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ABSTRACT 

The recently proposed approach to excited electronic states, in which the deterministic equation-

of-motion coupled-cluster (EOMCC) framework is merged with stochastic configuration 

interaction Quantum Monte Carlo (CIQMC) computations [J.E. Deustua et al., J. Chem. Phys. 

150, 111101 (2019)], is combined with the noniterative energy corrections derived from the 

CC(P;Q) formalism. By examining vertical excitations in CH+ at the equilibrium and stretched 

geometries and adiabatic excitations in CH and CNC, we demonstrate that the resulting semi-

stochastic CC(P;Q) methodology converges target high-level energetics, represented in this study 

by the EOMCC method with singles, doubles, and triples, in the early stages of CIQMC 

propagations. 
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1. Introduction 

One of the greatest challenges in quantum chemistry is the development of practical and 

yet robust and systematically improvable treatments of many-electron correlation effects, which 

are needed to accurately determine ground- and excited-state molecular potential energy surfaces 

and property functions that emerge in studies of chemical reactivity, spectroscopy, and 

photochemistry. It is nowadays well established that size-extensive methods based on the 

exponential wave function ansatz of coupled-cluster (CC) theory [1–5], 0 exp( )T   , where 

1

N

n nT T


  is the cluster operator, nT  is the n-body component of T , N is the number of correlated 

electrons, and   is the reference determinant, and their various extensions to excited, open-shell, 

and multireference states (see Refs. [6–8] for selected reviews) are excellent candidates for 

addressing this challenge. This is particularly true for the equation-of-motion (EOM) CC [9–11] 

approach to excited states, pursued in this study, and its linear-response (LR) [12–18] and sym-

metry-adapted-cluster (SAC) configuration interaction (CI) [19] counterparts, which adopt the 

following representation of excited-state wave functions: 0 exp( )R TR       , where 

,0 ,1 nn

N
R r R  

 1  is the linear excitation operator generating   from the CC ground state 

0 , ,nR  is the n-body component of R , and 1 is the unit operator. 

One of the key challenges in EOMCC, LRCC, and SAC-CI, which has propelled much of 

the development work dealing with these methodologies for about three decades, has been how to 

incorporate higherthantwo-body components of the cluster and EOM excitation operators, i.e., 

the nT  and ,nR  components with n > 2, needed to achieve a quantitative description, without 

running into enormous, often prohibitive, computational costs of the higher-order schemes, such 

as the EOMCC method with singles, doubles, and triples (EOMCCSDT) [20–22], where T  and 

R  are truncated at 3T  and ,3R , respectively, which is the excited-state counterpart of CCSDT 

[23,24], or the EOMCC approach with singles, doubles, triples, and quadruples (EOMCCSDTQ) 

[25,26], where T  and R  are truncated at 4T  and ,4R , respectively, which is an excited-state 

extension of CCSDTQ [27–29]. Focusing on EOMCC, one can make the computations a lot more 

affordable and reduce the iterative 3 5
o un n  steps of EOMCCSDT or 4 6

o un n  steps of EOMCCSDTQ to 
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2 4
o un n  by ignoring the nT  and ,nR  components with n > 2, as in the EOMCC method with singles 

and doubles (EOMCCSD) [11], which extends the ground-state CCSD approach [30,31] to excited 

states, but EOMCCSD fails to describe excited-state potentials along bond stretching coordinates 

and excited states dominated by two- and other many-electron transitions, producing errors that 

often exceed 1 eV (cf. Refs. [20,21,32–37] for examples), while not being fully quantitative for 

singly excited states, where errors on the order of 0.3–0.5 eV are not uncommon [38] ( on  and un  

are the numbers of correlated occupied and unoccupied orbitals, respectively). Many ways of 

incorporating higherthantwo-body components of the T  and R  operators at the fraction of the 

computational costs of high-level EOMCC methods, such as EOMCCSDT, have been proposed, 

resulting in noniterative perturbative corrections to EOMCCSD or LRCCSD excitation energies 

[39–44] and their completely renormalized (CR) [32,35–38,45–47] and iterative [39–42,48,49] 

counterparts, but methods of these types face several new challenges. For example, the EOMCC 

approaches utilizing perturbation theory to identify the leading post-EOMCCSD contributions 

have difficulties with describing multireference excited states characterized by substantial 

electronic quasi-degeneracies, while the more robust CR-EOMCC corrections to EOMCCSD, 

which are capable of handling doubly excited states and excited-state potentials along bond 

stretching coordinates, have difficulties with balancing ground- and excited-state energies. The 

latter issue is, in part, related to decoupling the low-order nT  and ,nR  components with 2n   

from their higher–than–two-body counterparts in all noniterative corrections to EOMCCSD. One 

can eliminate many of the above problems, while keeping computational costs at the relatively low 

levels, by turning to the active-space EOMCC approaches [50], such as EOMCCSDt [20,21,33,51] 

and EOMCCSDtq [51,52], where one uses active orbitals to select the dominant nT  and ,nR  

amplitudes with 2n   within the parent EOMCCSDT, EOMCCSDTQ, and similar schemes, but 

the resulting methods, in analogy to multireference theories, are no longer in a black-box category. 

Furthermore, with inadequate choices of active orbitals, they can miss information about certain 

classes of higher-order dynamical correlation effects that may be needed to achieve desired 

accuracy levels. While, in analogy to the ground-state case, these higher-order effects can be 

captured by the CC(P;Q) corrections [47] to the EOMCCSDt or EOMCCSDtq energies, and we 

have made progress toward extending our CC(P;Q)-inspired CC(t;3), CC(t,q;3), and CC(t,q;3,4) 
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codes [47,53,54] to excited states, which will be reported elsewhere, the resulting methods 

continue to rely on the user- and system-dependent active orbitals, which is not ideal.  

Encouraged by our earlier ground-state work [55], in this study we choose an alternative 

way of utilizing the CC(P;Q) framework in the EOMCC calculations for excited electronic states, 

which allows us to achieve desired high accuracy levels without resorting to the active-space 

concepts by taking advantage of the stochastic CI Quantum Monte Carlo (QMC) methodology 

introduced in Refs. [56,57]. In analogy to our previous study [58], in the semi-stochastic CC(P;Q) 

approach to excited states proposed in this article, the dominant higher–than–two-body 

components of the T  and R  operators within the high-level deterministic EOMCC computations, 

such as EOMCCSDT, are identified stochastically using CIQMC propagations, but, unlike in Ref. 

[58], we go one significant step further and accelerate convergence toward target EOMCC (e.g., 

EOMCCSDT) energetics by using the a posteriori CC(P;Q) corrections to account for those 

correlations of interest that the EOMCC computations carried out in the stochastically determined 

excitation subspaces have not been able to capture. By examining vertical excitations in the CH+ 

ion at the equilibrium and stretched geometries and adiabatic excitations in the CH and CNC open-

shell systems, we demonstrate that the extension of the semi-stochastic CC(P;Q) methodology of 

Ref. [55] to excited states is capable of rapidly converging target high-level EOMCC energetics, 

represented in this study by EOMCCSDT, out of the early stages of CIQMC propagations, even 

when the excited states of interest have a significant double excitation or multireference character. 

 

2. Theory and algorithmic details 

2.1. Brief synopsis of the CC(P;Q) formalism 

We begin our description of the semi-stochastic approach proposed in this work by 

summarizing the key ingredients of the underlying CC(P;Q) theory, as applied to ground as well 

as excited states [47,53]. The CC(P;Q) formalism is a generalization of the biorthogonal moment 

expansions of Refs. [35,59,60], which in the past resulted in the CR-CC(2,3) [35,59,60], CR-

EOMCC(2,3) [35–37], and δ-CR-EOMCC(2,3) [38,46] corrections to the CCSD and EOMCCSD 

energies, to arbitrary, i.e., conventional as well as unconventional, truncations used in the 

underlying CC/EOMCC computations. The CC(P;Q) energies are obtained in two steps. In the 

first step, abbreviated as CC(P) for the ground ( 0  ) state and EOMCC(P) for excited ( 0  ) 
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states, we solve the CC/EOMCC equations in the subspace of the N-electron Hilbert space called 

the P space, designated as ( )P , which is spanned by excited determinants K KE    that 

together with the reference determinant   dominate the ground- and excited-state wave 

functions   of interest ( KE  is the elementary particle–hole excitation operator generating 

| K   from | ; for clarity of this brief description, we assume that ground and excited states 

have the same symmetry; excited states having different symmetries than the ground state are 

addressed later). This is done in a usual way adopted in all single-reference CC and EOMCC 

calculations, i.e., we start by determining the cluster operator ( )

( )

| P
K

P
K KT t E

 
 


, with Kt  

representing the corresponding cluster amplitudes, and the ground-state CC(P) energy 

( ) ( )
0

P PE H  , where ( ) ( ) ( )exp( ) exp( )P P PHH T T . We then diagonalize the similarity-

transformed Hamiltonian ( )PH  in the P space ( )P  to determine the excited-state EOMCC(P) 

energies ( )PE  and the corresponding EOM excitation and de-excitation operators, 

( )

( )
, ,0 | P

K

P
K KR r Er   

 1


 and ( ) ,|

( ) †
,0 ( )P

K
K K

PL l E   
 1


, respectively, where ,Kr  

and ,Kl  designate the relevant amplitudes, which define the EOMCC(P) ket states 

( )( ) ( )| |
PP P TR e      and the CC(P)/EOMCC(P) bra states 

( )( ) ( )| |
PP P TL e 

    satisfying 

( ) ( )P P
     . Once this is done, we proceed to the second step, which is the calculation of 

the noniterative corrections ( ; )P Q  to the CC(P) and EOMCC(P) energies ( )PE  that account for 

the many-electron correlation effects captured by the second subspace of the N-electron Hilbert 

space, referred to as the Q space and designated as ( )Q  ( ( ) (0) ( )( )Q P     , where (0)  is a 

one-dimensional subspace spanned by | ). The formula for these corrections is 

 
( )

, ,( )) ) (; (
Q

K

K KPP Q P  
 

   M


, (1) 

where ( )
0, ( ) P

K KP H  M  and ( ) ( )
, ( ) P P
K KP H R   M  are the generalized moments 

of the CC(P) and EOMCC(P) equations, which correspond to projections of these equations on 

the Q-space determinants ( )Q
K  , and ( ) ( )

, ,( ) ( )P P
K K KP L H D P     , with 
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( ) ( )
, ( ) P P
K K KD P E H      (one could replace the Epstein–Nesbet , ( )KD P  denominator 

entering , ( )K P  by its Møller–Plesset analog, but, as shown in the past, for example in Refs. 

[36,54,59–61], the Epstein–Nesbet form is generally more effective). The final CC(P;Q) electronic 

energies are determined as 

 ( ) ( ) ( ; )P Q PE E P Q  
   . (2)  

The question arises how to define the P and Q spaces entering the CC(P;Q) considerations 

to obtain accurate ground- and excited-state energetics matching the quality of high-level 

CC/EOMCC calculations without incurring large computational costs of CCSDT/EOMCCSDT 

and similar approaches. One can try conventional choices where, for example, ( )P  is spanned by 

the singly and doubly excited determinants and ( )Q  by the triples, but, as already alluded to 

above, the resulting CR-CC(2,3) and CR-EOMCC(2,3) corrections to the CCSD and EOMCCSD 

energies, which decouple the low-order nT  and ,nR  components with 2n   from their higher-

order 3T  and ,3R  counterparts, may have difficulties balancing ground- and excited-state energies. 

One can address this problem by using active orbitals to enrich the relevant P spaces with the 

dominant higher–than–doubly excited determinants, as in the aforementioned CC(t;3), CC(t,q;3), 

CC(t,q;3,4), etc. hierarchy, but the resulting methods are no longer computational black boxes. 

The semi-stochastic CC(P;Q) approach to excited-state calculations, which we describe next and 

which, following our earlier work [58], exploits the CIQMC propagations to identify the leading 

higher–than–doubly excited determinants pertinent to the CC/EOMCC calculations of interest, 

while using corrections ( ; )P Q  to capture the remaining correlations that the CC(P)/EOMCC(P) 

energies at a given QMC propagation time do not describe, eliminates the above concerns. 

 

2.2. Semi-stochastic CC(P;Q) approach to ground and excited states 

In our previous studies [55,58], we demonstrated that the CIQMC methodology of Refs. 

[56,57] is very good in identifying the leading determinants and generating meaningful P spaces 

for the deterministic CC(P)/EOMCC(P) calculations already in the early stages of QMC 

propagations without any a priori knowledge of the states being calculated. We show in this work 

that the excited-state CC(P;Q) corrections ( ; )P Q , defined by Eq. (1), similarly to their 0   
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ground-state counterparts examined in Ref. [55], are highly effective in accounting for the many-

electron correlation effects outside the stochastically determined P spaces. While the specific 

computations reported in this work, which aim at recovering the EOMCCSDT energetics, rely on 

the FCIQMC [56,57] propagations to identify the dominant triply excited determinants for defining 

the relevant P spaces, the algorithm summarized below is quite general, permitting the use of 

truncated CIQMC and CCMC [62,63] approaches and extensions to higher EOMCC levels than 

EOMCCSDT, such as EOMCCSDTQ (not implemented yet). In the stochastic part of the excited-

state CC(P;Q) algorithm proposed in this work, we rely on the initiator CIQMC (i-CIQMC) 

approach developed in Ref. [57], which we also exploited in our earlier [55,58,64] studies, where 

only determinants with numbers of walkers equal to or exceeding a preset threshold an  are allowed 

to attempt spawning, but we could certainly take advantage of improvements in the original i-

CIQMC [57] and i-CCMC [65] algorithms, such as those recently reported in Refs. [66–68]. It is 

also worth pointing out that by combining the stochastic CIQMC and deterministic EOMCC ideas 

via the CC(P;Q) methodology, we can extract highly accurate excited-state information on the 

basis of relatively short CIQMC propagations for the ground state or the lowest-energy state of a 

given symmetry, without having to resort to the more complex excited-state CIQMC framework 

proposed in Refs. [69,70], although exploring the utility of the latter framework would be an 

interesting direction to pursue. 

The key steps of the semi-stochastic CC(P;Q) algorithm proposed in this article, which 

builds upon the semi-stochastic CC(P)/EOMCC(P) framework suggested in Ref. [58] (steps 1–3 

below) and which extends the previously developed [55] merger of the ground-state CC(P;Q) 

methodology with CIQMC or CCMC to excited states, are as follows: 

1. Initiate a CIQMC (or CCMC) run for the ground state and, if the system of interest has 

spin, spatial, or other symmetries, the analogous QMC propagation for the lowest state of each 

irreducible representation (irrep) to be considered in the CC(P;Q) calculations by placing a certain 

number of walkers (in CCMC, “excips” [63,65]) on the appropriate reference function(s)   (e.g., 

the restricted Hartree–Fock (RHF) or restricted open-shell Hartree–Fock (ROHF) determinants). 

2. At some propagation time 0  , i.e., after a certain number of CIQMC (or CCMC) time 

steps, called MC iterations, extract a list or, if states belonging to multiple irreps are targeted, lists 

of determinants relevant to the desired CC(P;Q) computations from the QMC propagation(s) 
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initiated in step 1 to determine the P space or spaces needed to set up the ground-state CC(P) and 

excited-state EOMCC(P) calculations. If the goal is to converge the CCSDT/EOMCCSDT-level 

energetics, the P space for the CC(P) calculations and the EOMCC(P) calculations for excited 

states belonging to the same irrep as the ground state is defined as all singly and doubly excited 

determinants and a subset of triply excited determinants, where each triply excited determinant in 

the subset is populated by a minimum of Pn  positive or negative walkers/excips (in this work, 

1Pn  ). For the excited states belonging to other irreps, the P space defining the CC(P) problem 

is the same as that used in the case of the ground state, but the lists of triply excited determinants 

defining the EOMCC(P) diagonalizations are provided by the CIQMC (or CCMC) propagations 

for the lowest-energy states of these irreps. One proceeds in a similar way when the goal is to 

converge other types of high-level CC/EOMCC energetics. For example, if we want to obtain the 

results of the CCSDTQ/EOMCCSDTQ quality, we also have to extract the lists of quadruples, in 

addition to the triples, from the CIQMC (or CCMC) runs to define the corresponding P spaces. 

3. Solve the CC(P) and EOMCC(P) equations in the P space or spaces obtained in the 

previous step. If we are targeting the CCSDT/EOMCCSDT-level energetics and the excited states 

of interest belong to the same irrep as the ground state, we define ( ) (MC)
1 2 3

PT T T T   , 

(MC)
,0 ,1 ,

( )
2 ,3

PR r R R R       1 , and ( ) (MC)
,0 ,1 ,2 ,3

PL L L L       1 , where the list of triples in 

(MC)
3T , (MC)

,3R , and (MC)
,3L  is extracted from the ground-state CIQMC (or CCMC) propagation at 

time  . For the excited states belonging to other irreps, we construct the similarity-transformed 

Hamiltonian ( )PH , to be diagonalized in the EOMCC steps, in the same way as in the ground-state 

computations, but then use the CIQMC (or CCMC) propagations for the lowest states of these 

irreps to define the lists of triples in (MC)
,3R  and (MC)

,3L . We follow a similar procedure when targeting 

the CCSDTQ/EOMCCSDTQ-level energetics, in which case ( ) (MC) (MC)
1 2 3 4

PT T T T T   , 

( ) (MC) (MC)
,0 ,1 ,2 ,3 ,4

PR r R R R R        1 , and ( ) (MC) (MC)
,0 ,1 ,2 ,3 ,4

PL L L L L         1 . 

4. Correct the CC(P) and EOMCC(P) energies for the missing correlations of interest that 

were not captured by the CIQMC (or CCMC) propagations at the time   the lists of the P-space 

excitations were created (the remaining triples if the goal is to recover the CCSDT/EOMCCSDT 
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energetics, the remaining triples and quadruples if one targets CCSDTQ/EOMCCSDTQ, etc.) us-

ing the CC(P;Q) corrections ( ; )P Q  defined by Eq. (1). 

5. Check the convergence of the resulting ( )P QE
  energies calculated using Eq. (2) by 

repeating steps 24 at some later CIQMC (or CCMC) propagation time '  . If the ( )P QE
  

energies do not change within a given convergence threshold, we can stop the calculations. One 

can also stop them if τ in steps 24 is chosen such that the stochastically determined P space(s) 

contain sufficiently large fraction(s) of higherthandoubly excited determinants relevant to the 

target CC/EOMCC level. Our unpublished tests using the CC(P;Q)-based CC(t;3) corrections to 

the EOMCCSDt energies, the ground-state semi-stochastic CC(P;Q) calculations reported in Ref. 

[55], and the excited-state CC(P;Q) calculations using i-FCIQMC to generate the underlying P 

spaces performed in this work indicate that one should be able to reach millihartree or sub-

millihartree accuracies relative to the parent CC/EOMCC computations, when the stochastically 

determined P spaces contain as little as ~510 % and no more than ~30–40 % of high-

erthandouble excitations of interest, although this may need further study. 

Similarly to the semi-stochastic form of the ground-state CC(P;Q) methodology introduced 

in Ref. [55], the above algorithm offers significant savings in the computational effort compared 

to the fully deterministic, high-level, EOMCC approaches it targets. These savings originate from 

three factors. First, the computational times associated with the early stages of the i-CIQMC or i-

CCMC walker/excip propagations are very short compared to the corresponding converged runs. 

Second, the CC(P) calculations and the subsequent EOMCC(P) diagonalizations offer significant 

speedups compared to their CC/EOMCC parents, when the corresponding excitation manifolds 

contain small fractions of higher–than–doubly excited determinants. For example, as pointed out 

in Refs. [55,58], when the most expensive 3| [ , ] |abc
ijk H T   (or (

3
2)| [ , ] |abc

ijk H T  , where 

(2)
1 2 1 2exp( ) exp( )H T T H T T    ) and ( )

,3| [ , ] |abc P
ijk H R   terms in the CCSDT and 

EOMCCSDT equations are isolated and reprogrammed using techniques similar to implementing 

selected CI approaches, combined with sparse matrix multiplication and index rearrangement 

routines (rather than conventional many-body diagrams that assume continuous excitation 

manifolds labeled by occupied and unoccupied orbitals from the respective ranges of indices; 

generally, the stochastically determined lists of excitations do not form continuous manifolds that 
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could be a priori identified), one can speed up their determination by a factor of up to 2( / )D d , 

where D is the number of all triples and d is the number of triples included in the stochastically 

determined P space. Other terms, such as 2| [ , ] |abc
ijk H T   and ( )

,2| [ , ] |abc P
ijk H R   or 

3| [ , ] |ab
ij H T   and ( )

,3| [ , ] |ab P
ij H R  , when treated in a similar manner, may offer 

additional speedups, on the order of ( / )D d , too. Our current CC(P) and EOMCC(P) routines are 

not as efficient yet, but the speedups that scale linearly with ( / )D d  in the most expensive 

3| [ , ] |abc
ijk H T   and ( )

,3| [ , ] |abc P
ijk H R   contributions are attainable. The third factor 

contributing to major savings in the computational effort offered by the semi-stochastic CC(P;Q) 

approach is the observation that the determination of the noniterative correction ( ; )P Q  for a 

given electronic state  is much less expensive than the time required to complete a single iteration 

of the target CC/EOMCC calculation (in the case of the calculations aimed at the 

CCSDT/EOMCCSDT energetics, the computational time associated with each ( ; )P Q  scales no 

worse than 3 4~ 2 o un n , as opposed to the 3 5
o un n  scaling of every CCSDT and EOMCCSDT iteration). 

 

3. Numerical examples and discussion 

In order to explore the performance of the semi-stochastic CC(P;Q) approach to excited 

states proposed in this work and examine, in particular, the ability of the noniterative ( ; )P Q  

corrections to accelerate the convergence of the CIQMC-driven EOMCC(P) calculations toward 

the desired EOMCC energetics, represented in this study by EOMCCSDT, we carried out 

benchmark calculations for the frequently studied (cf., e.g., Refs. [18,20,21,32,35,39–

41,43,44,49–51,71]) vertical excitations in the CH+ ion at the equilibrium (Table 1 and Fig. 1 (a) 

and (b)) and stretched (Table 2 and Fig. 1 (c) and (d)) geometries, which we previously used to 

test the EOMCC(P) framework [58], and the adiabatic excitations in the challenging open-shell 

CH (Table 3) and CNC (Table 4) systems, which have low-lying excited states dominated by two-

electron transitions that require the EOMCCSDT theory level to obtain a reliable description 

[26,36,45,50,72–75]. The CH+ ion was described by the [5s3p1d/3s1p] basis set of Ref. [71] and 

we used the aug-cc-pVDZ [76,77] and DZP[4s2p1d] [78,79] bases for the CH and CNC species, 

respectively. Following Refs. [55,58] (cf., also, Ref. [64]), we used the HANDE software package 
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[80,81] to execute the stochastic i-FCIQMC runs, needed to generate the lists of triply excited 

determinants included in the CC(P) and EOMCC(P) calculations. Our standalone CC/EOMCC 

codes, interfaced with the RHF, ROHF, and integral routines in the GAMESS program suite 

[82,83], were used to carry out the required CC(P), EOMCC(P), CC(P;Q), and fully deterministic 

(CCSD/EOMCCSD and CCSDT/EOMCCSDT) computations (the Q spaces used to construct the 

CC(P;Q) corrections to the CC(P) and EOMCC(P) energies consisted of the triples not captured 

by the i-FCIQMC runs at the corresponding propagation times τ). It should be noted that the CC(P) 

and EOMCC(P) energies at τ = 0 are identical to the energies obtained in the CCSD and 

EOMCCSD calculations and that the corresponding τ = 0 CC(P;Q) corrections are equivalent to 

those of CR-CC(2,3) (the ground state) and CR-EOMCC(2,3) (excited states). It should also be 

noted that the CC(P) and EOMCC(P) energies at τ = ∞ are identical to the energies obtained in the 

full CCSDT and EOMCCSDT calculations. The semi-stochastic CC(P;Q) calculations recover the 

CCSDT and EOMCCSDT energetics in this limit too, although the τ = ∞ values of the ( ; )P Q  

corrections are zero in this case, since the τ = ∞ P spaces contain all the triples, i.e., the 

corresponding Q-space triples lists are empty. These relationships between the semi-stochastic 

CC(P), EOMCC(P), and CC(P;Q) approaches and the fully deterministic CCSD/EOMCCSD, CR-

CC(2,3)/CR-EOMCC(2,3), and CCSDT/EOMCCSDT methodologies were helpful in examining 

the correctness of our codes. They also point to the ability of the CC(P), EOMCC(P), and CC(P;Q) 

calculations driven by the information extracted from CIQMC to offer a systematically improvable 

description as τ approaches ∞. Each i-FCIQMC run was initiated by placing 1500 walkers on the 

relevant reference function (see Tables 1–4 for the details) and we set the initiator parameter an  at 

3. All of the i-FCIQMC propagations used the time step   of 0.0001 a.u. In the post-ROHF 

computations for the CH and CNC species, the core electrons corresponding to the 1s shells of the 

carbon and nitrogen atoms were kept frozen. In the case of CH+, we correlated all electrons. 

 

3.1. CH+ 

We begin our discussion of the numerical results with the CH+ ion, where we investigated 

the three lowest excited states of the 1   symmetry (labeled as 12  , 13  , and 14  ; the ground 

state is designated as 11  ), two lowest states of the 1  symmetry ( 11   and 12  ), and two 

lowest 1  states ( 11   and 12  ). Two C–H internuclear separations were considered, the 
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equilibrium distance R = Re = 2.13713 bohr (Table 1 and Fig. 1 (a) and (b)) and the stretched R = 

2Re geometry (Table 2 and Fig. 1 (c) and (d)). Following the semi-stochastic CC(P;Q) algorithm, 

as described above, and our interest in converging the CCSDT/EOMCCSDT energetics, the cluster 

and right and left EOM operators used in the calculations for the 1   states were approximated by 

( ) (MC)
1 2 3

PT T T T   , ( ) (MC)
,0 ,1 ,2 ,3

PR r R R R       1 , and ( ) (MC)
,0 ,1 ,2 ,3

PL L L L       1 , respec-

tively, where the list of triples defining the three-body components )
3
(MCT , (MC)

,3R , and (MC)
,3L  at a 

given time τ was obtained from the ground-state i-FCIQMC propagation at the same value of τ. 

The )
3
(MCT  component of ( )PT  used in the CC(P;Q) computations of the 1  and 1  states, needed 

to determine the similarity-transformed Hamiltonian ( )PH  to be diagonalized in the subsequent 

EOMCC steps, was defined in the same way as in the case of the 1   states, but the lists of triples 

entering the (MC)
,3R  component of ( )PR  and the (MC)

,3L  component of ( )PL  were obtained differently. 

They were extracted from the i-FCIQMC runs for the lowest states within the irreps of C2v relevant 

to the symmetries of interest, meaning the 1
1 2B ( )vC  component of 11   for the 1  states and the 

1
2 2A ( )vC  component of 11   for the 1  states (C2v is the largest Abelian subgroup of the true point 

group of CH+, vC ; our codes cannot handle non-Abelian symmetries). As implied by Eq. (1), the 

( ; )P Q  corrections to the CC(P) and EOMCC(P) energies at a given time τ were computed using 

the , )(K PM  and , ( )K P  amplitudes corresponding to the triply excited determinants | K   not 

captured by i-FCIQMC at the same τ. 

As pointed out in Refs. [20,21,58], the 12  , 12  , 11  , and 12   states of CH+ at R = Re 

and all of the excited states of the stretched CH+/R = 2Re system, which we calculated in this work, 

are characterized by substantial multireference correlations that originate from large two-electron 

excitation contributions (the 12   state at R = 2Re also has significant triple excitations [20,21,58]). 

It is, therefore, not surprising that the basic EOMCCSD level, equivalent to the EOMCC(P) 

calculations at τ = 0, performs poorly for all of these states, producing very large errors relative to 

EOMCCSDT that are about 12, 20, and 34–35 millihartree for the 12  , 12  , and both 1  states, 

respectively, at R = Re and ~14–144 millihartree when the excited states at R = 2Re are considered 

(see Tables 1 and 2). The EOMCCSD energies for the 13  , 14  , and 11   states at the 
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equilibrium geometry, which are dominated by one-electron transitions, are more accurate, but 

errors on the order of 3–6 millihartree still remain. As shown in Tables 1 and 2, the CR-

EOMCC(2,3) triples correction to EOMCCSD, equivalent to the CC(P;Q) calculations at τ = 0, 

offers substantial improvements, as exemplified by the small errors, on the order of 1–3 

millihartree, for the majority of excited states of CH+ considered in this article, but there are cases, 

especially the 14   and 12   states at R = 2Re, where the differences between the CR-

EOMCC(2,3) and parent EOMCCSDT energies, which are about 13 millihartree in the former case 

and more than 63 millihartree in the case of the latter state, remain very large. This is related to 

the substantial coupling of the one- and two-body components of the cluster and EOM excitation 

and deexcitation operators with their three-body counterparts, which the CR-EOMCC(2,3) 

corrections to EOMCCSD neglect. Our older active-space EOMCCSDt calculations for CH+ 

reported in Refs. [20,21] and the more recent semi-stochastic EOMCC(P) calculations for the same 

system described in Ref. [58] are telling us that the incorporation of the leading triples in the 

relevant P spaces, which allows the one- and two-body components of T , R , and L  to relax in 

the presence of their three-body counterparts, is the key to improve the results of the CR-

EOMCC(2,3) calculations. 

This is exactly what we observe in Tables 1 and 2 and Fig. 1. In agreement with our 

previous work [58], by enriching the P spaces used in the CC(P) and EOMCC(P) computations 

with the subsets of triples captured during i-FCIQMC propagations, the results greatly improve, 

allowing us to reach the millihartree or sub-millihartree accuracy levels for all the calculated 

excited states of CH+ at both nuclear geometries considered in this work when the stochastically 

determined P spaces contain about 20–30 % of all triples. The CC(P;Q) corrections to the 

EOMCC(P) energies based on Eq. (1) accelerate the convergence toward EOMCCSDT even 

further. As shown in Tables 1 and 2 and Fig. 1, these corrections are so effective that we reach the 

millihartree or sub-millihartree accuracy levels relative to the parent EOMCCSDT energetics 

almost instantaneously, i.e., out of the early stages of the i-FCIQMC propagations, when no more 

than 5–10 % of all triples are includes in the relevant P spaces. This is true even when the highly 

complex 14   and 12   states at R = 2Re, for which the EOMCCSD calculations produce the 

massive, ~33 and ~144 millihartree, errors, which remain large (about 13 and 63 millihartree, 

respectively) at the CR-EOMCC(2,3) level. As shown in Table 2, the CC(P;Q) corrections to the 
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EOMCC(P) energies, which account for the missing triples that the i-FCIQMC propagations at a 

given time τ did not capture, allow us to reach the sub-millihartree accuracy levels with less than 

5 % (the 12   state) or ~10 % (the 14   state) of triples in the relevant P spaces. The uncorrected 

EOMCC(P) calculations display the relatively fast convergence toward EOMCCSDT as well, but 

they reach similar accuracies at later propagation times τ, when about 15 % (the 12   state) or 25 

% (the 14   state) of triples are captured by i-FCIQMC. Obviously, the details of the rate of 

convergence of the semi-stochastic CC(P;Q) calculations toward EOMCCSDT, especially when 

one wants to tighten it, depend on the specific excited state being calculated, but, as shown in 

Tables 1 and 2, once about 20 % of triples are captured by the i-FCIQMC propagations, we recover 

the EOMCCSDT energetics for all the calculated excited states of CH+ at both geometries 

examined in this study to within 0.1 millihartree or better. 

Interestingly, there is a great deal of consistency between the behavior of the uncorrected 

semi-stochastic EOMCC(P) approach, in which the lists of triples defining the relevant P spaces 

are extracted from i-FCIQMC propagations, and the fully deterministic EOMCCSDt calculations 

for CH+ reported in Refs. [20,21], in which the leading triples were identified using active orbitals. 

Indeed, once the stochastically determined P spaces extracted from i-FCIQMC capture about 20–

30 % of all triples, which in the case of the CH+ system examined here is achieved after 50000 or 

fewer 0.0001   a.u. MC iterations, the energies resulting from the EOMCC(P) computations 

become very similar to those obtained with the EOMCCSDt method using the active space that 

consists of the highest-energy occupied (3) and three lowest-energy unoccupied (1x, 1y, and 

4) orbitals. Following the definitions of the “little t” 3T  and ,3R  operators adopted in 

EOMCCSDt, for the state symmetries considered in this work, the active space consisting of the 

3, 1x, 1y, and 4 valence orbitals amounts to about 26–29 % of all triples included in the 

respective EOMCC diagonalization spaces [20,21]. This suggests that the types and values of the 

triply excited amplitudes defining the ,3R  components of the EOM operators R , which 

characterize the EOMCCSDt computations reported in Refs. [20,21], and those that define the 

(MC)
,3R  components obtained in the i-FCIQMC-driven EOMCC(P) calculations performed after 

50000 MC iterations using 0.0001   a.u. should be similar too. This is illustrated in Fig. 2, 

where we compare the distributions of the differences between the (MC)
,3R  amplitudes and their full 
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EOMCCSDT counterparts resulting from the EOMCC(P) computations at 4000 (Fig. 2 (a)), 10000 

(Fig. 2 (b)), and 50000 (Fig. 2 (c)) MC iterations for the 12   state of CH+ at R = 2Re with the 

analogous distribution characterizing the ,3R  amplitudes obtained with the EOMCCSDt approach 

using the 3, 1x, 1y, and 4 active orbitals to define the corresponding triples space (Fig. 2 (d); 

all EOM vectors R  needed to construct Fig. 2, corresponding to the EOMCC(P), EOMCCSDt, 

and EOMCCSDT calculations, were normalized to unity). As shown in Fig. 2 (cf. Figs. 2 (c) and 

2 (d)), the small differences between the (MC)
,3R  amplitudes resulting from the EOMCC(P) 

calculations performed after 50000 MC iterations and the ,3R  amplitudes obtained with 

EOMCCSDT, including their numerical values and distribution, closely resemble those 

characterizing the active-space EOMCCSDt computations reported in Refs. [20,21]. This is in 

perfect agreement with the small errors relative to EOMCCSDT characterizing the two 

calculations, which are 0.302 millihartree in the former case (cf. Table 2) and 0.576 millihartree 

in the case of EOMCCSDt [20,21]. When we start using considerably smaller fractions of triples 

and, as a consequence, significantly smaller P spaces in the EOMCC(P) calculations, which is 

what happens when the underlying i-FCIQMC propagation is terminated too soon, the differences 

between the (MC)
,3R  amplitudes resulting from the EOMCC(P) calculations and their EOMCCSDT 

counterparts, including their values and distribution, and the errors in the EOMCC(P) energies 

relative to EOMCCSDT increase. This can be seen in Fig. 2, especially when one compares panel 

(a), which corresponds to the EOMCC(P) calculations performed after 4000 MC iterations that 

use only 7 % of triples, with panel (d) representing EOMCCSDt, which uses a much larger fraction 

of triple excitations (~30 %), and in Table 2, where the error in the EOMCC(P) energy of the 12   

state of CH+ at R = 2Re relative to EOMCCSDT obtained after 4000 MC iterations, of 4.263 

millihartree, is ~14 times larger than the analogous error obtained after 50000 MC steps. 

The above analysis, which could be repeated for the remaining states of CH+, reaching 

similar conclusions, has several interesting implications for the semi-stochastic CC(P;Q) 

methodology pursued in this study, which will be examined by us in the future. It suggests, for 

example, that the CC(P)/EOMCC(P) and CC(P;Q) approaches using CIQMC propagations to 

determine the lists of higher–than–double excitations in the corresponding P spaces can be 

regarded as natural alternatives to the fully deterministic active-space EOMCC methods, such as 
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EOMCCSDt, and their CC(P;Q)-corrected counterparts, such as the CC(t;3) [47,53,54], whose 

performance in excited-state calculations will be reported by us in a separate study. It also suggests 

that the fractions of higher–than–double excitations used to define the stochastically determined P 

spaces, needed to achieve high accuracies observed in the semi-stochastic CC(P;Q) calculations 

discussed in this work, should decrease with the basis set. We have already observed this in our 

previous ground-state work [55], and we anticipate that the same will remain true in the CIQMC-

driven excited-state CC(P;Q) calculations. While this remark requires a separate thorough study, 

beyond the scope of this initial work on the excited-state CC(P;Q), we can rationalize it by 

referring to the analogies between the semi-stochastic CC(P)/EOMCC(P) and CC(P;Q) 

approaches and their deterministic CCSDt/EOMCCSDt and CC(t;3) counterparts. Indeed, the 

aforementioned ( / )D d  ratio that controls the speedups offered by the CC(P)/EOMCC(P) and 

CC(P;Q) calculations becomes ( / )( / )o o u un N n N  when the active-space CCSDt/EOMCCSDt and 

CC(t;3) calculations, based on the ideas laid down in Refs. [20,21,47,50,51,53], are considered, 

where oN  and uN  are the numbers of active occupied and active unoccupied orbitals, respectively, 

which either do not grow with the basis set or grow with it very slowly compared to on  and un . 

Finally, before moving to the next molecular example, we would like to point out that, in 

analogy to the CC(P;Q)-based CC(t;3), CC(t,q;3), and CC(t,q;3,4) calculations using active 

orbitals to define the underlying P spaces (see, e.g., Ref. [54]), one is better off by using smaller 

P spaces in the semi-stochastic CC(P)/EOMCC(P) considerations, which can be extracted out of 

the early stages of CIQMC propagations, and capturing the remaining correlations using 

noniterative CC(P;Q) corrections, than by running long-time CIQMC simulations to generate 

larger P spaces for the uncorrected CC(P)/EOMCC(P) calculations. This can be seen in Tables 1 

and 2 for CH+ and in the remaining Tables 3 and 4 discussed in the next two subsections. We 

illustrate this remark by inspecting the EOMCC(P) and CC(P;Q) calculations for the 14   state 

of CH+. As shown in Table 1, one needs to capture about 50 % of triples in the P space to reach a 

0.1 millihartree accuracy relative to EOMCCSDT at R = Re using the uncorrected EOMCC(P) 

approach. When the CC(P;Q) correction is employed, only 15 % of triples are needed to reach the 

same accuracy level. At the more challenging R = 2Re geometry (Table 2), one reaches a ~0.1 

millihartree accuracy level with about 40 % of triples in the P space when using the uncorrected 

EOMCC(P) approach. This fraction reduces to about 20 %, without any accuracy loss, when the 
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CC(P;Q) correction is added to the EOMCC(P) energy. Based on the information provided in 

Section 2.2, running the EOMCC(P) calculations with a smaller fraction of triples in the P space 

offers much larger savings in the computational effort than the additional time spent on 

determining the CC(P;Q) correction, which is, as pointed out above, considerably less expensive 

than a single EOMCCSDT iteration. For example, in the pilot implementation of the excited-state 

EOMCC(P) and CC(P;Q) approaches aimed at recovering EOMCCSDT energetics, employed in 

this work, the uncorrected EOMCC(P) run using 50 % of triples in the P space, needed to reach a 

~0.1 millihartree accuracy relative to EOMCCSDT for the 14   state of CH+ at R = Re, is about 

twice as fast as the corresponding EOMCCSDT calculation. The EOMCC(P) diagonalization that 

forms part of the analogous CC(P;Q) run, which needs only 15 % of triples in the P space to reach 

the same accuracy level, is about 6 times faster than EOMCCSDT. The noniterative CC(P;Q) 

correction is so inexpensive here that one can largely ignore the computational costs associated 

with its determination in this context (cf. Ref. [84] for the analogous comments made in the context 

of comparing costs of the CCSDt computations with those of CC(t;3)). 

 

3.2. CH 

Similar convergence patterns in the semi-stochastic EOMCC(P) and CC(P;Q) calculations 

are observed for the CH radical (see Table 3). In this case, following our earlier deterministic 

EOMCC work, including the CR-EOMCC [36,45] and electron-attachment (EA) EOMCC 

[36,85,86] approaches, and a wide range of EOMCC computations, including the high 

EOMCCSDT and EOMCCSDTQ levels, published by Hirata [26], along with the 2X   ground 

state, we examined the three low-lying doublet excited states, designated as 2A  , 2B  , and 

2C  , which belong to different irreducible representations than that of the ground state. In 

analogy to the aforementioned EOMCC studies of CH [26,36,45,85,86], the relevant CC(P) (the 

2X   state) and EOMCC(P) (excited states) electronic energies and their CC(P;Q) counterparts 

were determined at the corresponding experimentally derived equilibrium C–H distances, which 

are 1.1197868 Å for the 2X   state [87], 1.1031 Å for the 2A   state [87], 1.1640 Å for the 2B   

state [88], and 1.1143 Å for the 2C  state [89] (cf. Table 3). Since all of our CC(P)/EOMCC(P) 

and CC(P;Q) calculations, starting from the τ = 0 CCSD/EOMCCSD and CR-EOMCC(2,3) levels 
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and ending up with the larger values of τ needed to examine the convergence toward the parent 

CCSDT/EOMCCSDT energetics, were performed using the ROHF reference determinant, we also 

computed the ROHF-based CCSDT and EOMCCSDT energies, which formally correspond to the 

τ = ∞ CC(P)/EOMCC(P) and CC(P;Q) results. We had to do it, since the previously published 

CCSDT/EOMCCSDT results [26] relied on the unrestricted Hartree–Fock rather than the ROHF 

reference. In analogy to CH+, the lists of triples defining the )
3
(MCT  component of the cluster 

operator ( )PT  and the (MC)
,3R  and the (MC)

,3L  components of the EOM excitation and deexcitation 

operators, ( )PR  and ( )PL , respectively, used in the CC(P), EOMCC(P), and CC(P;Q) calculations 

for the CH radical, were extracted from the i-FCIQMC propagations for the lowest-energy states 

of the relevant irreps of C2v, namely, the 2
2 2B ( )vC  component of the 2X   state, the lowest state 

of the 2
21A ( )vC  symmetry in the case of the 2A   and 2C   states, and the lowest 2

2 2A ( )vC  

state when considering the 2B   state (again, we used C2v, which is the largest Abelian subgroup 

of the true point group of CH, vC ). 

As explained in our earlier papers [36,45,85,86] and as shown in Ref. [26], all three excited 

states of the CH radical considered here, especially 2B   and 2C  , which are dominated by 

two-electron excitations (cf. the reduced excitation level (REL) diagnostic values in Tables II and 

III of Ref. [36] or Table II of Ref. [45]), constitute a significant challenge, requiring the full 

EOMCCSDT treatment to obtain a reliable adiabatic excitation spectrum. This can be seen by 

inspecting the τ = 0 EOMCC(P), i.e., EOMCCSD, energies for the 2A  , 2B  , and 2C   states 

of CH shown in Table 3, which are characterized by the ~13, ~39, and ~44 millihartree errors 

relative to EOMCCSDT, respectively. The CR-EOMCC(2,3) triples corrections to EOMCCSD, 

represented in Table 3 by the τ = 0 CC(P;Q) values, help, especially in the case of the 2C   state, 

but the situation is far from ideal, since errors on the order of 8 and 5 millihartree for the 2A   

and 2B   states, respectively, remain. The situation considerably improves when we turn to the 

semi-stochastic CC(P;Q) calculations, which incorporate the leading triples in the relevant P 

spaces by extracting them from the corresponding i-FCIQMC propagations and correct the 

resulting energies for the remaining triple excitations that were not captured by i-FCIQMC at a 

given time τ. As shown in Table 3, in the case of the 2A   and 2B   states, which are not only 
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challenging to EOMCCSD, but also to CR-EOMCC(2,3), we can reach comfortable 1–2 

millihartree errors relative to EOMCCSDT using the semi-stochastic CC(P;Q) corrections 

developed in this work once the relevant P spaces contain about 20–40 % of all triples. With ~50 

% triples in the same P spaces, the CC(P;Q) energies of the 2A   and 2B   states are within 

fractions of a millihartree from EOMCCSDT. These are considerable improvements relative to the 

purely deterministic EOMCCSD and CR-EOMCC(2,3) computations, which give ~13–39 and ~5–

8 millihartree errors, respectively, for the same two states, and the semi-stochastic EOMCC(P) 

calculations that reach 1–2 millihartree accuracy levels with about 70–80 % triples in the respective 

P spaces. In the case of the 2C   state, which is a major challenge to EOMCCSD, but not to CR-

EOMCC(2,3), the behavior of the EOMCC(P) and CC(P;Q) approaches is different, since the 

CC(P;Q) corrections obtained with the help of some triples in the P space captured by i-FCIQMC 

are no longer needed to obtain the well-converged energetics, i.e., the τ = 0 CC(P;Q) result, where 

the P space is spanned by singles and doubles only, is sufficiently accurate, but it is still interesting 

to observe that one can tighten the convergence further, reaching stable < 0.1 millihartree errors 

relative to EOMCCSDT with about 50 % of all triples in the P space. In analogy to the 2A   and 

2B   states, it is also interesting to observe a reasonably smooth convergence of the uncorrected 

EOMCC(P) energies toward EOMCCSDT. It is clear from the results presented in Table 3 that the 

CC(P;Q) corrections to the semi-stochastic CC(P) and EOMCC(P) energies offer considerable 

speedups compared to the uncorrected CC(P)/EOMCC(P) calculations, not only for the closed-

shell molecules, such as CH+, but also when examining open-shell species. 

 

3.3. CNC 

Our last example, which is also the largest many-electron system considered in the present 

study, is the linear, hD  symmetric, CNC molecule. Following our earlier CR-CC(2,3)/CR-

EOMCC(2,3) and EA-EOMCC calculations for this challenging open-shell molecular species 

[36,74,75], we considered the 2X g  ground state and two low-lying doublet excited states, 2A u  

and 2B u
 . The i-FCIQMC-driven CC(P) ground-state and EOMCC(P) excited-state energies and 

the corresponding CC(P;Q) corrections, along with their deterministic EOMCCSD, CR-

EOMCC(2,3), and EOMCCSDT counterparts, were calculated using the equilibrium C–N 
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distances optimized in Ref. [74] with EA-SAC-CI. They are 1.253 Å for the 2X g  state, 1.256 Å 

for the 2A u  state, and 1.259 Å for the 2B u
  state. As in the case of the CH radical, we used the 

ROHF reference determinant. Following the computational protocol adopted in this study, and in 

analogy to the CH+ and CH species, the lists of triples defining the )
3
(MCT , (MC)

,3R , and (MC)
,3L  

components used in the semi-stochastic CC(P), EOMCC(P), and CC(P;Q) calculations for CNC 

were obtained using the i-FCIQMC propagations for the lowest-energy states of the relevant irreps 

of the largest Abelian subgroup of hD , i.e., 2hD , meaning the 2
2 2B )(g hD  component of the 

2X g  state and the lowest state of the 2
1 2B )(u hD  symmetry in the case of the 2A u  and 2B u

  

states. 

As shown in Table 4 and in agreement with one of our previous studies [36], all three states 

of CNC considered in this work, especially 2A u  and 2B u
 , are poorly described by CCSD and 

EOMCCSD, which produce more than 18, 31, and 111 millihartree errors, respectively, relative to 

the target EOMCCSDT energetics (see the τ = 0 CC(P) and EOMCC(P) energies in Table 4). The 

excessively large, > 111 millihartree, error in the EOMCCSD energy of the 2B u
  state is related 

to its strongly multireference character dominated by two-electron excitations (cf. the REL values 

characterizing the excited states of CNC in Table IV of Ref. [36]). In the case of the ground state 

and the 2B u
  excited state, the CR-CC(2,3) and CR-EOMCC(2,3) corrections to CCSD and 

EOMCCSD seem to be quite effective, reducing the large errors relative to CCSDT/EOMCCSDT 

observed in the CCSD and EOMCCSD calculations to a sub-millihartree level, but the ~16 

millihartree error resulting from the CR-EOMCC(2,3) calculations for the 2A u  state, while 

considerably lower than the >31 millihartree error obtained with EOMCCSD, is still rather large 

(see the τ = 0 CC(P;Q) energies in Table 4). By incorporating the dominant triply excited 

determinants captured by the i-FCIQMC propagations in the respective P spaces, the semi-

stochastic CC(P) and EOMCC(P) approaches help, allowing us to reach stable ~1–2 millihartree 

accuracy levels for the 2X g  and 2A u  states relative to the target CCSDT/EOMCCSDT 

energetics with about 50–60 % triples, but the CC(P;Q) corrections that account for the remaining 

triples, missing in the i-FCIQMC wave functions, are considerably more effective. In the case of 

the 2A u  state, which poses problems to both EOMCCSD and CR-EOMCC(2,3), which give 
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about 31 and 16 millihartree errors relative to EOMCCSDT, respectively, we reach a stable  ~1–2 

millihartree accuracy level with about 30–40 % triples in the corresponding P space, as opposed 

to the aforementioned 50–60 % needed in the uncorrected EOMCC(P) run. The benefits of using 

the semi-stochastic CC(P;Q) vs. deterministic CR-EOMCC(2,3) corrections for the 2X g  and 

2B u
  states are less obvious, but it is encouraging to observe the rapid convergence toward the 

target CCSDT and EOMCCSDT energetics in the former calculations. In particular, they allow us 

to lower the 0.4–0.5 millihartree errors obtained with CR-EOMCC(2,3) to a 0.1 millihartree level 

with about 10 % of all triples, identified by i-FCIQMC, in the case of the 2X g  state and with 

~30–40 % triples in the P space when the 2B u
  state is considered. Once again, the CC(P;Q) 

corrections to the energies resulting from the semi-stochastic CC(P) and EOMCC(P) calculations 

speed up the uncorrected CC(P)/EOMCC(P) computations, while allowing us to improve the CR-

CC(2,3) and CR-EOMCC(2,3) energetics by bringing them very close to the CCSDT and 

EOMCCSDT levels at the fraction of the cost. 

 

4. Conclusions 

We have demonstrated that the semi-stochastic, CIQMC-driven, CC(P;Q) algorithm 

developed in this work, which is based on correcting the results of the EOMCC(P) 

diagonalizations, using the ideas presented in Refs. [55,58], for the effects of higher–than–doubly 

excited determinants that were not captured by the corresponding CIQMC propagations, is capable 

of faithfully reproducing the parent high-level EOMCC energetics, such as EOMCCSDT, out of 

the early stages of CIQMC runs. We have illustrated the performance of this algorithm by reporting 

the results of the CC(P;Q) and underlying CC(P) and EOMCC(P) calculations aimed at 

converging the EOMCCSDT energetics for a few benchmark systems, including CH+ at the 

equilibrium and stretched geometries and the open-shell CH and CNC species. While the details 

of the rate of convergence of the semi-stochastic CC(P;Q) calculations toward EOMCCSDT, 

especially when one wants to tighten it, may depend on the specific excited state being calculated, 

the combination of the CIQMC wave function sampling with the CC(P;Q) corrections to the 

EOMCC(P) energies proposed in this work is as efficient as its ground-state counterpart developed 

in Ref. [55]. We have shown that the excited-state CC(P;Q) corrections accelerate the convergence 

of the uncorrected EOMCC(P) energies in the same way as their ground-state analogs, allowing 
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us to reach millihartree or sub-millihartree accuracy levels relative to the parent EOMCC (in this 

study, EOMCCSDT) methodology with the relatively small fractions of higher–than–doubly 

excited determinants captured in the early stages of the CIQMC runs. By relaxing the one and two-

body components of the cluster and EOM excitation and deexcitation operators in the presence of 

their higher-order counterparts, which are determined using the excitation lists provided by 

CIQMC, they are capable of considerably improving the CR-EOMCC(2,3) corrections to 

EOMCCSD without making the calculations a lot more expensive. This is true for both the excited 

states dominated by one-electron transitions and for the more strongly correlated multireference 

states having significant double excitation character. 

The results reported in this study are promising, but, in addition to code optimization, we 

need more testing, including larger molecules and larger basis sets, for which parent EOMCCSDT 

data can be generated (cf., e.g., Refs. [90–92]), and examining extensions of our semi-stochastic 

CC(P;Q) methodology beyond the CCSDT and EOMCCSDT levels. It would also be interesting 

to consider various ways of modifying the semi-stochastic excited-state CC(P;Q) algorithm 

proposed in this work, such as the state-specific generalization suggested at the EOMCC(P) level 

in Ref. [58], where one would use as many stochastically determined P spaces as the number of 

the calculated states by taking advantage of the excited-state CIQMC framework proposed in Refs. 

[69,70]. As shown, for example, in Table 2 and Fig. 1 (d), the CC(P;Q) energies of the 14   state 

of CH+ at R = 2Re, while accelerating convergence of the uncorrected EOMCC(P) energies toward 

EOMCCSDT, converge to EOMCCSDT slower than the CC(P;Q) calculations for the 1n   states 

with 1 3n   . Similarly, the CC(P;Q) energies of the 12   state of CH+ converge toward the parent 

EOMCCSDT energetics somewhat slower than those obtained for the 11   state (see Tables 1 and 

2). Thus, using the excited-state CIQMC framework of Refs. [69,70] to adjust each P space 

employed in the CC(P;Q) calculations to the corresponding excited electronic state of interest is a 

direction worth pursuing. This may become especially important for the high-lying excitations, for 

which the P spaces determined for the lowest-energy states of the relevant symmetries may no 

longer be adequate. Last, but not least, we plan to explore other ways of capturing the leading 

higher–than–doubly excited determinants to define the P spaces needed in the CC(P;Q) 

considerations, such as the adaptive CI [93,94], adaptive sampling CI [95,96], heat-bath CI [97–

99], and related methodologies, to mention a few representative examples. 
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Table 1. Convergence of the CC(P)/EOMCC(P) and CC(P;Q) energies toward CCSDT/EOMCCSDT for the CH+ ion, calculated using 
the [5s3p1d/3s1p] basis set of Ref. [71], at the C–H internuclear distance R = Re = 2.13713 bohr. The P spaces used in the CC(P) and 
EOMCC(P) calculations were defined as all singles, all doubles, and subsets of triples extracted from i-FCIQMC propagations for the 
lowest states of the relevant symmetries. Each i-FCIQMC run was initiated by placing 1500 walkers on the appropriate reference 
function [the RHF determinant for the 1   states, the 3 1   state of the 1

21B ( )vC  symmetry for the 1  states, and the 2 23 1   

state of the 1
2 2A ( )vC  symmetry for the 1  states], setting the initiator parameter an  at 3 and the time step   at 0.0001 a.u. The Q 

spaces used in constructing the CC(P;Q) corrections consisted of the triples not captured by the i-FCIQMC.  

MC Iters. 
(×103) 

1 1+  2 1+  3 1+  4 1+  1 1  2 1  1 1  2 1 
Pa (P;Q)b %Tc  Pa (P;Q)b  Pa (P;Q)b  Pa (P;Q)b  Pa (P;Q)b %Tc  Pa (P;Q)b  Pa (P;Q)b %Tc  Pa (P;Q)b 

0d 1.845 0.063 0  19.694 1.373  3.856 0.787  5.537 0.954  3.080 0.792 0  11.656 2.805  34.304 −0.499 0  34.685 0.350 
2 1.071 0.024 7  11.004 0.909  3.248 0.587  4.826 −4.469  0.772 0.179 13  3.746 0.530  1.492 0.151 10  5.951 0.432 
4 0.423 0.009 15  5.474 0.090  1.893 0.047  1.980 0.100  0.513 0.102 20  1.852 0.128  0.525 0.051 16  2.542 0.128 
6 0.249 0.003 20  4.712 0.111  1.268 0.046  1.077 0.068  0.213 0.054 25  0.957 0.073  0.471 0.028 18  1.892 0.094 
8 0.181 0.003 23  1.371 0.112  0.643 0.067  0.702 0.075  0.170 0.058 27  0.743 0.060  0.240 0.021 22  0.940 0.057 
10 0.172 0.004 24  1.572 0.061  0.295 0.044  0.385 0.026  0.118 0.046 29  0.411 0.047  0.198 0.017 24  0.877 0.041 
50 0.077 0.001 37  0.755 0.026  0.139 0.037  0.208 0.032  0.053 0.027 43  0.157 0.027  0.039 0.008 42  0.133 0.011 
100 0.044 0.000 48  0.277 0.009  0.007 0.013  0.155 0.017  0.021 0.013 57  0.063 0.012  0.014 0.005 56  0.043 0.005 
150 0.015 0.000 59  0.085 0.005  0.058 0.006  0.041 0.007  0.008 0.005 71  0.020 0.004  0.004 0.002 71  0.008 0.003 
200 0.006 0.000 69  0.024 0.002  0.014 0.002  0.002 0.003  0.004 0.003 82  0.008 −0.001  0.003 0.002 82  0.003 0.002 
∞e −38.019516  −37.702621  −37.522457  −37.386872  −37.900921  −37.498143  −37.762113  −37.402308 

aErrors in the CC(P) (the 11   ground state) and EOMCC(P) (excited states) energies relative to the corresponding CCSDT and EOMCCSDT data, in millihartree 

[58]. 
bErrors in the CC(P;Q) energies relative to the corresponding CCSDT and EOMCCSDT data, in millihartree. 
cThe %T values are the percentages of triples captured during the i-FCIQMC propagations for the lowest state of a given symmetry [the 1 1

1 2A ( )1 1 vC   ground 

state for the 1   states, the 1
1 2B ( )vC  component of the 11   state for the 1  states, and the 1

2 2A ( )vC  component of the 11   state for the 1  states]. 
dThe CC(P) and EOMCC(P) energies at τ = 0.0 a.u. are identical to the energies obtained in the CCSD and EOMCCSD calculations. The τ = 0.0 a.u. CC(P;Q) 
energies are equivalent to the CR-CC(2,3) (the ground state) and CR-EOMCC(2,3) (excited states) energies. 
eThe CC(P) and EOMCC(P) energies at τ = ∞ a.u. are identical to the energies obtained in CCSDT and EOMCCSDT calculations (see Refs. [20,21]). 
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Table 2. Same as Table 1 for the stretched C–H internuclear distance R = 2Re = 4.27426 bohr. 

MC Iters. 
(×103) 

1 1+  2 1+  3 1+  4 1+  1 1  2 1  1 1  2 1 
P (P;Q) %T  P (P;Q)  P (P;Q)  P (P;Q)  P (P;Q) %T  P (P;Q)  P (P;Q) %T  P (P;Q) 

0 5.002 0.012 0  17.140 1.646  19.929 −2.871  32.639 12.657  13.552 2.303 0  21.200 −1.429  44.495 −4.526 0  144.414 −63.405 
2 1.588 0.031 3  5.209 0.478  12.524 −2.079  33.400 14.297  1.398 0.306 7  1.644 −0.060  1.372 0.046 6  13.363 0.368 
4 0.504 0.015 7  4.263 −1.741  6.383 −0.760  12.671 2.178  0.712 0.058 12  0.724 0.050  0.451 0.014 9  3.338 0.130 
6 0.275 0.002 11  1.405 0.047  1.352 0.051  5.870 0.593  0.409 0.033 14  0.612 0.031  0.422 0.022 12  2.340 0.063 
8 0.263 0.004 12  1.543 0.065  1.173 0.020  4.406 0.699  0.436 0.050 16  0.457 −0.002  0.253 0.007 13  2.088 0.021 
10 0.148 0.003 14  0.792 0.094  0.613 0.047  2.331 0.342  0.227 0.039 17  0.220 0.014  0.122 −0.001 14  0.862 0.038 
50 0.030 0.000 26  0.302 0.002  0.339 0.007  0.457 0.013  0.061 0.007 30  0.079 0.006  0.047 0.005 26  0.288 0.005 
100 0.009 0.000 39  0.103 0.003  0.119 0.006  0.110 0.011  0.013 0.002 41  0.016 0.004  0.013 0.004 36  0.038 0.000 
150 0.004 0.000 52  0.031 0.000  0.035 0.003  0.076 0.006  0.005 0.002 52  0.007 0.002  0.005 0.001 47  0.014 0.000 
200 0.001 0.000 63  0.024 0.000  0.019 0.000  0.006 0.001  0.002 0.001 65  0.001 0.000  0.001 0.000 57  0.003 0.000 
∞ −37.900394  −37.704834  −37.650242  −37.495275  −37.879532  −37.702345  −37.714180  −37.494031 
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Table 3. Convergence of the CC(P)/EOMCC(P) and CC(P;Q) energies toward CCSDT/EOMCCSDT for the CH radical, calculated 
using the aug-cc-pVDZ [76,77] basis set. The P spaces used in the CC(P) and EOMCC(P) calculations were defined as all singles, all 
doubles, and subsets of triples extracted from i-FCIQMC propagations for the lowest states of the relevant symmetries. Each i-FCIQMC 
run was initiated by placing 1500 walkers on the appropriate reference function [the ROHF 2

22B ( )vC  determinant for the 2X   ground 

state, the 1 4   state of the 2
21A ( )vC  symmetry for the 2A   and 2C   states, and the 3 1   state of the 2

2 2A ( )vC  symmetry 

for the 2B   state], setting the initiator parameter an  at 3 and the time step   at 0.0001 a.u. The Q spaces used in constructing the 

CC(P;Q) corrections consisted of the triples not captured by the i-FCIQMC.  
MC Iters. 

(×103) 
X 2  A 2  B 2  C 2 

Pa (P;Q)b %Tc  Pa (P;Q)b %Tc  Pa (P;Q)b %Tc  Pa (P;Q)b %Tc 

0d 2.987 0.231 0.0  13.474 7.727 0.0  38.620 −4.954 0.0  43.992 0.087 0.0 
2 2.405 0.170 13.8  13.009 7.395 9.8  10.602 −1.848 18.5  40.700 −0.689 9.8 
4 1.413 0.086 41.7  10.907 5.288 19.3  7.066 −1.259 38.9  31.017 −0.319 19.7 
6 0.883 0.035 58.9  10.119 4.577 27.2  3.452 −0.371 53.2  26.364 −0.508 28.8 
8 0.603 0.022 66.8  7.764 2.436 34.6  2.309 −0.149 61.4  20.545 −0.412 34.3 
10 0.495 0.019 72.6  6.987 2.170 38.1  1.965 −0.024 64.8  17.180 0.435 38.3 
12 0.445 0.015 76.5  6.640 1.981 42.3  1.832 −0.081 69.5  16.929 0.029 42.5 
14 0.389 0.013 77.5  7.040 1.887 45.7  1.180 0.030 72.2  13.114 0.253 45.1 
16 0.309 0.008 79.2  6.047 1.667 48.3  1.303 0.012 75.6  7.646 −0.041 48.7 
18 0.292 0.008 80.3  4.646 0.875 49.8  1.349 −0.062 77.5  5.312 0.011 50.1 
20 0.243 0.006 82.2  3.809 0.754 52.6  0.796 0.038 79.5  4.691 0.108 52.2 
50 0.150 0.002 89.1  1.367 0.112 74.1  0.298 0.038 91.6  1.436 0.070 74.0 
100 0.055 0.002 95.3  0.177 0.017 91.7  0.144 0.014 98.3  0.204 0.013 91.3 
150 0.025 0.000 98.1  0.042 −0.003 98.0  0.010 0.007 99.6  0.063 0.010 98.2 
200 0.010 0.000 99.2  0.007 0.001 99.7  −0.001 −0.001 99.9  0.010 0.001 99.7 
∞e −38.387749  −38.276770  −38.267544  −38.238205 

aErrors in the CC(P) (the 2X  ground state) and EOMCC(P) (excited states) energies relative to the corresponding CCSDT and EOMCCSDT data, in millihartree, 

calculated at the experimentally obtained equilibrium C–H distances used in Refs. [26,36,45], which are 1.1197868 Å for the 2X   state [87], 1.1031 Å for the 
2A   state [87], 1.1640 Å for the 2B   state [88], and 1.1143 Å for the 2C   state [89]. The lowest-energy core orbital was frozen in all correlated calculations. 

bErrors in the CC(P;Q) energies relative to the corresponding CCSDT and EOMCCSDT data, in millihartree, calculated at the experimentally determined 
equilibrium C–H distances as used in Refs. [26,36,45] (see footnote ‘a’ for the C–H distances). 
cThe %T values are the percentages of triples captured during the i-FCIQMC propagations for the lowest state of a given symmetry [the 2

2 2B ( )vC  component of 

the 2X   ground state, the lowest 2
21A ( )vC  state for the 2A   and 2C   states, and the lowest 2

2 2A ( )vC  state for the 2B   state]. 
dThe CC(P) and EOMCC(P) energies at τ = 0.0 a.u. are identical to the energies obtained in CCSD and EOMCCSD calculations. The τ = 0.0 a.u. CC(P;Q) energies 
are equivalent to the CR-CC(2,3) (the ground state) and CR-EOMCC(2,3) (excited states) energies. 
eThe CC(P) and EOMCC(P) energies at τ = ∞ a.u. are identical to the energies obtained in the ROHF-based CCSDT and EOMCCSDT calculations. 
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Table 4. Convergence of the CC(P)/EOMCC(P) and CC(P;Q) energies toward CCSDT/EOMCCSDT for the CNC molecule, calculated 
using the DZP[4s2p1d] basis set of Refs. [78,79]. The P spaces used in the CC(P) and EOMCC(P) calculations were defined as all 
singles, all doubles, and subsets of triples extracted from i-FCIQMC propagations for the lowest states of the relevant symmetries. Each 
i-FCIQMC run was initiated by placing 1500 walkers on the appropriate reference function [the ROHF 2

22B ( )g hD  determinant for the 
2X g  ground state and the 3 1u g   state of the 2

21B ( )u hD  symmetry for the 2A u  and 2B u
  states], setting the initiator parameter 

an  at 3 and the time step   at 0.0001 a.u. The Q spaces used in constructing the CC(P;Q) corrections consisted of the triples not 

captured by the i-FCIQMC. 

MC Iters. 
(×103) 

X ଶ௚  A ଶ௨   B ଶ௨


 

Pa (P;Q)b %Tc  Pa (P;Q)b %Tc  Pa (P;Q)b %Tc 

0d 18.458 −0.495 0.0  31.157 16.017 0.0  111.307 −0.433 0.0 
2 10.331 −0.043 13.2  18.835 9.114 6.5  81.493 −2.496 6.5 
4 4.424 −0.029 33.2  10.637 5.717 16.1  53.677 −2.526 16.0 
6 2.824 −0.011 44.1  7.555 4.199 22.7  35.539 −1.254 22.8 
8 1.818 −0.013 49.9  6.181 3.090 27.5  26.767 −0.864 27.9 
10 1.306 −0.006 53.3  5.187 2.441 30.8  21.337 −0.284 31.5 
12 1.092 −0.003 56.5  4.162 1.778 34.0  17.056 0.196 34.3 
14 0.911 −0.005 58.7  3.529 1.418 37.0  12.843 0.046 37.5 
16 0.820 −0.003 60.6  3.106 1.149 39.5  9.197 0.134 39.9 
18 0.651 −0.003 62.5  2.510 0.811 41.7  8.879 −0.034 42.4 
20 0.610 −0.001 63.9  2.395 0.785 44.4  7.548 0.151 44.7 
50 0.077 0.000 79.7  0.172 0.058 70.9  0.732 0.055 70.7 
100 0.002 0.000 94.5  0.002 0.001 92.3  0.005 0.003 91.9 
150 0.000 0.000 99.3  0.000 0.000 99.1  0.000 0.000 99.1 
∞e −130.421932  −130.276946  −130.252999 

aErrors in the CC(P) ( 2X g  state) or EOMCC(P) (the remaining states) energies relative to the corresponding CCSDT or EOMCCSDT data, in millihartree, 

calculated at the equilibrium C–N distances optimized in Ref. [74], which are 1.253 Å for the 2X g  state, 1.256 Å for the 2A u  state, and 1.259 Å for the 2B u
  

state. The three lowest-energy core orbitals were frozen in all correlated calculations. 
bErrors in the CC(P;Q) energies relative to the corresponding CCSDT or EOMCCSDT data, in millihartree, calculated at the equilibrium C–N distances optimized 
in Ref. [74] (see footnote ‘a’ for these C–N distances ). 
cThe %T values are the percentages of triples captured during the i-FCIQMC propagations for the lowest state of a given symmetry [the 2

2 2B )(g hD  component of 

the 2X g  ground state and the lowest 2
1 2B )(u hD  state for the 2A u  and 2B u

  states]. 
dThe CC(P) and EOMCC(P) energies at τ = 0.0 a.u. are identical to the energies obtained in CCSD and EOMCCSD calculations. The τ = 0.0 a.u. CC(P;Q) energies 
are equivalent to the CR-CC(2,3) (the ground state) and CR-EOMCC(2,3) (excited states) energies. 
eThe CC(P) and EOMCC(P) energies at τ = ∞ a.u. are identical to the energies obtained in the ROHF-based CCSDT and EOMCCSDT calculations. 
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Figure 1. Convergence of the EOMCC(P) (panels (a) and (c)) and CC(P;Q) (panels (b) and (d)) 

energies toward EOMCCSDT for the three lowest-energy excited states of the 1   symmetry, two 

lowest states of the 1  symmetry, and two lowest 1  states of the CH+ ion, as described by the 

[5s3p1d/3s1p] basis set of Ref. [71], at the C–H internuclear distance R set at Re = 2.13713 bohr 

(panels (a) and (b)) and 2Re = 4.27426 bohr (panels (c) and (d)). 
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Figure 2. A comparison of the distributions of the differences between the (MC)
,3R  amplitudes and 

their EOMCCSDT counterparts resulting from the EOMCC(P) computations at (a) 4000, (b) 

10000, and (c) 50000 MC iterations using 0.0001   a.u. for the 12   state of CH+ at R = 2Re 

with the analogous distribution characterizing the ,3R  amplitudes obtained with the EOMCCSDt 

approach employing the 3, 1x, 1y, and 4 active orbitals to define the corresponding triples 

space (panel (d)). All vectors R  needed to construct panels (a)–(d) were normalized to unity. 


