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manner similar to the weakest-precondition transformation
of formulas in a non-probabilistic program [28].

One important kind of aggregate information is moments.
In this paper, we show how to obtain central moments (i.e.,
𝔼[(𝑋 −𝔼[𝑋 ])𝑘 ] for any 𝑘 ≥ 2), whereas most previous work
focused on raw moments (i.e., 𝔼[𝑋𝑘 ] for any 𝑘 ≥ 1). Central
moments can provide more information about distributions.
For example, the variance 𝕍 [𝑋 ] (i.e., 𝔼[(𝑋 − 𝔼[𝑋 ])2], 𝑋 ’s
łsecond central momentž) indicates how 𝑋 can deviate from

its mean, the skewness (i.e., 𝔼[ (𝑋−𝔼[𝑋 ])3 ]

(𝕍 [𝑋 ])
3/2 , 𝑋 ’s łthird standard-

ized momentž) indicates how lopsided the distribution of 𝑋

is, and the kurtosis (i.e., 𝔼[ (𝑋−𝔼[𝑋 ])4 ]

(𝕍 [𝑋 ])2
, 𝑋 ’s łfourth standard-

ized momentž) measures the heaviness of the tails of the
distribution of 𝑋 . One application of moments is to answer
queries about tail bounds, e.g., the assertions about proba-
bilities of the form ℙ[𝑋 ≥ 𝑑], via concentration-of-measure

inequalities from probability theory [12]. With central mo-
ments, we find an opportunity to obtain more precise tail
bounds of the form ℙ[𝑋 ≥ 𝑑], and become able to derive
bounds on tail probabilities of the form ℙ[|𝑋 − 𝔼[𝑋 ] | ≥ 𝑑].

Central moments 𝔼[(𝑋 − 𝔼[𝑋 ])𝑘 ] can be seen as polyno-
mials of raw moments 𝔼[𝑋 ], · · · ,𝔼[𝑋𝑘 ], e.g., the variance
𝕍 [𝑋 ] = 𝔼[(𝑋 −𝔼[𝑋 ])2] can be rewritten as 𝔼[𝑋 2] −𝔼

2 [𝑋 ],
where 𝔼𝑘 [𝑋 ] denotes (𝔼[𝑋 ])𝑘 . To derive bounds on central
moments, we need both upper and lower bounds on the raw
moments, because of the presence of subtraction. For exam-
ple, to upper-bound 𝕍 [𝑋 ], a static analyzer needs to have
an upper bound on 𝔼[𝑋 2] and a lower bound on 𝔼

2 [𝑋 ].
In this work, we present and implement the first fully

automatic analysis for deriving symbolic interval bounds
on higher central moments for cost accumulators in prob-
abilistic programs with general recursion and continuous
distributions. One challenge is to support interprocedural
reasoning to reuse analysis results for functions. Our solution
makes use of a łliftingž technique from the natural-language-
processing community. That technique derives an algebra
for second moments from an algebra for first moments [25].
We generalize the technique to develop moment semirings,
and use them to derive a novel frame rule to handle function
calls with moment-polymorphic recursion (see ğ2.2).
Recent work has successfully automated inference of up-

per [29] or lower bounds [41] on the expected cost of prob-
abilistic programs. Kura et al. [24] developed a system to
derive upper bounds on higher rawmoments of program run-
times. However, even in combination, existing approaches
cannot solve tasks such as deriving a lower bound on the
second rawmoment of runtimes, or deriving an upper bound
on the variance of accumulators that count live heap cells.
Fig. 1(a) summarizes the features of related work on mo-
ment inference for probabilistic programs. To the best of our
knowledge, our work is the first moment-analysis tool that
supports all of the listed programming and analysis features.
Fig. 1(b) and (c) compare our work with related work in

feature [7] [29] [24] [41] this work

loop ✓ ✓ ✓ ✓

recursion ✓ ✓

continuous distributions ✓ ✓ ✓ ✓

non-monotone costs ✓ ✓ ✓

higher moments ✓ ✓ ✓

interval bounds ✓ ✓ ✓

(a)

[29, 41] [24] this work

Derived
𝔼[tick] ≤ 2𝑑 + 4

𝔼[tick2] ≤ 𝕍 [tick] ≤

bound 4𝑑2 + 22𝑑 + 28 22𝑑 + 28

Moment type raw raw central

Concentration Markov Markov
Cantelli
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Tail bound
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4
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Figure 1. (a) Comparison in terms of supporting features.
(b) Comparison in terms of moment bounds for the running
example. (c) Comparison in terms of derived tail bounds.

terms of tail-bound analysis on a concrete program (see ğ5).
The bounds are derived for the cost accumulator tick in a
random-walk program that we will present in ğ2. It can be
observed that for 𝑑 ≥ 20, the most precise tail bound for
tick is the one obtained via an upper bound on the variance
𝕍 [tick] (tick’s second central moment).
Our work incorporates ideas known from the literature:

- Using the expected-potential method (or ranking super-
martingales) to derive upper bounds on the expected pro-
gram runtimes or monotone costs [9ś11, 13, 24, 29].

- Using the Optional Stopping Theorem from probability
theory to ensure the soundness of lower-bound inference
for probabilistic programs [1, 17, 35, 41].

- Using linear programming (LP) to efficiently automate
the (expected) potential method for (expected) cost analy-
sis [18, 19, 40].

The contributions of our work are as follows:

• We develop moment semirings to compose the moments
for a cost accumulator from two computations, and to
enable interprocedural reasoning about higher moments.

• We instantiate moment semirings with the symbolic in-
terval domain, use that to develop a derivation system
for interval bounds on higher central moments for cost
accumulators, and automate the derivation via LP solving.
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1 func rdwalk() begin

2 { 2(𝑑 − 𝑥) + 4 }

3 if 𝑥 < 𝑑 then

4 { 2(𝑑 − 𝑥) + 4 }

5 𝑡 ∼ uniform(−1, 2);

6 { 2(𝑑 − 𝑥 − 𝑡) + 5 }

7 𝑥 ≔ 𝑥 + 𝑡 ;

8 { 2(𝑑 − 𝑥) + 5 }

9 call rdwalk;

10 { 1 }

11 tick(1)

12 { 0 }

13 fi

14 end

1 # XID
def
= {𝑥, 𝑑, 𝑡}

2 # FID
def
= {rdwalk}

3 # pre-condition: {𝑑 > 0}

4 func main() begin

5 𝑥 ≔ 0;

6 call rdwalk

7 end

Figure 2. A bounded, biased random walk, implemented
using recursion. The annotations show the derivation of an
upper bound on the expected accumulated cost.

• We prove the soundness of our derivation system for pro-
grams that satisfy the criterion of our recent extension to
the Optional Stopping Theorem, and develop an algorithm
for checking this criterion automatically.

• We implemented our analysis and evaluated it on a broad
suite of benchmarks from the literature. Our experimental
results show that on a variety of examples, our analyzer is
able to use higher central moments to obtain tighter tail
bounds on program runtimes than the system of Kura et al.
[24], which uses only upper bounds on raw moments.

2 Overview

In this section, we demonstrate the expected-potential
method for both first-moment analysis (previous work) and
higher central-moment analysis (this work) (ğ2.1), and dis-
cuss the challenges to supporting interprocedural reasoning
and to ensuring the soundness of our approach (ğ2.2).

Example 2.1. The program in Fig. 2 implements a bounded,
biased random walk. The main function consists of a single
statement łcall rdwalkž that invokes a recursive function.
The variables 𝑥 and 𝑑 represent the current position and the
ending position of the randomwalk, respectively. We assume
that 𝑑 > 0 holds initially. In each step, the program samples
the length of the current move from a uniform distribution
on the interval [−1, 2]. The statement tick(1) adds one to a
cost accumulator that counts the number of steps before the
randomwalk ends. We denote this accumulator by tick in the
rest of this section. The program terminates with probability
one and its expected accumulated cost is bounded by 2𝑑 + 4.

2.1 The Expected-Potential Method for

Higher-Moment Analysis

Our approach to higher-moment analysis is inspired by the
expected-potential method [29], which is also known as rank-
ing super-martingales [9, 10, 24, 41], for expected-cost bound
analysis of probabilistic programs.
The classic potential method of amortized analysis [36]

can be automated to derive symbolic cost bounds for non-
probabilistic programs [18, 19]. The basic idea is to define
a potential function 𝜙 : Σ → ℝ

+ that maps program states
𝜎 ∈ Σ to nonnegative numbers, where we assume each
state 𝜎 contains a cost-accumulator component 𝜎.𝛼 . If a
program executes with initial state 𝜎 to final state 𝜎 ′, then it
holds that 𝜙 (𝜎) ≥ (𝜎 ′.𝛼 − 𝜎.𝛼) + 𝜙 (𝜎 ′), where (𝜎 ′.𝛼 − 𝜎.𝛼)

describes the accumulated cost from 𝜎 to 𝜎 ′. The potential
method also enables compositional reasoning: if a statement
𝑆1 executes from 𝜎 to 𝜎 ′ and a statement 𝑆2 executes from
𝜎 ′ to 𝜎 ′′, then we have 𝜙 (𝜎) ≥ (𝜎 ′.𝛼 − 𝜎.𝛼) + 𝜙 (𝜎 ′) and
𝜙 (𝜎 ′) ≥ (𝜎 ′′.𝛼 −𝜎 ′.𝛼) +𝜙 (𝜎 ′′); therefore, we derive 𝜙 (𝜎) ≥
(𝜎 ′′.𝛼 − 𝜎.𝛼) + 𝜙 (𝜎 ′′) for the sequential composition 𝑆1; 𝑆2.
For non-probabilistic programs, the initial potential provides
an upper bound on the accumulated cost.

This approach has been adapted to reason about expected
costs of probabilistic programs [29, 41]. To derive upper
bounds on the expected accumulated cost of a program 𝑆

with initial state 𝜎 , one needs to take into consideration the
distribution of all possible executions. More precisely, the
potential function should satisfy the following property:

𝜙 (𝜎) ≥ 𝔼𝜎′∼J𝑆K(𝜎) [𝐶 (𝜎, 𝜎
′) + 𝜙 (𝜎 ′)], (1)

where the notation𝔼𝑥∼𝜇 [𝑓 (𝑥)] represents the expected value
of 𝑓 (𝑥), where 𝑥 is drawn from the distribution 𝜇, J𝑆K(𝜎) is
the distribution over final states of executing 𝑆 from 𝜎 , and

𝐶 (𝜎, 𝜎 ′)
def
= 𝜎 ′.𝛼 − 𝜎.𝛼 is the execution cost from 𝜎 to 𝜎 ′.

Example 2.2. Fig. 2 annotates the rdwalk function from
Ex. 2.1 with the derivation of an upper bound on the expected
accumulated cost. The annotations, taken together, define an
expected-potential function 𝜙 : Σ → ℝ

+ where a program
state 𝜎 ∈ Σ consists of a program point and a valuation
for program variables. To justify the upper bound 2(𝑑 −

𝑥) + 4 for the function rdwalk, one has to show that the
potential right before the tick(1) statement should be at
least 1. This property is established by backward reasoning
on the function body:
• For call rdwalk, we apply the łinduction hypothesisž that
the expected cost of the function rdwalk can be upper-
bounded by 2(𝑑 − 𝑥) + 4. Adding the 1 unit of potential
need by the tick statement, we obtain 2(𝑑 − 𝑥) + 5 as the
pre-annotation of the function call.

• For 𝑥 ≔ 𝑥 + 𝑡 , we substitute 𝑥 with 𝑥 + 𝑡 in the post-
annotation of this statement to obtain the pre-annotation.

• For 𝑡 ∼ uniform(−1, 2), because its post-annotation is
2(𝑑 − 𝑥 − 𝑡) + 5, we compute its pre-annotation as

561



PLDI ’21, June 20ś25, 2021, Virtual, Canada Di Wang, Jan Hoffmann, and Thomas Reps

𝔼𝑡∼uniform(−1,2) [2(𝑑 − 𝑥 − 𝑡) + 5]

= 2(𝑑 − 𝑥) + 5 − 2 · 𝔼𝑡∼uniform(−1,2) [𝑡]

= 2(𝑑 − 𝑥) + 5 − 2 · 1/2 = 2(𝑑 − 𝑥) + 4,

which is exactly the upper bound we want to justify.

Our approach. In this paper, we focus on derivation of
higher central moments. Observing that a central moment
𝔼[(𝑋 −𝔼[𝑋 ])𝑘 ] can be rewritten as a polynomial of raw mo-
ments 𝔼[𝑋 ], · · · ,𝔼[𝑋𝑘 ], we reduce the problem of bounding
central moments to reasoning about upper and lower bounds
on raw moments. For example, the variance can be written
as 𝕍 [𝑋 ] = 𝔼[𝑋 2] −𝔼

2 [𝑋 ], so it suffices to analyze the upper
bound of the second moment 𝔼[𝑋 2] and the lower bound
on the square of the first moment 𝔼2 [𝑋 ]. For higher cen-
tral moments, this approach requires both upper and lower
bounds on higher raw moments. For example, consider the
fourth central moment of a nonnegative random variable 𝑋 :
𝔼[(𝑋 −𝔼[𝑋 ])4] = 𝔼[𝑋 4] −4𝔼[𝑋 3]𝔼[𝑋 ] +6𝔼[𝑋 2]𝔼2 [𝑋 ] −3𝔼4 [𝑋 ] .

Deriving an upper bound on the fourth central moment re-
quires lower bounds on the first (𝔼[𝑋 ]) and third (𝔼[𝑋 3])
raw moments.
We now sketch the development of moment semirings.

We first consider only the upper bounds on higher mo-
ments of nonnegative costs. To do so, we extend the range
of the expected-potential function 𝜙 to real-valued vectors
(ℝ+)𝑚+1, where𝑚 ∈ ℕ is the degree of the target moment.
We update the potential inequality (1) as follows:

𝜙 (𝜎) ≥ 𝔼𝜎′∼J𝑆K(𝜎) [
−−−−−−−−−−−−−−−→
⟨𝐶 (𝜎, 𝜎 ′)𝑘⟩0≤𝑘≤𝑚 ⊗ 𝜙 (𝜎 ′)], (2)

where
−−−−−−−−→
⟨𝑣𝑘⟩0≤𝑘≤𝑚 denotes an (𝑚 + 1)-dimensional vector,

the order ≤ on vectors is defined pointwise, and ⊗ is some
composition operator. Recall that J𝑆K(𝜎) denotes the distri-
bution over final states of executing 𝑆 from 𝜎 , and 𝐶 (𝜎, 𝜎 ′)

describes the cost for the execution from 𝜎 to 𝜎 ′. Intuitively,

for 𝜙 (𝜎) =
−−−−−−−−−−−−→
⟨𝜙 (𝜎)𝑘⟩0≤𝑘≤𝑚 and each 𝑘 , the component 𝜙 (𝜎)𝑘

is an upper bound on the 𝑘-th moment of the cost for the
computation starting from 𝜎 . The 0-th moment is the ter-
mination probability of the computation, and we assume it
is always one for now. We cannot simply define ⊗ as point-
wise addition because, for example, (𝑎 + 𝑏)2 ≠ 𝑎2 + 𝑏2 in
general. If we think of 𝑏 as the cost for some probabilis-
tic computation, and we prepend a constant cost 𝑎 to the
computation, then by linearity of expectations, we have
𝔼[(𝑎 + 𝑏)2] = 𝔼[𝑎2 + 2𝑎𝑏 + 𝑏2] = 𝑎2 + 2 · 𝑎 · 𝔼[𝑏] + 𝔼[𝑏2],
i.e., reasoning about the second moment requires us to keep
track of the first moment. Similarly, we should have

𝜙 (𝜎)2 ≥ 𝔼𝜎′∼J𝑆K(𝜎) [𝐶 (𝜎, 𝜎
′)2 + 2 ·𝐶 (𝜎, 𝜎 ′) ·𝜙 (𝜎 ′)1 +𝜙 (𝜎

′)2],

for the second-moment component, where𝜙 (𝜎 ′)1 and𝜙 (𝜎
′)2

denote 𝔼[𝑏] and 𝔼[𝑏2], respectively. Therefore, the compo-
sition operator ⊗ for second-moment analysis (i.e.,𝑚 = 2)
should be defined as

⟨1, 𝑟1, 𝑠1⟩ ⊗ ⟨1, 𝑟2, 𝑠2⟩
def
= ⟨1, 𝑟1 + 𝑟2, 𝑠1 + 2𝑟1𝑟2 + 𝑠2⟩. (3)

1 func rdwalk() begin

2 { ⟨1, 2(𝑑 − 𝑥) + 4, 4(𝑑 − 𝑥)2 + 22(𝑑 − 𝑥) + 28⟩ }

3 if 𝑥 < 𝑑 then

4 { ⟨1, 2(𝑑 − 𝑥) + 4, 4(𝑑 − 𝑥)2 + 22(𝑑 − 𝑥) + 28⟩ }

5 𝑡 ∼ uniform(−1, 2);

6 { ⟨1, 2(𝑑 − 𝑥 − 𝑡) + 5, 4(𝑑 − 𝑥 − 𝑡)2 + 26(𝑑 − 𝑥 − 𝑡) + 37⟩ }

7 𝑥 ≔ 𝑥 + 𝑡 ;

8 { ⟨1, 2(𝑑 − 𝑥) + 5, 4(𝑑 − 𝑥)2 + 26(𝑑 − 𝑥) + 37⟩ }

9 call rdwalk;

10 { ⟨1, 1, 1⟩ }

11 tick(1)

12 { ⟨1, 0, 0⟩ }

13 fi

14 end

Figure 3. Derivation of an upper bound on the first and
second moment of the accumulated cost.

Example 2.3. Fig. 3 annotates the rdwalk function from
Ex. 2.1 with the derivation of an upper bound on both the
first and second moment of the accumulated cost. To justify
the first and second moment of the accumulated cost for the
function rdwalk, we again perform backward reasoning:
• For tick(1), it transforms a post-annotation 𝑎 by
𝜆𝑎.(⟨1, 1, 1⟩ ⊗ 𝑎); thus, the pre-annotation is ⟨1, 1, 1⟩ ⊗

⟨1, 0, 0⟩ = ⟨1, 1, 1⟩.
• For call rdwalk, we apply the łinduction hypothesisž, i.e.,
the upper bound shown on line 2. We use the ⊗ opera-
tor to compose the induction hypothesis with the post-
annotation of this function call:

⟨1, 2(𝑑−𝑥)+4, 4(𝑑−𝑥)2+22(𝑑−𝑥)+28⟩ ⊗ ⟨1, 1, 1⟩

= ⟨1, 2(𝑑−𝑥)+5, (4(𝑑−𝑥)2+22(𝑑−𝑥)+28)+2· (2(𝑑−𝑥)+4)+1⟩

= ⟨1, 2(𝑑−𝑥)+5, 4(𝑑−𝑥)2+26(𝑑−𝑥)+37⟩.

• For 𝑥 ≔ 𝑥 + 𝑡 , we substitute 𝑥 with 𝑥 + 𝑡 in the post-
annotation of this statement to obtain the pre-annotation.

• For 𝑡 ∼ uniform(−1, 2), because the post-annotation in-
volves both 𝑡 and 𝑡2, we compute from the definition of
uniform distributions that

𝔼𝑡∼uniform(−1,2) [𝑡] = 1/2, 𝔼𝑡∼uniform(−1,2) [𝑡
2] = 1.

Then the upper bound on the second moment is derived
as follows:

𝔼𝑡∼uniform(−1,2) [4(𝑑−𝑥−𝑡)
2+26(𝑑−𝑥−𝑡)+37]

= (4(𝑑−𝑥)2+26(𝑑−𝑥)+37)−(8(𝑑−𝑥)+26) ·𝔼𝑡∼uniform(−1,2) [𝑡]

+ 4·𝔼𝑡∼uniform(−1,2) [𝑡
2]

= 4(𝑑−𝑥)2+22(𝑑−𝑥)+28,

which is the same as the desired upper bound on the sec-
ond moment of the accumulated cost for the function
rdwalk. (See Fig. 3, line 2.)

We generalize the composition operator ⊗ to moments
with arbitrarily high degrees, via a family of algebraic struc-
tures, which we name moment semirings (see ğ3.2). These
semirings are algebraic in the sense that they can be instan-
tiated with any partially ordered semiring, not just ℝ+.
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Interval bounds. Moment semirings not only provide a
general method to analyze higher moments, but also enable
reasoning about upper and lower bounds on moments simul-

taneously. The simultaneous treatment is also essential for
analyzing programs with non-monotone costs (see ğ3.3).

We instantiate moment semirings with the standard inter-
val semiring I = {[𝑎, 𝑏] | 𝑎 ≤ 𝑏}. The algebraic approach
allows us to systematically incorporate the interval-valued
bounds, by reinterpreting operations in eq. (3) under I :

⟨[1, 1], [𝑟L1 , 𝑟
U
1 ], [𝑠

L
1 , 𝑠

U
1 ]⟩ ⊗ ⟨[1, 1], [𝑟L2 , 𝑟

U
2 ], [𝑠

L
2 , 𝑠

U
2 ]⟩

def
= ⟨[1, 1], [𝑟L1 , 𝑟

U
1 ] +I [𝑟L2 , 𝑟

U
2 ],

[𝑠L1 , 𝑠
U
2 ] +I 2 · ( [𝑟L1 , 𝑟

U
1 ] ·I [𝑟L2 , 𝑟

U
2 ]) +I [𝑠L2 , 𝑠

U
2 ]⟩

= ⟨[1, 1], [𝑟L1 + 𝑟L2 , 𝑟
U
1 + 𝑟U2 ], [𝑠

L
1 + 2 ·min 𝑆 + 𝑠L2 , 𝑠

U
1 + 2 ·max 𝑆 + 𝑠U2 ]⟩,

where 𝑆
def
= {𝑟L1𝑟

L
2 , 𝑟

L
1𝑟

U
2 , 𝑟

U
1 𝑟

L
2 , 𝑟

U
1 𝑟

U
2 }. We then update the po-

tential inequality eq. (2) as follows:

𝜙 (𝜎) ⊒ 𝔼𝜎′∼J𝑆K(𝜎) [
−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨[𝐶 (𝜎, 𝜎 ′)𝑘 ,𝐶 (𝜎, 𝜎 ′)𝑘 ]⟩0≤𝑘≤𝑚 ⊗ 𝜙 (𝜎 ′)],

where the order ⊑ is defined as pointwise interval inclusion.

Example 2.4. Suppose that the interval bound on the first
moment of the accumulated cost of the rdwalk function from
Ex. 2.1 is [2(𝑑 − 𝑥), 2(𝑑 − 𝑥) + 4]. We can now derive the
upper bound on the variance 𝕍 [tick] ≤ 22𝑑 + 28 shown in
Fig. 1(b) (where we substitute 𝑥 with 0 because the main
function initializes 𝑥 to 0 on line 5 in Fig. 2):

𝕍 [tick] = 𝔼[tick2] − 𝔼
2 [tick]

≤ (upper bnd. on 𝔼[tick2])−(lower bnd. on 𝔼[tick])2

= (4𝑑2 + 22𝑑 + 28) − (2𝑑)2 = 22𝑑 + 28.

In ğ5, we describe how we use moment bounds to derive
the tail bounds shown in Fig. 1(c).

2.2 Two Major Challenges

Interprocedural reasoning. Recall that in the derivation
of Fig. 3, we use the ⊗ operator to compose the upper bounds
on moments for call rdwalk and its post-annotation ⟨1, 1, 1⟩.
However, this approach does not work in general, because
the post-annotation might be symbolic (e.g., ⟨1, 𝑥, 𝑥2⟩) and
the callee might mutate referenced program variables (e.g., 𝑥 ).
One workaround is to derive a pre-annotation for each possi-
ble post-annotation of a recursive function, i.e., the moment
annotations for a recursive function is polymorphic. This
workaround would not be effective for non-tail-recursive
functions: for example, we need to reason about the rdwalk
function in Fig. 3 with infinitely many post-annotations
⟨1, 0, 0⟩, ⟨1, 1, 1⟩, ⟨1, 2, 4⟩, . . . , i.e., ⟨1, 𝑖, 𝑖2⟩ for all 𝑖 ∈ ℤ

+.
Our solution to moment-polymorphic recursion is to intro-

duce a combination operator ⊕ in a way that if 𝜙1 and 𝜙2 are
two expected-potential functions, then

𝜙1 (𝜎)⊕𝜙2 (𝜎) ≥𝔼𝜎′∼J𝑆K(𝜎) [
−−−−−−−−−−−−−−→
⟨𝐶 (𝜎, 𝜎 ′)𝑘⟩0≤𝑘≤𝑚⊗(𝜙1 (𝜎

′)⊕𝜙2 (𝜎
′))] .

We then use the ⊕ operator to derive a frame rule:

{ 𝑄1 } 𝑆 { 𝑄 ′
1 } { 𝑄2 } 𝑆 { 𝑄 ′

2 }

{ 𝑄1 ⊕ 𝑄2 } 𝑆 { 𝑄 ′
1 ⊕ 𝑄

′
2 }

We define ⊕ as pointwise addition, i.e., for second moments,

⟨𝑝1, 𝑟1, 𝑠1⟩ ⊕ ⟨𝑝2, 𝑟2, 𝑠2⟩
def
= ⟨𝑝1 + 𝑝2, 𝑟1 + 𝑟2, 𝑠1 + 𝑠2⟩, (4)

and because the 0-th-moment (i.e., termination-probability)
component is no longer guaranteed to be one, we redefine
⊗ to consider the termination probabilities:

⟨𝑝1, 𝑟1, 𝑠1⟩⊗⟨𝑝2, 𝑟2, 𝑠2⟩
def
= ⟨𝑝1𝑝2, 𝑝2𝑟1+𝑝1𝑟2, 𝑝2𝑠1+2𝑟1𝑟2+𝑝1𝑠2⟩.

(5)

Remark 2.5. As we will show in ğ3.2, the composition oper-

ator ⊗ and combination operator ⊕ form a moment semiring;
consequently, we can use algebraic properties of semirings (e.g.,

distributivity) to aid higher-moment analysis. For example,

a vector ⟨0, 𝑟1, 𝑠1⟩ whose termination-probability component

is zero does not seem to make sense, because moments with

respect to a zero distribution should also be zero. However, by

distributivity, we have
⟨1, 𝑟3, 𝑠3⟩ ⊗ ⟨1, 𝑟1 + 𝑟2, 𝑠1 + 𝑠2⟩

= ⟨1, 𝑟3, 𝑠3⟩ ⊗ (⟨0, 𝑟1, 𝑠1⟩ ⊕ ⟨1, 𝑟2, 𝑠2⟩)

= (⟨1, 𝑟3, 𝑠3⟩ ⊗ ⟨0, 𝑟1, 𝑠1⟩) ⊕ (⟨1, 𝑟3, 𝑠3⟩ ⊕ ⟨1, 𝑟2, 𝑠2⟩).

If we think of ⟨1, 𝑟1 + 𝑟2, 𝑠1 + 𝑠2⟩ as a post-annotation of a

computation whose moments are bounded by ⟨1, 𝑟3, 𝑠3⟩, the
equation above indicates that we can use ⊕ to decompose the
post-annotation into subparts, and then reason about each sub-

part separately. This fact inspires us to develop a decomposition

technique for moment-polymorphic recursion.

Example 2.6. With the ⊕ operator and the frame rule, we
only need to analyze the rdwalk function from Ex. 2.1 with
three post-annotations: ⟨1, 0, 0⟩, ⟨0, 1, 1⟩, and ⟨0, 0, 2⟩, which
form a kind of łelimination sequence.ž We construct this
sequence in an on-demand manner; the first post-annotation
is the identity element ⟨1, 0, 0⟩ of the moment semiring.
For post-annotation ⟨1, 0, 0⟩, as shown in Fig. 3, we need

to know the moment bound for rdwalk with the post-
annotation ⟨1, 1, 1⟩. Instead of reanalyzing rdwalk with the
post-annotation ⟨1, 1, 1⟩, we use the ⊕ operator to compute
the łdifferencež between it and the previous post-annotation
⟨1, 0, 0⟩. Observing that ⟨1, 1, 1⟩ = ⟨1, 0, 0⟩ ⊕ ⟨0, 1, 1⟩, we now
analyze rdwalk with ⟨0, 1, 1⟩ as the post-annotation:

1 call rdwalk; { ⟨0, 1, 3⟩ } # = ⟨1, 1, 1⟩ ⊗ ⟨0, 1, 1⟩

2 tick(1) { ⟨0, 1, 1⟩ }

Again, because ⟨0, 1, 3⟩ = ⟨0, 1, 1⟩ ⊕ ⟨0, 0, 2⟩, we need to fur-
ther analyze rdwalk with ⟨0, 0, 2⟩ as the post-annotation:

1 call rdwalk; { ⟨0, 0, 2⟩ } # = ⟨1, 1, 1⟩ ⊗ ⟨0, 0, 2⟩

2 tick(1) { ⟨0, 0, 2⟩ }

With the post-annotation ⟨0, 0, 2⟩, we can now rea-
son monomorphically without analyzing any new post-
annotation! We can perform a succession of reasoning steps
similar to what we have done in Ex. 2.2 to justify the follow-
ing bounds (łunwindingž the elimination sequence):
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1 func geo() begin { ⟨1, 2𝑥 ⟩ }

2 𝑥 ≔ 𝑥 + 1; { ⟨1, 2𝑥−1⟩ }

3 # expected-potential method for lower bounds:

4 # 2𝑥−1 <
1/2 · (2𝑥 + 1) + 1/2 · 0

5 if prob(1/2) then { ⟨1, 2𝑥 + 1⟩ }

6 tick(1); { ⟨1, 2𝑥 ⟩ }

7 call geo { ⟨1, 0⟩}

8 fi

9 end

Figure 4. A purely probabilistic loop with annotations for a
lower bound on the first moment of the accumulated cost.

• {⟨0, 0, 2⟩} rdwalk {⟨0, 0, 2⟩}: Directly by backward reason-
ing with the post-annotation ⟨0, 0, 2⟩.

• {⟨0, 1, 4(𝑑 − 𝑥) + 9⟩} rdwalk {⟨0, 1, 1⟩}: To analyze the re-
cursive call with post-annotation ⟨0, 1, 3⟩, we use the frame
rule with the post-call-site annotation ⟨0, 0, 2⟩ to derive
⟨0, 1, 4(𝑑 − 𝑥) + 11⟩ as the pre-annotation:
1 { ⟨0, 1, 4(𝑑 − 𝑥) + 11⟩ } # = ⟨0, 1, 4(𝑑 − 𝑥) + 9⟩ ⊕ ⟨0, 0, 2⟩

2 call rdwalk;

3 { ⟨0, 1, 3⟩ } # = ⟨0, 1, 1⟩ ⊕ ⟨0, 0, 2⟩

• {⟨1, 2(𝑑−𝑥)+4, 4(𝑑−𝑥)2+22(𝑑−𝑥)+28⟩} rdwalk {⟨1, 0, 0⟩}:
To analyze the recursive call with post-annotation ⟨1, 1, 1⟩,
we use the frame rule with the post-call-site annotation
⟨0, 1, 1⟩ to derive ⟨1, 2(𝑑 −𝑥) +5, 4(𝑑 −𝑥)2 +26(𝑑 −𝑥) +37⟩
as the pre-annotation:
1 { ⟨1, 2(𝑑−𝑥)+5, 4(𝑑−𝑥)2+26(𝑑−𝑥)+37⟩ }

2 # = ⟨1, 2(𝑑−𝑥)+4, 4(𝑑−𝑥)2+22(𝑑−𝑥)+28⟩ ⊕ ⟨0, 1, 4(𝑑−𝑥)+9⟩

3 call rdwalk;

4 { ⟨1, 1, 1⟩ } # = ⟨1, 0, 0⟩ ⊕ ⟨0, 1, 1⟩

In ğ3.3, we present an automatic inference system for the
expected-potential method that is extended with interval-
valued bounds on highermoments, with support for moment-
polymorphic recursion.

Soundness of the analysis. Unlike the classic potential
method, the expected-potential method is not always sound
when reasoning about the moments for cost accumulators
in probabilistic programs.

Counterexample 2.7. Consider the program in Fig. 4 that
describes a purely probabilistic loop that exits the loop with
probability 1/2 in each iteration. The expected accumulated
cost of the program should be one [17]. However, the annota-
tions in Fig. 4 justify a potential function 2𝑥 as a lower bound
on the expected accumulated cost, no matter what value 𝑥
has at the beginning, which is apparently unsound.

Why does the expected-potential method fail in this case?
The short answer is that dualization only works for some
problems: upper-bounding the sum of nonnegative ticks is
equivalent to lower-bounding the sum of nonpositive ticks;
lower-bounding the sum of nonnegative ticksÐthe issue in
Fig. 4Ðis equivalent to upper-bounding the sum of nonposi-
tive ticks; however, the two kinds of problems are inherently
different [17]. Intuitively, the classic potential method for

𝑆 F skip | tick(𝑐) | 𝑥 ≔ 𝐸 | 𝑥 ∼ 𝐷 | call 𝑓 | while 𝐿 do 𝑆 od

| if prob(𝑝) then 𝑆1 else 𝑆2 fi | if 𝐿 then 𝑆1 else 𝑆2 fi | 𝑆1; 𝑆2

𝐿 F true | not 𝐿 | 𝐿1 and 𝐿2 | 𝐸1 ≤ 𝐸2

𝐸 F 𝑥 | 𝑐 | 𝐸1 + 𝐸2 | 𝐸1 × 𝐸2

𝐷 F uniform(𝑎, 𝑏) | · · ·

Figure 5. Syntax of Appl, where 𝑝 ∈ [0, 1], 𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 < 𝑏,
𝑥 ∈ VID is a variable, and 𝑓 ∈ FID is a function identifier.

bounding the costs of non-probabilistic programs is a par-
tial-correctness method, i.e., derived upper/lower bounds are
sound if the analyzed program terminates [30]. With proba-
bilistic programs, many programs do not terminate definitely,
but only almost surely, i.e., they terminate with probability
one, but have some execution traces that are non-terminating.
The programs in Figs. 2 and 4 are both almost-surely termi-
nating. For the expected-potential method, the potential at a
program state can be seen as an average of potentials needed
for all possible computations that continue from the state.
If the program state can lead to a non-terminating execu-
tion trace, the potential associated with that trace might be
problematic, and as a consequence, the expected-potential
method might fail.

Recent research [1, 17, 35, 41] has employed the Optional
Stopping Theorem (OST) from probability theory to address
this soundness issue. The classic OST provides a collection of
sufficient conditions for reasoning about expected gain upon

termination of stochastic processes, where the expected gain
at any time is invariant. By constructing a stochastic pro-
cess for executions of probabilistic programs and setting the
expected-potential function as the invariant, one can apply
the OST to justify the soundness of the expected-potential
function. In a companion paper [39], we study and propose
an extension to the classic OST with a new sufficient condi-
tion that is suitable for reasoning about higher moments; in
this work, we prove the soundness of our central-moment in-
ference for programs that satisfy this condition, and develop
an algorithm to check this condition automatically (see ğ4).

3 Derivation System for Higher Moments

In this section, we describe the inference system used by
our analysis. We first present a probabilistic programming
language (ğ3.1). We then introduce moment semirings to
compose higher moments for a cost accumulator from two
computations (ğ3.2). We use moment semirings to develop
our derivation system, which is presented as a declarative
program logic (ğ3.3). Finally, we sketch how we reduce the
inference of a derivation to LP solving (ğ3.4).

3.1 A Probabilistic Programming Language

This paper uses an imperative arithmetic probabilistic pro-
gramming language Appl that supports general recursion
and continuous distributions, where program variables are
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real-valued. We use the following notational conventions.

Natural numbers ℕ exclude 0, i.e., ℕ
def
= {1, 2, 3, · · · } ⊆ ℤ

+ def
=

{0, 1, 2, · · · }. The Iverson brackets [·] are defined by [𝜑] = 1

if 𝜑 is true and otherwise [𝜑] = 0. We denote updating an
existing binding of 𝑥 in a finite map 𝑓 to 𝑣 by 𝑓 [𝑥 ↦→ 𝑣]. We
will also use the following standard notions from probability
theory: 𝜎-algebras, measurable spaces, measurable functions,
random variables, probability measures, and expectations.
We include a review of those notions in the technical re-
port [38].
Fig. 5 presents the syntax of Appl, where the metavari-

ables 𝑆 , 𝐿, 𝐸, and 𝐷 stand for statements, conditions, expres-
sions, and distributions, respectively. Each distribution 𝐷 is
associated with a probability measure 𝜇𝐷 ∈ 𝔻(ℝ). We write
𝔻(𝑋 ) for the collection of all probability measures on the
measurable space 𝑋 . For example, uniform(𝑎, 𝑏) describes
a uniform distribution on the interval [𝑎, 𝑏], and its corre-
sponding probability measure is the integration of its density

function 𝜇uniform(𝑎,𝑏) (𝑂)
def
=

∫

𝑂

[𝑎≤𝑥≤𝑏 ]
𝑏−𝑎

𝑑𝑥 . The statement

ł𝑥 ∼ 𝐷ž is a random-sampling assignment, which draws from
the distribution 𝜇𝐷 to obtain a sample value and then assigns
it to 𝑥 . The statement łif prob(𝑝) then 𝑆1 else 𝑆2 fiž is a
probabilistic-branching statement, which executes 𝑆1 with
probability 𝑝 , or 𝑆2 with probability (1 − 𝑝).
The statement łcall 𝑓 ž makes a (possibly recursive) call

to the function with identifier 𝑓 ∈ FID. In this paper, we as-
sume that the functions only manipulate states that consist
of global program variables. The statement tick(𝑐), where
𝑐 ∈ ℝ is a constant, is used to define the cost model. It adds 𝑐
to an anonymous global cost accumulator. Note that our im-
plementation supports local variables, function parameters,
return statements, as well as accumulation of non-constant
costs; the restrictions imposed here are not essential, and are
introduced solely to simplify the presentation.
We use a pair ⟨𝒟, 𝑆main⟩ to represent an Appl program,

where 𝒟 is a finite map from function identifiers to their
bodies and 𝑆main is the body of the main function. We present
an operational semantics for Appl in ğ4.1.

3.2 Moment Semirings

As discussed in ğ2.1, we want to design a composition op-
eration ⊗ and a combination operation ⊕ to compose and
combine higher moments of accumulated costs such that

𝜙 (𝜎) ⊒𝔼𝜎′∼J𝑆K(𝜎)[
−−−−−−−−−−−−−−→
⟨𝐶 (𝜎, 𝜎 ′)𝑘⟩0≤𝑘≤𝑚⊗𝜙 (𝜎 ′)],

𝜙1 (𝜎)⊕𝜙2 (𝜎) ⊒𝔼𝜎′∼J𝑆K(𝜎)[
−−−−−−−−−−−−−−→
⟨𝐶 (𝜎, 𝜎 ′)𝑘⟩0≤𝑘≤𝑚⊗(𝜙1 (𝜎

′)⊕𝜙2 (𝜎
′))],

where the expected-potential functions 𝜙, 𝜙1, 𝜙2 map pro-
gram states to interval-valued vectors, 𝐶 (𝜎, 𝜎 ′) is the cost
for the computation from 𝜎 to 𝜎 ′, and 𝑚 is the degree of
the target moment. In eqs. (4) and (5), we gave a definition
of ⊗ and ⊕ suitable for first and second moments, respec-
tively. In this section, we generalize them to reason about

upper and lower bounds of higher moments. Our approach
is inspired by the work of Li and Eisner [25], which devel-
ops a method to łliftž techniques for first moments to those
for second moments. Instead of restricting the elements of
semirings to be vectors of numbers, we propose algebraic
moment semirings that can also be instantiated with vectors
of intervals, which we need for the interval-bound analysis
that was demonstrated in ğ2.1.

Definition 3.1. The𝑚-th order moment semiring M
(𝑚)

R
=

( |R|𝑚+1, ⊕, ⊗, 0, 1) is parametrized by a partially ordered
semiring R = ( |R|, ≤, +, ·, 0, 1), where
−−−−−−−−−→
⟨𝑢𝑘⟩0≤𝑘≤𝑚⊕

−−−−−−−−→
⟨𝑣𝑘⟩0≤𝑘≤𝑚

def
=
−−−−−−−−−−−−−→
⟨𝑢𝑘 + 𝑣𝑘⟩0≤𝑘≤𝑚, (6)

−−−−−−−−−→
⟨𝑢𝑘⟩0≤𝑘≤𝑚⊗

−−−−−−−−→
⟨𝑣𝑘⟩0≤𝑘≤𝑚

def
=

−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨
∑𝑘

𝑖=0

(𝑘
𝑖

)

×(𝑢𝑖 · 𝑣𝑘−𝑖 )⟩0≤𝑘≤𝑚, (7)
(𝑘
𝑖

)

is the binomial coefficient; the scalar product 𝑛 × 𝑢 is an

abbreviation for
∑𝑛

𝑖=1 𝑢, for 𝑛 ∈ ℤ
+, 𝑢 ∈ R; 0

def
= ⟨0, 0, · · · , 0⟩;

and 1
def
= ⟨1, 0, · · · , 0⟩. We define the partial order ⊑ as the

pointwise extension of the partial order ≤ on R.

Intuitively, the definition of ⊗ in eq. (7) can be seen as
the multiplication of two moment-generating functions for

distributions with moments
−−−−−−−−−→
⟨𝑢𝑘⟩0≤𝑘≤𝑚 and

−−−−−−−−→
⟨𝑣𝑘⟩0≤𝑘≤𝑚 , re-

spectively. We prove a composition property for moment
semirings.

Lemma 3.2. For all 𝑢, 𝑣 ∈ R, it holds that
−−−−−−−−−−−−−−→
⟨(𝑢 + 𝑣)𝑘⟩0≤𝑘≤𝑚 =

−−−−−−−−−→
⟨𝑢𝑘⟩0≤𝑘≤𝑚 ⊗

−−−−−−−−→
⟨𝑣𝑘⟩0≤𝑘≤𝑚,

where 𝑢𝑛 is an abbreviation for
∏𝑛

𝑖=1 𝑢, for 𝑛 ∈ ℤ
+, 𝑢 ∈ R.

3.3 Inference Rules

We present the derivation system as a declarative program
logic that uses moment semirings to enable compositional
reasoning and moment-polymorphic recursion.

Interval-valuedmoment semirings. Our derivation sys-
tem infers upper and lower bounds simultaneously, rather
than separately, which is essential for non-monotone costs.
Consider a program łtick(−1); 𝑆ž and suppose that we have
⟨1, 2, 5⟩ and ⟨1,−2, 5⟩ as the upper and lower bound on the
first two moments of the cost for 𝑆 , respectively. If we only
use the upper bound, we derive ⟨1,−1, 1⟩ ⊗ ⟨1, 2, 5⟩ = ⟨1, 1, 2⟩,
which is not an upper bound on the moments of the cost
for the program; if the actual moments of the cost for 𝑆 are
⟨1, 0, 5⟩, then the actual moments of the cost for łtick(−1); 𝑆ž
are ⟨1,−1, 1⟩ ⊗ ⟨1, 0, 5⟩ = ⟨1,−1, 4⟩ ̸≤ ⟨1, 1, 2⟩. Thus, in the
analysis, we instantiate moment semirings with the interval
domain I . For the program łtick(−1); 𝑆ž, its interval-valued
bound on the first two moments is ⟨[1, 1], [−1,−1], [1, 1]⟩ ⊗
⟨[1, 1], [−2, 2], [5, 5]⟩ = ⟨[1, 1], [−3, 1], [2, 10]⟩.

Template-based expected-potential functions. The ba-
sic approach to automated inference using potential func-
tions is to introduce a template for the expected-potential
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functions. Let us fix𝑚 ∈ ℕ as the degree of the target mo-

ment. Because we useM
(𝑚)

I
-valued expected-potential func-

tions whose range is vectors of intervals, the templates are
vectors of intervals whose ends are represented symboli-

cally. In this paper, we represent the ends of intervals by
polynomials in ℝ[VID] over program variables.
More formally, we lift the interval semiring I to a sym-

bolic interval semiring PI by representing the ends of the
𝑘-th interval by polynomials in ℝ𝑘𝑑 [VID] up to degree

𝑘𝑑 for some fixed 𝑑 ∈ ℕ. Let M
(𝑚)

PI
be the 𝑚-th order

moment semiring instantiated with the symbolic interval
semiring. Then the potential annotation is represented as

𝑄 =
−−−−−−−−−−−−−−→
⟨[𝐿𝑘 ,𝑈𝑘 ]⟩0≤𝑘≤𝑚 ∈ M

(𝑚)

PI
, where 𝐿𝑘 ’s and𝑈𝑘 ’s are poly-

nomials in ℝ𝑘𝑑 [VID]. 𝑄 defines anM
(𝑚)

I
-valued expected-

potential function 𝜙𝑄 (𝜎)
def
=
−−−−−−−−−−−−−−−−−−−−−→
⟨[𝜎 (𝐿𝑘 ), 𝜎 (𝑈𝑘 )]⟩0≤𝑘≤𝑚 , where

𝜎 is a program state, and 𝜎 (𝐿𝑘 ) and 𝜎 (𝑈𝑘 ) are 𝐿𝑘 and 𝑈𝑘

evaluated over 𝜎 , respectively.

Inference rules. We formalize our derivation system
for moment analysis in a Hoare-logic style. The judgment
has the form Δ ⊢ℎ {Γ;𝑄} 𝑆 {Γ′;𝑄 ′}, where 𝑆 is a state-
ment, {Γ;𝑄} is a precondition, {Γ′;𝑄 ′} is a postcondition,
Δ = ⟨Δ𝑘⟩0≤𝑘≤𝑚 is a context of function specifications, and
ℎ ∈ ℤ

+ specifies some restrictions put on 𝑄,𝑄 ′ that we will
explain later. The logical context Γ : (VID→ ℝ) → {⊤,⊥}

is a predicate that describes reachable states at a program

point. The potential annotation 𝑄 ∈ M
(𝑚)

PI
specifies a map

from program states to the moment semiring that is used
to define interval-valued expected-potential functions. The
semantics of the triple {·;𝑄} 𝑆 {·;𝑄 ′} is that if the rest of
the computation after executing 𝑆 has its moments of the
accumulated cost bounded by 𝜙𝑄′ , then the whole compu-
tation has its moments of the accumulated cost bounded by
𝜙𝑄 . The parameter ℎ restricts all 𝑖-th-moment components
in 𝑄,𝑄 ′, such that 𝑖 < ℎ, to be [0, 0]. We call such potential
annotationsℎ-restricted; this construction is motivated by an
observation from Ex. 2.6, where we illustrated the benefits of
carrying out interprocedural analysis using an łelimination
sequencež of annotations for recursive function calls, where
the successive annotations have a greater number of zeros,
filling from the left. Function specifications are valid pairs
of pre- and post-conditions for all declared functions in a
program. For each 𝑘 , such that 0≤𝑘 ≤𝑚, and each function
𝑓 , a valid specification (Γ;𝑄, Γ′;𝑄 ′) ∈ Δ𝑘 (𝑓 ) is justified by
the judgment Δ ⊢𝑘 {Γ;𝑄} 𝒟(𝑓 ) {Γ′;𝑄 ′}, where 𝒟(𝑓 ) is
the function body of 𝑓 , and 𝑄,𝑄 ′ are 𝑘-restricted. To per-
form context-sensitive analysis, a function can have multiple
specifications.
Fig. 6 presents some of the inference rules. The rule (Q-

Tick) is the only rule that deals with costs in a program. To
accumulate the moments of the cost, we use the ⊗ opera-

tion in the moment semiring M
(𝑚)

PI
. The rule (Q-Sample)

accounts for sampling statements. Because ł𝑥 ∼𝐷ž randomly

assigns a value to 𝑥 in the support of distribution𝐷 , we quan-
tify 𝑥 out universally from the logical context. To compute
𝑄 = 𝔼𝑥∼𝜇𝐷 [𝑄

′], where 𝑥 is drawn from distribution 𝐷 , we
assume the moments for 𝐷 are well-defined and computable,
and substitute 𝑥𝑖 , 𝑖 ∈ ℕ with the corresponding moments in
𝑄 ′. We make this assumption because every component of
𝑄 ′ is a polynomial over program variables. For example, if
𝐷 = uniform(−1, 2), we know the following facts

𝔼𝑥∼𝜇𝐷 [𝑥
0]=1,𝔼𝑥∼𝜇𝐷 [𝑥

1]= 1/2,𝔼𝑥∼𝜇𝐷 [𝑥
2]=1,𝔼𝑥∼𝜇𝐷 [𝑥

3]= 5/4.

Then for 𝑄 ′
= ⟨[1, 1], [1 + 𝑥2, 𝑥𝑦2 + 𝑥3𝑦]⟩, by the linearity of

expectations, we compute 𝑄 = 𝔼𝑥∼𝜇𝐷 [𝑄
′] as follows:

𝔼𝑥∼𝜇𝐷 [𝑄 ′] = ⟨[1, 1], [𝔼𝑥∼𝜇𝐷 [1 + 𝑥2],𝔼𝑥∼𝜇𝐷 [𝑥𝑦2 + 𝑥3𝑦]⟩

= ⟨[1, 1], [1 + 𝔼𝑥∼𝜇𝐷 [𝑥2], 𝑦2𝔼𝑥∼𝜇𝐷 [𝑥] + 𝑦𝔼𝑥∼𝜇𝐷 [𝑥3]]⟩

= ⟨[1, 1], [2, 1/2 · 𝑦2 + 5/4 · 𝑦]⟩.

The other probabilistic rule (Q-Prob) deals with probabilistic
branching. Intuitively, if the moments of the execution of 𝑆1
and 𝑆2 are 𝑞1 and 𝑞2, respectively, and those of the accumu-
lated cost of the computation after the branch statement is
bounded by 𝜙𝑄′ , then the moments for the whole computa-
tion should be bounded by a łweighted averagež of (𝑞1⊗𝜙𝑄′)

and (𝑞2 ⊗ 𝜙𝑄′), with respect to the branching probability 𝑝 .
We implement the weighted average by the combination
operator ⊕ applied to ⟨[𝑝, 𝑝], [0, 0], · · · , [0, 0]⟩ ⊗ 𝑞1 ⊗ 𝜙𝑄′

and ⟨[1 − 𝑝, 1 − 𝑝], [0, 0], · · · , [0, 0]⟩ ⊗ 𝑞2 ⊗ 𝜙𝑄′ , because the
0-th moments denote probabilities.

The rules (Q-Call-Poly) and (Q-Call-Mono) handle func-
tion calls. Recall that in Ex. 2.6, we use the ⊕ operator to
combine multiple potential functions for a function to reason
about recursive function calls. The restriction parameter ℎ
is used to ensure that the derivation system only needs to
reason about finitely many post-annotations for each call
site. In rule (Q-Call-Poly), whereℎ is smaller than the target
moment𝑚, we fetch the pre- and post-condition 𝑄1, 𝑄

′
1 for

the function 𝑓 from the specification context Δℎ . We then
combine it with a frame of (ℎ + 1)-restricted potential an-
notations 𝑄2, 𝑄

′
2 for the function 𝑓 . The frame is used to

account for the interval bounds on the moments for the com-
putation after the function call for most non-tail-recursive
programs. When ℎ reaches the target moment𝑚, we use the
rule (Q-Call-Mono) to reason moment-monomorphically,
because setting ℎ to𝑚 + 1 implies that the frame can only
be ⟨[0, 0], [0, 0], · · · , [0, 0]⟩.

Example 3.3. Fig. 7 presents the logical context and the
complete potential annotation for the first and second mo-
ments for the cost accumulator tick of the rdwalk function
from Ex. 2.1. Similar to the reasoning in Ex. 2.6, we can jus-
tify the derivation using moment-polymorphic recursion
and the moment bounds for rdwalk with post-annotations
⟨[0, 0], [1, 1], [1, 1]⟩ and ⟨[0, 0], [0, 0], [2, 2]⟩.
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(Q-Tick)

𝑄 =

−−−−−−−−−−−−−−→
⟨[𝑐𝑘 , 𝑐𝑘 ]⟩0≤𝑘≤𝑚 ⊗ 𝑄 ′

Δ ⊢ℎ {Γ;𝑄} tick(𝑐) {Γ;𝑄 ′}

(Q-Sample)

Γ = ∀𝑥 ∈ supp(𝜇𝐷 ) : Γ
′

𝑄 = 𝔼𝑥∼𝜇𝐷 [𝑄 ′]

Δ ⊢ℎ {Γ;𝑄} 𝑥 ∼ 𝐷 {Γ′;𝑄 ′}

(Q-Loop)

Δ ⊢ℎ {Γ ∧ 𝐿;𝑄} 𝑆 {Γ;𝑄}

Δ⊢ℎ {Γ;𝑄} while 𝐿 do 𝑆 od {Γ∧¬𝐿;𝑄}

(Q-Seq)

Δ ⊢ℎ {Γ;𝑄} 𝑆1 {Γ
′;𝑄 ′}

Δ ⊢ℎ {Γ′;𝑄 ′} 𝑆2 {Γ
′′;𝑄 ′′}

Δ ⊢ℎ {Γ;𝑄} 𝑆1; 𝑆2 {Γ
′′;𝑄 ′′}

(Q-Call-Mono)

(Γ;𝑄, Γ′;𝑄 ′) ∈ Δ𝑚 (𝑓 )

Δ⊢𝑚 {Γ;𝑄} call 𝑓 {Γ′;𝑄 ′}

(Q-Call-Poly)

ℎ < 𝑚 Δℎ (𝑓 ) = (Γ;𝑄1, Γ
′;𝑄 ′

1)

Δ ⊢ℎ+1 {Γ;𝑄2} 𝒟(𝑓 ) {Γ′;𝑄 ′
2}

Δ ⊢ℎ {Γ;𝑄1 ⊕ 𝑄2} call 𝑓 {Γ′;𝑄 ′
1 ⊕ 𝑄

′
2}

(Q-Prob)

Δ ⊢ℎ {Γ;𝑄1} 𝑆1 {Γ
′;𝑄 ′} Δ ⊢ℎ {Γ;𝑄2} 𝑆2 {Γ

′;𝑄 ′}

𝑄 = 𝑃 ⊕ 𝑅 𝑃 = ⟨[𝑝, 𝑝], [0, 0], · · · , [0, 0]⟩ ⊗ 𝑄1 𝑅 = ⟨[1 − 𝑝, 1 − 𝑝], [0, 0], · · · , [0, 0]⟩ ⊗ 𝑄2

Δ ⊢ℎ {Γ;𝑄} if prob(𝑝) then 𝑆1 else 𝑆2 fi {Γ′;𝑄 ′}

Figure 6. Selected inference rules of the derivation system.

1 func rdwalk() begin

2 { 𝑥 <𝑑+2; ⟨[1, 1], [2(𝑑−𝑥), 2(𝑑−𝑥)+4],

3 [4(𝑑−𝑥)2 + 6(𝑑−𝑥)−4, 4(𝑑−𝑥)2+22(𝑑−𝑥)+28]⟩ }

4 if 𝑥 < 𝑑 then

5 { 𝑥 <𝑑 ; ⟨[1, 1], [2(𝑑−𝑥), 2(𝑑−𝑥)+4],

6 [4(𝑑−𝑥)2+6(𝑑−𝑥)−4, 4(𝑑−𝑥)2+22(𝑑−𝑥)+28]⟩ }

7 𝑡 ∼ uniform(−1, 2);

8 { 𝑥 <𝑑∧𝑡 ≤ 2; ⟨[1, 1], [2(𝑑−𝑥−𝑡)+1, 2(𝑑−𝑥−𝑡)+5],

9 [4(𝑑−𝑥−𝑡)2 + 10(𝑑−𝑥−𝑡)−3, 4(𝑑−𝑥−𝑡)2+26(𝑑−𝑥−𝑡)+37)]⟩ }

10 𝑥 ≔ 𝑥 + 𝑡 ;

11 { 𝑥 <𝑑+2; ⟨[1, 1], [2(𝑑−𝑥)+1, 2(𝑑−𝑥)+5],

12 [4(𝑑−𝑥)2+10(𝑑−𝑥)−3, 4(𝑑−𝑥)2+26(𝑑−𝑥)+37]⟩ }

13 call rdwalk;

14 { ⊤; ⟨[1, 1], [1, 1], [1, 1]⟩ }

15 tick(1)

16 { ⊤; ⟨[1, 1], [0, 0], [0, 0]⟩ }

17 fi

18 end

Figure 7. The rdwalk function with annotations for the
interval-bounds on the first and second moments.

3.4 Automatic Linear-Constraint Generation

We adapt existing techniques [8, 29] to automate our in-
ference system by (i) using an abstract interpreter to infer
logical contexts, (ii) generating templates and linear con-
straints by inductively applying the derivation rules to the
analyzed program, and (iii) employing an off-the-shelf LP
solver to discharge the linear constraints. During the genera-
tion phase, the coefficients of monomials in the polynomials
from the ends of the intervals in every qualitative context

𝑄 ∈ M
(𝑚)

PI
are recorded as symbolic names, and the inequal-

ities among those coefficientsÐderived from the inference
rules in Fig. 6Ðare emitted to the LP solver.

Example 3.4. We demonstrate linear-constraint genera-
tion for the upper bound on the first moment for the sam-
pling statement 𝑥 ∼ uniform(−1, 2) with a pre-annotation
⟨[0, 0], [0, 𝑞𝑥2 · 𝑥2 + 𝑞𝑥 · 𝑥 + 𝑞1 · 1]⟩ and a post-annotation
⟨[0, 0], [0, 𝑞′

𝑥2 ·𝑥
2+𝑞′𝑥 ·𝑥+𝑞

′
1 ·1]⟩, where we use polynomials of

𝑥 up to degree 2 as the templates, and𝑞𝑥2 , 𝑞𝑥 , 𝑞1, 𝑞
′
𝑥2 , 𝑞

′
𝑥 , 𝑞

′
1 are

unknown numeric coefficients. By (Q-Sample), we generate
constraints to perform łpartial evaluationž on the polynomi-
als by substituting 𝑥 with the moments of uniform(−1, 2).
Let 𝐷 denote uniform(−1, 2). Because

𝔼𝑥∼𝜇𝐷 [𝑞
′
𝑥2 · 𝑥

2 + 𝑞′𝑥 · 𝑥 + 𝑞′1 · 1] = (𝑞′
𝑥2 · 1 + 𝑞

′
𝑥 · 1/2 + 𝑞′1 · 1),

we generate these linear constraints:

𝑞𝑥2 = 0, 𝑞𝑥 = 0, 𝑞1 = 𝑞
′
𝑥2 + 𝑞

′
𝑥 · 1/2 + 𝑞′1.

Constraint generation for other inference rules is similar
to the process we describe in Ex. 3.4. For example, let us
consider the loop rule (Q-Loop). Instead of computing the
loop invariant 𝑄 explicitly, our system represents 𝑄 directly
as a template with unknown coefficients, then uses 𝑄 as
the post-annotation to analyze the loop body and obtain a
pre-annotation, and finally generates linear constraints that
indicate that the pre-annotation equals 𝑄 . Details of the
linear-constraint generation of our system are included in
the technical report [38].
The LP solver not only finds assignments to the coeffi-

cients that satisfy the constraints, it can also optimize a
linear objective function. In our central-moment analysis,
we construct an objective function that tries to minimize
imprecision. For example, let us consider upper bounds on
the variance. We randomly pick a concrete valuation of pro-
gram variables that satisfies the pre-condition (e.g., 𝑑 > 0
in Fig. 2), and then substitute program variables with the
concrete valuation in the polynomial for the upper bound on
the variance (obtained from bounds on the raw moments).
The resulting linear combination of coefficients, which we
set as the objective function, stands for the variance under
the concrete valuation. Thus, minimizing the objective func-
tion produces the most precise upper bound on the variance
under the specific concrete valuation. Also, we can extract a
symbolic upper bound on the variance using the assignments
to the coefficients. Because the derivation of the bounds only
uses the given pre-condition, the symbolic bounds apply to
all valuations that satisfy the pre-condition.
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4 Soundness of Higher-Moment Analysis

In this section, we study the soundness of our derivation sys-
tem for higher-moment analysis. We first present a Markov-
chain semantics for the probabilistic programming language
Appl to reason about how stepwise costs contribute to the
global accumulated cost (ğ4.1). We then formulate higher-
moment analysis with respect to the semantics and prove
the soundness of our derivation system for higher-moment
analysis based on a recent extension to the Optional Stopping
Theorem (ğ4.2). Finally, we sketch the algorithmic approach
for ensuring the soundness of our analysis (ğ4.3).

4.1 A Markov-Chain Semantics

Operational semantics. We start with a small-step op-
erational semantics with continuations, which we will use
later to construct the Markov-chain semantics. We follow a
distribution-based approach [6, 23] to define an operational
cost semantics for Appl. Full details of the semantics are in-
cluded in the technical report [38]. A program configuration

𝜎 ∈ Σ is a quadruple ⟨𝛾, 𝑆, 𝐾, 𝛼⟩ where 𝛾 : VID → ℝ is a
program state that maps variables to values, 𝑆 is the state-
ment being executed,𝐾 is a continuation that describes what
remains to be done after the execution of 𝑆 , and 𝛼 ∈ ℝ is the
global cost accumulator. An execution of an Appl program
⟨𝒟, 𝑆main⟩ is initialized with ⟨𝜆_.0, 𝑆main,Kstop, 0⟩, and the
termination configurations have the form ⟨_, skip,Kstop, _⟩,
where Kstop is an empty continuation.

Different from a standard semantics where each program
configuration steps to at most one new configuration, a
probabilistic semantics may pick several different new con-
figurations. The evaluation relation for Appl has the form
𝜎 ↦→ 𝜇 where 𝜇 ∈ 𝔻(Σ) is a probability measure over con-
figurations. Below are two example rules. The rule (E-Prob)
constructs a distribution whose support has exactly two
elements, which stand for the two branches of the proba-
bilistic choice. We write 𝛿 (𝜎) for the Dirac measure at 𝜎 ,
defined as 𝜆𝐴.[𝜎 ∈ 𝐴] where 𝐴 is a measurable subset of
Σ. We also write 𝑝 · 𝜇1 + (1 − 𝑝) · 𝜇2 for a convex combi-
nation of measures 𝜇1 and 𝜇2 where 𝑝 ∈ [0, 1], defined as
𝜆𝐴.𝑝 · 𝜇1 (𝐴) + (1 − 𝑝) · 𝜇2 (𝐴). The rule (E-Sample) łpushesž
the probability distribution of 𝐷 to a distribution over post-
sampling program configurations.

𝑆 = if prob(𝑝) then 𝑆1 else 𝑆2 fi

⟨𝛾, 𝑆, 𝐾, 𝛼⟩ ↦→ 𝑝 · 𝛿 (⟨𝛾, 𝑆1, 𝐾, 𝛼⟩) + (1 − 𝑝) · 𝛿 (⟨𝛾, 𝑆2, 𝐾, 𝛼⟩)
(E-Prob)

⟨𝛾, 𝑥 ∼𝐷,𝐾, 𝛼⟩ ↦→ 𝜆𝐴.𝜇𝐷 ({𝑟 | ⟨𝛾 [𝑥 ↦→𝑟 ], skip, 𝐾, 𝛼⟩ ∈ 𝐴})
(E-Sample)

Example 4.1. Suppose that a random sampling statement
is being executed, i.e., the current configuration is

⟨{𝑡 ↦→ 𝑡0}, (𝑡 ∼ uniform(−1, 2)), 𝐾0, 𝛼0⟩.

The probability measure for the uniform distribution is

𝜆𝑂.
∫

𝑂

[−1≤𝑥≤2]
3

𝑑𝑥 . Thus, by the rule (E-Sample), we derive
the post-sampling probability measure over configurations:

𝜆𝐴.
∫

ℝ
[⟨{𝑡 ↦→ 𝑟 }, skip, 𝐾0, 𝛼0⟩ ∈ 𝐴] ·

[−1≤𝑟 ≤2]
3 𝑑𝑟 .

A Markov-chain semantics. In this work, we harness
Markov-chain-based reasoning [22, 31] to develop a Markov-
chain cost semantics for Appl, based on the evaluation rela-
tion 𝜎 ↦→ 𝜇. An advantage of this approach is that it allows
us to study how the cost of every single evaluation step
contributes to the accumulated cost at the exit of the pro-
gram. Details of this semantics are included in the technical
report [38].

Let (Ω,F ,ℙ) be the probability space where Ω
def
= Σ

ℤ
+
is

the set of all infinite traces over program configurations,F is
a 𝜎-algebra on Ω, and ℙ is a probability measure on (Ω,F)

obtained by the evaluation relation 𝜎 ↦→ 𝜇 and the initial con-
figuration ⟨𝜆_.0, 𝑆main,Kstop, 0⟩. Intuitively, ℙ specifies the
probability distribution over all possible executions of a prob-
abilistic program. The probability of an assertion 𝜃 with re-
spect to ℙ, written ℙ[𝜃 ], is defined as ℙ({𝜔 | 𝜃 (𝜔) is true}).
To formulate the accumulated cost at the exit of the pro-

gram, we define the stopping time 𝑇 : Ω → ℤ
+ ∪ {∞} of a

probabilistic program as a random variable on the probability
space (Ω,F ,ℙ) of program traces:

𝑇 (𝜔)
def
= inf{𝑛 ∈ ℤ

+ | 𝜔𝑛 = ⟨_, skip,Kstop, _⟩},

i.e.,𝑇 (𝜔) is the number of evaluation steps before the trace𝜔
reaches some termination configuration ⟨_, skip,Kstop, _⟩.
We define the accumulated cost 𝐴𝑇 : Ω → ℝ with respect to
the stopping time 𝑇 as

𝐴𝑇 (𝜔)
def
= 𝐴𝑇 (𝜔) (𝜔),

where 𝐴𝑛 : Ω → ℝ captures the accumulated cost at the
𝑛-th evaluation step for 𝑛 ∈ ℤ

+, which is defined as

𝐴𝑛 (𝜔)
def
= 𝛼𝑛 where 𝜔𝑛 = ⟨_, _, _, 𝛼𝑛⟩.

The𝑚-th moment of the accumulated cost is given by the
expectation 𝔼[𝐴𝑚

𝑇
] with respect to ℙ.

4.2 Soundness of the Derivation System

Proofs for this section are included in the technical re-
port [38].

The expected-potential method for moment analysis.

We fix a degree 𝑚 ∈ ℕ and let M
(𝑚)

I
be the 𝑚-th order

moment semiring instantiated with the interval semiring I .

We now defineM
(𝑚)

I
-valued expected-potential functions.

Definition 4.2. A measurable map 𝜙 : Σ → M
(𝑚)

I
is said

to be an expected-potential function if
(i) 𝜙 (𝜎) = 1 if 𝜎 = ⟨_, skip,Kstop, _⟩, and

(ii) 𝜙 (𝜎) ⊒ 𝔼𝜎′∼↦→(𝜎) [
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(

[(𝛼 ′ − 𝛼)𝑘 , (𝛼 ′ − 𝛼)𝑘 ]
)

0≤𝑘≤𝑚 ⊗ 𝜙 (𝜎 ′)]

where 𝜎 = ⟨_, _, _, 𝛼⟩, 𝜎 ′
= ⟨_, _, _, 𝛼 ′⟩ for all 𝜎 ∈ Σ.

Intuitively, 𝜙 (𝜎) is an interval bound on the moments for
the accumulated cost of the computation that continues from
the configuration 𝜎 . We define Φ𝑛 and Y𝑛 , where 𝑛 ∈ ℤ

+, to

beM
(𝑚)

I
-valued random variables on the probability space
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(Ω,F ,ℙ) of the Markov-chain semantics as

Φ𝑛 (𝜔)
def
= 𝜙 (𝜔𝑛),Y𝑛 (𝜔)

def
=

−−−−−−−−−−−−−−−−−−−−−−−−→
⟨[𝐴𝑛 (𝜔)

𝑘 , 𝐴𝑛 (𝜔)
𝑘 ]⟩0≤𝑘≤𝑚⊗Φ𝑛 (𝜔).

In the definition of Y𝑛 , we use ⊗ to compose the powers of
the accumulated cost at step 𝑛 and the expected potential
function that stands for the moments of the accumulated
cost for the rest of the computation.

Lemma 4.3. By the properties of potential functions, we can

prove that 𝔼[Y𝑛+1 | Y𝑛] ⊑ Y𝑛 almost surely, for all 𝑛 ∈ ℤ
+.

We call {Y𝑛}𝑛∈ℤ+ a moment invariant. Our goal is to
establish that 𝔼[Y𝑇 ] ⊑ 𝔼[Y0], i.e., the initial interval-
valued potential 𝔼[Y0] = 𝔼[1 ⊗ Φ0] = 𝔼[Φ0] brackets
the higher moments of the accumulated cost 𝔼[Y𝑇 ] =

𝔼[
−−−−−−−−−−−−−−−→
⟨[𝐴𝑘

𝑇
, 𝐴𝑘

𝑇
]⟩0≤𝑘≤𝑚 ⊗ 1] =

−−−−−−−−−−−−−−−−−−−−−−→
⟨[𝔼[𝐴𝑘

𝑇
],𝔼[𝐴𝑘

𝑇
]]⟩0≤𝑘≤𝑚 .

Soundness. The soundness of the derivation system is
proved with respect to the Markov-chain semantics. Let

∥
−−−−−−−−−−−−−−→
⟨[𝑎𝑘 , 𝑏𝑘 ]⟩0≤𝑘≤𝑚 ∥∞

def
= max0≤𝑘≤𝑚{max{|𝑎𝑘 |, |𝑏𝑘 |}}.

Theorem 4.4. Let ⟨𝒟, 𝑆main⟩ be a probabilistic program. Sup-

pose Δ ⊢ {Γ;𝑄} 𝑆main {Γ′; 1}, where 𝑄 ∈ M
(𝑚)

PI
and the

ends of the 𝑘-th interval in 𝑄 are polynomials in ℝ𝑘𝑑 [VID].

Let {Y𝑛}𝑛∈ℤ+ be the moment invariant extracted from the

Markov-chain semantics with respect to the derivation of

Δ ⊢ {Γ;𝑄} 𝑆main {Γ′; 1}. If the following conditions hold:

(i) 𝔼[𝑇𝑚𝑑 ] < ∞, and

(ii) there exists 𝐶 ≥ 0 such that for all 𝑛 ∈ ℤ
+, ∥Y𝑛 ∥∞ ≤

𝐶 · (𝑛 + 1)𝑚𝑑 almost surely,

Then
−−−−−−−−−−−−−−−−−−−−−−→
⟨[𝔼[𝐴𝑘

𝑇
],𝔼[𝐴𝑘

𝑇
]]⟩0≤𝑘≤𝑚 ⊑ 𝜙𝑄 (𝜆_.0).

The intuitive meaning of
−−−−−−−−−−−−−−−−−−−−−−→
⟨[𝔼[𝐴𝑘

𝑇
],𝔼[𝐴𝑘

𝑇
]]⟩0≤𝑘≤𝑚 ⊑

𝜙𝑄 (𝜆_.0) is that the moment 𝔼[𝐴𝑘
𝑇
] of the accumulated cost

upon program termination is bounded by the interval in the
𝑘 th-moment component of 𝜙𝑄 (𝜆_.0), where 𝑄 is the quanti-
tative context and 𝜆_.0 is the initial state.

As we discussed in ğ2.2 and Ex. 2.7, the expected-potential
method is not always sound for deriving bounds on higher
moments for cost accumulators in probabilistic programs.
The extra conditions Thm. 4.4(i) and (ii) impose constraints
on the analyzed program and the expected-potential func-
tion, which allow us to reduce the soundness to the optional
stopping problem from probability theory.

Optional stopping. Let us represent the moment invari-
ant {Y𝑛}𝑛∈ℤ+ as

{⟨[𝐿
(0)
𝑛 ,𝑈

(0)
𝑛 ], [𝐿

(1)
𝑛 ,𝑈

(1)
𝑛 ], · · · , [𝐿

(𝑚)
𝑛 ,𝑈

(𝑚)
𝑛 ]⟩}𝑛∈ℤ+ ,

where 𝐿
(𝑘)
𝑛 ,𝑈

(𝑘)
𝑛 : Ω → ℝ are real-valued random vari-

ables on the probability space (Ω,F ,ℙ) of the Markov-chain
semantics, for 𝑛 ∈ ℤ

+, 0 ≤ 𝑘 ≤ 𝑚. We then have the obser-
vations below as direct corollaries of Lem. 4.3:
• For any 𝑘 , the sequence {𝑈

(𝑘)
𝑛 }𝑛∈ℤ+ satisfies 𝔼[𝑈

(𝑘)
𝑛+1 |

𝑈
(𝑘)
𝑛 ] ≤ 𝑈

(𝑘)
𝑛 almost surely, for all 𝑛 ∈ ℤ

+, and we want

to find sufficient conditions for 𝔼[𝑈
(𝑘)
𝑇

] ≤ 𝔼[𝑈
(𝑘)
0 ].

• For any 𝑘 , the sequence {𝐿
(𝑘)
𝑛 }𝑛∈ℤ+ satisfies 𝔼[𝐿

(𝑘)
𝑛+1 |

𝐿
(𝑘)
𝑛 ] ≥ 𝐿

(𝑘)
𝑛 almost surely, for all 𝑛 ∈ ℤ

+, and we want to

find sufficient conditions for 𝔼[𝐿
(𝑘)
𝑇

] ≥ 𝔼[𝐿
(𝑘)
0 ].

These kinds of questions can be reduced to optional stop-

ping problem from probability theory. Recent research [1,
17, 35, 41] has used the Optional Stopping Theorem (OST)
from probability theory to establish sufficient conditions
for the soundness for analysis of probabilistic programs.
However, the classic OST turns out to be not suitable for
higher-moment analysis. We extend OST with a new suffi-
cient condition that allows us to prove Thm. 4.4. We discuss
the details of our extended OST in a companion paper [39];
in this work, we focus on the derivation system for central
moments.

4.3 An Algorithm for Checking Soundness Criteria

Termination Analysis. We reuse our system for auto-
matically deriving higher moments, which we developed in
ğ3.3 and ğ3.4, for checking if 𝔼[𝑇𝑚𝑑 ] < ∞ (Thm. 4.4(i)). To
reason about termination time, we assume that every pro-
gram statement increments the cost accumulator by one. For
example, the inference rule (Q-Sample) becomes

Γ = ∀𝑥 ∈ supp(𝜇𝐷 ) : Γ
′ 𝑄 = ⟨1, 1, · · · , 1⟩ ⊗ 𝔼𝑥∼𝜇𝐷 [𝑄 ′]

Δ ⊢ {Γ;𝑄} 𝑥 ∼ 𝐷 {Γ′;𝑄 ′}

However, we cannot apply Thm. 4.4 for the soundness of the
termination-time analysis, because that would introduce a
circular dependence. Instead, we use a different proof tech-
nique to reason about 𝔼[𝑇𝑚𝑑 ], taking into account themono-

tonicity of the runtimes. Because upper-bound analysis of
higher moments of runtimes has been studied by Kura et al.
[24], we skip the details, but include them in the technical
report [38].

Boundedness of ∥𝑌𝑛 ∥∞, 𝑛 ∈ ℤ
+. To ensure that the condi-

tion in Thm. 4.4(ii) holds, we check if the analyzed program
satisfies the bounded-update property: every (deterministic
or probabilistic) assignment to a program variable updates
the variable with a change bounded by a constant 𝐶 almost
surely. Then the absolute value of every program variable at
evaluation step 𝑛 can be bounded by 𝐶 · 𝑛 = 𝑂 (𝑛). Thus, a
polynomial up to degree ℓ ∈ ℕ over program variables can be
bounded by𝑂 (𝑛ℓ ) at evaluation step 𝑛. As observed byWang
et al. [41], bounded updates are common in practice.

5 Tail-Bound Analysis

One application of our central-moment analysis is to bound
the probability that the accumulated cost deviates from some
given quantity. In this section, we sketch how we produce
the tail bounds shown in Fig. 1(c).
There are a lot of concentration-of-measure inequalities

in probability theory [12]. Among those, one of the most
important is Markov’s inequality:
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Proposition 5.1. If 𝑋 is a nonnegative random variable and

𝑎 > 0, then ℙ[𝑋 ≥ 𝑎] ≤
𝔼[𝑋𝑘 ]

𝑎𝑘
for any 𝑘 ∈ ℕ.

Recall that Fig. 1(b) presents upper bounds on the raw
moments 𝔼[tick] ≤ 2𝑑 + 4 and 𝔼[tick2] ≤ 4𝑑2 + 22𝑑 + 28
for the cost accumulator tick. With Markov’s inequality, we
derive the following tail bounds:

ℙ[tick ≥ 4𝑑] ≤
𝔼[tick]

4𝑑
≤

2𝑑 + 4

4𝑑

𝑑→∞
−−−−−→

1

2
, (8)

ℙ[tick ≥ 4𝑑] ≤
𝔼[tick2]

(4𝑑)2
≤

4𝑑2 + 22𝑑 + 28

16𝑑2
𝑑→∞
−−−−−→

1

4
. (9)

Note that (9) provides an asymptotically more precise bound
on ℙ[tick ≥ 4𝑑] than (8) does, when 𝑑 approaches infinity.

Central-moment analysis can obtain an even more precise
tail bound. As presented in Fig. 1(b), our analysis derives
𝕍 [tick] ≤ 22𝑑 + 28 for the variance of tick. We can now
employ concentration inequalities that involve variances of
random variables. Recall Cantelli’s inequality:

Proposition 5.2. If 𝑋 is a random variable and 𝑎 > 0, then

ℙ[𝑋−𝔼[𝑋 ] ≥𝑎] ≤
𝕍 [𝑋 ]

𝕍 [𝑋 ]+𝑎2
and ℙ[𝑋−𝔼[𝑋 ] ≤−𝑎] ≤

𝕍 [𝑋 ]

𝕍 [𝑋 ]+𝑎2
.

With Cantelli’s inequality, we obtain the following tail
bound, where we assume 𝑑 ≥ 2:

ℙ[tick ≥ 4𝑑] = ℙ[tick − (2𝑑 + 4) ≥ 2𝑑 − 4]

≤ ℙ[tick − 𝔼[tick] ≥ 2𝑑 − 4] ≤
𝕍 [tick]

𝕍 [tick] + (2𝑑 − 4)2

= 1 −
(2𝑑 − 4)2

𝕍 [tick] + (2𝑑 − 4)2
≤

22𝑑 + 28

4𝑑2 + 6𝑑 + 44

𝑑→∞
−−−−−→ 0.

(10)

For all 𝑑 ≥ 15, (10) gives a more precise bound than both
(8) and (9). It is also clear from Fig. 1(c), where we plot the
three tail bounds (8), (9), and (10), that the asymptotically
most precise bound is the one obtained via variances.

In general, for higher central moments, we employ Cheby-
shev’s inequality to derive tail bounds:

Proposition 5.3. If 𝑋 is a random variable and 𝑎 > 0, then

ℙ[|𝑋 − 𝔼[𝑋 ] | ≥ 𝑎] ≤
𝔼[ (𝑋−𝔼[𝑋 ])2𝑘 ]

𝑎2𝑘
for any 𝑘 ∈ ℕ.

In our experiments, we use Chebyshev’s inequality to
derive tail bounds from the fourth central moments. We will
show in Fig. 8 that these tail bounds can be more precise
than those obtained from both raw moments and variances.

6 Implementation and Experiments

Implementation. Our tool is implemented in OCaml, and
consists of about 5,300 LOC. The tool works on imperative
arithmetic probabilistic programs using a CFG-based IR [37].
The language supports recursive functions, continuous dis-
tributions, unstructured control-flow, and local variables. To
infer the bounds on the central moments for a cost accumu-
lator in a program, the user needs to specify the order of
the analyzed moment, and a maximal degree for the poly-
nomials to be used in potential-function templates. Using
APRON [20], we implemented an interprocedural numeric

analysis to infer the logical contexts used in the derivation.
We use the off-the-shelf solver Gurobi [26] for LP solving.

Evaluation setup. We evaluated our tool to answer the
following three research questions:
1. How does the raw-moment inference part of our tool

compare to existing techniques for expected-cost bound
analysis [29, 41]?

2. How does our tool compare to the state of the art in tail-
probability analysis (which is based only on higher raw
moments [24])?

3. How scalable is our tool? Can it analyze programs with
many recursive functions?
For the first question, we collected a broad suite of chal-

lenging examples from related work [24, 29, 41] with dif-
ferent loop and recursion patterns, as well as probabilistic
branching, discrete sampling, and continuous sampling. Our
tool achieved comparable precision and efficiency with the
prior work on expected-cost bound analysis [29, 41]. The
details are included in the technical report [38].

For the second question, we evaluated our tool on the com-
plete benchmarks from Kura el al. [24]. We also conducted a
case study of a timing-attack analysis for a program provided
by DARPA during engagements of the STAC program [14],
where central moments are more useful than raw moments
to bound the success probability of an attacker. We include
the case study in the technical report [38].

For the third question, we conducted case studies on two
sets of synthetic benchmark programs:
• coupon-collector programs with𝑁 coupons (𝑁 ∈ [1, 103]),
where each program is implemented as a set of tail-
recursive functions, each of which represents a state of
coupon collection, i.e., the number of coupons collected
so far; and

• random-walk programs with 𝑁 consecutive one-
dimensional random walks (𝑁 ∈ [1, 103]), each of which
starts at a position that equals the number of steps taken
by the previous random walk to reach the ending position
(the origin). Each program is implemented as a set of
non-tail-recursive functions, each of which represents a
random walk. The random walks in the same program
can have different transition probabilities.

The largest synthetic program has nearly 16,000 LOC. We
then ran our tool to derive an upper bound on the fourth
(resp., second) central moment of the runtime for each
coupon-collector (resp., random-walk) program.
The experiments were performed on a machine with an

Intel Core i7 3.6GHz processor and 16GB of RAM under
macOS Catalina 10.15.7.

Results. Some of the evaluation results to answer the sec-
ond research question are presented in Tab. 1. The programs
(1-1) and (1-2) are coupon-collector problems with a total
of two and four coupons, respectively. The programs (2-1)
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Table 1. Upper bounds on the raw/central moments of run-
times, with comparison to Kura et al. [24]. łT/Ož stands for
timeout after 30 minutes. łN/Až means that the tool is not
applicable. ł-ž indicates that the tool fails to infer a bound.
Entries with more precise results or less analysis time are
marked in bold. Full results are included in the technical
report [38].

program moment
this work Kura et al. [24]

upper bnd. time (sec) upper bnd. time (sec)

(1-1)

2nd raw 201 0.019 201 0.015

3rd raw 3829 0.019 3829 0.020

4th raw 90705 0.023 90705 0.027

2nd central 32 0.029 N/A N/A

4th central 9728 0.058 N/A N/A

(1-2)

2nd raw 2357 1.068 3124 0.037

3rd raw 148847 1.512 171932 0.062

4th raw 11285725 1.914 12049876 0.096

2nd central 362 3.346 N/A N/A

4th central 955973 9.801 N/A N/A

(2-1)

2nd raw 2320 0.016 2320 11.380

3rd raw 691520 0.018 - 16.056

4th raw 340107520 0.021 - 23.414

2nd central 1920 0.026 N/A N/A

4th central 289873920 0.049 N/A N/A

(2-2)

2nd raw 8375 0.022 8375 38.463

3rd raw 1362813 0.028 - 73.408

4th raw 306105209 0.035 - 141.072

2nd central 5875 0.029 N/A N/A

4th central 447053126 0.086 N/A N/A

and (2-2) are one-dimensional random walks with integer-
valued and real-valued coordinates, respectively. We omit
three other programs here but include the full results in the
technical report [38]. The table contains the inferred upper
bounds on the moments for runtimes of these programs, and
the running times of the analyses. We compared our results
with Kura et al.’s inference tool for raw moments [24]. Our
tool is as precise as, and sometimes more precise than the
prior work on all the benchmark programs. Meanwhile, our
tool is able to infer an upper bound on the raw moments of
degree up to four on all the benchmarks, while the prior work
reports failure on some highermoments for the random-walk
programs. In terms of efficiency, our tool completed each
example in less than 10 seconds, while the prior work took
more than a fewminutes on some programs. One reason why
our tool is more efficient is that we always reduce higher-
moment inference with non-linear polynomial templates to
efficient LP solving, but the prior work requires semidefinite
programming (SDP) for polynomial templates.

Besides raw moments, our tool is also capable of inferring
upper bounds on the central moments of runtimes for the
benchmarks. To evaluate the quality of the inferred central
moments, Fig. 8 plots the upper bounds of tail probabilities
on runtimes 𝑇 obtained by Kura et al. [24], and those by
our central-moment analysis. Specifically, the prior work

20 30 40 𝑑
0

0.1

0.2

ta
il
p
ro
b
ab
il
it
y
ℙ
[𝑇

≥
𝑑
]

(1-1)

by raw moments [24]

by 2nd central moment

by 4th central moment

100 150 𝑑
0

0.1

0.2

(1-2)

by raw moments [24]

by 2nd central moment

by 4th central moment

200 400 𝑑
0

0.1

0.2

ta
il
p
ro
b
ab
il
it
y
ℙ
[𝑇

≥
𝑑
]

(2-1)

by raw moments [24]

by 2nd central moment

by 4th central moment

200 400 𝑑
0

0.1

0.2

(2-2)

by raw moments [24]

by 2nd central moment

by 4th central moment

Figure 8. Upper bound of the tail probability ℙ[𝑇 ≥ 𝑑] as a
function of 𝑑 , with comparison to Kura et al. [24]. Each gray
line is the minimum of tail bounds obtained from the raw
moments of degree up to four inferred by Kura et al. [24].
Green lines and red lines are the tail bounds given by 2nd

and 4th central moments inferred by our tool, respectively.
We include the plots for other programs in the technical
report [38].

uses Markov’s inequality (Prop. 5.1), while we are also able
to apply Cantelli’s and Chebyshev’s inequality (Props. 5.2
and 5.3) with central moments. Our tool outperforms the
prior work on programs (1-1) and (1-2), and derives better
tail bounds when 𝑑 is large on program (2-2), while it obtains
similar curves on program (2-1).

Scalability. In Fig. 9, we demonstrate the running times
of our tool on the two sets of synthetic benchmark pro-
grams; Fig. 9a plots the analysis times for coupon-collector
programs as a function of the independent variable 𝑁 (the
total number of coupons), and Fig. 9b plots the analysis times
for random-walk programs as a function of 𝑁 (the total num-
ber of randomwalks). The evaluation statistics show that our
tool achieves good scalability in both case studies: the run-
time is almost a linear function of the program size, which
is the number of recursive functions for both case studies.
Two reasons why our tool is scalable on the two sets of pro-
grams are (i) our analysis is compositional and uses function
summaries to analyze function calls, and (ii) for a fixed set of
templates and a fixed diameter of the call graph, the number
of linear constraints generated by our tool grows linearly
with the size of the program, and the LP solvers available
nowadays can handle large problem instances efficiently.

Discussion. Higher central moments can also provide
more information about the shape of a distribution, e.g., the

skewness (i.e., 𝔼[ (𝑇−𝔼[𝑇 ])3 ]

(𝕍 [𝑇 ])
3/2 ) indicates how lopsided the distri-

bution of 𝑇 is, and the kurtosis (i.e., 𝔼[ (𝑇−𝔼[𝑇 ])4 ]

(𝕍 [𝑇 ])2
) measures
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