outlier from the old
sample [16]. Intuitively, this guide proposes the negation
(with a small amount of noise) of the old is_outlier , which
is bound to a program variable old_is_outlier ; i.e., if the old
is_outlier is true (resp., false), then the guide is likely to
propose false (resp., true).

1 prob_outlier ← samplesd{latent}(Beta(2; 5));
2 if old_is_outlier then

3 is_outlier ← samplesd{latent}(Ber(0.1));
4 return()
5 else

6 is_outlier ← samplesd{latent}(Ber(0.9));
7 return()
Although the model and the guide have divergent control-
flow structures, in our type system, we can express the guid-
ance protocol for channel latent asℝ(0,1) ∧𝟚∧111; that is, both
programs sample an ℝ(0,1) -valued random variable and then
sample a Boolean-valued one.

Type inference. Guide types can be automatically inferred
from code; in practice, they can still be used as specifications
of the programs for better understanding. Our implementa-
tion can infer guide types for the examples mentioned so far,
including the recursive one shown in Fig. 6.

3 A Coroutine-Based PPL

In this section, we formulate a core monadic calculus for
coroutine-based probabilistic programming.

Syntax. Fig. 7 presents the grammar of basic types 𝜏 , ex-
pressions 𝑒 , values 𝑣 , commands𝑚, and programs D in the
core calculus via abstract binding trees [26]. There is a modal
distinction in the core language: expressions describe purely
deterministic computations, while commands describe prob-
abilistic computations. Intuitively, we treat randomness as a
kind of monadic effect [42].
The purely deterministic fragment is a simply-typed

lambda calculus augmented with scalar types (i.e., nullary
products 𝟙, Booleans 𝟚, unit interval ℝ(0,1) , positive real
numbers ℝ+, real numbers ℝ, integer rings ℕ𝑛 , and natural
numbers ℕ), as well as a distribution type dist(𝜏). The syn-
tactic form op

^
(𝑒1; 𝑒2) represents expressions that perform

built-in binary operations ^ on scalar values. Inhabitants of
dist(𝜏) are the primitive distributions from which probabilis-
tic programs can draw a random value of type 𝜏 ; for example,
Bernoulli distributions Ber(·) have type dist(𝟚), the uniform
distribution on unit interval Unif has type dist(ℝ(0,1)), and
geometric distributions Geo(·) have type dist(ℕ). For each
primitive distribution 𝑑 , we assume that it admits two fields:

793

Sound Probabilistic Inference via Guide Types PLDI ’21, June 20ś25, 2021, Virtual, Canada

𝜏 F 𝟙 | 𝟚 | ℝ(0,1) | ℝ+ | ℝ | ℕ𝑛 | ℕ | 𝜏1 → 𝜏2 | dist(𝜏)
𝑒 F 𝑥 | triv | true | false | if (𝑒; 𝑒1; 𝑒2) | 𝑟 | 𝑛 | op^ (𝑒1; 𝑒2)
| 𝜆(𝑥 .𝑒) | app(𝑒1; 𝑒2) | let(𝑒1;𝑥 .𝑒2)
| Ber(𝑒) | Unif | Beta(𝑒1; 𝑒2) | Gamma(𝑒1; 𝑒2)
| Normal(𝑒1; 𝑒2) | Cat(𝑒1, · · · , 𝑒𝑛) | Geo(𝑒) | Pois(𝑒)

𝑣 F triv | true | false | 𝑟 | 𝑛 | clo(𝑉 , 𝜆(𝑥 .𝑒))
| Ber(𝑣) | Unif | Beta(𝑣1; 𝑣2) | Gamma(𝑣1; 𝑣2)
| Normal(𝑣1; 𝑣2) | Cat(𝑣1, · · · , 𝑣𝑛) | Geo(𝑣) | Pois(𝑣)

𝑚 F ret(𝑒) | bnd(𝑚1;𝑥 .𝑚2) | call(𝑓 ; 𝑒)
| samplerv{a}(𝑒) | samplesd{a}(𝑒)
| condrv{a}(𝑚1;𝑚2) | condsd{a}(𝑒;𝑚1;𝑚2)

D F
−−−−−−−−−−−−−−→
fix{𝑎;𝑏}(𝑓 .𝑥 .𝑚)

Figure 7. Syntax of the core calculus.

𝑑.support and𝑑.density are the support and the density func-
tion of the distribution, respectively. In the core calculus, the
type of a primitive distribution characterizes the support of
the distribution precisely: for a distribution 𝑑 of type dist(𝜏)
and a value 𝑣 , it holds that 𝑣 ∈ 𝑑.support if and only if 𝑣 is an
inhabitant of type 𝜏 . Primitive distributions can be general-
ized to density-carrying expressions [5, 6] to further improve
language expressibility.
The probabilistic fragment is a monadic calculus aug-

mented with probabilistic constructs and communication
primitives for coroutine-based programming. The sampling

commands samplesd{a}(𝑒) and samplerv{a}(𝑒) first evalu-
ate the expression 𝑒 to a primitive distribution 𝑑 . Then the
send version samplesd{a}(𝑑) draws a value from 𝑑 and sends
it on channel 𝑎, whereas the receive version samplerv{a}(𝑑)
receives a value from channel 𝑎 and treats it as a sample
from 𝑑 . The random samples can influence the likelihoods
of computations; thus, randomness can be seen as a source
of side effects. The branching commands also have a send
version condsd{a}(𝑒 ;𝑚1;𝑚2), which evaluates 𝑒 to a Boolean
value and sends it as the branch selection on channel 𝑎; and a
receive version condrv{a}(𝑚1;𝑚2), which receives a branch
selection from channel 𝑎. The syntactic form call(𝑓 ; 𝑒) rep-
resents a procedure call, where 𝑓 is a procedure name and 𝑒
is the argument.
A probabilistic program D is a collection of (mutu-

ally recursive) procedures, each of which has the form
fix{𝑎;𝑏}(𝑓 .𝑥 .𝑚), where 𝑓 is the procedure name, 𝑥 is the
parameter,𝑚 is a command that represents the procedure
body, 𝑎 is the name of the channel consumed by 𝑓 , and 𝑏 is
the name of the channel provided by 𝑓 . Note that both 𝑎 and
𝑏 are optional; that is, the procedure 𝑓 might not consume
any channel, and it might not provide any channel.

Semantics. We develop a big-step operational semantics for
the core calculus. Details of the semantics are included in the

technical report [55]. The evaluation judgments for expres-
sions have the form 𝑉 ⊢ 𝑒 ⇓ 𝑣 , where 𝑉 is an environment

that maps program variables to values. The evaluation rules
for expressions are skipped here because they are standard.

We adopt a trace-based approach [9, 35] in our semantics
of probabilistic computations. A guidance trace 𝜎 is a finite
sequence of guidance messages exchanged on a channel;
each guidance message has the form valP (𝑣) (resp., dirP (𝑣))
for a sample value 𝑣 (resp., a branch selection 𝑣) from the
provider to the consumer, the form valC (𝑣) (resp., dirC (𝑣))
for a sample value 𝑣 (resp., a branch selection 𝑣) from the
consumer to the provider, or a procedure-call indicator fold.1

The evaluation judgments for commands have the form
𝑉 | (a : 𝜎𝑎); (b : 𝜎𝑏) ⊢𝑚 ⇓𝑤 𝑣 , where𝑉 is an environment,𝑚
is a command that consumes channel 𝑎 and provides channel
𝑏, 𝜎𝑎 and 𝜎𝑏 are guidance traces on the channels, 𝑣 is the
evaluation result, and𝑤 ≥ 0 is a weight that expresses how
likely the guidance traces are. Intuitively, a probabilistic pro-
gram specifies a probability distribution on guidance traces,
and the weights represent probability densities with respect
to the distribution.
Fig. 8 shows the evaluation rules for selected commands.

We use the following notational conventions. We denote the
empty environment by ∅, and updating a binding of 𝑥 in an
environment 𝑉 to 𝑣 by 𝑉 [𝑥 ↦→ 𝑣]. We use the ++ operator
to concatenate two traces. We write ite as a shorthand for
if-then-else. The Iverson brackets [·] are defined by [𝜑] = 1
if 𝜑 is true and otherwise [𝜑] = 0.
The (EM:Sample:*) rules take a value from the guidance

traces as the result of the sampling, and use the density func-
tions of primitive distributions to calculate the weight for
the guidance traces. The (EM:Cond:Send:L) rule evaluates
the branch predicate to obtain a Boolean value, and enforce
that the branch selection from the guidance trace of the con-
sumed channel must be the same as the predicate’s value;
if the guidance trace sets the branch selection to a different
value, we simply set the weight of this trace to zero. The
(EM:Call) rule requires the guidance traces start with a fold
message, and proceeds by evaluating the body of the callee.

Example 3.1. Consider the command

𝑚1
def
= bnd(samplerv{a}(Normal(0; 1)); 𝑥 .

bnd(samplesd{b}(Normal(𝑥 ; 1)); 𝑦.
ret(op+ (𝑥 ;𝑦)))),

which consumes a channel 𝑎 and provides a channel 𝑏. Let

𝜑
def
= 𝜆𝑥 . 1√

2𝜋
𝑒−

1
2𝑥

2
be the probability density function of

the standard normal distribution Normal(0; 1). Let 𝜎𝑎
def
=

1The fold message is only useful in the theoretical development; it can be
seen as the introduction form for guidance traces whose type is a type-
operator instantiation (see ğ4).

794

PLDI ’21, June 20ś25, 2021, Virtual, Canada Di Wang, Jan Hoffmann, and Thomas Reps

(EM:Ret)

𝑉 ⊢ 𝑒 ⇓ 𝑣
𝑉 | (a : []); (b : []) ⊢ ret(𝑒) ⇓1 𝑣

(EM:Bnd)

𝑉 | (a : 𝜎𝑎); (b : 𝜎𝑏) ⊢𝑚1 ⇓𝑤1 𝑣1
𝑉 [𝑥 ↦→ 𝑣1] | (a : 𝜎 ′𝑎); (b : 𝜎 ′𝑏) ⊢𝑚2 ⇓𝑤2 𝑣2

𝑉 | (a : 𝜎𝑎 ++ 𝜎 ′𝑎); (b : 𝜎𝑏 ++ 𝜎 ′𝑏) ⊢ bnd(𝑚1;𝑥 .𝑚2) ⇓𝑤1 ·𝑤2 𝑣2

(EM:Sample:Recv:L)

𝑉 ⊢ 𝑒 ⇓ 𝑑 𝑣 ∈ 𝑑.support 𝑤 = 𝑑.density(𝑣)
𝑉 | (a : [valP (𝑣)]); (b : []) ⊢ samplerv{a}(𝑒) ⇓𝑤 𝑣

(EM:Sample:Send:R)

𝑉 ⊢ 𝑒 ⇓ 𝑑 𝑣 ∈ 𝑑.support 𝑤 = 𝑑.density(𝑣)
𝑉 | (a : []); (b : [valP (𝑣)]) ⊢ samplesd{b}(𝑒) ⇓𝑤 𝑣

(EM:Cond:Send:L)

𝑉 ⊢ 𝑒 ⇓ 𝑣𝑒 𝑖 = ite(𝑣𝑎, 1, 2) 𝑉 | (a : 𝜎𝑎); (b : 𝜎𝑏) ⊢𝑚𝑖 ⇓𝑤 𝑣

𝑉 | (a : [dirC (𝑣𝑎)] ++ 𝜎𝑎); (b : 𝜎𝑏) ⊢ condsd{a}(𝑒;𝑚1;𝑚2) ⇓𝑤 · [𝑣𝑎=𝑣𝑒] 𝑣

(EM:Cond:Recv:R)

𝑖 = ite(𝑣𝑏 , 1, 2) 𝑉 | (a : 𝜎𝑎); (b : 𝜎𝑏) ⊢𝑚𝑖 ⇓𝑤 𝑣

𝑉 | (a : 𝜎𝑎); (b : [dirC (𝑣𝑏)] ++ 𝜎𝑏) ⊢ condrv{b}(𝑚1;𝑚2) ⇓𝑤 𝑣

(EM:Call)

D(𝑓) = fix{𝑎;𝑏}(𝑓 .𝑥 𝑓 .𝑚𝑓)
𝑉 ⊢ 𝑒 ⇓ 𝑣1 ∅[𝑥 𝑓 ↦→ 𝑣1] | (a : 𝜎𝑎); (b : 𝜎𝑏) ⊢𝑚𝑓 ⇓𝑤 𝑣2

𝑉 | (a : [fold] ++ 𝜎𝑎); (b : [fold] ++ 𝜎𝑏) ⊢ call(𝑓 ; 𝑒) ⇓𝑤 𝑣2

Figure 8. Selected evaluation rules for commands.

[valP (1̄)] and 𝜎𝑏
def
= [valP (2̄)]. Then we can derive the eval-

uation judgment

∅ | (a : 𝜎𝑎); (b : 𝜎𝑏) ⊢𝑚1 ⇓𝜑 (1) ·𝜑 (1) 3̄,
for the command𝑚1 and the guidance traces 𝜎𝑎, 𝜎𝑏 .

Communication. There are a lot of formalisms for com-
munication in (concurrent) programming systems, such as
CCS [39], Theoretical CSP [27], and 𝜋-calculus [40, 41]. In
this paper, we use a lightweight approach to handling com-
munication; that is, in the semantics, we assume we have all
the messages exchanged on all the communication channels.
We use this formalism because (i) our focus is to reason about
soundness of Bayesian inference, rather than concurrency-
related properties (e.g., deadlock freedom); and (ii) the infer-
ence algorithms we study in ğ5 involve only two coroutinesÐ
one for the model and the other for the guideÐso the commu-
nication in our system is much simpler than that in general
concurrent systems.

Example 3.2. Consider the command

𝑚2
def
= bnd(samplesd{a}(Normal(3; 1)); _. ret(triv)),

which provides a channel 𝑎 that is consumed by the com-
mand𝑚1 in Ex. 3.1. To model the communication between

𝑚2 and𝑚1, we simply use the guidance trace 𝜎𝑎 = [valP (1̄)]
as the sequence of messages exchanged on channel 𝑎 in the
semantics, and derive evaluation judgments for𝑚2 and𝑚1

separately. We showed the judgment for𝑚1 in Ex. 3.1; here,
we can derive the judgment

∅ | ∅; (a : 𝜎𝑎) ⊢𝑚′ ⇓𝜑 (−2) triv,
for command𝑚2 and guidance trace 𝜎𝑎 . We use the∅ symbol
to indicate that𝑚2 does not consume any channel.

4 Guide Types

Type formation. We take inspiration from a structuring

principle in session types [28, 29], and develop guide types to
enforce protocols for guidance traces. The grammar shown
below formulates the syntax of guide types. We write𝐴, 𝐵 for
guide types, 𝑋 for type variables,𝑇 for unary type operators,
and 𝐹 for procedure signatures.

𝐴, 𝐵 F 𝑋 | 111 | 𝑇 [𝐴] | 𝜏 ∧𝐴 | 𝜏 ⊃ 𝐴 | 𝐴 � 𝐵 | 𝐴 N 𝐵

𝐹 F 𝜏1 { 𝜏2 | (a : 𝑇𝑎); (b : 𝑇𝑏)

T F
−−−−−−−−−−−−−−→
typedef (𝑇 .𝑋 .𝐴)

The type 111 indicates an ended channel, where the guidance
trace is empty. The type 𝑇 [𝐴] instantiates a unary type op-
erator𝑇 with a guide type 𝐴. For sample passing and branch
selection, each type constructor has a dual version that re-
verses the role of the provider and the consumer. The type
𝜏 ∧ 𝐴 types a channel whose provider samples a random
value , sends it on the channel, and then continues with a
type 𝐴 guidance protocol; dually, the type 𝜏 ⊃ 𝐴 types a
channel whose consumer samples and sends a random value.
Similarly, the type 𝐴 � 𝐵 types a channel whose provider
evaluates a branch predicate, sends a branch selection on the
channel, and then continues with a type𝐴 guidance protocol
or a type 𝐵 protocol based on the branch selection; dually,
the type 𝐴 N 𝐵 types a channel whose consumer evaluates
and sends a branch selection.

Remark 4.1. In the rest of this paper, we will not use the
dual types 𝜏 ⊃ 𝐴 and 𝐴� 𝐵. We introduce these types here for

theoretical completeness, and they may be used in some future

development.

Type operators prescribe guidance protocols for proce-
dures by parameterizing with a continuation type that de-
scribes the guidance protocol after a procedure call. A proce-
dure signature 𝜏1 { 𝜏2 | (a : 𝑇𝑎); (b : 𝑇𝑏) types a procedure
that takes a parameter of type 𝜏1, returns a result of type 𝜏2,
consumes a channel 𝑎, and provides a channel 𝑏, such that if
the guidance protocols for 𝑎 and 𝑏 after a procedure call are
𝐴 and 𝐵, respectively, then the guidance protocols for 𝑎 and
𝑏 before the procedure call are𝑇𝑎 [𝐴] and𝑇𝑏 [𝐵], respectively.

A type definition typedef (𝑇 .𝑋 .𝐴) declares a unary type
operator 𝑇 that takes a type parameter 𝑋 and produces a
guide type𝐴, which can reference𝑋 . Because type operators
are used to prescribe procedure signatures, we assume that a

795

Sound Probabilistic Inference via Guide Types PLDI ’21, June 20ś25, 2021, Virtual, Canada

(TM:Ret)

Γ ⊢ 𝑒 : 𝜏
Γ | (a : 𝐴); (b : 𝐵) ⊢ ret(𝑒) .∼. 𝜏 | (a : 𝐴); (b : 𝐵)

(TM:Bnd)

Γ | (a : 𝐴); (b : 𝐵) ⊢𝑚1
.∼. 𝜏1 | (a : 𝐴′); (b : 𝐵′)

Γ, 𝑥 : 𝜏1 | (a : 𝐴′); (b : 𝐵′) ⊢𝑚2
.∼. 𝜏2 | (a : 𝐴′′); (b : 𝐵′′)

Γ | (a : 𝐴); (b : 𝐵) ⊢ bnd(𝑚1;𝑥 .𝑚2) .∼. 𝜏2 | (a : 𝐴′′); (b : 𝐵′′)

(TM:Sample:Recv:L)

Γ ⊢ 𝑒 : dist(𝜏)
Γ | (a : 𝜏 ∧𝐴); (b : 𝐵) ⊢ samplerv{a}(𝑒) .∼. 𝜏 | (a : 𝐴); (b : 𝐵)

(TM:Sample:Send:R)

Γ ⊢ 𝑒 : dist(𝜏)
Γ | (a : 𝐴); (b : 𝜏 ∧ 𝐵) ⊢ samplesd{b}(𝑒) .∼. 𝜏 | (a : 𝐴); (b : 𝐵)

(TM:Cond:Send:L)

Γ ⊢ 𝑒 : 𝟚 Γ | (a : 𝐴1); (b : 𝐵) ⊢𝑚1
.∼. 𝜏 | (a : 𝐴′); (b : 𝐵′)

Γ | (a : 𝐴2); (b : 𝐵) ⊢𝑚2
.∼. 𝜏 | (a : 𝐴′); (b : 𝐵′)

Γ | (a : 𝐴1 N𝐴2); (b : 𝐵) ⊢ condsd{a}(𝑒;𝑚1;𝑚2) .∼. 𝜏 | (a : 𝐴′); (b : 𝐵′)

(TM:Cond:Recv:R)

Γ | (a : 𝐴); (b : 𝐵1) ⊢𝑚1
.∼. 𝜏 | (a : 𝐴′); (b : 𝐵′)

Γ | (a : 𝐴); (b : 𝐵2) ⊢𝑚2
.∼. 𝜏 | (a : 𝐴′); (b : 𝐵′)

Γ | (a : 𝐴); (b : 𝐵1 N 𝐵2) ⊢ condrv{b}(𝑚1;𝑚2) .∼. 𝜏 | (a : 𝐴′); (b : 𝐵′)

(TM:Call)

Σ(𝑓) = 𝜏1 { 𝜏2 | (a : 𝑇𝑎); (b : 𝑇𝑏) Γ ⊢ 𝑒 : 𝜏1
Γ | (a : 𝑇𝑎 [𝐴]); (b : 𝑇𝑏 [𝐵]) ⊢ call(𝑓 ; 𝑒) .∼. 𝜏2 | (a : 𝐴); (b : 𝐵)

Figure 9. Selected typing rules for commands.

probabilistic program is always accompanied by a collection
T of (mutually recursive) type definitions.

Example 4.2. We can formally declare the type opera-
tor Recur for the PcfgGen procedure shown in Fig. 6 as
typedef (R. 𝑋 . ℝ(0,1) ∧ ((ℝ ∧ 𝑋) N R[R[𝑋]])) .
Typing rules. The typing judgments for expressions have
the form Γ ⊢ 𝑒 : 𝜏 , where Γ is a typing context that maps
program variables to basic types (defined in Fig. 7). A full
list of typing rules is included in the technical report [55].
The typing rules for expressions are skipped here because
they are standard.
The typing judgments for commands have the form

Γ | (a : 𝐴); (b : 𝐵) ⊢Σ 𝑚 .∼. 𝜏 | (a : 𝐴′); (b : 𝐵′),
where Σ maps procedure identifiers to procedure signatures.
The intuitive meaning of the typing judgment is that if the
channels 𝑎 and 𝑏 are of the guidance protocols 𝐴 and 𝐵,
respectively, then we can evaluate the command𝑚 to a value
of type 𝜏 , and after the evaluation, the channels 𝑎 and 𝑏 are
of the guidance protocols 𝐴′ and 𝐵′, respectively.

Fig. 9 presents the typing rules for commands. We assume
a fixed global Σ that we omit from the rules. Intuitively, the
rules formulate a backward-reasoning system: we start with

continuation types 𝐴′ and 𝐵′ for the channels 𝑎 and 𝑏, re-
spectively, and then prepend the guidance messages sent or
received by the command𝑚 to𝐴′ and 𝐵′, to obtain the guide
types 𝐴 and 𝐵 for the channels 𝑎 and 𝑏 before the evaluation
of𝑚, respectively. For sample passing and branch selection,
each guide type has two derivation rules: one for the con-
sumed channel 𝑎, and the other for the provided channel
𝑏. For example, the type 𝜏 ∧𝐴 represents a channel whose
provider sends a sample of type 𝜏 ; thus, if the consumed chan-
nel 𝑎 has such a type, the rule (TM:Sample:Recv:L) receives a
sample from the provider of 𝑎, and if the provided channel 𝑏
has such a type, the rule (TM:Sample:Send:R) sends a sample
to the consumer of 𝑏.
The rule (TM:Call) handles procedure calls. For a pro-

cedure call call(𝑓 ; 𝑒), the rule fetches from Σ the procedure
𝑓 ’s signature 𝜏1 { 𝜏2 | (a : 𝑇𝑎); (b : 𝑇𝑏), and then instanti-
ates the type operators 𝑇𝑎,𝑇𝑏 with continuation types 𝐴, 𝐵,
respectively, to obtain the guide types 𝑇𝑎 [𝐴] and 𝑇𝑏 [𝐵] for
the channels 𝑎 and 𝑏 before the procedure call, respectively.

Example 4.3. Consider the command

𝑚3
def
= bnd(call(𝑓 ;𝑘); _.

bnd(samplerv{Normal(0; 1)}(𝑎); _.
bnd(call(𝑓 ;𝑘); _.
ret(triv)))),

where the variable 𝑘 has type ℝ(0,1) and the procedure 𝑓

has signature ℝ(0,1) { 𝟙 | (a : 𝑇);∅, i.e., the procedure 𝑓

consumes channel 𝑎 but does not provide any channel, and
channel 𝑎 is associated with a type operator𝑇 . Now we show
that we can derive a typing judgment for𝑚3 by backward
reasoning. First, by (TM:Ret), we have

𝑘 : ℝ(0,1) | (a : 111);∅ ⊢Σ ret(triv) .∼. 𝟙 | (a : 111);∅.
Then by (TM:Call), we derive

𝑘 : ℝ(0,1) | (a : 𝑇 [111]);∅ ⊢Σ call(𝑓 ;𝑘) .∼. 𝟙 | (a : 111);∅.

Define𝑚4
def
= bnd(call(𝑓 ;𝑘); _.ret(triv)). Thus, by (TM:Bnd),

𝑘 : ℝ(0,1) | (a : 𝑇 [111]);∅ ⊢Σ 𝑚4
.∼. 𝟙 | (a : 111);∅.

Define 𝑚5
def
= bnd(samplerv{a}(Normal(0; 1)); _.𝑚4). By

(TM:Sample:Recv:L) and (TM:Bnd), we have

𝑘 : ℝ(0,1) | (a : ℝ ∧𝑇 [111]);∅ ⊢Σ 𝑚5
.∼. 𝟙 | (a : 111);∅.

Finally, we again apply (TM:Call) and (TM:Bnd) to derive

𝑘 : ℝ(0,1) | (a : 𝑇 [ℝ ∧𝑇 [111]]);∅ ⊢Σ 𝑚3
.∼. 𝟙 | (a : 111);∅.

Type safety. We present some theoretical results about type
safety of guide types. Proofs are included in the technical
report [55].

We first formulate two judgments for well-formedness of
values and guidance traces. The judgment 𝑣 : 𝜏 means that
value 𝑣 has type 𝜏 . The judgment 𝜎 : 𝐴 means that the guid-
ance trace is a sequence of messages that satisfies protocol
𝐴. Rules for these judgments are straightforward; we omit
them here but include them in the technical report [55].

796

PLDI ’21, June 20ś25, 2021, Virtual, Canada Di Wang, Jan Hoffmann, and Thomas Reps

The theorem below states that if𝑚 is a well-typed closed
command, and it evaluates to a value 𝑣 under guidance traces
𝜎𝑎, 𝜎𝑏 , then 𝑣 is a well-typed value, and 𝜎𝑎, 𝜎𝑏 are well-typed
guidance traces.

Theorem 4.4. If · | (a : 𝐴); (b : 𝐵) ⊢Σ 𝑚 .∼. 𝜏 | (a : 111); (b : 111)
and ∅ | (a : 𝜎𝑎); (b : 𝜎𝑏) ⊢ 𝑚 ⇓𝑤 𝑣 , then 𝜎𝑎 : 𝐴, 𝜎𝑏 : 𝐵, and

𝑣 : 𝜏 .

Furthermore, we can show some normalization properties
of guide types. The theorem below states that if𝑚 is a well-
typed closed command, and 𝜎𝑎, 𝜎𝑏 are well-typed guidance
traces, then𝑚 can evaluate to some well-typed 𝑣 under 𝜎𝑎, 𝜎𝑏 .

Theorem 4.5. If · | (a : 𝐴); (b : 𝐵) ⊢Σ 𝑚 .∼. 𝜏 | (a : 111); (b : 111),
𝜎𝑎 : 𝐴, and 𝜎𝑏 : 𝐵, then there exist 𝑤, 𝑣 such that ∅ | (a :

𝜎𝑎); (b : 𝜎𝑏) ⊢𝑚 ⇓𝑤 𝑣 and 𝑣 : 𝜏 .

We can strengthen the normalization property when a
command will not send out any branch selections. The theo-
rem below states that if a well-typed command𝑚 consumes
a channel 𝑎 with a type 𝐴 that does not contain N and pro-
vides a channel 𝑏 with a type 𝐵 that does not contain �, and
𝜎𝑎, 𝜎𝑏 are well-typed guidance traces, then𝑚 can evaluate to
some well-typed value 𝑣 under 𝜎𝑎, 𝜎𝑏 with a strictly positive

weight𝑤 .

Theorem 4.6. If · | (a : 𝐴); (b : 𝐵) ⊢Σ 𝑚 .∼. 𝜏 | (a : 111); (b : 111),
𝐴 is N-free, 𝐵 is �-free, 𝜎𝑎 : 𝐴, and 𝜎𝑏 : 𝐵, then there exist

𝑤, 𝑣 such that ∅ | (a : 𝜎𝑎); (b : 𝜎𝑏) ⊢𝑚 ⇓𝑤 𝑣 , 𝑣 : 𝜏 , and𝑤 > 0.

Type-inference algorithm. Wenow sketch a type-inference
algorithm that derives guide types automatically from the
implementation. In the algorithm, we assume we have infor-
mation about basic typesÐsuch as the parameter and result
types for procedures and the typing contexts that map pro-
gram variables to basic typesÐbecause without guide types,
our core language is a simply-typed lambda calculus, for
which type inference is decidable.

First, for each procedure fix{𝑎;𝑏}(𝑓 .𝑥 .𝑚) in the program,
we create two fresh type operators𝑇𝑎 and𝑇𝑏 for the channels
𝑎 and 𝑏, respectively, and obtains 𝜏1 { 𝜏2 | (a : 𝑇𝑎); (b : 𝑇𝑏)
as the signature of this procedure. Then we collect signatures
of all the procedures in the program to obtain the map Σ.

Now the task is to derive definitions of the type operators.
We observe that the rules in Fig. 9 are syntax directed, and
they can be turned into an algorithmic system by interpreting

Γ | (a : 𝐴); (b : 𝐵) ⊢Σ 𝑚 .∼. 𝜏 | (a : 𝐴′); (b : 𝐵′)
as a function from Σ, Γ,𝑚, 𝜏, 𝑎, 𝑏, 𝐴′, 𝐵′ to 𝐴, 𝐵; i.e., we as-
sume we know all the basic types, and we perform backward
reasoning to infer guide types. Therefore, for each procedure
fix{𝑎;𝑏}(𝑓 .𝑥 .𝑚) with signature 𝜏1 { 𝜏2 | (a : 𝑇𝑎); (b : 𝑇𝑏),
we create two fresh type variables 𝑋𝑎 and 𝑋𝑏 , derive two
guide types 𝐴 and 𝐵 through

𝑥 : 𝜏1 | (a : 𝐴); (b : 𝐵) ⊢Σ 𝑚 .∼. 𝜏2 | (a : 𝑋𝑎); (b : 𝑋𝑏),
and then add type definitions typedef (𝑇𝑎 .𝑋𝑎 .𝐴) and
typedef (𝑇𝑏 .𝑋𝑏 .𝐵).

5 Soundness of Bayesian Inference

In this section, we use guide types to reason about Bayesian
inference. We first present a measure-theoretic formulation
of Bayesian inference in the coroutine-based PPL, and prove
that guide types are certificates of absolute continuity (ğ5.1).
We then sketch how guide types ensure key soundness condi-
tions for multiple Bayesian-inference algorithms (ğ5.2). The
technical report [55] includes the details (e.g., formalizations
and proofs) of this section.

5.1 Verification of Absolute Continuity

We use the following notions from measure theory: 𝜎-
algebras, measurable spaces, measurable functions, measures,
and Lebesgue integration.

Semantic domains. For each scalar type 𝜏 , we equip it with
a standard Borel space J𝜏K on the inhabitants of 𝜏 , i.e., J𝜏K is
a measurable space isomorphic to a countable set or the real
line. We then equip each type 𝜏 with a stock measure 𝜆J𝜏K:
if J𝜏K is a countable set, we define 𝜆J𝜏K to be the counting
measure; otherwise, J𝜏K is a subset of the real line, so we
define 𝜆J𝜏K to be the Lebesgue measure.

Because guidance traces are finite sequences of messages
that contain values of scalar types, we can define J𝐴K as a
standard Borel space on guidance traces that satisfy protocol
𝐴. We then construct the stock measure 𝜆J𝐴K for𝐴 by decom-
posing 𝐴 to products and/or sums of scalar types, and then
combining the stock measures for scalar types via product
and/or coproduct measures.

Denotation of commands. For a well-typed closed com-
mand𝑚, i.e., · | (a : 𝐴); (b : 𝐵) ⊢Σ 𝑚 .∼. 𝜏 | (a : 111); (b : 111), we
define the density function of𝑚 as

P𝑚 (𝜎𝑎, 𝜎𝑏)
def
=

{

𝑤 if ∅ | (a : 𝜎𝑎); (b : 𝜎𝑏) ⊢𝑚 ⇓𝑤 𝑣

0 otherwise
.

We can prove that P𝑚 is a measurable function from J𝐴K ⊗
J𝐵KÐthe product measurable space of J𝐴K and J𝐵KÐto non-
negative real numbers. Thus, we construct a measure deno-
tation J𝑚K for𝑚, by integrating P𝑚 with respect to the stock
measure on the product space J𝐴K ⊗ J𝐵K, i.e.,

J𝑚K(𝑆𝑎,𝑏)
def
=

∫

𝑆𝑎,𝑏

P𝑚 (𝜎𝑎, 𝜎𝑏)𝜆J𝐴K⊗J𝐵K(𝑑 (𝜎𝑎, 𝜎𝑏)),

where 𝑆𝑎,𝑏 is a measurable set in J𝐴K ⊗ J𝐵K.

Bayesian inference. Let us fix a well-typed model program
𝑚m that consumes latent random variables on a channel
latent and provides observations on a channel obs, i.e.,

· | (latent : 𝐴); (obs : 𝐵) ⊢Σ 𝑚m
.∼. 𝜏m | (latent : 111); (obs : 111).

Usually, the program 𝑚m does not receive any branch se-
lections, i.e., 𝐴 is �-free and 𝐵 is N-free. Given a concrete
observation 𝜎𝑜 : 𝐵 such that

∫

P𝑚m (𝜎ℓ , 𝜎𝑜)𝜆J𝐴K(𝑑𝜎ℓ) > 0,

797

Sound Probabilistic Inference via Guide Types PLDI ’21, June 20ś25, 2021, Virtual, Canada

Bayesian inference is the problem of approximating the pos-
terior J𝑚mK𝜎𝑜 , a measure conditioned with respect to 𝜎𝑜 , de-
fined by

J𝑚mK𝜎𝑜 (𝑆ℓ)
def
=

∫

𝑆ℓ
P𝑚m (𝜎ℓ , 𝜎𝑜)𝜆J𝐴K(𝑑𝜎ℓ)

∫

P𝑚m (𝜎ℓ , 𝜎𝑜)𝜆J𝐴K(𝑑𝜎ℓ)
, (5)

where 𝑆ℓ is a measurable set in J𝐴K, i.e., a set of guid-
ance traces of type 𝐴. Note that if we fix the observation
𝜎𝑜 , then the denominator of eq. (5) is a constant indepen-
dent of 𝑆ℓ . Thus, it is sufficient for an inference algorithm
to ignore the denominator and approximate the measure
𝑆ℓ ↦→

∫

𝑆ℓ
P𝑚m (𝜎ℓ , 𝜎𝑜)𝜆J𝐴K(𝑑𝜎ℓ).

Guide programs. Bayesian-inference algorithms usually
require some guide programs, such as proposals for impor-
tance sampling and approximating families for variational
inference. These guide programs specify measures on latent
random variables; in our system, we implement a guide pro-
gram𝑚g as a coroutine that works with the model program
𝑚m and provides the latent channel with guide type 𝐴 that
𝑚m consumes, i.e.,

· | ∅; (latent : 𝐴) ⊢Σ 𝑚g
.∼. 𝜏g | ∅; (latent : 111),

· | (latent : 𝐴); (obs : 𝐵) ⊢Σ 𝑚m
.∼. 𝜏m | (latent : 111); (obs : 111).

The guide and model have the same guide type𝐴 on channel
latent. Because the guide provides the channel and the model
consumes the channel, the two programs interpret the guide
type 𝐴 dually; thus, their communication is compatible.

The coroutine-based paradigm folds the model and guide
programs into a single entity; thus, during the inference, both
the model and guide coroutines execute. To model possible
combinations of traces for a model-guide system, we intro-
duce a reduction relation 𝑉 | (a : 𝜎𝑎); (b : 𝜎𝑏) ⊢red 𝑚 ⇓ 𝑣 ,
where 𝑉 is an environment,𝑚 is a command, 𝜎𝑎 and 𝜎𝑏 are
guidance traces on channel 𝑎 and channel𝑏, respectively, and
𝑣 is the reduction result. The reduction relation is essentially
the same as the evaluation relation for the operational seman-
tics, except that reduction does not account for probabilities.
Below are two example rules.

(RM:Sample:Send:R)

𝑉 ⊢ 𝑒 ⇓ 𝑑 𝑣 ∈ 𝑑.support
𝑉 | (a : []); (b : [valP (𝑣)]) ⊢red samplesd{b}(𝑒) ⇓ 𝑣

(RM:Cond:Send:L)

𝑉 ⊢ 𝑒 ⇓ 𝑣𝑒 𝑖 = ite(𝑣𝑒 , 1, 2) 𝑉 | (a : 𝜎𝑎); (b : 𝜎𝑏) ⊢red 𝑚𝑖 ⇓ 𝑣
𝑉 | (a : [dirC (𝑣𝑒)] ++ 𝜎𝑎); (b : 𝜎𝑏) ⊢red condsd{a}(𝑒;𝑚1;𝑚2) ⇓ 𝑣
With the reduction relation, we say that a combination of
traces (𝜎ℓ , 𝜎𝑜) is possible for the model program𝑚m and the
guide program𝑚g, if ∅ | (latent : 𝜎ℓ); (obs : 𝜎𝑜) ⊢red 𝑚m ⇓ 𝑣m
and ∅ | ∅; (latent : 𝜎ℓ) ⊢red 𝑚g ⇓ 𝑣g for some values 𝑣m and
𝑣g. We prove a lemma that connects the reduction relation
with command denotations.

Lemma 5.1. Suppose that 𝐴 is �-free, 𝐵 is N-free, and

· | ∅; (latent : 𝐴) ⊢Σ 𝑚g
.∼. 𝜏g | ∅; (latent : 111),

· | (latent : 𝐴); (obs : 𝐵) ⊢Σ 𝑚m
.∼. 𝜏m | (latent : 111); (obs : 111).

Then a combination of traces (𝜎ℓ , 𝜎𝑜) is possible for the model

𝑚m and the guide𝑚g if and only if P𝑚m (𝜎ℓ , 𝜎𝑜) ≠ 0.

We can now define a denotation for the guide 𝑚g, ac-
companied by the model𝑚m and conditioned on a concrete
observation 𝜎𝑜 : 𝐵, as a measure defined on possible traces:

J𝑚gK
𝑚m
𝜎𝑜
(𝑆ℓ)

def
=

∫

𝑆ℓ

[P𝑚m (𝜎ℓ , 𝜎𝑜) ≠ 0] · P𝑚g (𝜎ℓ)𝜆J𝐴K(𝑑𝜎ℓ),

where 𝑆ℓ is a measurable set in J𝐴K.

Absolute continuity. A measure 𝜇 is said to be absolutely
continuous with respect to a measure 𝜈 , if 𝜇 and 𝜈 are de-
fined on the same measurable space, and 𝜈 (𝑆) ≠ 0 for every
measurable set 𝑆 for which 𝜇 (𝑆) ≠ 0.
We prove that for a model-guide pair, guide types serve

as certificates for absolute continuity.

Theorem 5.2. Suppose that 𝐴 is �-free, 𝐵 is N-free,

· | ∅; (latent : 𝐴) ⊢Σ 𝑚g
.∼. 𝜏g | ∅; (latent : 111),

· | (latent : 𝐴); (obs : 𝐵) ⊢Σ 𝑚m
.∼. 𝜏m | (latent : 111); (obs : 111),

and 𝜎𝑜 : 𝐵 such that
∫

P𝑚m (𝜎ℓ , 𝜎𝑜)𝜆J𝐴K(𝑑𝜎ℓ) > 0. Then the

measure J𝑚mK𝜎𝑜 is absolutely continuous with respect to the

measure J𝑚gK
𝑚m
𝜎𝑜 , and vice versa.

5.2 Soundness of Inference Algorithms

We now describe how guide types can help us reason about
inference algorithms.

Importance sampling (IS). IS approximates the posterior
distribution by drawing latent variables using the guide pro-
gram, and then reweights the samples by their importance.
The operational rule below formulates a single step in the
algorithm: given a model program𝑚m, a guide program𝑚g,
and a concrete observation 𝜎𝑜 , IS performs joint execution
of the two programs to draw a sample 𝜎ℓ with density 𝑤g

and compute 𝑤m

𝑤g
as the importance of 𝜎ℓ .

∅ | ∅; (latent : 𝜎ℓ) ⊢𝑚g ⇓𝑤g _
∅ | (latent : 𝜎ℓ); (obs : 𝜎𝑜) ⊢𝑚m ⇓𝑤m _

𝑚g;𝑚m;𝜎𝑜 ⊢
𝑤g

is ⟨𝜎ℓ , 𝑤m/𝑤g⟩
By Thm. 5.2, if the model and guide programs are well-typed,
then the posterior J𝑚mK𝜎𝑜 is absolutely continuous with
respect to J𝑚gK

𝑚m
𝜎𝑜 ; thus, IS is able to sample any possible

latent variables 𝜎ℓ in the posterior. With the importance
ratios, IS can be seen as generating 𝜎ℓ with density𝑤g · 𝑤m

𝑤g
=

𝑤m. Thus, IS generates a measure proportional to J𝑚mK𝜎𝑜 .

Markov-Chain Monte Carlo (MCMC). MCMC uses a tran-
sition kernel to generate iteratively a new random sample
from an old one. A popular MCMC algorithm is Metropolis-

Hastings (MH), which constructs the transition kernel from
a proposal subroutine. To implement proposal subroutines in
our system, we extend the core calculus such that guidance

798

PLDI ’21, June 20ś25, 2021, Virtual, Canada Di Wang, Jan Hoffmann, and Thomas Reps

traces can be used as first-class data. Then we implement
the proposal subroutine as a procedure 𝑔 whose argument is
a guidance trace on the channel for latent random variables.
The operational rule below formulates a single step in the
MH algorithm; given a proposal procedure 𝑔, a model𝑚m,
an observation 𝜎𝑜 , and the current latent trace 𝜎ℓ , MH first
performs joint execution of call(𝑔;𝜎ℓ) and𝑚m to generate
a new latent trace 𝜎 ′ℓ with density 𝑤fwd, and then uses the
new 𝜎 ′ℓ and the old 𝜎ℓ to calculate a backward density𝑤bwd.

MH then computes an acceptance ratio 𝛼
def
= min(1, 𝑤

′
m ·𝑤bwd

𝑤m ·𝑤fwd
),

and accepts the new sample 𝜎 ′ℓ with probability 𝛼 .

∅ | ∅; (latent : 𝜎 ′ℓ) ⊢ call(𝑔;𝜎ℓ) ⇓
𝑤fwd _

∅ | (latent : 𝜎 ′ℓ); (obs : 𝜎𝑜) ⊢𝑚m ⇓𝑤
′
m _

∅ | ∅; (latent : 𝜎ℓ) ⊢ call(𝑔;𝜎 ′ℓ) ⇓
𝑤bwd _

∅ | (latent : 𝜎ℓ); (obs : 𝜎𝑜) ⊢𝑚m ⇓𝑤m _

𝑔;𝑚m;𝜎𝑜 ⊢mh 𝜎ℓ
𝑤fwd ·𝛼
=======⇒ 𝜎 ′ℓ

Similar to IS, MH requires that the command call(𝑔;𝜎ℓ) be
able to sample any possible latent variables𝜎 ′ℓ in the posterior.
We prove the soundness of MH by a variant of Thm. 5.2,
where the programs do not need to be closed so that they
can reference data in the environment (e.g., the old samples).

Variational inference (VI). VI uses optimization to find a
candidate from an approximating family of guide programs
that minimizes the distance from the posterior distribution
to the guide distribution. We focus on verifying if the dis-
tance is well-defined, whereas VI requires extra conditions
for the optimization problem to be well-formed. Here, we
parameterize the guide𝑚g,𝜃 by a vector 𝜃 ∈ Θ of parameters,
and use KL divergence as the distance, which is defined by

KL(𝜇 ∥ 𝜈) def
=

∫

𝑝𝜇 (𝜎ℓ) (log𝑝𝜇 (𝜎ℓ) − log 𝑝𝜈 (𝜎ℓ))𝜆J𝐴K(𝑑𝜎ℓ),

where 𝜇 and 𝜈 are measures on J𝐴K with densities 𝑝𝜇 and 𝑝𝜈 ,
respectively, and 𝜇 is absolutely continuous with respect to 𝜈 .
The rule below formulates the computation of KL divergence
for a specific 𝜃 , via joint execution of the two programs.

∅ | ∅; (latent : 𝜎ℓ) ⊢𝑚g,𝜃 ⇓𝑤g _
∅ | (latent : 𝜎ℓ); (obs : 𝜎𝑜) ⊢𝑚m ⇓𝑤m _

𝑚g,𝜃 ;𝑚m;𝜎𝑜 ⊢
𝑤g

vi ⟨𝜎ℓ , log𝑤m − log𝑤g⟩
The rule can be seen as defining a map 𝜎ℓ ↦→ 𝑤g ·
(log𝑤m − log𝑤g), which is the integrand of the divergence
KL(J𝑚g,𝜃 K

𝑚m
𝜎𝑜 ∥ J𝑚mK𝜎𝑜). By Thm. 5.2, if the model and guide

programs are well-typed, then J𝑚g,𝜃 K
𝑚m
𝜎𝑜 is absolutely contin-

uous with respect to J𝑚mK𝜎𝑜 ; thus, the KL divergence used
in VI is well-defined.

6 Experimental Evaluation

Implementation. We implemented the coroutine-based PPL
in OCaml. Our implementation consists of about 2,000 LOC;
it contains a parser, a type checker with automatic inference
of guide types, and a prototype compiler from our PPL to
Pyro [7]. Our implementation extends the core calculus with

tensors (i.e., multi-dimensional matrices) and primitive iter-
ation operators for them. The prototype compiler supports
code generation for importance sampling and variational in-
ference. We use the Python package greenlet [57] to support
coroutines in the compiled code.

Evaluation setup. We evaluated our implementation to
answer the following two research questions:
1. How expressive is the coroutine-based PPL, compared to a

state-of-the-art probabilistic programming language that
ensures soundness of programmable inference [37]?

2. How efficient is our implementation, in terms of the time
for type inference, and the performance of Bayesian infer-
ence on the compiled code?

For the first question, we obtained 23 benchmarks from prior
work [37] and collected 6 new benchmarks. The 29 bench-
mark programs consist of (i) example models from Angli-
can [58], Turing [19], and Pyro [7], as well as (ii) PCFG mod-
els, including a Gaussian-process domain-specific language
(DSL) [46] and synthetic models (such as examples shown in
this paper). Compared to prior work [37], a larger subset of
benchmark models are expressible and type-checked in our
PPL. Particularly, our PPL is capable of expressing models
with recursion and general conditional branches, whereas
prior work [37] is not.
For the second question, we ran Bayesian inference on

the compiled code, and compared the performance with non-
coroutine-based, but equivalent, Pyro code. We obtained
guide programs from where we obtained the benchmark
models, and then reimplemented them in our PPL; for exam-
ple, we implemented the encoder component of a variational
autoencoder as the guide program [7]. For those benchmark
models without guides, we first invoked our PPL to type-
check the model program and infer a guide type for the
model, and then implemented a guide program whose type
was the guide type. The compiled model and guide use Pyro’s
primitives (such as pyro.sample) to sample random data
and condition on given data, as well as exchange messages
and switch control with each other using the concurrent-
programming package greenlet. We leveraged Pyro’s infer-
ence engines to carry out importance sampling or variational
inference. Type inference is very fast in practice; our imple-
mentation completed the type-inference phase in several mil-
liseconds on all of the benchmarks. Our experiments showed
that coroutines (implemented via messaging passing) do not
introduce significant overhead in actual Bayesian inference.
The experiments were performed on a machine with an

Intel Core i7 3.6GHz processor and 16GB of RAM under
macOS Catalina 10.15.7.

Results. Tab. 1 gives an overview of selected benchmark
models. Our benchmarks cover a wide range of Bayesian
models, such as linear regression, Gaussian mixtures, hidden
Markov models, Bayesian networks, and variational autoen-
coders. Our benchmarks also include the classic Marsaglia

799

Sound Probabilistic Inference via Guide Types PLDI ’21, June 20ś25, 2021, Virtual, Canada

1 proc Ptrace(𝜆) consume latent provide obs =

2 𝑘 ← call PtraceHelper(𝑒−𝜆 , 0, 1);
3 samplesd{obs}(Normal(𝑘 ; 0.1))
4

5 proc PtraceHelper(𝑙 , 𝑘 , 𝑝) consume latent provide . =

6 𝑢 ← samplerv{latent}(Unif);
7 ifsd{latent} 𝑝 · 𝑢 ≤ 𝑙 then

8 return(𝑘)
9 else

10 call PtraceHelper(𝑙 , 𝑘 + 1, 𝑝 · 𝑢)

Figure 10. An algorithm to generate Poisson-distributed
numbers given by Knuth [34].

Table 1. Selected benchmark descriptions. T? = is type-
checked in our PPL; LOC = #lines of code of the model
in our PPL; TP? = is type-checked by prior work [37].

Program Description T? LOC TP?

lr Bayesian Linear Regression ✓ 16 ✓

gmm Gaussian Mixture Model ✓ 44 ✓

kalman Kalman Smoother ✓ 32 ✓

sprinkler Bayesian Network ✓ 22 ✓

hmm Hidden Markov Model ✓ 31 ✓

branching Random Control Flow ✓ 19 ✗

marsaglia Marsaglia Algorithm ✓ 22 ✗

dp Dirichlet Process ✗ N/A ✗

ptrace Poisson Trace ✓ 11 ✗

aircraft Aircraft Detection ✓ 32 ✓

weight Unreliable Weigh ✓ 8 ✓

vae Variational Autoencoder ✓ 26 ✓

ex-1 Fig. 5 ✓ 13 ✗

ex-2 Fig. 6 ✓ 21 ✗

gp-dsl Gaussian Process DSL ✓ 58 ✗

algorithm (which generates a normal distribution from a
uniform distribution), a Poisson-trace algorithm (shown in
Fig. 10, which generates a Poisson distribution from a uni-
form distribution), and a Gaussian-process DSL (which uses a
PCFG to generate the kernel function of a Gaussian process).

As shown in Tab. 1, our coroutine-based PPL is capable of
expressing most of the benchmarks, except those involving
stochastic memoization [23], such as the program dp. The
programs branching, marsaglia, ptrace, and ex-1 have non-
trivial branching, and the programs marsaglia, ptrace, ex-2,
and gp-dsl define recursive models; our implementation suc-
cessfully inferred guide types for these programs, whereas
prior work [37] could not express them. Our implementation
derived guide types for 25 of the 29 benchmarks, whereas
prior work was able to express only 18 of them.
For all the benchmarks, we assume that each guide pro-

gram samples random variables in the same order as its
corresponding model program does. However, this assump-
tion can sometimes be too restrictive: it has been shown
that the ability to allow the model and the guide to sample
random variables in different orders is desirable for inference

Table 2. Selected performance statistics. BI = Bayesian-
inference algorithm (IS or VI); CG (ms) = time for type in-
ference and code generation in milliseconds; GLOC = #lines
of code in compiled code (model + guide); GI (s) = time for
Bayesian inference on compiled code in seconds; HLOC =
#lines of code in handwritten code (model + guide); HI (s) =
time for Bayesian inference on handwritten code in seconds.

Program BI CG (ms) GLOC GI (s) HLOC HI (s)

ex-1 IS 0.75 57 5.44 16 5.27
branching IS 1.74 58 8.49 16 7.48
gmm IS 8.03 185 64.13 38 56.00
weight VI 0.66 35 2.76 7 2.66
vae VI 10.36 72 34.96 26 32.69

amortization methods [56]. Prior work [37] allows different
sampling orders in the model and the guide, whereas our
system cannot handle such scenarios.
Tab. 2 presents performance statistics of selected bench-

mark programs. We evaluated our PPL’s performance under
two criteria: (i) the time for type inference and code gener-
ation, and (ii) the time for Bayesian inference compared to
handwritten inference code under the same set of hyperpa-
rameters (e.g., iteration rounds, optimization algorithms, and
initial values of parameters). Our experiments showed that
our implementation usually completes type inference and
code generation in several milliseconds, and the compiled
code, although using coroutines, has similar performance to
handwritten inference code.

7 Related Work

Sound Bayesian inference. Most closely related to our
work are techniques for reasoning about soundness of trace-
based programmable inference. Lee et al. [36] developed a
static analysis of stochastic variational inference with guide
programs, which describe custom approximating families
in Pyro. Their analysis supports nontrivial features of Pyro,
such as tensor manipulation and plates, i.e., vectors of condi-
tionally independent samples. Their approach aims at prov-
ing that the model and guide programs have the same sup-
port and satisfy differentiability-related conditions. Their
static analysis does not handle the case when a conditional
statement determines the set of random samples. Lew et al.
[37] proposed trace types as precise signatures for sampling
traces of probabilistic programs, and then used the type
system to prove absolute continuity in multiple kinds of
inference algorithms. Trace types can be seen as a type-and-
effect system, where a trace type records the precise set of
samples drawn by a single program. Trace types support
higher-order functions, stochastic branches that can influ-
ence the set of random samples, as well as three forms of
loops, including stochastic while-loops with an unbounded
number of iterations, but not general recursion. Because the
value of a conditional predicate cannot be determined in

800

PLDI ’21, June 20ś25, 2021, Virtual, Canada Di Wang, Jan Hoffmann, and Thomas Reps

general at static-analysis time, trace types do not support
general conditional statements that can influence the set of
random samples. Both Lee et al. [36]’s and Lew et al. [37]’s
approach allow the model and the guide to sample random
variables in different orders. In this paper, we propose a new
PPL that guarantees absolute continuity between a model-
guide pair, and features general programming constructs,
including recursion and branching. A key innovation of our
work is the coroutine-based paradigm of writing inference
code; this paradigm makes the relational reasoning of the
support-match property explicit, and in particular enables
precise analysis of complex control flow. However, compared
to prior work, our system only supports scenarios where the
model and the guide sample random variables in the same
order.

There has been a line of work on validating Monte-Carlo
inference algorithms. Ścibior et al. [49] developed a semantic
framework to verify the soundness of Monte-Carlo inference
algorithms with generic proposal distributions. Atkinson
et al. [4] presented a type system for verifying hand-coded
Monte-Carlo algorithms that explicitly manipulate densities,
rather than use proposal distributions. For MCMC methods,
Borgström et al. [9] and Hur et al. [32] developed provably
correct MH algorithms. Castellan and Paquet [13] proposed
an intensional semantics, which captures execution traces of
programs, to validate an incremental MH algorithm. Several
systems [4, 8, 31, 37] studied sound combinators for kernels
used by MCMC. In contrast to the aforementioned work,
our PPL is based on trace-based programmable inference. It
would be interesting to develop programmable versions of
those sound inference algorithms in our PPL.

Narayanan et al. [44] and Zinkov and Shan [59] validated
the soundness of program transformations in Hakaru, which
contains a programmable MH algorithm. The development
of Hakaru is not centered around sample traces, and it uses
symbolic disintegration [14, 50] to calculate the marginal
densities for computing the acceptance ratio in an MH step.
In this paper, we focus on a trace-based scheme for pro-
grammable inference. Establishing the relationship among
different schemes of programmable inference is an interest-
ing future research direction.

Session types. Honda et al. [28, 29] introduced session types
to prescribe binary communication protocols for message-
passing processes. Session types can be interpreted either
classically [54], or intuitionistically [10, 11]. To enable non-
binary communication, researchers proposed multiparty ses-
sion types [15, 30, 47]. The tail-recursive structure of stan-
dard session types imposes communication protocols that
can be described by a regular language. Recently, several
systems have been developed to go beyond tail-recursive
protocols, such as context-free [51], label-dependent [52],
and nested [17] session types.

In our development of guide types, we took inspiration
from the structuring principle of session types. Compared
to session types, guide types have different semantics (i.e.,
sending and receiving random samples drawn from prob-
ability distributions), have simpler forms (i.e., no process
spawning or higher-order channels), and enjoy an efficient
type-inference algorithm, which can also analyze non-tail-
recursive communication protocols. Developing a truly con-
current probabilistic programming system, and concurrent
Bayesian inference algorithms with general session types,
would be interesting future work.

8 Conclusion

We have presented a new probabilistic programming lan-
guage that supports programmable Bayesian inference, and
guarantees model-guide absolute continuity, thereby ensur-
ing key soundness properties of multiple kinds of inference
algorithms. Our language implements the model and guide
programs as coroutines, and we develop guide types to pre-
scribe the communication protocols between coroutines. We
have proved that well-typed model and guide coroutines ex-
ecute safely, and they are guaranteed to enjoy absolute con-
tinuity. We have also developed an efficient type-inference
algorithm that reconstructs guide types directly from the
code. Finally, we have implemented our language with a pro-
totype compiler to Pyro, and evaluated our implementation
on a suite of diverse probabilistic models.

Acknowledgments

This article is based on research supported, in part, by a gift
from Rajiv and Ritu Batra; by ONR under grants N00014-
17-1-2889 and N00014-19-1-2318; by DARPA under AA con-
tract FA8750-18-C0092; and by the NSF under SaTC award
1801369, SHF awards 1812876 and 2007784, and CAREER
award 1845514. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of
the authors, and do not necessarily reflect the views of the
sponsoring agencies.

References
[1] Jessica Ai, Nimar S. Arora, Ning Dong, Beliz Gokkaya, Thomas Jiang,

Anitha Kubendran, Arun Kumar, Michael Tingley, and Narjes Torabi.
2019. HackPPL: A Universal Probabilistic Programming Language. In
Int. Workshop on Machine Learning and Prog. Lang. (MAPL’19). https:

//doi.org/10.1145/3315508.3329974

[2] Konrad Anton and Peter Thiemann. 2010. Towards Deriving Type
Systems and Implementations for Coroutines. In Asian Symp. on Prog.

Lang. and Systems (APLAS’10). https://doi.org/10.1007/978-3-642-

17164-2_6

[3] Konrad Anton and Peter Thiemann. 2010. Typing Coroutines. In Trends
in Functional Programming (TFP’10). https://doi.org/10.1007/978-3-

642-22941-1_2

[4] Eric Atkinson, Cambridge Yang, and Michael Carbin. 2018. Verifying
Handcoded Probabilistic Inference Procedures. https://arxiv.org/abs/

1805.01863

801

Sound Probabilistic Inference via Guide Types PLDI ’21, June 20ś25, 2021, Virtual, Canada

[5] Sooraj Bhat, Ashish Agarwal, Richard Vuduc, and Alexander Gray.
2012. A Type Theory for Probability Density Functions. In Princ. of

Prog. Lang. (POPL’12). https://doi.org/10.1145/2103656.2103721

[6] Sooraj Bhat, Johannes Borgström, Andrew D. Gordon, and Claudio
Russo. 2013. Deriving Probability Density Functions from Probabilistic
Functional Programs. In Tools and Algs. for the Construct. and Anal. of

Syst. (TACAS’13). https://doi.org/10.1007/978-3-642-36742-7_35

[7] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer,
Neeraj Pradhan, Theofanis Karaletsos, Rishabh Singh, Paul Szerlip,
Paul Horsfall, and Noah D. Goodman. 2018. Pyro: Deep Universal
Probabilistic Programming. J. Machine Learning Research 20, 1 (January
2018). https://dl.acm.org/doi/10.5555/3322706.3322734

[8] Keith A. Bonawitz. 2008. Composable Probabilistic Inference with Blaise.
Ph.D. Dissertation. Massachusetts Institute of Technology.

[9] Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin
Szymczak. 2016. A Lambda-Calculus Foundation for Universal
Probabilistic Programming. In Int. Conf. on Functional Programming

(ICFP’16). https://doi.org/10.1145/2951913.2951942

[10] Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic
Linear Propositions. In Int. Conf. on Concurrency Theory (CONCUR’10).
https://doi.org/10.1007/978-3-642-15375-4_16

[11] Luís Caires, Frank Pfenning, and Bernardo Toninho. 2016. Linear Logic
Propositions as Session Types. Math. Struct. Comp. Sci. 26, 3 (March
2016). https://doi.org/10.1017/S0960129514000218

[12] Bob Carpenter, AndrewGelman, MatthewD. Hoffman, Daniel Lee, Ben
Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li,
and Allen Riddell. 2017. Stan: A Probabilistic Programming Language.
J. Statistical Softw. 76, 1 (2017). https://doi.org/10.18637/jss.v076.i01

[13] Simon Castellan and Hugo Paquet. 2019. Probabilistic Programming In-
ference via Intensional Semantics. In European Symp. on Programming

(ESOP’19). https://doi.org/10.1007/978-3-030-17184-1_12

[14] J. T. Chang andD. Pollard. 1997. Conditioning as disintegration. Nether-
lands Society for Statistics and Operations Research 51, 3 (November
1997). https://doi.org/10.1111/1467-9574.00056

[15] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and
Nobuko Yoshida. 2015. A Gentle Introduction to Multiparty Asynchro-
nous Session Types. In Formal Methods for Eternal Networked Software

Systems (SFM’15). https://doi.org/10.1007/978-3-319-18941-3_4

[16] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and
Vikash K. Mansinghka. 2019. Gen: A General-Purpose Probabilistic
Programming System with Programmable Inference. In Prog. Lang.

Design and Impl. (PLDI’19). https://doi.org/10.1145/3314221.3314642

[17] Ankush Das, Henry DeYoung, Andreia Mordido, and Frank Pfenning.
2020. Nested Session Types. https://arxiv.org/abs/2010.06482

[18] Adam Foster, Martin Jankowiak, Eli Bingham, Paul Horsfall, Yee Whye
Teh, Tom Rainforth, and Noah D. Goodman. 2019. Variational Bayesian
Optimal Experimental Design: Efficient Automation of Adaptive Ex-
periments. In Neural Info. Processing Syst. (NIPS’19). https://arxiv.org/

abs/1903.05480

[19] Rong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: A Language
for Flexible Probabilistic Inference. In Artificial Intelligence and Statis-

tics (AISTATS’18).
[20] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki

Vehtari, and Donald B. Rubin. 2013. Bayesian Data Analysis. Chapman
and Hall/CRC. https://doi.org/10.1201/b16018

[21] Zoubin Ghahramani. 2015. Probabilistic machine learning and arti-
ficial intelligence. Nature 521 (May 2015). https://doi.org/10.1038/

nature14541

[22] W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. 1994. A Language and
Program for Complex Bayesian Modelling. J. Royal Statistical Society
43, 1 (January 1994). https://doi.org/10.2307/2348941

[23] Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith A.
Bonawitz, and Joshua B. Tenenbaum. 2008. Church: A language for
generative models. In Uncertainty in Artificial Intelligence (UAI’08).

https://dl.acm.org/doi/10.5555/3023476.3023503

[24] Noah D. Goodman and Andreas Stuhlmüller. 2014. The Design and
Implementation of Probabilistic Programming Languages. Available
on http://dippl.org.

[25] Thomas L. Griffiths, Charles Kemp, and Joshua B. Tenenbaum. 2008.
Bayesian Models of Cognition. In The Cambridge Handbook of Com-

putational Psychology. Cambridge University Press. https://doi.org/10.

1017/CBO9780511816772.006

[26] Robert Harper. 2016. Practical Foundations for Programming Languages.
Cambridge University Press. https://dl.acm.org/doi/book/10.5555/

3002812

[27] C. A. R. Hoare. 1978. Communicating Sequential Processes. Commun.

ACM 21, 8 (August 1978). https://doi.org/10.1145/359576.359585

[28] Kohei Honda. 1993. Types for Dyadic Interaction. In Int. Conf. on

Concurrency Theory (CONCUR’93). https://doi.org/10.1007/3-540-

57208-2_35

[29] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language
Primitives and Type Discipline for Structured Communication-Based
Programming. In European Symp. on Programming (ESOP’98). https:

//doi.org/10.1007/BFb0053567

[30] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty
Asynchronous Session Types. In Princ. of Prog. Lang. (POPL’08). https:

//doi.org/10.1145/1328438.1328472

[31] Daniel Huang, Jean-Baptiste Tristan, and GregMorrisett. 2017. Compil-
ing Markov Chain Monte Carlo Algorithms for Probabilistic Modeling.
In Prog. Lang. Design and Impl. (PLDI’17). https://doi.org/10.1145/

3062341.3062375

[32] Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, and Selva Samuel.
2015. A Provably Correct Sampler for Probabilistic Programs. In Leibniz
International Proceedings in Informatics (LIPIcs’15). https://doi.org/10.

4230/LIPIcs.FSTTCS.2015.475

[33] F. Jelinek, J. D. Lafferty, and R. L. Mercer. 1992. Basic Methods of
Probabilistic Context Free Grammars. In Speech Recognition and Un-

derstanding. https://doi.org/10.1007/978-3-642-76626-8_35

[34] Donald E. Knuth. 1997. The Art of Computer Programming, Volume 2

(3rd Ed.): Seminumerical Algorithms. Addison-Wesley. https://dl.acm.

org/doi/book/10.5555/270146

[35] Dexter Kozen. 1981. Semantics of Probabilistic Programs. J. Comput.

Syst. Sci. 22, 3 (June 1981). https://doi.org/10.1016/0022-0000(81)90036-
2

[36] Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. 2019.
Towards Verified Stochastic Variational Inference for Probabilistic
Programs. Proc. ACM Program. Lang. 4, POPL (December 2019). https:

//doi.org/10.1145/3371084

[37] Alexander K. Lew, Marco F. Cusumano-Towner, Benjamin Sherman,
Michael Carbin, and Vikash K. Mansinghka. 2019. Trace Types and
Denotational Semantics for Sound Programmable Inference in Prob-
abilistic Languages. Proc. ACM Program. Lang. 4, POPL (December
2019). https://doi.org/10.1145/3371087

[38] Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey
Radul, Yutian Chen, and Martin C. Rinard. 2018. Probabilistic Pro-
gramming with Programmable Inference. In Prog. Lang. Design and

Impl. (PLDI’18). https://doi.org/10.1145/3296979.3192409

[39] Robin Milner. 1989. Communication and Concurrency. Prentice-Hall,
Inc. https://dl.acm.org/doi/book/10.5555/534666

[40] Robin Milner, Joachim Parrow, and David Walker. 1992. A Calculus of
Mobile Processes, I. Information and Computation 100, 1 (September
1992). https://doi.org/10.1016/0890-5401(92)90008-4

[41] Robin Milner, Joachim Parrow, and David Walker. 1992. A Calculus of
Mobile Processes, II. Information and Computation 100, 1 (September
1992). https://doi.org/10.1016/0890-5401(92)90009-5

[42] Eugenio Moggi. 1989. Computational lambda-calculus and monads.
In Logic in Computer Science (LICS’89). https://doi.org/10.1109/LICS.

1989.39155

802

PLDI ’21, June 20ś25, 2021, Virtual, Canada Di Wang, Jan Hoffmann, and Thomas Reps

[43] Lawrence M. Murray. 2015. Bayesian State-Space Modelling on High-
Performance Hardware Using LibBi. J. Statistical Softw. 67, 10 (2015).
https://doi.org/10.18637/jss.v067.i10

[44] Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh
Shan, and Robert Zinkov. 2016. Probabilistic Inference by Program
Transformation in Hakaru (System Description). In Int. Symp. on Func-

tional and Logic Programming (FLOPS’16). https://doi.org/10.1007/978-

3-319-29604-3_5

[45] Martyn Plummer. 2003. JAGS: A Program for Analysis of Bayesian
Graphical Models using Gibbs Sampling. In Int. Workshop on Dis-

tributed Statistical Comp. (DSC’03).
[46] Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Mar-

tin C. Rinard, and Vikash K. Mansinghka. 2019. Bayesian Synthesis of
Probabilistic Programs for Automatic Data Modeling. Proc. ACM Pro-

gram. Lang. 3, POPL (January 2019). https://doi.org/10.1145/3290350

[47] Alceste Scalas and Nobuko Yoshida. 2019. Less Is More: Multiparty
Session Types Revisited. Proc. ACM Program. Lang. 3, POPL (January
2019). https://doi.org/10.1145/3290343

[48] Adam Ścibior, Zoubin Ghahramani, and Andrew D. Gordon. 2015.
Practical Probabilistic Programming with Monads. In Symp. on Haskell

(Haskell’15). https://doi.org/10.1145/2887747.2804317

[49] Adam Ścibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok
Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss, Chris Heunen, and
Zoubin Ghahramani. 2017. Denotational Validation of Higher-Order
Bayesian Inference. Proc. ACM Program. Lang. 2, POPL (December
2017). https://doi.org/10.1145/3158148

[50] Chung-chieh Shan and Norman Ramsey. 2017. Exact Bayesian Infer-
ence by Symbolic Disintegration. In Princ. of Prog. Lang. (POPL’17).

https://doi.org/10.1145/3009837.3009852

[51] Peter Thiemann and Vasco T. Vasconcelos. 2016. Context-Free Session
Types. In Int. Conf. on Functional Programming (ICFP’16). https://doi.

org/10.1145/2951913.2951926

[52] Peter Thiemann and Vasco T. Vasconcelos. 2019. Label-Dependent
Session Types. Proc. ACM Program. Lang. 4, POPL (December 2019).
https://doi.org/10.1145/3371135

[53] Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo,
Kevin Murphy, and David M. Blei. 2017. Deep Probabilistic Program-
ming. In Int. Conf. on Learning Representations (ICLR’17).

[54] PhilipWadler. 2012. Propositions as Sessions. In Int. Conf. on Functional
Programming (ICFP’12). https://doi.org/10.1145/2364527.2364568

[55] Di Wang, Jan Hoffmann, and Thomas Reps. 2021. Sound Probabilistic
Inference via Guide Types. https://arxiv.org/abs/2104.03598

[56] Stefan Webb, Adam Golinski, Robert Zinkov, N. Siddharth, Tom Rain-
forth, Yee Whye Teh, and FrankWood. 2018. Faithful Inversion of Gen-
erative Models for Effective Amortized Inference. In Neural Info. Pro-

cessing Syst. (NIPS’18). https://dl.acm.org/doi/10.5555/3327144.3327229

[57] Website. 2020. greenlet: Lightweight concurrent programming. Avail-
able on https://greenlet.readthedocs.io.

[58] Frank Wood, Jan Willem van de Meent, and Vikash K. Mansinghka.
2014. A New Approach to Probabilistic Programming Inference. In
Artificial Intelligence and Statistics (AISTATS’14).

[59] Robert Zinkov and Chung-chieh Shan. 2017. Composing Inference
Algorithms as Program Transformations. In Uncertainty in Artificial

Intelligence (UAI’17). https://arxiv.org/abs/1603.01882

803

	Abstract
	1 Introduction
	2 Overview
	2.1 Bayesian Inference
	2.2 Sound Bayesian Inference via Guide Types

	3 A Coroutine-Based PPL
	4 Guide Types
	5 Soundness of Bayesian Inference
	5.1 Verification of Absolute Continuity
	5.2 Soundness of Inference Algorithms

	6 Experimental Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

