
Resource-Aware Session Types for Digital Contracts

Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, Ishani Santurkar
Computer Science Department

Carnegie Mellon University

Pittsburgh, PA, USA

Abstract—Programming digital contracts comes with unique
challenges, which include (i) expressing and enforcing protocols
of interaction, (ii) controlling resource usage, and (iii) preventing
the duplication or deletion of a contract’s assets. This article
presents the design and type-theoretic foundation of Nomos,
a programming language for digital contracts that addresses
these challenges. To express and enforce protocols, Nomos is
based on shared binary session types. To control resource usage,
Nomos employs automatic amortized resource analysis. To prevent
the duplication or deletion of assets, Nomos uses a linear type
system. A monad integrates the effectful session-typed language
with a general-purpose functional language. Nomos’ prototype
implementation features linear-time type checking and efficient
type reconstruction that includes automatic inference of resource
bounds via off-the-shelf linear optimization. The effectiveness of
the language is evaluated with case studies on implementing com-
mon smart contracts such as auctions, elections, and currencies.
Nomos is completely formalized, including the type system, a
cost semantics, and a transactional semantics to deploy Nomos
contracts on a blockchain. The type soundness proof ensures
that protocols are followed at run-time and that types establish
sound upper bounds on the resource consumption, ruling out
re-entrancy and out-of-gas vulnerabilities.

Index Terms—smart contracts, programming languages, ses-
sion types, resource analysis

I. INTRODUCTION

Digital contracts are programs that implement and enforce

the execution of a contract. With the rise of blockchains

and cryptocurrencies such as Bitcoin [1], Ethereum [2], and

Tezos [3], digital contracts have become popular in the form of

smart contracts, which provide potentially distrusting parties

with programmable money and a distributed consensus mech-

anism. Smart contracts are used to implement auctions [4],

investment instruments [5], insurance agreements [6], supply

chain management [7], and mortgage loans [8]. They hold the

promise to lower cost, increase fairness, and expand access to

the financial infrastructure.

Many of today’s prominent smart contract languages suf-

fer from security vulnerabilities, which have severe financial

consequences. A well-known example is the attack on The

DAO [5], resulting in a $60 million theft by exploiting a

contract re-entrancy vulnerability. Smart contract languages

have been typically derived from existing general-purpose

This article is based on research supported by the National Science
Foundation under SaTC Award 1801369, CAREER Award 1845514 and
Grant No. 1718276. Any opinions, findings, and conclusions contained in this
document are those of the authors and do not necessarily reflect the views of
the sponsoring organizations.

languages [4], [9], [10] and fail to accommodate the domain-

specific requirements of digital contracts. These requirements

are: (i) expressing and enforcing protocols of interaction, (ii)

controlling and computing resource (or gas) usage, and (iii)

preventing duplication or deletion of a contract’s assets.

This article presents the design and type-theoretic founda-

tion of Nomos, a language for digital contracts accommodat-

ing these requirements by construction.

To express and enforce the protocols underlying a contract,

Nomos is based on binary session types [11]–[17]. Session

types capture the protocols of interactions in the type, rather

than the implementation code, and type-checking guarantees

protocol adherence at run-time. Delimiting the sequences of

actions that must be executed atomically, session types also

prevent re-entrance into a contract in an inconsistent state. To

control resource usage, Nomos employs automatic amortized

resource analysis (AARA), a type-based technique for automat-

ically inferring symbolic resource bounds [18]–[22]. AARA is

parametric in the cost model, allowing instantiation to track

gas usage. As a result, Nomos contracts mitigate denial-of-

service attacks without being vulnerable to out-of-gas excep-

tions. Moreover, resource bounds are integrated with session-

typed protocols and enable precise path-sensitive descriptions

of cost that avoid gaps between worst-case and average-case

cost. To prevent duplication or deletion of assets, Nomos uses

a linear type system [23]. The effectful session-typed language,

which implements contract interfaces and contract-to-contract

communication, is integrated with a strict, general-purpose

functional language using a contextual monad.

Integrating these seemingly disparate approaches (session

types, resource analysis, linearity, and functional program-

ming) and combining them with the different roles that arise

in a digital contract (contract, asset, transaction) in a way that

the result remains consistent, presents unique challenges. For

one, both the functional as well as session-typed language

use potential annotations to bound the resource consumption,

which requires care when functional values are exchanged as

messages between processes. For another, prior work on inte-

grating shared and linear session types [24] preclude contracts

from persisting their linear assets across transactions, a feature

essential to digital contract development; a restriction that we

lift in this work. Fundamental is the use of different forms

of typing judgments for expressions and processes along with

judgmental modes to distinguish the different roles in a digital

contract. The modes are essential in ensuring type safety, as

they allow the expression of mode-indexed invariants on the

typing contexts and their enforcement by the typing rules.
Nomos is completely formalized, including the type system,

a cost semantics, and a transactional semantics to instantiate

Nomos contracts on a blockchain. A type soundness proof

ensures that protocols are followed at run-time and that types

establish sound upper bounds on the resource consumption.
The soundness guarantees are meaningful in a restricted

attacker model in which even the adversary cannot execute

ill-typed code. Such a model is justified in a decentralized

consensus setting such as a blockchain, where transactions

and contracts are publicly type checked, thwarting attacks

from adversaries intending to damage the blockchain state

by submitting malformed code. In this setting, transaction

validation and thus type checking are part of the attack surface

and can be used by an adversary for denial-of-service attacks.

To mitigate such attacks, we have carefully designed the

Nomos type system that integrates its various features in a way

that type checking is linear-time in the size of the program.
To evaluate Nomos, we implemented a publicly available

open-source prototype [25] and conducted 8 case studies

implementing common smart contracts such as auctions,

elections, and currencies. Our experiments show that type-

checking overhead is less than 0.7 ms for each contract and

bound inference (can be performed off-chain) takes less than

10 ms. Moreover, gas bounds are tight for most contracts. To

the best of our knowledge, this is the first implementation to

integrate shared binary session types into a functional language

with support for resource analysis.
To simplify programming and make Nomos accessible to

digital contract developers, we (i) developed an intuitive

surface syntax particularly related to the contextual monad

integrating session types into a functional core; (ii) used a bi-

directional type checker with a particular focus on improving

the quality of error messages to guide the programmer to locate

the source of the error; (iii) used an off-the-shelf LP solver to

automatically infer channel modes and potential annotations so

that the burden of inference does not fall on the programmer.
Our main technical contributions are:

• design of Nomos, a language that addresses the domain-

specific requirements of digital contracts by construction;

• a fine-tuned system of typing judgments (Section IV) that

uses modes to orchestrate the sound integration of session

types (Section III), functions (Section V), and resource

analysis (Section VI);

• extension of shared session types to store linear assets;

• resource cost amortization by allowing gas storage in

internal data structures (Section VI);

• type safety proof of Nomos using a novel asynchronous

cost semantics (Section VII);

• a prototype implementation and case study of prominent

blockchain applications (Section VIII);

• a transactional semantics to deploy and execute Nomos

contracts and transactions on a blockchain (Section IX).

In addition, the technical report [26] details the technical

development, provides additional explanations and the full

implementation of the blockchain applications.

II. NOMOS BY EXAMPLE

This section provides an overview of the main features of

Nomos based on a simple auction contract.

Explicit Protocols of Interaction: Digital contracts,

like traditional contracts, follow a predefined protocol. For

instance, an auction contract distinguishes a bidding phase,

where bidders submit their bids, possibly multiple times,

from a subsequent collection phase, where the highest bidder

receives the lot while all other bidders receive their bids back.

In Solidity [4], the bidding phase of an auction is typically

implemented as the bid function below. This function receives

a bid (msg.value) from a bidder (msg.sender) and adds it to

the bidder’s total previous bids (bidValue).

function bid() public payable {

require (status == running);

bidder = msg.sender;

bid = msg.value;

bidValue[bidder] = bidValue[bidder] + bid; }

To guarantee that a bid can only be placed in the bidding

phase, the contract uses the state variable status to track the

different phases of a contract. The require statement tests

whether the auction is still running and thus accepts bids. It is

checked at run-time and aborts the execution if the condition

is not met. It is the responsibility of the programmer to define

state variables, update them, and introduce guards.

Rather than burying the contract’s interaction protocol in

implementation code by means of state variables and run-

time checks, Nomos allows the explicit expression and static

enforcement of protocols with session types. The auction’s

protocol amounts to the following recursive session type:

stype auction =
↑SL/

22 ⊕ {running : N{bid : id→ money (↓SLauction,
cancel : .21↓SLauction},

ended : N{collect : id→ ⊕{won : lot⊗ ↓SLauction,
lost : money ⊗ .7↓SLauction},

cancel : .21↓SLauction}}

We first focus on how the session type defines the main

interactions of a contract with a bidder and ignore the operators

↑SL, ↓SL, /, and . for now. To distinguish the two main phases

an auction can be in, the session type uses an internal choice

(⊕), leading the contract to either send the label running or

ended, depending on whether the auction still accepts bids

or not, respectively. Dual to an internal choice is an external

choice (N), which leaves the choice to the client (i.e., bidder)

rather than the provider (i.e., contract). For example, in case

the auction is running, the client can choose between placing

a bid (label bid) or backing out (cancel). In the former case,

the client indicates their identifier (type id), followed by a

payment (type money). Nomos session types allow transfer

of both non-linear (e.g., id) and linear assets (e.g., money),

using the operators arrow (→) and ((), respectively. Should

the auction have ended, the client can choose to check their

outcome (label collect) or back out (cancel). In the case of

collect, the auction will answer with either won or lost. In

the former case, the auction will send the lot, in the latter

case, it will return the client’s bid. The linear product (⊗) is

dual to (and denotes the transfer of a linear value from the

contract to the client. The auction type guarantees that a client

cannot collect during the running phase, while they cannot

bid during the ended phase.
Nomos uses shared session types [24] to guarantee that

bidders interact with the auction in mutual exclusion from

each other and that the sequences of actions are executed

atomically. To demarcate the parts of the protocol that become

a critical section, the above session type uses the ↑SL and ↓SL
modalities. The ↑SL modality denotes the beginning of a critical

section, the ↓SL modality denotes its end. Programmatically, ↑SL
translates into an acquire of the auction session and ↓SL into

its release, which is only sound if the protocol behaves like

an auction afterwards (equi-synchronizing type).
Contracts are implemented by processes, revealing the con-

current, message-passing nature of session-typed languages.
The process run below implements the auction’s running
phase. Line 3 gives the process’ signature, indicating that
it offers a shared session of type auction along the channel
sa and uses a linear hash map b : hashmap〈id, bid〉 of bids
indexed by id and a linear lot l. Line 5 onward list the
process body. Lines 1,2 define session types bid and bids,
respectively.

1: stype bid = N{addr : id ∧ bid,val : money}
2: stype bids = hashmap〈id, bid〉
3: (b : bids), (l : lot) ` run :: (sa : auction)
4: sa← run← b l =
5: la← accept sa ;
6: la.running ;
7: case la (bid⇒ r ← recv la ;
8: m← recv la ;
9: sa← detach la ;

10: b′ ← addbid r ← b m ;
11: sa← check← b′ l
12: | cancel⇒ sa← detach la ;
13: sa← run← b l)

The contract process first accepts an acquire request by a

bidder (line 5) and then sends the message running (line 6),

indicating the auction status and waiting for the bidder’s

choice. Should the bidder choose to make a bid, the process

waits to receive the bidder’s identifier (line 7) followed by

money equivalent to the bidder’s bid (line 8). Internally, the

process stores the pair of the bidder’s identifier and bid in

the data structure bids (line 10). After this linear exchange,

the process leaves the critical section by issuing a detach

(line 9), matching the bidder’s release request, and tail calls the

check process (line 11) that compares the number of bidders

with a threshold. If the threshold is exceeded, the contract

transitions to the ended phase implemented by a different

process, otherwise the run process is called again.
Linear Assets: Nomos integrates a linear type system

that tracks the assets stored in a process. The type system

enforces that assets are never duplicated, but only exchanged

between processes. Moreover, the type system prevents a

process from terminating while it holds linear assets. For

example, the auction contract treats money and lot as linear

assets, which is witnessed by the use of the linear operators

(and ⊗ for their exchange. In contrast, no provisions to

handle assets linearly exist in Solidity, allowing such assets

to be created out of thin air, duplicated, or discarded. In the

above bid function, for instance, the language does not prevent

the programmer from writing bidValue[bidder] = bid instead,

losing the bidder’s previous bid.

Re-Entrancy Vulnerabilities: A contract function is re-

entrant if, once called by a user, it can potentially be called

again before the previous call has completed. As an illustra-

tion, consider the below collect function of the auction contract

in Solidity where the funds are transferred to the bidder before

the hash map is updated to reflect this change.

1 function collect() public payable {

2 require (status == ended);

3 bidder = msg.sender;

4 bid = bidValue[bidder];

5 bidder.send(bid);

6 bidValue[bidder] = 0; }

7
8 function () payable {

9 auction.collect(); }

A bidder can now cause re-entrancy by creating a dummy

contract with an unnamed fallback function (line 9) that calls

the auction’s collect function. This call is triggered when

collect calls send (line 5), leading to an infinite recursive

call to collect, depleting all funds from the auction. The

message-passing framework of session types eliminates this

vulnerability. While session types provide multiple clients

access to a contract, the acquire-release discipline ensures

that clients interact with the contract in mutual exclusion. To

attempt re-entrancy, a bidder will need to acquire the auction

contract twice without releasing it, but the second acquire

would fail to execute.

Resource Cost: Another important aspect of digital con-

tracts is their resource usage. On a blockchain, executing

a contract function, or transaction, requires new blocks to

be added to the blockchain. In existing blockchains like

Ethereum, this is done by miners who charge a fee based

on the gas usage of the transaction, indicating the cost of its

execution. Precisely computing this cost is important because

the sender of a transaction must pay this fee to the miners. If

the sender does not pay a sufficient amount, the transaction

will be aborted by the miners and the sender’s fee is lost!

Nomos uses resource-aware session types [27] to statically

analyze the resource cost of a transaction. They operate by

assigning an initial potential to each process. This potential

is consumed by each operation that the process executes or

can be transferred between processes to share and amortize

cost. The cost of each operation is defined by a cost model. If

the cost model assigns a cost to each operation equivalent to

their gas cost during execution, the potential consumed during

a transaction reflects an upper bound on the gas usage.

Resource-aware session types express the potential as part

of the session type using the operators / and .. The / operator

prescribes that the client must send potential to the contract,

with the amount of potential indicated as a superscript. Dually,

. prescribes that the contract must send potential to the client.

In case of the auction contract, we require the client to pay

potential for the operations that the contract must execute,

both while placing and collecting their bids. If the cost model

assigns a cost of 1 to each contract operation, then the

maximum cost of an auction session is 22 (taking the max

number of operations in all branches). Thus, we require the

client to send 22 units of potential at the start of the auction

session type using /22. In the lost branch of the auction type,

on the other hand, the contract returns 7 units of potential to

the client using .7. This mirrors gas usage in smart contracts,

where the sender initiates a transaction with some initial gas,

and the leftover gas at the end of the transaction is returned to

the sender. In contrast to existing smart contract languages like

Solidity, which provide no support for analyzing the cost of a

transaction, Nomos’ type checker has automatically inferred

these potential annotations and guarantees that well-typed

transactions cannot run out of gas. Thus, Nomos enforces static

gas bounds on transactions without burdening the programmer

to infer them.

Bringing It All Together: Combining all these features

soundly in one language is challenging. In Nomos, we achieve

this by using different typing judgments and channel modes,

identifying the role of the process offered along that channel.

The mode R denotes purely linear processes for linear assets

or private data structures, such as b and l in the auction. The

modes S and L denote sharable processes, i.e., contracts, that

are either in their shared or linear phase such as sa and la,

respectively. The mode T denotes a transaction process that

can refer to shared and linear processes and is issued by a

user, such as bidder in the auction. Modes are assigned to

each channel and are carried over into the process typing

judgments imposing invariants (Definition 1) that are key

to type safety. To simplify programming, Nomos’ inference

engine automatically infers the channel modes, thus relieving

the programmer from the burden of annotating each channel

with its respective mode.

III. BASE SYSTEM OF SESSION TYPES

Nomos builds on linear session types for message-passing

concurrency [11]–[14], [17] and, in particular, on the line of

works that have a logical foundation due to the existence of a

Curry-Howard correspondence between linear logic [23] and

the session-typed π-calculus [14], [17]. Linear propositions

can be viewed as resources that must be used exactly once

in a proof. Under the Curry-Howard correspondence, an intu-

itionistic linear sequent A1, A2, . . . , An ` C can be interpreted

as the offer of a session C by a process P using the sessions

A1, A2, . . . , An

(x1 : A1), (x2 : A2), . . . , (xn : An) ` P :: (z : C)

We label each antecedent as well as the conclusion with the

name of the channel along which the session is provided. The

xi’s correspond to channels used by P , and z is the channel

provided by P . As is standard, we use the linear context ∆ to

combine multiple assumptions.

For the typing of processes in Nomos, we extend the above

judgment with two additional contexts (Ψ and Γ), a resource

annotation q, and a mode m of the offered channel:

Ψ ; Γ ; ∆ `
q
P :: (xm : A)

We will gradually introduce each concept in the remainder

of this article. For future reference, we show the complete

typing rules, with additional contexts, resource annotations,

and modes henceforth, but highlight the parts that will be

discussed in later sections in blue.

The Curry-Howard correspondence gives each linear logic

connective an interpretation as a session type:

A,B ::= ⊕{` : A}`∈K | N{` : A}`∈K

| A (m B | A⊗m B | 1

Each type prescribes the kind of message that must be sent

or received along a channel of that type and at which type

the session continues after the exchange. Types are defined

mutually recursively in a global signature.

Following previous work on session types [15], [16], the

process expressions of Nomos are defined as follows.

P ::= x.l ; P | case x (`⇒ P)`∈K | x← y | close x
| wait x ; P | send x w ; P | y ← recv x ; P

Because we adopt the intuitionistic version of linear logic,

session types are expressed from the point of view of the

provider. Table I provides the viewpoint of the provider in

the first line, and that of the client in the second line for

each connective. Columns 1 and 3 describe the session type

and process term before the interaction. Columns 2 and 4

describe the type and term after the interaction. The last

column describes the provider and client action. Figure 1

provides selected typing rules. As an illustration of the statics

and semantics, we explain the internal choice (⊕) connective.

Internal Choice: The linear logic connective A ⊕ B
has been generalized to n-ary labeled sum ⊕{` : A`}`∈K .

A process that provides x : ⊕{` : A`}`∈K can send any label

l ∈ K along x and then continues by providing x : Al. The

corresponding process term is written as (x.l ; P), where P
is the continuation. A client branches on the label received

along x using the term case x (`⇒ Q`)`∈K . The typing rules

for the provider and client are ⊕R and ⊕L, respectively, in

Figure 1.

The operational semantics is formalized as a system of

multiset rewriting rules [28]. We introduce semantic objects

proc(cm, w, P) and msg(cm, w,N) denoting process P and

message N , respectively, being provided along channel c
at mode m. The resource annotation w indicates the work

performed so far, the discussion of which we defer to Sec-

tion VI. Communication is asynchronous, allowing the sender

(cm.l ; P) to continue with P without waiting for l to be

received. As a technical device to ensure that consecutive

messages arrive in the order they were sent, the sender also

creates a fresh continuation channel c+m so that the message

Session Type Continuation Process Term Continuation Description

c : ⊕{` : A`}`∈L c : Ak c.k ; P P provider sends label k along c
case c (`⇒ Q`)`∈L Qk client receives label k along c

c : N{` : A`} c : Ak case c (`⇒ P`)`∈L Pk provider receives label k along c
c.k ; Q Q client sends label k along c

c : A⊗B c : B send c w ; P P provider sends channel w : A on c
y ← recv c ; Qy [w/y]Qy client receives channel w : A on c

c : A (B c : B y ← recv c ; Py [w/y]Py provider receives channel w : A on c
send c w ; Q Q client sends channel w : A on c

c : 1 − close c − provider sends end along c
wait c ; Q Q client receives end along c

TABLE I: Overview of binary session types with their operational description

Ψ ; Γ ; ∆ `
q
P :: (xm : A)

Process P uses linear channels in
∆, and provides type A along x.

Ψ ; Γ ; ∆ `
q
P :: (xm : Al) (l ∈ K)

Ψ ; Γ ; ∆ `
q
xm.l ; P :: (xm : ⊕{` : A`}`∈K)

⊕R

Ψ ; Γ ; ∆, (xm : A`) `
q
Q` :: (zk : C) (∀` ∈ K)

Ψ ; Γ ; ∆, (xm : ⊕{` : A`}`∈K) `
q
case xm (`⇒ Q`) :: (zk : C)

⊕L

q = 0

Ψ ; Γ ; (ym : A) `
q
xm ← ym :: (xm : A)

fwd

Fig. 1: Selected typing rules for process communication

l is actually represented as (cm.l ; cm ← c+m) (read: send l
along cm and continue as c+m):

(⊕S) : proc(cm, w, cm.l ; P) 7→
proc(c+m, w, [c+m/cm]P),msg(cm, 0, cm.l ; cm ← c+m)

Receiving the message l corresponds to selecting branch Ql

and substituting continuation c+ for c:

(⊕C) : msg(cm, w, cm.l ; cm ← c+m), proc(dk, w
′, case cm

(`⇒ Q`)`∈K) 7→ proc(dk, w + w′, [c+m/cm]Ql)

The message msg(cm, w, cm.l ; cm ← c+m) is just a

particular form of process. Therefore, no separate typing rules

for messages are needed; they can be typed as processes [24].

Channel Passing.: Nomos allows the exchange of chan-

nels over channels, also referred to as higher-order channels.

A process providing A (n B can receive a channel of

type A at mode n and then continue with providing B. The

provider process term is (yn ← recv xm ; P), where P is

the continuation. The corresponding client sends this channel

using (send xm wn ; Q). The dual type operator A ⊗n B
requires the provider to send a channel of type A at mode

n and then continue with providing B. The client receives

this channel and continues to use B. An important distinction

from standard session types is that the (and ⊗ types are

decorated with the mode m of the channel exchanged. Since

modes distinguish the status of the channels in Nomos, this

mode decoration is necessary to ensure type safety.
Forwarding: A forwarding process xm ← ym (which

provides channel x) identifies channels x and y (both at mode

m) so that any further communication along x or y occurs on

the unified channel. The typing rule fwd is given in Figure 1

and corresponds to the logical rule of identity.

(id+C) : msg(dm, w′, N), proc(cm, w, cm ← dm) 7→
msg(cm, w + w′, [cm/dm]N)

(id−C) : proc(cm, w, cm ← dm),msg(ek, w
′, N(cm)) 7→

msg(ek, w + w′, N(dm))

Operationally, a process c ← d forwards any message N
that arrives along d to c and vice versa. Since linearity ensures

that every process has a unique client, forwarding results in

terminating the forwarding process and corresponding renam-

ing of the channel in the client process.
Process and Type Definitions: Process definitions have

the form Ψ ; Γ ; ∆ `
q
f = P :: (xm : A) where f is the name

of the process and P its definition. All definitions are collected

in a fixed global signature Σ. We require well-typedness,

i.e., Ψ ; Γ ; ∆ `
q
f = P :: (xm : A) for every definition,

which allows the definitions to be mutually recursive. For

readability of the examples, we break a definition into two

declarations, one providing the type (top) and the other the

process definition (bottom) binding the variables xm and those

in Ψ, Γ and ∆ (omitting their types):

Ψ ; Γ ; ∆ `
q
f = P :: (xm : A)

xm ← f Ψ← Γ ; ∆ = P

A new instance of a defined process f can be spawned with

the expression xm ← f y1 ← y2 ; Q where y1 is a sequence

of functional variables matching the antecedents Ψ and y2
is a sequence of channels matching the antecedents Γ ; ∆.

The newly spawned process will use all variables in y1 and

channels in y2 and provide xm to the continuation Q. The

operational semantics is defined by

(defC) : proc(ck, w, xm ← f d← e ; Q) 7→

proc(am, 0, [am/xm, d/Ψ, e/Γ ∆]P),

proc(ck, w, [am/xm]Q)

where am is a fresh channel. Here we write [d/Ψ] and [e/Γ ∆]
to denote substitution of the variables in d and e for the

corresponding variables in Ψ and Γ ; ∆ respectively in that

order. Sometimes a process invocation is a tail call, written

without a continuation as xm ← f y1 ← y2. This is a short-

hand for x′

m ← f y1 ← y2 ; xm ← x′

m for a fresh variable

x′

m, that is, we create a fresh channel and immediately identify

it with xm (although it is implemented more efficiently).

Session types can be naturally extended to include recursive

types. For this purpose we allow (possibly mutually recursive)

type definitions X = A in the signature, where we require A
to be contractive [29]. This means here that A should not

itself be a type name. Our type definitions are equi-recursive

so we can silently replace X by A during type checking, and

no explicit rules for recursive types are needed.

IV. SHARING CONTRACTS

Multi-user support is fundamental to digital contract de-

velopment. Linear session types, as defined in Section III,

unfortunately preclude such sharing because they restrict pro-

cesses to exactly one client; only one bidder for the auction,

for instance (who will always win!). To support multi-user

contracts, we base Nomos on shared session types [24]. Shared

session types impose an acquire-release discipline on shared

processes to guarantee that multiple clients interact with a

contract in mutual exclusion of each other. When a client

acquires a shared contract, it obtains a private linear channel

along which it can communicate with the contract undisturbed

by any other clients. Once the client releases the contract,

it loses its private linear channel and only retains a shared

reference to the contract.

A key idea of shared session types is to lift the acquire-

release discipline to the type level. Generalizing the idea of

type stratification [16], [30], [31], session types are stratified

into a linear and shared layer with two adjoint modalities going

back and forth between them:

AS ::= ↑SL AL shared session type

AL ::= . . . | ↓SL AS linear session types

The ↑SL type modality translates into an acquire, while the dual

↓SL type modality into a release. Whereas mutual exclusion is

one key ingredient to guarantee type preservation for shared

session types, the other key ingredient is the requirement that

a session type is equi-synchronizing. A session type is equi-

synchronizing if it imposes the invariant on a process to be

released back to the same type at which the process was

previously acquired. This is the key behind eliminating re-

entrancy attacks since it prevents a user from interrupting an

ongoing session in the middle and initiating a new one. In the

Nomos typing judgment Ψ ; Γ ; ∆ `
q
P :: (xm : A), the

contexts Γ and ∆ store the shared and linear channels that

P can refer to, respectively. The stratification of channels into

layers arises from a difference in structural properties that exist

for types at a mode. Shared propositions exhibit weakening,

AR ::= ⊕{` : AR}`∈L | N{` : AR}`∈L | Am (m AR

| Am ⊗m AR | τ → AR | τ ∧AR | 1
AL ::= ⊕{` : AL}`∈L | N{` : AL}`∈L | Am (m AL

| Am ⊗m AL | τ → AL | τ ∧AL | 1 | ↓
S
L AS

AS ::= ↑SL AL

AT ::= AR

Fig. 2: Grammar for shared session types

contraction and exchange, thus can be discarded or duplicated,

while linear propositions only exhibit exchange.

Allowing Contracts to Rely on Linear Assets: As

exemplified by the auction contract, a digital contract typically

amounts to a process that is shared at the outset, but oscillates

between shared and linear to interact with clients, one at a

time. Crucial for this pattern is the ability of a contract to

maintain its linear assets (e.g., money or lot for the auction)

regardless of its mode. Unfortunately, current shared session

types [24] do not allow a shared process to rely on any linear

channels, requiring any linear assets to be consumed before

becoming shared. This precaution was logically motivated [32]

and also crucial for type preservation.

A key novelty of our work is to lift this restriction while

maintaining type preservation. To this end, we factorize the

process typing judgment according to the three roles that

arise in digital contract programs: contracts, transactions, and

linear assets. Since contracts oscillate between shared and

linear modes (due to acquire/release), we get 4 sub-judgments

for typing processes, each characterized by the mode of the

channel being offered.

Definition 1 (Process Typing). The judgment Ψ ; Γ ; ∆ `
q

P :: (xm : A) is categorized according to mode m imposing

certain invariants on the judgment. L(A) denotes the language

generated by the grammar of A.

1) If m = R, then (i) Γ is empty, (ii) for all dk ∈ ∆ =⇒
k = R, and (iii) A ∈ L(AR).

2) If m = S, then (i) for all dk ∈ ∆ =⇒ k = R, and (ii)

A ∈ L(AS).
3) If m = L, then (i) for all dk ∈ ∆ =⇒ k = R ∨ k = L,

and (ii) A ∈ L(AL).
4) If m = T, then A ∈ L(AT).

Figure 2 shows the session type grammar in Nomos. The

first sub-judgment in Definition 1 is for typing linear assets.

These type a purely linear process P using a purely linear

context ∆ (channels at mode R and types belonging to gram-

mar AR in Figure 2) and offering a purely linear type A along

channel xR. The mode R of the channel indicates that a purely

linear session is offered. The second and third sub-judgments

are for typing contracts. The second sub-judgment shows the

type of a contract process P using a shared context Γ and a

purely linear channel context ∆ and offering shared type A on

the shared channel xS. Once this shared channel is acquired by

a user, the shared process transitions to its linear phase, whose

Ψ ; Γ ; ∆ `
q
P :: (xm : A)

Process P uses shared channels in
Γ and offers A along x.

Ψ ; Γ ; ∆, (xL : AL) `
q
Q :: (zm : C)

Ψ ; Γ, (xS :↑S
L
AL) ; ∆ `

q
xL ← acquire xS ; Q :: (zm : C)

↑S
L
L

∆ purelin Ψ ; Γ ; ∆ `
q
P :: (xL : AL)

Ψ ; Γ ; ∆ `
q
xL ← accept xS ; P :: (xS :↑S

L
AL)

↑S
L
R

Fig. 3: Typing rules corresponding to the shared layer.

typing is governed by the third sub-judgment. The offered

channel transitions to linear mode L, while the linear context

may now contain channels at modes R or L. Finally, the fourth

typing judgment types a linear process, corresponding to a

transaction holding access to shared channels Γ and linear

channels ∆, and offering at mode T.

This novel factorization upholds preservation while allow-

ing shared contract processes to rely on linear resources. The

modes impose the ordering R < S < L < T among the

channels in the configuration. A process (offering a channel)

at a certain mode is allowed to rely only on processes at the

same or lower mode. These are exactly the conditions imposed

by Definition 1. This introduces an implicit ordering among

the linear processes depending on their mode, ensuring that no

cyclic dependencies can arise among processes and imposing

a tree structure on the process configuration. Relatedly, shared

processes can only refer to shared channels (at mode S) or

purely linear channels (at mode R) as exemplified by the

judgment ∆ purelin in Figure 3. Formally, ∆ purelin denotes

that for all dk ∈ ∆ =⇒ k = R. This ensures that a shared

contract must release all processes it has acquired before itself

being released. This further enforces an ordering in which the

channels are acquired and released, thus allowing contracts to

interact with other contracts without compromising type safety.

Shared session types introduce new typing rules into our

system, concerning the acquire-release constructs (see Figure

3). An acquire is applied to the shared channel xS along

which the shared process offers and yields a linear channel

xL when successful. A contract process can accept an acquire

request along its offering shared channel xS. After the accept is

successful, the shared contract process transitions to its linear

phase, now offering along the linear channel xL. To accept

an acquire request, the contract must only contain channels

at mode R (indicated by ∆ purelin), in accordance with

Definition 1. This premise is crucial to type preservation, since

it ensures that a contract has not acquired another contract

while it is accepting an acquire request itself. Implicitly, this

imposes an order on the acquire of contracts, and the inverse

order is followed for their release. The dual to acquire-accept is

release-detach. A client can release linear access to a contract

process, while the contract process detaches from the client.

V. ADDING A FUNCTIONAL LAYER

To support general-purpose programming patterns, Nomos

combines linear channels with conventional data structures,

such as integers, lists, or dictionaries. To reflect and track

different classes of data in the type system, we take inspiration

from prior work [15], [16] and incorporate processes into a

functional core via a linear contextual monad that isolates

session-based concurrency. To this end, we introduce a sepa-

rate functional context to the typing of a process. The linear

contextual monad encapsulates open concurrent computations,

which can be passed in functional computations but also

transferred between processes in the form of higher-order

processes, providing a uniform integration of higher-order

functions and processes.

The types are separated into a functional and concurrent

part, mutually dependent on each other. The functional types

τ are given by the type grammar below.

τ ::= τ → τ | τ + τ | τ × τ | int | bool | Lq(τ)
| {AR ← AR}R | {AS ← AS ; AR}S | {AT ← AS ; A}T

The types are standard, except for the potential annotation

q ∈ N in list type Lq(τ), which we explain in Section VI, and

the contextual monadic types in the last line, which are the

topic of this section. The expressivity of the types and terms

in the functional layer are not important for the development

in this paper. Thus, we do not formally define functional

terms M but assume that they have the expected term formers

such as function abstraction and application, type constructors,

and pattern matching. We define a standard judgment for the

functional part of the language.

Ψ

p
M : τ term M has type τ in functional context Ψ

Contextual Monad: The main novelty in the functional

types are the three type formers for contextual monads, denot-

ing the type of a process expression. The type {AR ← AR}R
denotes a process offering a purely linear session type AR and

using the purely linear vector of types AR. The corresponding

introduction form in the functional language is the monadic

value constructor {cR ← P ← dR}, denoting a runnable

process offering along channel cR that uses channels dR, all

at mode R. The corresponding typing rule for the monad is

{}IR in Figure 4 (ignore the blue portions).

The monadic bind operation implements process compo-

sition and acts as the elimination form for values of type

{AR ← AR}R. The bind operation, written as cR ← M ←
dR ; Qc, composes the process underlying the monadic term

M , which offers along channel cR and uses channels dR, with

Qc, which uses cR. The typing rule for the monadic bind is

rule {}ERR in Figure 4. The context ∆ is split between the

monad M and continuation Q, enforcing linearity. Similarly,

the potential in the functional context is split using the sharing

judgment (.), explained in Section VI. The shared context

Γ is empty in accordance with the invariants established in

Definition 1 (i), since the mode of offered channel z is R.

The effect of executing a bind is the spawn of the purely

linear process corresponding to the monad M , and the parent

process continuing with Q.

(↑SL C) : proc(dR, w, xR ← {x
′

R ← Px′

R
,y ← y} ← a ; Q) 7→

proc(cR, 0, PcR,a), proc(dR, w, [cR/xR]Q)

Ψ ; Γ ; ∆ `
q
P :: (xm : A)

Process P uses functional values
in Ψ, and provides A along x.

∆ = dR : D Ψ ; · ; ∆ `
q
P :: (xR : A)

Ψ

q
{xR ← P ← dR} : {A← D}R

{}IR

r = p+ q ∆ = dR : D Ψ . (Ψ1,Ψ2)
Ψ1

p
M : {A← D} Ψ2 ; · ; ∆′, (xR : A) `

q
Q :: (zR : C)

Ψ ; · ; ∆,∆′ `
r
xR ←M ← dR ; Q :: (zR : C)

{}ERR

Ψ, (y : τ) ; Γ ; ∆ `
q
P :: (xm : A)

Ψ ; Γ ; ∆ `
q
y ← recv xm ; P :: (xm : τ → A)

→ R

r = p+ q Ψ . (Ψ1,Ψ2) Ψ1

p
M : τ

Ψ2 ; Γ ; ∆, (xm : A) `
q
Q :: (zk : C)

Ψ ; Γ ; ∆, (xm : τ → A) `
r
send xm M ; Q :: (zk : C)

→ L

Fig. 4: Typing rules corresponding to the functional layer.

The above rule spawns the process P offering along a

globally fresh channel cR, and using channels a. The con-

tinuation process Q acts as a client for this fresh channel

cR. The other two monadic types correspond to spawning a

shared process {AS ← AS ; AR}S and a transaction process

{AT ← AS ; A}T at mode S and T, respectively. Their

rules are analogous to {}IR and {}ERR and described in the

technical report [26].

Value Communication: Communicating a value of the

functional fragment along a channel is expressed at the type

level by adding the following two session types.

A ::= . . . | τ → A | τ ∧A

The type τ → A prescribes receiving a value of type τ with

continuation type A, while its dual τ ∧A prescribes sending a

value of type τ with continuation A. The corresponding typing

rules for arrow (→ R,→ L) are given in Figure 4 (rules for ∧
are inverse). As indicated in the → R rule, receiving a value

y : τ on a channel x : τ → A adds it to the functional context

Ψ. On the other hand, sending M on channel x : τ → A
requires that M has type τ (third premise).

Tracking Linear Assets: As an illustration, consider the

type money introduced in the auction example (Section II).

The type is an abstraction over funds stored in a process and

is described as

stype money =
N{value : int ∧money,

add : money (R money,
subtract : int→ ⊕{sufficient : money ⊗R money,

insufficient : money}
coins : listcoin}

The type supports querying for value, and addition and sub-

traction. The type also expresses insufficiency of funds in

the case of subtraction. The provider process only supplies

money to the client if the requested amount is less than the

current balance, as depicted in the sufficient label. The type

is implemented by a wallet process that internally stores a

linear list of coins and an integer representing its value. The

technical report [26] contains its code and explanation.

VI. TRACKING RESOURCE USAGE

The predominant approach for tracking resource cost on

blockchains like Ethereum is to introduce a cost model that

defines the gas consumption of low level operations. A trans-

action needs to be executed and validated before adding it to

the global distributed ledger, i.e., blockchain. This validation

is performed by miners, who charge fees based on the gas

consumption of the transaction. This fee has to be estimated

and provided by the sender prior to the transaction.

It is not trivial to decide on the right amount for the fee

since the gas cost of the contract does not only depend on the

requested transaction but also on the (a priori unknown) state

of the blockchain. Thus, precise and static estimation of gas

cost facilitates transactions and reduces risks. We discuss our

approach of tracking resource usage, both at the functional and

process layer. Our technique is parametric in the cost model

applied by the programmer, thus making it directly applicable

for gas cost analysis. The programmer only needs to specify

the gas cost of each primitive operation, and our type system

infers the corresponding gas bound of a transaction.

Functional Layer: Numerous techniques have been pro-

posed to statically derive resource bounds for functional pro-

grams [33]–[37]. In Nomos, we adapt the work on automatic

amortized resource analysis (AARA) [18], [20] that has been

implemented in Resource Aware ML (RaML) [21]. RaML can

automatically derive worst-case resource bounds for higher-

order polymorphic programs with user-defined inductive types.

The derived bounds are multivariate resource polynomials of

the size parameters of the arguments.

As an illustration, consider the function apply that iterates

over a list of balances and applies interest on each element,

multiplying them by a constant c. We use tick annotations to

define the resource usage of an expression in this article. One

tick operation realizes a cost of 1. We have annotated the code

to count the number of multiplications. The resource usage of

an evaluation of apply b is len(b).

let rec apply balances =

match balances with

| [] -> []

| hd::tl -> tick(1); (c*hd)::(apply tl)

The idea of AARA is to decorate base types with potential

annotations that define a potential function as in amortized

analysis. The typing rules ensure that the potential before

evaluating an expression is sufficient to cover the cost of the

evaluation and the potential defined by the return type. This

posterior potential can then be used to pay for resource usage

in the continuation of the program. For example, we can derive

the following resource-annotated type.

apply : L1(int) −−−→0/0 L0(int)

The type L1(int) denotes a list of integers assigning a unit

potential to each element in the list. The return value, on the

other hand, has no potential. The annotation on the function

arrow indicates that we do not need any potential to call the

function and that no constant potential is left after the function

call has returned. These annotations need not be provided

by the programmer and can be inferred automatically by an

off-the-shelf LP solver, even if the potential functions are

polynomial [20], [21].

In Nomos, we simply adopt the standard typing judgment

of AARA for functional programs: Ψ

q
M : τ . It states

that under the resource-annotated functional context Ψ, with

constant potential q, the expression M has the resource-aware

type τ . The operational cost semantics is defined by M ⇓ V |
µ which states that the closed expression M evaluates to the

value V with cost µ. More details about AARA can be found

in the literature [18], [21] and the technical report [26].
Process Layer: To bound the resource usage of a pro-

cess, Nomos features resource-aware session types [27] for

work analysis. Resource-aware session types describe resource

contracts for inter-process communication. The type system

supports amortized analysis by assigning potential to both

messages and processes. As an illustration, consider the fol-

lowing resource-aware list interface from prior work [27].

listA = ⊕{nil0 : 10, cons1 : A
0

⊗ listA}

The type prescribes that the provider of listA must send one

unit of potential with every cons message that it sends. Dually,

a client of this list will receive a unit potential with every cons

message. All other type constructors are marked with potential

0, and exchanging the corresponding messages does not lead

to transfer of potential.

While resource-aware session types in Nomos are equivalent

to the existing formulation [27], our version is simpler and

more streamlined. Instead of requiring every message to carry

a potential (and potentially tagging several messages with

0 potential), we introduce two new type constructors for

exchanging potential.

A ::= . . . | .rA | /rA

The type .rA requires the provider to pay r units of potential

which are transferred to the client. Dually, the type /rA
requires the client to pay r units of potential that are received

by the provider. Thus, the reformulated list type becomes

listA = ⊕{nil : 1, cons : .1 A⊗ listA}

With all aspects introduced, the process typing judgment

Ψ ; Γ ; ∆ `
q
P :: (xm : A)

denotes a process P accessing functional variables in Ψ,

shared channels in Γ, linear channels in ∆, offers service of

type A along channel x at mode m and stores a non-negative

constant potential q. The expressing typing judgment

Ψ

p
M : τ

denotes that expression M has type τ in the presence of

functional context Ψ and potential p.

Figure 5 shows the rules that interact with the potential

annotations. In the rule /R, process P storing potential q

Ψ ; Γ ; ∆ `
q
P :: (xm : A)

Process P has potential q and pro-
vides type A along channel x.

p = q + r Ψ ; Γ ; ∆ `
p
P :: (xm : A)

Ψ ; Γ ; ∆ `
q
get xm {r} ; P :: (xm : /rA)

/R

q = p+ r Ψ ; Γ ; ∆, (xm : A) `
p
P :: (zk : C)

Ψ ; Γ ; ∆, (xm : /rA) `
q
pay xm {r} ; P :: (zk : C)

/L

q = p+ r Ψ ; Γ ; ∆ `
p
P :: (xm : A)

Ψ ; Γ ; ∆ `
q
tick (r) ; P :: (xm : A)

tick

Fig. 5: Selected typing rules corresponding to potential.

receives r units along the offered channel xm : /rA using the

get construct and the continuation executes with p = q+r units

of potential. In the dual rule /L, a process storing potential

q = p+r sends r units along the channel xm : /rA in ∆ using

the pay construct, and the continuation remains with p units

of potential. The typing rules for the dual constructor .rA
are the exact inverse. Finally, executing the tick (r) construct

consumes r potential from the stored process potential q, and

the continuation remains with p = q− r units, as described in

the tick rule.

The tick construct is used to simulate a cost model in

Nomos. If an operation (e.g., sending a message, calling a

function, etc.) has a cost of r, this cost is simulated by inserting

tick (r) just before the operation. Then, the tick operations

are the only ones that cost potential, thus simplifying the type

system. These tick operations are automatically inserted by

the Nomos type checker, using a predefined cost model that

assigns a constant cost to each operation. The programmer is

not allowed to insert their own tick operations, and cannot ma-

liciously change the gas cost. In addition, our implementation

provides some standard cost models that, for instance, assign

a unit cost to each operation.

Integration: Since both AARA for functional programs

and resource-aware session types are based on the integra-

tion of the potential method into their type systems, their

combination is natural. The two points of integration of the

functional and process layer are (i) spawning a process, and (ii)

sending/receiving a value from the functional layer. Recall the

spawn rule {}ERR from Figure 4. A process storing potential

r = p+ q can spawn a process corresponding to the monadic

value M , if M needs p units of potential to evaluate, while the

continuation needs q units of potential to execute. Moreover,

the functional context Ψ is shared in the two premises as Ψ1

and Ψ2 using the judgment Ψ . (Ψ1,Ψ2). This judgment,

explored in prior work [21] describes that the base types in Ψ
are copied to both Ψ1 and Ψ2, but the potential is split up. For

instance, Lq1+q2(τ) . (Lq1(τ), Lq2(τ)). The rule→L follows

a similar pattern. Thus, the combination of the two type

systems is smooth, assigning a uniform meaning to potential,

both for the functional and process layer. Remarkably, this

technical device of exchanging functional values can be used

to exchange non-constant potential with messages.

Operational Cost Semantics: The resource usage of

a process (or message) is tracked in semantic objects

proc(c, w, P) and msg(c, w,N) using the local counters w.

This signifies that the process P (or message N) has per-

formed work w so far. The rules of that explicitly affect the

work counter are

M ⇓ V | µ

proc(cm, w, P [M]) 7→ proc(cm, w + µ, P [V])
internal

This rule describes that if an expression M evaluates to V
with cost µ, then the process P [M] depending on monadic

expression M steps to P [V], while the work counter incre-

ments by µ, denoting the total number of internal steps taken

by the process. At the process layer, the work increments on

executing a tick operation.

proc(cm, w, tick (µ) ; P) 7→ proc(cm, w + µ, P)

A new process (or message) is spawned with w = 0, and

a terminating process transfers its work to the corresponding

message it interacts with before termination, thus preserving

the total work performed by the system.

VII. TYPE SOUNDNESS

The main theorems that exhibit the connections between

our type system and the operational cost semantics are the

usual type preservation and progress. First, Definition 1 asserts

certain invariants on process typing judgment depending on

the mode of the channel offered by a process. This mode,

remains invariant, as the process evolves. This is ensured by

the process typing rules, which remarkably preserve these

invariants despite being parametric in the mode.

Lemma 1 (Invariants). The typing rules on the judgment

Ψ ; Γ ; ∆ `
q
(xm : A) preserve the invariants outlined in

Definition 1, i.e., if the conclusion satisfies the invariant, so

do all the premises.

Configuration Typing: At run-time, a program evolves

into a number of processes and messages, represented by proc

and msg predicates. This multiset of predicates is referred to

as a configuration (abbreviated as Ω).

Ω ::= · | Ω, proc(c, w, P) | Ω,msg(c, w,N)

A key question is how to type these configurations because a

configuration both uses and provides a number of channels.

The solution is to have the typing impose a partial order

among the processes and messages, requiring the provider of

a channel to appear before its client. We stipulate that no two

distinct processes or messages in a well-formed configuration

provide the same channel c.
The typing judgment for configurations has the form

Σ ; Γ0

E

� Ω :: (Γ ; ∆) defining a configuration Ω providing

shared channels in Γ and linear channels in ∆. Additionally,

we need to track the mapping between the shared channels

and their linear counterparts offered by a contract process,

switching back and forth between them when the channel is

acquired or released respectively. This mapping, along with

the type of the shared channels, is stored in Γ0. E is a natural

number and stores the sum of the total potential and work

as recorded in each process and message. We call E the

energy of the configuration. The technical report [26] details

the configuration typing rules.

Finally, Σ denotes a signature storing the type and func-

tion definitions. A signature is well-formed if (i) every type

definition V = AV is contractive [29] (AV cannot be a type

name) allowing an equi-recursive treatment [38] and (ii) every

function definition f = M : τ is well-typed according to the

expression typing judgment Σ ; ·

p
M : τ . The signature does

not contain process definitions; every process is encapsulated

inside a function using the contextual monad.

Theorem 1 (Type Preservation).

• If a closed well-typed expression ·

q
M : τ evaluates to a

value, i.e., M ⇓ V | µ, then q ≥ µ and ·

q−µ

V : τ .

• Consider a closed well-formed and well-typed configuration

Ω such that Σ ; Γ0

E

� Ω :: (Γ ; ∆). If the configuration

takes a step, i.e. Ω 7→ Ω′, then there exist Γ′

0,Γ
′ such that

Σ ; Γ′

0

E

� Ω′ :: (Γ′ ; ∆), i.e., the resulting configuration is

well-typed. Additionally, Γ0 ⊆ Γ′

0 and Γ ⊆ Γ′.

The preservation theorem is standard for expressions [21].

For processes, we proceed by induction on the operational

cost semantics and inversion on the configuration and process

typing judgment.

To state progress, we need the notion of a poised pro-

cess [16]. A process proc(cm, w, P) is poised if it is trying to

receive a message on cm. Dually, a message msg(cm, w,N)
is poised if it is sending along cm. A configuration is poised

if every message or process in the configuration is poised.

Intuitively, this means that the configuration is trying to

interact with the outside world along a channel in Γ or ∆.

Additionally, a process can be blocked [24] if it is trying to

acquire a contract process that has already been acquired by

some process. This can lead to the possibility of deadlocks.

Theorem 2 (Progress). Consider a closed well-formed and

well-typed configuration Ω such that Γ0

E

� Ω :: (Γ ; ∆).
Either Ω is poised, or it can take a step, i.e., Ω 7→ Ω′, or some

process in Ω is blocked along aS for some shared channel aS
and there is a process proc(aL, w, P) ∈ Ω.

The progress theorem is weaker than that for binary linear

session types, where progress guarantees deadlock freedom.

VIII. IMPLEMENTATION AND EVALUATION

We have developed an open-source prototype implementa-

tion [25] of Nomos in OCaml. This prototype contains a lexer

and parser (929 lines of code), a type checker (2388 lines

of code), a pretty printer (451 lines of code), an LP solver

interface (915 lines of code) and an interpreter (1286 lines of

code) for implementing, type checking and executing Nomos

programs. We also describe our efforts to simplify program-

ming and improve accessiblity of Nomos to developers.

Syntax: The lexer and parser for Nomos have been

implemented in Menhir [39], an LR(1) parser generator for

OCaml. A Nomos program is a list of mutually recursive type

and process definitions. To visually separate out functional

variables from session-typed channels, we require that shared

channels are prefixed by #, while linear channels are prefixed

by $. This avoids confusion between the two, both for the

programmer and the parser. We also require the programmer to

indicate the mode of the process being defined: asset, contract

or transaction, assigning the respective modes R, S and T

to the offered channel. The modes for all other channels are

inferred automatically (explained later). The initial potential

{q} of a process is marked on the turnstile in the declaration.

The syntax for definitions is

stype v = A

proc <mode> f :

(x1 : T), ($c2 : A), ... |{q}- ($c : A) = M

In the context, T is the functional type for variable x1, while

A is the session type for channel $c2 and M is a functional

expression implementing the process. We add syntactic sugar,

such as the forms let x = M;P and if M then P1 else P2, to

the process layer to ease programming. Finally, a functional

expression can enter the session type monad using {}, i.e.,

M = {P} where P is a session-typed expression.

Type Checking: We implemented a bi-directional [40]

type checker with a specific focus on the quality of error

messages, which include, for example, extent (source code

location) information for each definition and expression. The

programmer provides the initial type of each variable and

channel in the declaration and the definition is checked against

it, while reconstructing the intermediate types. This helps

localize the source of a type error as the point where type

reconstruction fails. Type equality is restricted to reflexivity

(constant time), although we have also implemented the stan-

dard co-inductive algorithm [29] which is quadratic in the size

of type definitions. For all our examples, the reflexive notion of

equality was sufficient. Type checking is linear time in the size

of the program, which is important in the blockchain domain

where type checking can be part of the attack surface.

Potential and Mode Inference: The potential and mode

annotations are the most interesting aspects of the Nomos type

system. Since modes are associated with each channel, they

are tedious to write. Similarly, the exact potential annotations

depend on the cost assigned to each operation and is difficult

to predict statically. Thus, we implemented an automatic

inference algorithm for both these annotations by relying on

an off-the-shelf LP solver.

Using ideas from existing techniques for type inference for

AARA [18], [21], we reduce the reconstruction of potential

annotations to linear optimization. To this end, Nomos’ infer-

ence engine uses the Coin-Or LP solver. In a Nomos program,

the programmer can indicate unknown potential using ∗. Thus,

resource-aware session types can be marked with .∗ and /∗,

list types can be marked as L∗(τ) and process definitions can

be marked with |{∗}− on the turnstile. The mode of all the

channels is marked as ‘unknown’ while parsing.

The inference engine iterates over the program and sub-

stitutes the star annotations with potential variables and ‘un-

known’ with mode variables. Then, the bidirectional typing

rules are applied, approximately checking the program (mod-

ulo potential and mode annotations) while also generating

linear constraints for potential annotations (see Figure 4).

and mode annotations (see Definition 1 and Figure 3). Fi-

nally, these constraints are shipped to the LP solver, which

minimizes the value of the potential annotations to achieve

tight bounds. The LP solver either returns that the constraints

are infeasible, or returns a satisfying assignment, which is

then substituted into the program. The final program is pretty

printed for the programmer to view and verify the potential

and mode annotations.

A. Case Studies

We evaluate the design of Nomos by implementing several

smart contract applications and discussing the typical issues

that arise. All the contracts are implemented and type checked

in the prototype implementation and the potential and mode

annotations are derived automatically by the inference engine.

The cost model used for these examples assigns 1 unit of

cost to every atomic internal computation and sending of a

message. We show the contract types from the implementation

with the following ASCII format: i) /\ for ↑SL, ii) \/ for ↓SL,

iii) <{q}| for /q , iv) |{q}> for .q , v) ˆ for ∧, vi) *[m] for

⊗m, vii) −o[m] for (m.

ERC-20 Token Standard: ERC-20 [41] is a technical

standard for smart contracts on the Ethereum blockchain that

defines a common list of standard functions that a token

contract has to implement. The majority of tokens on the

Ethereum blockchain are ERC-20 compliant.

The ERC-20 token contract implements the following ses-

sion type in Nomos:

stype erc20token = /\ <{11}| &{

totalSupply : int ˆ |{9}> \/ erc20token,

balanceOf : id -> int ˆ |{8}> \/ erc20token,

transfer : id -> id -> int -> |{0}> \/ erc20token,

approve : id -> id -> int -> |{6}> \/ erc20token,

allowance : id -> id -> int ˆ |{6}> \/ erc20token }

The type ensures that the token implements the protocol

underlying the ERC-20 standard. To query the total number

of tokens in supply, a client sends the totalSupply label, and

the contract sends back an integer. If the contract receives

the balanceOf label followed by the owner’s identifier, it

sends back an integer corresponding to the owner’s balance. A

balance transfer can be initiated by sending the transfer label

to the contract followed by sender’s and receiver’s identifier,

and the amount to be transferred. If the contract receives

approve, it receives the two identifiers and the value, and

updates the allowance internally. Finally, this allowance can

be checked by issuing the allowance label, and sending the

owner’s and spender’s identifier.

The design of Nomos is orthogonal to the concrete repre-

sentation of money or currency in the language. The Nomos

implementation provides a simple built-in abstract coin type

of a unit value. Our implementation of the erc20token session

type relies on these abstract coins used exclusively for ex-

changes among the private accounts. Coins are treated linearly

as no operations are allowed on primitive types. As a result,

coins cannot be created or discarded.
It is straightforward to add features by using more sophis-

ticated abstract coin types or by providing built-in operations

that are executed by the runtime system. For example, we

can add coins with unique identifiers or coins of different

denominations by changing the underlying session type of

coins. Similarly, we can add operations for minting (creating)

or burning (discarding) coins if users have the respective priv-

ileges. Such operations could be, for instance, implemented in

an abstract contract that is an interface to the runtime system.

Finally, there can be operations for exchanging coins and gas

at rates that are fixed when type-checking transactions.
It is also possible to allow programmers to define their

own abstract types with their individual introduction and

elimination forms to use them in an implementation of a

session type like erc20token.
Hacker Gold (HKG) Token: The HKG token is one

particular implementation of the ERC-20 token specification.

Recently, a vulnerability was discovered in the HKG token

smart contract based on a typographical error leading to a re-

issuance of the entire token [42]. When updating the receiver’s

balance during a transfer, instead of writing balance+=value,

the programmer mistakenly wrote balance=+value (semanti-

cally meaning balance=value). Nomos’ type system would

have caught the linearity violation in the latter statement that

drops the existing balance in the recipient’s account.
Puzzle Contract: This contract, taken from prior

work [43] rewards users who solve a computational puzzle

and submit the solution. The contract allows two functions, one

that allows the owner to update the reward, and the other that

allows a user to submit their solution and collect the reward.
In Nomos, this contract is implemented to offer the type

stype puzzle = /\ <{14}| &{

update : id -> money -o[R] |{0}> \/ puzzle,

submit : int ˆ &{

success : int -> money *[R] |{5}> \/ puzzle,

failure : |{9}> \/ puzzle } }

The contract still supports the two transactions. To update the

reward, it receives the update label and an identifier, verifies

that the sender is the owner, receives money from the sender,

and acts like a puzzle again. The transaction to submit a

solution has a guard associated with it. First, the contract sends

an integer corresponding to the reward amount, the user then

verifies that the reward matches the expected reward (the guard

condition). If this check succeeds, the user sends the success

label, followed by the solution, receives the winnings, and

the session terminates. If the guard fails, the user issues the

failure label and immediately terminates the session. Thus, the

contract implementation guarantees that the user submitting

the solution receives their expected winnings.
Voting: The voting contract provides a ballot type.

stype ballot = /\ <{16}| +{

open : id -> +{ vote : id -> |{0}> \/ ballot,

novote : |{9}> \/ ballot },

closed : id ˆ |{13}> \/ ballot }

This contract allows voting when the election is open by

sending the candidate’s id, and prevents double voting by

checking if the voter has already voted (the novote label).

Once the election closes, the contract can be acquired to check

the winner. We use two implementations for the contract: the

first stores a counter for each candidate that is updated after

each vote is cast (voting in Table II); the second does not use a

counter but stores potential inside the vote list that is consumed

for counting the votes at the end (voting-aa in Table II). This

stored potential is provided by the voter to amortize the cost

of counting. The type above shows the potential annotations

corresponding to the latter.
Insurance: Nomos has been carefully designed to al-

low inter-contract communication without compromising type

safety. We illustrate this feature using an insurance contract

that processes flight delay insurance claims after verifying

them with a trusted third party. The insurer and third party

verifier are implemented as separate contracts providing the

following session types.

stype insurer = /\ <{6}| &{

submit : claim -> +{

success : money *[R] |{0}> \/ insurer,

failure : |{1}> \/ insurer } }

stype verifier = /\ <{3}| &{

verify : claim -> +{

valid : |{0}> \/ verifier,

invalid : |{0}> \/ verifier } }

The insurer type provides the option to submit a claim by

receiving it and responds with success or failure depending

upon verification of the claim. If the claim is successful, the

insurer sends over the reimbursement in the form of money.

The verifier type provides the option to verify a claim by

receiving it and responding with valid or invalid depending

on the validity of the claim.

The insurer, upon receiving a claim, acquires the verifier

and sends it the claim details. If the claim is valid, then it

responds with success, sends the money and detaches from

its client. If the claim is invalid, it responds with failure and

immediately detaches from its client.
Experimental Evaluation: We describe the 8 case studies

we implemented in Nomos. We have already discussed auction

(Section II), ERC 20, puzzle, voting, and insurance. The other

case studies are:

• A bank account that allows users to register, make de-

posits and withdrawals and check the balance.

• An escrow to exchange bonds between two parties.

• A wallet allowing users to store money on the blockchain.

Table II contains a compilation of our experiments with the

case studies and the prototype implementation. The experi-

ments were run on an Intel Core i5 2.7 GHz processor with

16 GB 1867 MHz DDR3 memory. It presents the contract

name, its lines of code (LOC), the type checking time (T (ms)),

number of potential and mode variables introduced (Vars),

number of potential and mode constraints that were generated

while type checking (Cons) and the time the LP solver took

Contract LOC T(ms) Vars Cons I(ms) Gap

auction 176 0.558 229 730 5.225 3

ERC 20 136 0.579 161 561 4.317 6

puzzle 108 0.410 126 389 8.994 8

voting 101 0.324 109 351 3.664 0

voting-aa 101 0.346 140 457 3.926 0

escrow 85 0.404 95 321 3.816 3

insurance 56 0.299 76 224 8.289 0

bank 147 0.663 173 561 4.549 0

wallet 30 0.231 32 102 3.224 0

TABLE II: Evaluation of Nomos with Case Studies. LOC

= lines of code; T (ms) = the type checking time in ms;

Vars = #variables generated during type inference; Cons =

#constraints generated during type inference; I (ms) = type

inference time in ms; Gap = maximal gas bound gap.

to infer their values (I (ms)). The last column describes the

maximal gap between the static gas bound inferred and the

actual runtime gas cost. It accounts for the difference in the

gas cost in different program paths. However, this waste is

clearly marked in the program by explicit tick instructions so

the programmer is aware of this runtime gap, based on the

program path executed.

The evaluation shows that the type-checking overhead is

less than a millisecond for case studies. This indicates that

Nomos is applicable to settings like distributed blockchains in

which type checking could add significant overhead and could

be part of the attack surface. Type inference is also efficient

but an order of magnitude slower than type checking. This

is acceptable since inference is only performed once during

deployment and can be carried out off-chain. Gas bounds

are tight in most cases. Loose gas bounds are caused by

conditional branches with different gas cost. In practice, this

is not a major concern since the Nomos semantics tracks

the exact gas cost, and a user will not be overcharged for

their transaction. However, Nomos’ type system can be easily

modified to only allow contracts with tight bounds.

Our implementation experience revealed that describing the

session type of a contract crystallizes the important aspects of

its protocol. Often, subtle aspects of a contract are revealed

while defining the protocol as a session type. Once the type is

defined, the implementation simply follows the type protocol.

The error messages from the type checker were helpful in

ensuring linearity of assets and adherence to the protocol.

Using ∗ for potential annotations meant we could remain

unaware of the exact gas cost of operations. The syntactic

sugar constructs reduced the programming overhead and the

size of the contract implementations.

IX. BLOCKCHAIN INTEGRATION

To integrate Nomos with a blockchain, we need a mecha-

nism to (i) represent contracts and their addresses in the current

blockchain state, (ii) create and execute transactions, and (iii)

construct the global distributed ledger.

Nomos on a Blockchain: We assume a blockchain like

Ethereum that contains a set of Nomos contracts C1, . . . , Cn

together with their type information · ; Γi ; ∆i
R `

qi Ci :: (x
i
S :

Ai
S). The shared context Γi types the shared contracts that

Ci refers to, and the linear context ∆i
R types the contract’s

linear assets. The channel name xi
S of a contract is its address

and has to be globally unique. We allow contracts to carry

potential given by the annotation qi and the potential defined

by the annotations in ∆i
R but the type system could easily be

altered to suppress the potential.

These contracts form a stuck configuration (a valid virtual

blockchain state) typed as

Γ
E

� proc(x1
S, w1, C1) . . . proc(x

n
S , wn, Cn) :: (Γ ; ·)

where Γ = (x1
S : A1

S), . . . , (x
n
S : An

S) and E = Σn
i=1qi + wi

is the total energy, that is, the sum of the stored potential and

previously performed work. To perform a transaction with a

contract, a user submits a transaction script Q (a process) that

is well-typed with respect to the existing contracts:

· ; Γ ; · `
q
Q :: (xT : 1)

We mandate that the transaction offers along a channel of type

1 and terminates by sending a close message on its offered

channel. This enforces that the transaction, at termination,

leaves the blockchain in a well-formed state. This script

process is added to the set of contracts and the new (closed)

configuration is typed as

Γ
E+q

� proc(x1
S, w1, C1) . . . proc(xT, 0, Q) :: (Γ ; (xT : 1))

This configuration then steps according to the Nomos seman-

tics, ending with the termination of the script Q, leaving the

configuration in a stuck state again to start a new transaction. If

type checking were too costly here, that can lead to yet another

source of denial-of-service attacks. In Nomos however, type

checking is linear time in the size of the script.

A transaction can either create new contracts, or update the

state of existing contracts. In the former case, new contracts

are added to the blockchain state, making them visible in

the type of the configuration for subsequent transactions to

access. In the latter case, it acquires the contracts it wishes to

interact with, followed by an update in the contracts’ internal

state and releases them. Since the contract types are equi-

synchronizing, they remain unchanged at the end of transaction

execution. This ensures that the subsequent transactions can

access the same contracts at the same type. In the future we

plan to allow sub-synchronizing types that enable a client to

release a contract channel not at the same type, but a subtype.

The subtype can then describe the phase of the contract. For

instance, the ended phase of auction contract will be a subtype

of the running phase. The technical report [26] details the

technique for serialized execution of transactions.

Deterministic Execution: Since blockchains rely on con-

sensus among the miners, it is important to ensure determin-

istic execution of transactions. However, Nomos semantics

has one source of non-determinism: the acquire-accept rule

where an accepting contract latches on to any acquiring

transaction. Our approach to resolve this non-determinism is

to determinize the process scheduler based on some heuristics.

Another promising approach is record-and-replay [44], [45].

The miner records the order in which the contracts are acquired

in the ledger, which is then replayed by others to compute the

current blockchain state.

Interpreter: The Nomos implementation provides two

functionalities: (i) inference: takes a program as input, infers

the potential and mode annotations and outputs a well-typed

program (discussed in Section VIII), and (ii) execution: which

takes a well-typed transaction program and a valid blockchain

state as input, executes the transaction against the state and

outputs a valid blockchain state. Internally, the blockchain

state is represented as a configuration, i.e. set of contracts and

linear assets stored inside them. Our implementation serializes

the configuration using OCaml S-expressions so that their

snapshots can be written to and read from a file. This makes

the blockchain state persistent through transactions.

Attacker Model: Our blockchain model requires that all

code submitted for execution is well-typed. The soundness

theorem of Nomos (Theorem 1) then guarantees that execution

of well-typed code cannot damage the blockchain state, or

render it unusable. Thus, we capitalize on the restriction

requiring adversarial code to be type correct. Furthemore, the

Nomos type checker is carefully implemented to be linear-time

in the size of the program. Thus, an adversary cannot cause

denial-of-service by submitting programs that take too long to

typecheck!

Deadlocks: The only language specific reason a transac-

tion can fail is a deadlock in the transaction code. Our progress

theorem accounts for this possibility of deadlocks. Since a

valid blockchain state represents a stuck configuration of a

particular form (only shared contracts in the configuration),

we verify at the end of the transaction execution if the new

configuration has this form. If not, we conclude that a dead-

lock occurred during the execution, and we simply abort the

whole transaction. We maintain snapshots of the configuration

after every transaction execution, so we simply revert to the

previous valid blockchain state. It is the user’s responsibility to

issue a new transaction that does not deadlock. In the future,

we also plan to employ deadlock prevention techniques [46]

to statically rule out deadlocks.

X. OTHER RELATED WORK

We classify the related work into 3 categories - i) new

programming languages for smart contracts, ii) static anal-

ysis techniques for existing languages and bytecode, and

iii) session-typed and type-based resource analysis systems

technically related to Nomos.

Smart Contract Languages: Existing smart contracts on

Ethereum are predominantly implemented in Solidity [4], a

statically typed object-oriented language influenced by Python

and JavaScript. Languages like Vyper [47] address resource

usage by disallowing recursion and infinite-length loops, thus

making estimation of gas usage decidable. However, both

languages still suffer from re-entrancy vulnerabilities. Bam-

boo [48], on the other hand, makes state transitions explicit

and avoids re-entrance by design. In contrast to our work,

none of these languages use linear type systems to track assets

stored in a contract.

Domain specific languages have also been designed for

other blockchains apart from Ethereum. Typecoin [49] uses

affine logic to solve the peer-to-peer affine commitment prob-

lem using a generalization of Bitcoin where transactions deal

in types rather than numbers. Although Typecoin does not pro-

vide a mechanism for expressing protocols, it also uses a linear

type system to prevent resources from being discarded or du-

plicated. Rholang [50] is formally modeled by the ρ-calculus,

a reflective higher-order extension of the π-calculus. Michel-

son [51] is a purely functional stack-based language that has

no side effects. However, none of these languages describe

and enforce communication protocols statically. Scilla [52] is

an intermediate-level language where contracts are structured

as communicating automata providing a continuation-passing

style computational model to the language semantics. Scilla

does not use session types or linearity but features static gas

bounds. A difference is that Nomos’ bounds are not asymptotic

and are proved sound with respect to a cost semantics. The

Move programming language [53] is a flexible language based

on Rust [54] to implement contracts on the Libra blockchain.

Similar to Nomos, it provides the ability to define custom

linear types to represent assets. However, it does not provide

support to express contract protocols or gas usage.

Static Analysis: Analysis of smart contracts has re-

ceived substantial attention [55], [56] recently due to their

security vulnerabilities [57], [58]. KEVM [59] creates a pro-

gram verifier based on reachability logic that given an EVM

program and specification, tries to automatically prove the

corresponding reachability theorems. However, the verifier

requires significant manual intervention, both in specification

and proof construction. Oyente [43] is a symbolic execution

tool that checks for 4 kinds of security bugs in smart contracts,

transaction-order dependence, timestamp dependence, mishan-

dled exceptions and re-entrancy vulnerabilities. MadMax [60]

automatically detects gas-focused vulnerabilities with high

confidence. The analysis is based on a decompiler that extracts

control and data flow information from EVM bytecode, and

a logic-based analysis specification that produces a high-

level program model. Ethereum contracts are also translated

to F* [61] to prove runtime safety and functional correct-

ness, although they do not support all syntactic features.

VERISOL [62] is a highly-automated formal verifier for So-

lidity that can produce proofs as well as counterexamples

and proves semantic conformance of smart contracts against

a state machine model with access-control policy. However,

in contrast to Nomos, where guarantees are proved by a

soundness proof of the type system, static analysis techniques

often do not explore all program paths, can report false

positives that need to be manually filtered, and miss bugs due

to timeouts and other sources of incompleteness.

Session types and Resource analysis: Session types

were introduced by Honda [11] as a typed formalism for

inter-process dyadic interaction. They have been integrated

into a functional language in prior work [15]. However, this

integration does not account for resource usage or sharing.

Sharing in session types has also been explored in prior

work [24], but with the strong restriction that shared processes

cannot rely on linear resources that we lift in Nomos. Shared

session types were also never integrated with a functional

layer or tracked for resource usage. While we consider binary

session types that express local interactions, global protocols

can be expressed using multi-party session types [13], [63].

Automatic amortized resource analysis (AARA) has been in-

troduced as a type system to derive linear [18] and polynomial

bounds [21] for functional programming languages. Resource

usage has also previously been explored separately for the

purely linear process layer [27], but were never combined with

shared session types or integrated with the functional layer.

XI. CONCLUSION

We have described the programming language Nomos, its

type-theoretic foundation, a prototype implementation and

evaluated its feasibility on several real world smart contract

applications. Nomos builds on linear logic, shared session

types, and automatic amortized resource analysis to address the

challenges that programmers are faced with when implement-

ing digital contracts. Our main contributions are the design

and implementation of Nomos’ multi-layered resource-aware

type system and its type soundness proof.

In future work, we plan to explore refinement session

types [64], [65] for expressing and verifying functional cor-

rectness of contracts against their specifications and to tar-

get open questions regarding a blockchain integration. These

include the exact cost model, fluctuation of gas prices, and

potential compilation to a lower-level language. Since Nomos

has a concurrent semantics, we also plan to support parallel

execution of transactions using speculation techniques [66].

REFERENCES

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” http:
//bitcoin.org/bitcoin.pdf, 2008.

[2] G. Wood, “Ethereum: A secure decentralized transaction ledger,” http:
//gavwood.com/paper.pdf, 2014.

[3] L. Goodman, “Tezos — a self-amending crypto-ledger,” https://tezos.
com/static/papers/white paper.pdf, 2014.

[4] C. Dannen, Introducing Ethereum and Solidity: Foundations of Cryp-

tocurrency and Blockchain Programming for Beginners, 1st ed. USA:
Apress, 2017.

[5] D. Siegel, “Understanding the dao hack
for journalists,” https://medium.com/@pullnews/
understanding-the-dao-hack-for-journalists-2312dd43e993, Jun. 2016.

[6] B. I. I. Initiative, “B3i,” 2008.
[7] A. Law, “Smart contracts and their application in supply chain manage-

ment,” Ph.D. dissertation, Massachusetts Institute of Technology, 2017.
[8] V. Morabito, “Smart contracts and licensing,” in Business Innovation

Through Blockchain. Springer, 2017, pp. 101–124.
[9] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in

Workshop on Distributed Cryptocurrencies and Consensus Ledgers, vol.
310, 2016.

[10] “Welcome to liquidity’s documentation!” http://www.liquidity-lang.org/
doc/index.html, Aug. 2018, accessed: 2018-11-04.

[11] K. Honda, “Types for dyadic interaction,” in 4th International Confer-

ence on Concurrency Theory (CONCUR). Springer, 1993, pp. 509–523.
[12] K. Honda, V. T. Vasconcelos, and M. Kubo, “Language primitives and

type discipline for structured communication-based programming,” in
7th European Symposium on Programming (ESOP). Springer, 1998,
pp. 122–138.

[13] K. Honda, N. Yoshida, and M. Carbone, “Multiparty asynchronous ses-
sion types,” in 35th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL). ACM, 2008, pp. 273–284.
[14] L. Caires and F. Pfenning, “Session types as intuitionistic linear

propositions,” in 21st International Conference on Concurrency Theory

(CONCUR). Springer, 2010, pp. 222–236.
[15] B. Toninho, L. Caires, and F. Pfenning, “Higher-order processes,

functions, and sessions: a monadic integration,” in 22nd European

Symposium on Programming (ESOP). Springer, 2013, pp. 350–369.
[16] F. Pfenning and D. Griffith, “Polarized substructural session types,” in

18th International Conference on Foundations of Software Science and

Computation Structures (FoSSaCS). Springer, 2015, pp. 3–22.
[17] P. Wadler, “Propositions as sessions,” in 17th ACM SIGPLAN Interna-

tional Conference on Functional Programming (ICFP). ACM, 2012,
pp. 273–286.

[18] M. Hofmann and S. Jost, “Static Prediction of Heap Space Usage for
First-Order Functional Programs,” in 30th ACM Symp. on Principles of

Prog. Langs. (POPL’03), 2003.
[19] S. Jost, K. Hammond, H.-W. Loidl, and M. Hofmann, “Static Determi-

nation of Quantitative Resource Usage for Higher-Order Programs,” in
37th ACM Symp. on Principles of Prog. Langs. (POPL’10), 2010.

[20] J. Hoffmann, K. Aehlig, and M. Hofmann, “Multivariate Amortized
Resource Analysis,” in 38th Symposium on Principles of Programming

Languages (POPL’11), 2011.
[21] J. Hoffmann, A. Das, and S.-C. Weng, “Towards Automatic Resource

Bound Analysis for OCaml,” in 44th Symposium on Principles of

Programming Languages (POPL’17), 2017.
[22] Q. Carbonneaux, J. Hoffmann, T. Reps, and Z. Shao, “Automated

Resource Analysis with Coq Proof Objects,” in 29th International

Conference on Computer-Aided Verification (CAV’17), 2017.
[23] J.-Y. Girard, “Linear logic,” Theoretical Computer Science, vol. 50, pp.

1–102, 1987.
[24] S. Balzer and F. Pfenning, “Manifest sharing with session types,”

Proceedings of the ACM on Programming Languages (PACMPL), vol. 1,
no. ICFP, pp. 37:1–37:29, 2017.

[25] “Nomos implementation,” https://github.com/ankushdas/Nomos, 2019,
accessed: 2019-11-11.

[26] A. Das, S. Balzer, J. Hoffmann, F. Pfenning, and I. Santurkar, “Resource-
aware session types for digital contracts,” CoRR, vol. abs/1902.06056,
2019. [Online]. Available: http://arxiv.org/abs/1902.06056

[27] A. Das, J. Hoffmann, and F. Pfenning, “Work analysis with resource-
aware session types,” in 33rd ACM/IEEE Symposium on Logic in

Computer Science (LICS’18), 2018.
[28] I. Cervesato and A. Scedrov, “Relating state-based and process-based

concurrency through linear logic (full-version),” Information and

Computation, vol. 207, no. 10, pp. 1044 – 1077, 2009, special issue:
13th Workshop on Logic, Language, Information and Computation
(WoLLIC 2006). [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S089054010900100X

[29] S. Gay and M. Hole, “Subtyping for session types in the pi calculus,”
Acta Informatica, vol. 42, no. 2, pp. 191–225, Nov 2005. [Online].
Available: https://doi.org/10.1007/s00236-005-0177-z

[30] P. N. Benton, “A mixed linear and non-linear logic: Proofs, terms and
models,” in 8th International Workshop on Computer Science Logic

(CSL), ser. Lecture Notes in Computer Science, vol. 933. Springer,
1994, pp. 121–135, an extended version appeared as Technical Report
UCAM-CL-TR-352, University of Cambridge.

[31] J. Reed, “A judgmental deconstruction of modal logic,” January 2009,
unpublished manuscript. [Online]. Available: http://www.cs.cmu.edu/
∼jcreed/papers/jdml.pdf

[32] K. Pruiksma, W. Chargin, F. Pfenning, and J. Reed, “Adjoint logic,”
Carnegie Mellon University, Tech. Rep., April 2018.

[33] U. D. Lago and M. Gaboardi, “Linear Dependent Types and Relative
Completeness,” in 26th IEEE Symp. on Logic in Computer Science

(LICS’11), 2011.
[34] M. Avanzini, U. Dal Lago, and G. Moser, “Analysing the complexity

of functional programs: Higher-order meets first-order,” in Proceedings

of the 20th ACM SIGPLAN International Conference on Functional

Programming, ser. ICFP 2015. New York, NY, USA: ACM, 2015,
pp. 152–164. [Online]. Available: http://doi.acm.org/10.1145/2784731.
2784753

[35] N. Danner, D. R. Licata, and R. Ramyaa, “Denotational cost semantics
for functional languages with inductive types,” in Proceedings of

the 20th ACM SIGPLAN International Conference on Functional

Programming, ser. ICFP 2015. New York, NY, USA: ACM, 2015,
pp. 140–151. [Online]. Available: http://doi.acm.org/10.1145/2784731.
2784749

[36] E. Cicek, G. Barthe, M. Gaboardi, D. Garg, and J. Hoffmann, “Relational
Cost Analysis,” in 44th Symposium on Principles of Programming

Languages (POPL’17), 2017.

[37] I. Radiček, G. Barthe, M. Gaboardi, D. Garg, and F. Zuleger, “Monadic
Refinements for Relational Cost Analysis,” Proc. ACM Program. Lang.,
vol. 2, no. POPL, 2017.

[38] K. Crary, R. Harper, and S. Puri, “What is a recursive module?” in
ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), 1999, pp. 50–63.

[39] F. Pottier and Y. Régis-Gianas, Menhir Reference Manual, 2019.

[40] B. C. Pierce and D. N. Turner, “Local type inference,” ACM Trans.

Program. Lang. Syst., vol. 22, no. 1, pp. 1–44, Jan. 2000. [Online].
Available: http://doi.acm.org/10.1145/345099.345100

[41] “Erc20 token standard,” https://theethereum.wiki/w/index.php/ERC20
Token Standard, december 2018, accessed: 2018-02-027.

[42] “Ether.camp’s hkg token has a bug and
needs to be reissued,” https://www.ethnews.com/
ethercamps-hkg-token-has-a-bug-and-needs-to-be-reissued, January
2017, accessed: 2019-02-25.

[43] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: ACM, 2016, pp. 254–269. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2978309

[44] M. Ronsse and K. De Bosschere, “Recplay: A fully integrated practical
record/replay system,” ACM Trans. Comput. Syst., vol. 17, no. 2, pp.
133–152, May 1999. [Online]. Available: http://doi.acm.org/10.1145/
312203.312214

[45] C. Lidbury and A. F. Donaldson, “Sparse record and replay with
controlled scheduling,” in Proceedings of the 40th ACM SIGPLAN

Conference on Programming Language Design and Implementation,
ser. PLDI 2019. New York, NY, USA: ACM, 2019, pp. 576–593.
[Online]. Available: http://doi.acm.org/10.1145/3314221.3314635

[46] S. Balzer, B. Toninho, and F. Pfenning, “Manifest deadlock-freedom
for shared session types,” in Programming Languages and Systems,
L. Caires, Ed. Cham: Springer International Publishing, 2019, pp.
611–639.

[47] “Vyper,” https://vyper.readthedocs.io/en/latest/index.html, Aug. 2018,
accessed: 2018-11-04.

[48] “Bamboo,” https://github.com/cornellblockchain/bamboo, Aug. 2018,
accessed: 2018-11-04.

[49] K. Crary and M. J. Sullivan, “Peer-to-peer affine commitment using
bitcoin,” in Proceedings of the 36th ACM SIGPLAN Conference on

Programming Language Design and Implementation, ser. PLDI ’15.
New York, NY, USA: ACM, 2015, pp. 479–488. [Online]. Available:
http://doi.acm.org/10.1145/2737924.2737997

[50] “Rholang,” https://github.com/rchain/Rholang, Aug. 2018, accessed:
2018-11-04.

[51] “The michelson language,” https://www.michelson-lang.com/, Aug.
2018, accessed: 2018-11-04.

[52] I. Sergey, V. Nagaraj, J. Johannsen, A. Kumar, A. Trunov, and K. C. G.
Hao, “Safer smart contract programming with scilla,” Proc. ACM

Program. Lang., vol. 3, no. OOPSLA, pp. 185:1–185:30, Oct. 2019.
[Online]. Available: http://doi.acm.org/10.1145/3360611

[53] S. Blackshear, D. L. Dill, S. Qadeer, C. W. Barrett, J. C. Mitchell,
O. Padon, and Y. Zohar, “Resources: A safe language abstraction for
money,” 2020.

[54] S. Klabnik and C. Nichols, The Rust Programming Language. USA:
No Starch Press, 2018.

[55] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in 2018 IEEE/ACM 1st International Work-

shop on Emerging Trends in Software Engineering for Blockchain

(WETSEB), May 2018, pp. 9–16.

[56] I. Grishchenko, M. Maffei, and C. Schneidewind, “Foundations and tools
for the static analysis of ethereum smart contracts,” in Computer Aided

Verification, H. Chockler and G. Weissenbacher, Eds. Cham: Springer
International Publishing, 2018, pp. 51–78.

[57] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security, ser. CCS ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 67–82. [Online].
Available: https://doi.org/10.1145/3243734.3243780

[58] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
ethereum smart contracts (sok),” in Principles of Security and Trust -

6th International Conference, POST 2017, 2017, pp. 164–186. [Online].
Available: https://doi.org/10.1007/978-3-662-54455-6\ 8

[59] E. Hildenbrandt, M. Saxena, X. Zhu, N. Rodrigues, P. Daian, D. Guth,
B. Moore, Y. Zhang, D. Park, A. Stefănescu, and G. Rosu, “Kevm: A
complete semantics of the ethereum virtual machine,” in 2018 IEEE 31st

Computer Security Foundations Symposium. IEEE, 2018, pp. 204–217.
[60] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and

Y. Smaragdakis, “Madmax: Surviving out-of-gas conditions in
ethereum smart contracts,” Proc. ACM Program. Lang., vol. 2,
no. OOPSLA, pp. 116:1–116:27, Oct. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3276486

[61] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy, and S. Zanella-Béguelin, “Formal verification of smart
contracts: Short paper,” in Proceedings of the 2016 ACM Workshop

on Programming Languages and Analysis for Security, ser. PLAS ’16.
New York, NY, USA: ACM, 2016, pp. 91–96. [Online]. Available:
http://doi.acm.org/10.1145/2993600.2993611

[62] S. K. Lahiri, S. Chen, Y. Wang, and I. Dillig, “Formal specification
and verification of smart contracts for azure blockchain,” CoRR, vol.
abs/1812.08829, 2018. [Online]. Available: http://arxiv.org/abs/1812.
08829

[63] A. Scalas and N. Yoshida, “Less is more: Multiparty session types
revisited,” Proc. ACM Program. Lang., vol. 3, no. POPL, pp. 30:1–30:29,
Jan. 2019. [Online]. Available: http://doi.acm.org/10.1145/3290343

[64] A. Das and F. Pfenning, “Rast: Resource-Aware Session Types with
Arithmetic Refinements (System Description),” in 5th International

Conference on Formal Structures for Computation and Deduction

(FSCD 2020), ser. Leibniz International Proceedings in Informatics
(LIPIcs), Z. M. Ariola, Ed., vol. 167. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp. 33:1–33:17.
[Online]. Available: https://drops.dagstuhl.de/opus/volltexte/2020/12355

[65] ——, “Session types with arithmetic refinements,” in 31st International

Conference on Concurrency Theory (CONCUR 2020), ser. Leibniz
International Proceedings in Informatics (LIPIcs), I. Konnov and
L. Kovács, Eds., vol. 171. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2020, pp. 13:1–13:18. [Online].
Available: https://drops.dagstuhl.de/opus/volltexte/2020/12825

[66] V. Saraph and M. Herlihy, “An empirical study of speculative
concurrency in ethereum smart contracts,” CoRR, vol. abs/1901.01376,
2019. [Online]. Available: http://arxiv.org/abs/1901.01376

