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ABSTRACT

The recently proposed approach to excited electronic states, in which the deterministic equation-
of-motion coupled-cluster (EOMCC) framework is merged with stochastic configuration
interaction Quantum Monte Carlo (CIQMC) computations [J.E. Deustua et al., J. Chem. Phys.
150, 111101 (2019)], is combined with the noniterative energy corrections derived from the
CC(P;Q) formalism. By examining vertical excitations in CH" at the equilibrium and stretched
geometries and adiabatic excitations in CH and CNC, we demonstrate that the resulting semi-
stochastic CC(P;Q) methodology converges target high-level energetics, represented in this study
by the EOMCC method with singles, doubles, and triples, in the early stages of CIQMC

propagations.
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1. Introduction

One of the greatest challenges in quantum chemistry is the development of practical and
yet robust and systematically improvable treatments of many-electron correlation effects, which
are needed to accurately determine ground- and excited-state molecular potential energy surfaces
and property functions that emerge in studies of chemical reactivity, spectroscopy, and

photochemistry. It is nowadays well established that size-extensive methods based on the

exponential wave function ansatz of coupled-cluster (CC) theory [1-5], ‘P0> =exp(T) | (D> , where

T= anzl T, is the cluster operator, 7 is the n-body component of 7', N is the number of correlated

electrons, and | CD> is the reference determinant, and their various extensions to excited, open-shell,

and multireference states (see Refs. [6—8] for selected reviews) are excellent candidates for
addressing this challenge. This is particularly true for the equation-of-motion (EOM) CC [9-11]
approach to excited states, pursued in this study, and its linear-response (LR) [12—-18] and sym-

metry-adapted-cluster (SAC) configuration interaction (CI) [19] counterparts, which adopt the

following representation of excited-state wave functions: “P #> =R,|¥,)=R, exp(T)|®), where

N
Ry=ro1+3, R

_ R, is the linear excitation operator generating “P ﬂ> from the CC ground state

|T0> , R, 1s the n-body component of R, and 1 is the unit operator.

One of the key challenges in EOMCC, LRCC, and SAC-CI, which has propelled much of
the development work dealing with these methodologies for about three decades, has been how to
incorporate higher—than—two-body components of the cluster and EOM excitation operators, i.e.,

the 7, and R,

n

components with n > 2, needed to achieve a quantitative description, without

running into enormous, often prohibitive, computational costs of the higher-order schemes, such
as the EOMCC method with singles, doubles, and triples (EOMCCSDT) [20-22], where T and

R, are truncated at 7; and R, ,, respectively, which is the excited-state counterpart of CCSDT

[23,24], or the EOMCC approach with singles, doubles, triples, and quadruples (EOMCCSDTQ)

[25,26], where T and R, are truncated at 7, and R, respectively, which is an excited-state

extension of CCSDTQ [27-29]. Focusing on EOMCC, one can make the computations a lot more
affordable and reduce the iterative n’n’ steps of EOMCCSDT or n'n’ steps of EOMCCSDTQ to



n;n, by ignoring the 7, and R,, components with > 2, as in the EOMCC method with singles

and doubles (EOMCCSD) [11], which extends the ground-state CCSD approach [30,31] to excited
states, but EOMCCSD fails to describe excited-state potentials along bond stretching coordinates
and excited states dominated by two- and other many-electron transitions, producing errors that
often exceed 1 eV (cf. Refs. [20,21,32—-37] for examples), while not being fully quantitative for

singly excited states, where errors on the order of 0.3—-0.5 eV are not uncommon [38] (7, and n,

are the numbers of correlated occupied and unoccupied orbitals, respectively). Many ways of

incorporating higher—than—two-body components of the 7" and R, operators at the fraction of the

computational costs of high-level EOMCC methods, such as EOMCCSDT, have been proposed,
resulting in noniterative perturbative corrections to EOMCCSD or LRCCSD excitation energies
[39—44] and their completely renormalized (CR) [32,35-38,45—47] and iterative [39-42,48,49]
counterparts, but methods of these types face several new challenges. For example, the EOMCC
approaches utilizing perturbation theory to identify the leading post-EOMCCSD contributions
have difficulties with describing multireference excited states characterized by substantial
electronic quasi-degeneracies, while the more robust CR-EOMCC corrections to EOMCCSD,
which are capable of handling doubly excited states and excited-state potentials along bond
stretching coordinates, have difficulties with balancing ground- and excited-state energies. The

latter issue is, in part, related to decoupling the low-order 7, and R,, components with n <2

from their higher—than—two-body counterparts in all noniterative corrections to EOMCCSD. One
can eliminate many of the above problems, while keeping computational costs at the relatively low
levels, by turning to the active-space EOMCC approaches [50], such as EOMCCSDt [20,21,33,51]

and EOMCCSDtq [51,52], where one uses active orbitals to select the dominant 7, and R,

amplitudes with n > 2 within the parent EOMCCSDT, EOMCCSDTQ, and similar schemes, but
the resulting methods, in analogy to multireference theories, are no longer in a black-box category.
Furthermore, with inadequate choices of active orbitals, they can miss information about certain
classes of higher-order dynamical correlation effects that may be needed to achieve desired
accuracy levels. While, in analogy to the ground-state case, these higher-order effects can be
captured by the CC(P;Q) corrections [47] to the EOMCCSDt or EOMCCSDtq energies, and we
have made progress toward extending our CC(P;Q)-inspired CC(t;3), CC(t,q;3), and CC(t,q;3.4)



codes [47,53,54] to excited states, which will be reported elsewhere, the resulting methods
continue to rely on the user- and system-dependent active orbitals, which is not ideal.
Encouraged by our earlier ground-state work [55], in this study we choose an alternative
way of utilizing the CC(P;Q) framework in the EOMCC calculations for excited electronic states,
which allows us to achieve desired high accuracy levels without resorting to the active-space
concepts by taking advantage of the stochastic CI Quantum Monte Carlo (QMC) methodology
introduced in Refs. [56,57]. In analogy to our previous study [58], in the semi-stochastic CC(P;Q)
approach to excited states proposed in this article, the dominant higher—than—two-body

components of the 7 and R, operators within the high-level deterministic EOMCC computations,

such as EOMCCSDT, are identified stochastically using CIQMC propagations, but, unlike in Ref.
[58], we go one significant step further and accelerate convergence toward target EOMCC (e.g.,
EOMCCSDT) energetics by using the a posteriori CC(P;Q) corrections to account for those
correlations of interest that the EOMCC computations carried out in the stochastically determined
excitation subspaces have not been able to capture. By examining vertical excitations in the CH"
ion at the equilibrium and stretched geometries and adiabatic excitations in the CH and CNC open-
shell systems, we demonstrate that the extension of the semi-stochastic CC(P;Q) methodology of
Ref. [55] to excited states is capable of rapidly converging target high-level EOMCC energetics,
represented in this study by EOMCCSDT, out of the early stages of CIQMC propagations, even

when the excited states of interest have a significant double excitation or multireference character.

2. Theory and algorithmic details
2.1. Brief synopsis of the CC(P;Q) formalism

We begin our description of the semi-stochastic approach proposed in this work by
summarizing the key ingredients of the underlying CC(P;Q) theory, as applied to ground as well
as excited states [47,53]. The CC(P;Q) formalism is a generalization of the biorthogonal moment
expansions of Refs. [35,59,60], which in the past resulted in the CR-CC(2,3) [35,59,60], CR-
EOMCC(2,3) [35-37], and 5-CR-EOMCC(2,3) [38,46] corrections to the CCSD and EOMCCSD
energies, to arbitrary, i.e., conventional as well as unconventional, truncations used in the
underlying CC/EOMCC computations. The CC(P;Q) energies are obtained in two steps. In the
first step, abbreviated as CC(P) for the ground (  =0) state and EOMCC(P) for excited (£ >0)



states, we solve the CC/EOMCC equations in the subspace of the N-electron Hilbert space called

the P space, designated as 1", which is spanned by excited determinants |®, )= E,|®) that
together with the reference determinant |CD> dominate the ground- and excited-state wave
functions “Pﬂ> of interest (£, is the elementary particle-hole excitation operator generating

|®,) from |®); for clarity of this brief description, we assume that ground and excited states

have the same symmetry; excited states having different symmetries than the ground state are

addressed later). This is done in a usual way adopted in all single-reference CC and EOMCC

calculations, i.e., we start by determining the cluster operator 7" = Z tE., with ¢,

(@ yeH ™
representing the corresponding cluster amplitudes, and the ground-state CC(P) energy

E\" = <<D|I-_I o |CD> , where H'” =exp(-T"")H exp(T"). We then diagonalize the similarity-
transformed Hamiltonian A" in the P space H'” to determine the excited-state EOMCC(P)
energies ELP ) and the corresponding EOM excitation and de-excitation operators,
R = ’”ﬂ,01+z@,{>en<” r.xEy and L) = 5A,OI+Z@K>EH(P) l,x(Eg)", respectively, where r, .
and [, . designate the relevant amplitudes, which define the EOMCC(P) ket states
(P)y _ p(P) 17 (P | Py -1 -,
|V, )=R,’e |®) and the CC(P))EOMCC(P) bra states (¥’ [=(D|L, e satisfying
<‘i’;’) ) ‘ pr )> =5, . Once this is done, we proceed to the second step, which is the calculation of

the noniterative corrections J,(P; Q) to the CC(P) and EOMCC(P) energies ELP ) that account for

the many-electron correlation effects captured by the second subspace of the N-electron Hilbert
space, referred to as the Q space and designated as H'? (H'? < (H” @ H")", where H'” isa

one-dimensional subspace spanned by | @) ). The formula for these corrections is

5,(P0)= 3, L, (P)M,(P), (1)

‘CDK >EH(Q)

where M, (P)=(D, |H"”|®) and M, (P)= (D, |H"R”|®) are the generalized moments
of the CC(P) and EOMCC(P) equations, which correspond to projections of these equations on
the QO-space determinants |®,)eH?, and (,,(P)=(®|L)H" |CDK>/D%K (P), with



D, (P) :ELP ) —<d) X |l-_l « )|d) K> (one could replace the Epstein—Nesbet D, (P) denominator
entering /, . (P) by its Meller—Plesset analog, but, as shown in the past, for example in Refs.

[36,54,59-61], the Epstein—Nesbet form is generally more effective). The final CC(P;Q) electronic

energies are determined as
E =E +6,(P;0). (2)

The question arises how to define the P and Q spaces entering the CC(P;Q) considerations
to obtain accurate ground- and excited-state energetics matching the quality of high-level

CC/EOMCC calculations without incurring large computational costs of CCSDT/EOMCCSDT

(P)

and similar approaches. One can try conventional choices where, for example, H'"’ is spanned by

the singly and doubly excited determinants and H'® by the triples, but, as already alluded to
above, the resulting CR-CC(2,3) and CR-EOMCC(2,3) corrections to the CCSD and EOMCCSD

energies, which decouple the low-order 7, and R, components with n <2 from their higher-
order 7; and R, ; counterparts, may have difficulties balancing ground- and excited-state energies.

One can address this problem by using active orbitals to enrich the relevant P spaces with the
dominant higher—than—doubly excited determinants, as in the aforementioned CC(t;3), CC(t,q;3),
CC(t,q;3.,4), etc. hierarchy, but the resulting methods are no longer computational black boxes.
The semi-stochastic CC(P;Q) approach to excited-state calculations, which we describe next and
which, following our earlier work [58], exploits the CIQMC propagations to identify the leading
higher—than—doubly excited determinants pertinent to the CC/EOMCC calculations of interest,
while using corrections &, (P; Q) to capture the remaining correlations that the CC(P)/EOMCC(P)

energies at a given QMC propagation time do not describe, eliminates the above concerns.

2.2. Semi-stochastic CC(P;Q) approach to ground and excited states

In our previous studies [55,58], we demonstrated that the CIQMC methodology of Refs.
[56,57] is very good in identifying the leading determinants and generating meaningful P spaces
for the deterministic CC(P)/EOMCC(P) calculations already in the early stages of QMC
propagations without any a priori knowledge of the states being calculated. We show in this work

that the excited-state CC(P;Q) corrections &, (P;Q), defined by Eq. (1), similarly to their x=0



ground-state counterparts examined in Ref. [55], are highly effective in accounting for the many-
electron correlation effects outside the stochastically determined P spaces. While the specific
computations reported in this work, which aim at recovering the EOMCCSDT energetics, rely on
the FCIQMC [56,57] propagations to identify the dominant triply excited determinants for defining
the relevant P spaces, the algorithm summarized below is quite general, permitting the use of
truncated CIQMC and CCMC [62,63] approaches and extensions to higher EOMCC levels than
EOMCCSDT, such as EOMCCSDTQ (not implemented yet). In the stochastic part of the excited-
state CC(P;Q) algorithm proposed in this work, we rely on the initiator CIQMC (i-CIQMC)
approach developed in Ref. [57], which we also exploited in our earlier [55,58,64] studies, where

only determinants with numbers of walkers equal to or exceeding a preset threshold », are allowed

to attempt spawning, but we could certainly take advantage of improvements in the original i-
CIQMC [57] and i-CCMC [65] algorithms, such as those recently reported in Refs. [66—68]. It is
also worth pointing out that by combining the stochastic CIQMC and deterministic EOMCC ideas
via the CC(P;Q) methodology, we can extract highly accurate excited-state information on the
basis of relatively short CIQMC propagations for the ground state or the lowest-energy state of a
given symmetry, without having to resort to the more complex excited-state CIQMC framework
proposed in Refs. [69,70], although exploring the utility of the latter framework would be an
interesting direction to pursue.

The key steps of the semi-stochastic CC(P;Q) algorithm proposed in this article, which
builds upon the semi-stochastic CC(P)/EOMCC(P) framework suggested in Ref. [58] (steps 1-3
below) and which extends the previously developed [55] merger of the ground-state CC(P;Q)
methodology with CIQMC or CCMC to excited states, are as follows:

1. Initiate a CIQMC (or CCMC) run for the ground state and, if the system of interest has
spin, spatial, or other symmetries, the analogous QMC propagation for the lowest state of each

irreducible representation (irrep) to be considered in the CC(P;Q) calculations by placing a certain

number of walkers (in CCMC, “excips” [63,65]) on the appropriate reference function(s) | CD> (e.g.,

the restricted Hartree—Fock (RHF) or restricted open-shell Hartree—Fock (ROHF) determinants).
2. At some propagation time 7 > 0, i.e., after a certain number of CIQMC (or CCMC) time

steps, called MC iterations, extract a list or, if states belonging to multiple irreps are targeted, lists

of determinants relevant to the desired CC(P;Q) computations from the QMC propagation(s)



initiated in step 1 to determine the P space or spaces needed to set up the ground-state CC(P) and
excited-state EOMCC(P) calculations. If the goal is to converge the CCSDT/EOMCCSDT-level
energetics, the P space for the CC(P) calculations and the EOMCC(P) calculations for excited
states belonging to the same irrep as the ground state is defined as all singly and doubly excited
determinants and a subset of triply excited determinants, where each triply excited determinant in

the subset is populated by a minimum of n, positive or negative walkers/excips (in this work,
n, =1). For the excited states belonging to other irreps, the P space defining the CC(P) problem

is the same as that used in the case of the ground state, but the lists of triply excited determinants
defining the EOMCC(P) diagonalizations are provided by the CIQMC (or CCMC) propagations
for the lowest-energy states of these irreps. One proceeds in a similar way when the goal is to
converge other types of high-level CC/EOMCC energetics. For example, if we want to obtain the
results of the CCSDTQ/EOMCCSDTQ quality, we also have to extract the lists of quadruples, in
addition to the triples, from the CIQMC (or CCMC) runs to define the corresponding P spaces.

3. Solve the CC(P) and EOMCC(P) equations in the P space or spaces obtained in the
previous step. If we are targeting the CCSDT/EOMCCSDT-level energetics and the excited states

of interest belong to the same irrep as the ground state, we define 7" =T +7,+ T,

R =r, +R, +R, ,+R"", and L =6, 1+L, +L,,+L)s, where the list of triples in

™M, R%C), and L%C) is extracted from the ground-state CIQMC (or CCMC) propagation at
time 7. For the excited states belonging to other irreps, we construct the similarity-transformed

Hamiltonian A", to be diagonalized in the EOMCC steps, in the same way as in the ground-state

computations, but then use the CIQMC (or CCMC) propagations for the lowest states of these
irreps to define the lists of triples in R%C) and L%C) . We follow a similar procedure when targeting
the CCSDTQ/EOMCCSDTQ-level energetics, in which case T =T, +T7, + .M +T,M,
R =r, d+R, +R, ,+R"O+RY" and L) =5, 1+L,, +L,,+L + L%

4. Correct the CC(P) and EOMCC(P) energies for the missing correlations of interest that

were not captured by the CIQMC (or CCMC) propagations at the time 7 the lists of the P-space
excitations were created (the remaining triples if the goal is to recover the CCSDT/EOMCCSDT



energetics, the remaining triples and quadruples if one targets CCSDTQ/EOMCCSDTAQ, etc.) us-
ing the CC(P;Q) corrections &, (P;Q) defined by Eq. (1).

5. Check the convergence of the resulting ELP *0) energies calculated using Eq. (2) by

repeating steps 2—4 at some later CIQMC (or CCMC) propagation time z'>7 . If the ELP+Q)

energies do not change within a given convergence threshold, we can stop the calculations. One
can also stop them if 7 in steps 2—4 is chosen such that the stochastically determined P space(s)
contain sufficiently large fraction(s) of higher—than—doubly excited determinants relevant to the
target CC/EOMCC level. Our unpublished tests using the CC(P;Q)-based CC(t;3) corrections to
the EOMCCSDt energies, the ground-state semi-stochastic CC(P;Q) calculations reported in Ref.
[55], and the excited-state CC(P;Q) calculations using i-FCIQMC to generate the underlying P
spaces performed in this work indicate that one should be able to reach millihartree or sub-
millihartree accuracies relative to the parent CC/EOMCC computations, when the stochastically
determined P spaces contain as little as ~5-10 % and no more than ~30-40 % of high-

er—than—double excitations of interest, although this may need further study.

Similarly to the semi-stochastic form of the ground-state CC(P;Q) methodology introduced
in Ref. [55], the above algorithm offers significant savings in the computational effort compared
to the fully deterministic, high-level, EOMCC approaches it targets. These savings originate from
three factors. First, the computational times associated with the early stages of the i-CIQMC or i-
CCMC walker/excip propagations are very short compared to the corresponding converged runs.
Second, the CC(P) calculations and the subsequent EOMCC(P) diagonalizations offer significant
speedups compared to their CC/EOMCC parents, when the corresponding excitation manifolds

contain small fractions of higher—than—doubly excited determinants. For example, as pointed out

in Refs. [55,58], when the most expensive (d)gic [H,T,]| D) (or (d);',ic I[H®,T,]| @), where

H® =exp(-T,-T,)H exp(T; +T,)) and (@{°|[H”,R,;]|®) terms in the CCSDT and

ik
EOMCCSDT equations are isolated and reprogrammed using techniques similar to implementing
selected CI approaches, combined with sparse matrix multiplication and index rearrangement
routines (rather than conventional many-body diagrams that assume continuous excitation
manifolds labeled by occupied and unoccupied orbitals from the respective ranges of indices;

generally, the stochastically determined lists of excitations do not form continuous manifolds that



could be a priori identified), one can speed up their determination by a factor of up to (D/d)*,
where D is the number of all triples and d is the number of triples included in the stochastically

determined P space. Other terms, such as (CDZ.ZC |[H,T,]| ®) and (d)g.:c |[[-_[(P),Rﬂ’2]|CD> or
(@Y |[H,T;]|®) and (D" |[H”,R,,]|®), when treated in a similar manner, may offer

additional speedups, on the order of (D/d), too. Our current CC(P) and EOMCC(P) routines are

not as efficient yet, but the speedups that scale linearly with (D/d) in the most expensive
(d);ic |[H,T,]|®) and (d);iﬂ[f_l“v ),Ry,3]|CD> contributions are attainable. The third factor

contributing to major savings in the computational effort offered by the semi-stochastic CC(P;Q)

approach is the observation that the determination of the noniterative correction 6,(P;Q) for a

given electronic state 1 is much less expensive than the time required to complete a single iteration
of the target CC/EOMCC calculation (in the case of the calculations aimed at the
CCSDT/EOMCCSDT energetics, the computational time associated with each 6, (P; Q) scales no

worse than ~ 2n’n}, as opposed to the n n’ scaling of every CCSDT and EOMCCSDT iteration).

3. Numerical examples and discussion

In order to explore the performance of the semi-stochastic CC(P;Q) approach to excited

states proposed in this work and examine, in particular, the ability of the noniterative J,(P;Q)

corrections to accelerate the convergence of the CIQMC-driven EOMCC(P) calculations toward
the desired EOMCC energetics, represented in this study by EOMCCSDT, we carried out
benchmark calculations for the frequently studied (cf., e.g., Refs. [18,20,21,32,35,39—
41,43,44,49-51,71]) vertical excitations in the CH" ion at the equilibrium (Table 1 and Fig. 1 (a)
and (b)) and stretched (Table 2 and Fig. 1 (c¢) and (d)) geometries, which we previously used to
test the EOMCC(P) framework [58], and the adiabatic excitations in the challenging open-shell
CH (Table 3) and CNC (Table 4) systems, which have low-lying excited states dominated by two-
electron transitions that require the EOMCCSDT theory level to obtain a reliable description
[26,36,45,50,72-75]. The CH" ion was described by the [5s3p1d/3slp] basis set of Ref. [71] and
we used the aug-cc-pVDZ [76,77] and DZP[4s2p1d] [78,79] bases for the CH and CNC species,
respectively. Following Refs. [55,58] (cf., also, Ref. [64]), we used the HANDE software package

10



[80,81] to execute the stochastic i-FCIQMC runs, needed to generate the lists of triply excited
determinants included in the CC(P) and EOMCC(P) calculations. Our standalone CC/EOMCC
codes, interfaced with the RHF, ROHF, and integral routines in the GAMESS program suite
[82,83], were used to carry out the required CC(P), EOMCC(P), CC(P;Q), and fully deterministic
(CCSD/EOMCCSD and CCSDT/EOMCCSDT) computations (the Q spaces used to construct the
CC(P;Q) corrections to the CC(P) and EOMCC(P) energies consisted of the triples not captured
by the i-FCIQMC runs at the corresponding propagation times 7). It should be noted that the CC(P)
and EOMCC(P) energies at 7 = 0 are identical to the energies obtained in the CCSD and
EOMCCSD calculations and that the corresponding 7 = 0 CC(P;Q) corrections are equivalent to
those of CR-CC(2,3) (the ground state) and CR-EOMCC(2,3) (excited states). It should also be
noted that the CC(P) and EOMCC(P) energies at 7= oo are identical to the energies obtained in the
full CCSDT and EOMCCSDT calculations. The semi-stochastic CC(P;Q) calculations recover the
CCSDT and EOMCCSDT energetics in this limit too, although the 7 = oo values of the 5, (P;Q)

corrections are zero in this case, since the 7 = oo P spaces contain all the triples, i.e., the
corresponding Q-space triples lists are empty. These relationships between the semi-stochastic
CC(P), EOMCC(P), and CC(P;Q) approaches and the fully deterministic CCSD/EOMCCSD, CR-
CC(2,3)/CR-EOMCC(C(2,3), and CCSDT/EOMCCSDT methodologies were helpful in examining
the correctness of our codes. They also point to the ability of the CC(P), EOMCC(P), and CC(P;Q)
calculations driven by the information extracted from CIQMC to offer a systematically improvable
description as 7 approaches co. Each i-FCIQMC run was initiated by placing 1500 walkers on the
relevant reference function (see Tables 14 for the details) and we set the initiator parameter n, at
3. All of the i-FCIQMC propagations used the time step Az of 0.0001 a.u. In the post-ROHF
computations for the CH and CNC species, the core electrons corresponding to the 1s shells of the

carbon and nitrogen atoms were kept frozen. In the case of CH", we correlated all electrons.

3.1. CH"

We begin our discussion of the numerical results with the CH' ion, where we investigated

the three lowest excited states of the 'S symmetry (labeled as 2 'S*, 3'S*, and 4 'S*; the ground
state is designated as 1'X"), two lowest states of the 'TT symmetry (1'T1 and 2'IT), and two

lowest 'A states (1'A and 2'A). Two C-H internuclear separations were considered, the

11



equilibrium distance R = Re = 2.13713 bohr (Table 1 and Fig. 1 (a) and (b)) and the stretched R =
2R. geometry (Table 2 and Fig. 1 (c) and (d)). Following the semi-stochastic CC(P;Q) algorithm,
as described above, and our interest in converging the CCSDT/EOMCCSDT energetics, the cluster

and right and left EOM operators used in the calculations for the 'X" states were approximated by

1+L

) _ (MC)  p(P) _
T’ =T+T,+T, ,R# =r l

(MC) (P) _
woltR, +R ,+R S, and L," =6

0 +L,,+ I™O | respec-

w3 o

tively, where the list of triples defining the three-body components 7,™“, R\, and L)} ata
given time 7 was obtained from the ground-state i-FCIQMC propagation at the same value of 7.
The M component of 7" used in the CC(P;Q) computations of the 'TT and 'A states, needed
to determine the similarity-transformed Hamiltonian H'” to be diagonalized in the subsequent
EOMCC steps, was defined in the same way as in the case of the 'S" states, but the lists of triples
entering the R%C) component of RLP) and the L%C) component of L(HP) were obtained differently.
They were extracted from the i-FCIQMC runs for the lowest states within the irreps of Cay relevant

to the symmetries of interest, meaning the 'B,(C,,) component of 1'TI for the 'TT states and the
'A,(C,,) component of 1'A forthe 'A states (Cav is the largest Abelian subgroup of the true point
group of CH", C_; our codes cannot handle non-Abelian symmetries). As implied by Eq. (1), the
J,(P;Q) corrections to the CC(P) and EOMCC(P) energies at a given time 7 were computed using
the M, ,(P) and 7, , (P) amplitudes corresponding to the triply excited determinants |® ) not
captured by i-FCIQMC at the same 7.

As pointed out in Refs. [20,21,58], the 2 'S*, 21, 1'A, and 2 'A states of CH" at R = Re

and all of the excited states of the stretched CH'/R = 2R. system, which we calculated in this work,

are characterized by substantial multireference correlations that originate from large two-electron
excitation contributions (the 2 'A state at R = 2R. also has significant triple excitations [20,21,58]).

It is, therefore, not surprising that the basic EOMCCSD level, equivalent to the EOMCC(P)

calculations at 7 = 0, performs poorly for all of these states, producing very large errors relative to
EOMCCSDT that are about 12, 20, and 34-35 millihartree for the 2 'TT, 2'S", and both 'A states,
respectively, at R = Re and ~14—-144 millihartree when the excited states at R = 2R. are considered

(see Tables 1 and 2). The EOMCCSD energies for the 3'S*, 4'S" and 1'T1 states at the
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equilibrium geometry, which are dominated by one-electron transitions, are more accurate, but
errors on the order of 3-6 millihartree still remain. As shown in Tables 1 and 2, the CR-
EOMCC(2,3) triples correction to EOMCCSD, equivalent to the CC(P;Q) calculations at 7 = 0,
offers substantial improvements, as exemplified by the small errors, on the order of 1-3

millihartree, for the majority of excited states of CH' considered in this article, but there are cases,
especially the 4'S" and 2'A states at R = 2R., where the differences between the CR-
EOMCC(2,3) and parent EOMCCSDT energies, which are about 13 millihartree in the former case

and more than 63 millihartree in the case of the latter state, remain very large. This is related to
the substantial coupling of the one- and two-body components of the cluster and EOM excitation
and deexcitation operators with their three-body counterparts, which the CR-EOMCC(2,3)
corrections to EOMCCSD neglect. Our older active-space EOMCCSDt calculations for CH"
reported in Refs. [20,21] and the more recent semi-stochastic EOMCC(P) calculations for the same
system described in Ref. [58] are telling us that the incorporation of the leading triples in the

relevant P spaces, which allows the one- and two-body components of 7', R, and L, to relax in

the presence of their three-body counterparts, is the key to improve the results of the CR-
EOMCC(2,3) calculations.

This is exactly what we observe in Tables 1 and 2 and Fig. 1. In agreement with our
previous work [58], by enriching the P spaces used in the CC(P) and EOMCC(P) computations
with the subsets of triples captured during i-FCIQMC propagations, the results greatly improve,
allowing us to reach the millihartree or sub-millihartree accuracy levels for all the calculated
excited states of CH" at both nuclear geometries considered in this work when the stochastically
determined P spaces contain about 20-30 % of all triples. The CC(P;Q) corrections to the
EOMCC(P) energies based on Eq. (1) accelerate the convergence toward EOMCCSDT even
further. As shown in Tables 1 and 2 and Fig. 1, these corrections are so effective that we reach the
millihartree or sub-millihartree accuracy levels relative to the parent EOMCCSDT energetics
almost instantaneously, i.e., out of the early stages of the i-FCIQMC propagations, when no more

than 5-10 % of all triples are includes in the relevant P spaces. This is true even when the highly
complex 4'S" and 2'A states at R = 2R., for which the EOMCCSD calculations produce the

massive, ~33 and ~144 millihartree, errors, which remain large (about 13 and 63 millihartree,

respectively) at the CR-EOMCC(2,3) level. As shown in Table 2, the CC(P;Q) corrections to the
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EOMCC(P) energies, which account for the missing triples that the i-FCIQMC propagations at a

given time 7 did not capture, allow us to reach the sub-millihartree accuracy levels with less than
5% (the 2'A state) or ~10 % (the 4 'S* state) of triples in the relevant P spaces. The uncorrected
EOMCC(P) calculations display the relatively fast convergence toward EOMCCSDT as well, but

they reach similar accuracies at later propagation times 7, when about 15 % (the 2 'A state) or 25

% (the 4'S" state) of triples are captured by i-FCIQMC. Obviously, the details of the rate of
convergence of the semi-stochastic CC(P;Q) calculations toward EOMCCSDT, especially when
one wants to tighten it, depend on the specific excited state being calculated, but, as shown in
Tables 1 and 2, once about 20 % of triples are captured by the i-FCIQMC propagations, we recover
the EOMCCSDT energetics for all the calculated excited states of CH' at both geometries
examined in this study to within 0.1 millihartree or better.

Interestingly, there is a great deal of consistency between the behavior of the uncorrected
semi-stochastic EOMCC(P) approach, in which the lists of triples defining the relevant P spaces
are extracted from i-FCIQMC propagations, and the fully deterministic EOMCCSDt calculations
for CH" reported in Refs. [20,21], in which the leading triples were identified using active orbitals.
Indeed, once the stochastically determined P spaces extracted from i-FCIQMC capture about 20—
30 % of all triples, which in the case of the CH" system examined here is achieved after 50000 or
fewer A7 =0.0001 a.u. MC iterations, the energies resulting from the EOMCC(P) computations
become very similar to those obtained with the EOMCCSDt method using the active space that
consists of the highest-energy occupied (30) and three lowest-energy unoccupied (17, 17, and

40) orbitals. Following the definitions of the “little t” 7; and R, , operators adopted in

EOMCCSDt, for the state symmetries considered in this work, the active space consisting of the
30, 1m, 1m, and 40 valence orbitals amounts to about 26-29 % of all triples included in the
respective EOMCC diagonalization spaces [20,21]. This suggests that the types and values of the
triply excited amplitudes defining the R, , components of the EOM operators R,, which
characterize the EOMCCSDt computations reported in Refs. [20,21], and those that define the
R™M® components obtained in the i-FCIQMC-driven EOMCC(P) calculations performed after

10,3

50000 MC iterations using Az =0.0001 a.u. should be similar too. This is illustrated in Fig. 2,

where we compare the distributions of the differences between the R\ amplitudes and their full
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EOMCCSDT counterparts resulting from the EOMCC(P) computations at 4000 (Fig. 2 (a)), 10000
(Fig. 2 (b)), and 50000 (Fig. 2 (c)) MC iterations for the 2 'S* state of CH' at R = 2R. with the

analogous distribution characterizing the R, , amplitudes obtained with the EOMCCSDt approach

using the 30, 1m, 17, and 4o active orbitals to define the corresponding triples space (Fig. 2 (d);

all EOM vectors R, needed to construct Fig. 2, corresponding to the EOMCC(P), EOMCCSDt,

and EOMCCSDT calculations, were normalized to unity). As shown in Fig. 2 (cf. Figs. 2 (¢) and
2 (d)), the small differences between the R%C) amplitudes resulting from the EOMCC(P)

calculations performed after 50000 MC iterations and the R, , amplitudes obtained with

EOMCCSDT, including their numerical values and distribution, closely resemble those
characterizing the active-space EOMCCSDt computations reported in Refs. [20,21]. This is in
perfect agreement with the small errors relative to EOMCCSDT characterizing the two
calculations, which are 0.302 millihartree in the former case (cf. Table 2) and 0.576 millihartree
in the case of EOMCCSDt [20,21]. When we start using considerably smaller fractions of triples
and, as a consequence, significantly smaller P spaces in the EOMCC(P) calculations, which is

what happens when the underlying i-FCIQMC propagation is terminated too soon, the differences
between the R%C) amplitudes resulting from the EOMCC(P) calculations and their EOMCCSDT

counterparts, including their values and distribution, and the errors in the EOMCC(P) energies
relative to EOMCCSDT increase. This can be seen in Fig. 2, especially when one compares panel
(a), which corresponds to the EOMCC(P) calculations performed after 4000 MC iterations that
use only 7 % of triples, with panel (d) representing EOMCCSDt, which uses a much larger fraction
of triple excitations (~30 %), and in Table 2, where the error in the EOMCC(P) energy of the 2 'S

state of CH" at R = 2R. relative to EOMCCSDT obtained after 4000 MC iterations, of 4.263
millihartree, is ~14 times larger than the analogous error obtained after 50000 MC steps.

The above analysis, which could be repeated for the remaining states of CH", reaching
similar conclusions, has several interesting implications for the semi-stochastic CC(P;Q)
methodology pursued in this study, which will be examined by us in the future. It suggests, for
example, that the CC(P)/EOMCC(P) and CC(P;Q) approaches using CIQMC propagations to
determine the lists of higher—than—double excitations in the corresponding P spaces can be

regarded as natural alternatives to the fully deterministic active-space EOMCC methods, such as
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EOMCCSDt, and their CC(P;Q)-corrected counterparts, such as the CC(t;3) [47,53,54], whose
performance in excited-state calculations will be reported by us in a separate study. It also suggests
that the fractions of higher—than—double excitations used to define the stochastically determined P
spaces, needed to achieve high accuracies observed in the semi-stochastic CC(P;Q) calculations
discussed in this work, should decrease with the basis set. We have already observed this in our
previous ground-state work [55], and we anticipate that the same will remain true in the CIQMC-
driven excited-state CC(P;Q) calculations. While this remark requires a separate thorough study,
beyond the scope of this initial work on the excited-state CC(P;(), we can rationalize it by
referring to the analogies between the semi-stochastic CC(P)/EOMCC(P) and CC(P;Q)
approaches and their deterministic CCSDt/EOMCCSDt and CC(t;3) counterparts. Indeed, the
aforementioned (D/d) ratio that controls the speedups offered by the CC(P)/EOMCC(P) and

CC(P;Q) calculations becomes (n, / N )(n, / N,) when the active-space CCSDt/EOMCCSDt and
CC(t;3) calculations, based on the ideas laid down in Refs. [20,21,47,50,51,53], are considered,

where N, and N, are the numbers of active occupied and active unoccupied orbitals, respectively,
which either do not grow with the basis set or grow with it very slowly compared to n, and n,.

Finally, before moving to the next molecular example, we would like to point out that, in
analogy to the CC(P;Q)-based CC(t;3), CC(t,q;3), and CC(t,q;3,4) calculations using active
orbitals to define the underlying P spaces (see, e.g., Ref. [54]), one is better off by using smaller
P spaces in the semi-stochastic CC(P)/EOMCC(P) considerations, which can be extracted out of
the early stages of CIQMC propagations, and capturing the remaining correlations using
noniterative CC(P;Q) corrections, than by running long-time CIQMC simulations to generate
larger P spaces for the uncorrected CC(P)/EOMCC(P) calculations. This can be seen in Tables 1

and 2 for CH" and in the remaining Tables 3 and 4 discussed in the next two subsections. We
illustrate this remark by inspecting the EOMCC(P) and CC(P;0) calculations for the 4'S" state

of CH". As shown in Table 1, one needs to capture about 50 % of triples in the P space to reach a
0.1 millihartree accuracy relative to EOMCCSDT at R = Re using the uncorrected EOMCC(P)
approach. When the CC(P;Q) correction is employed, only 15 % of triples are needed to reach the
same accuracy level. At the more challenging R = 2R. geometry (Table 2), one reaches a ~0.1
millihartree accuracy level with about 40 % of triples in the P space when using the uncorrected

EOMCC(P) approach. This fraction reduces to about 20 %, without any accuracy loss, when the
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CC(P;Q) correction is added to the EOMCC(P) energy. Based on the information provided in
Section 2.2, running the EOMCC(P) calculations with a smaller fraction of triples in the P space
offers much larger savings in the computational effort than the additional time spent on
determining the CC(P;Q) correction, which is, as pointed out above, considerably less expensive
than a single EOMCCSDT iteration. For example, in the pilot implementation of the excited-state
EOMCC(P) and CC(P;Q) approaches aimed at recovering EOMCCSDT energetics, employed in
this work, the uncorrected EOMCC(P) run using 50 % of triples in the P space, needed to reach a

~0.1 millihartree accuracy relative to EOMCCSDT for the 4 'S" state of CH' at R = R, is about

twice as fast as the corresponding EOMCCSDT calculation. The EOMCC(P) diagonalization that
forms part of the analogous CC(P;Q) run, which needs only 15 % of triples in the P space to reach
the same accuracy level, is about 6 times faster than EOMCCSDT. The noniterative CC(P;Q)
correction is so inexpensive here that one can largely ignore the computational costs associated
with its determination in this context (cf. Ref. [84] for the analogous comments made in the context

of comparing costs of the CCSDt computations with those of CC(t;3)).

3.2.CH

Similar convergence patterns in the semi-stochastic EOMCC(P) and CC(P;Q) calculations
are observed for the CH radical (see Table 3). In this case, following our earlier deterministic
EOMCC work, including the CR-EOMCC [36,45] and electron-attachment (EA) EOMCC
[36,85,86] approaches, and a wide range of EOMCC computations, including the high

EOMCCSDT and EOMCCSDTQ levels, published by Hirata [26], along with the X *IT ground
state, we examined the three low-lying doublet excited states, designated as A A, B*X", and
C’%*, which belong to different irreducible representations than that of the ground state. In
analogy to the aforementioned EOMCC studies of CH [26,36,45,85,86], the relevant CC(P) (the
X *IT state) and EOMCC(P) (excited states) electronic energies and their CC(P;Q) counterparts
were determined at the corresponding experimentally derived equilibrium C—H distances, which
are 1.1197868 A for the X °IT state [87], 1.1031 A for the A A state [87], 1.1640 A for the B °%"
state [88], and 1.1143 A for the C *X* state [89] (cf. Table 3). Since all of our CC(P)/EOMCC(P)
and CC(P;Q) calculations, starting from the =0 CCSD/EOMCCSD and CR-EOMCC(2,3) levels
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and ending up with the larger values of 7 needed to examine the convergence toward the parent
CCSDT/EOMCCSDT energetics, were performed using the ROHF reference determinant, we also
computed the ROHF-based CCSDT and EOMCCSDT energies, which formally correspond to the
7 =00 CC(P)/EOMCC(P) and CC(P;Q) results. We had to do it, since the previously published
CCSDT/EOMCCSDT results [26] relied on the unrestricted Hartree—Fock rather than the ROHF

reference. In analogy to CH, the lists of triples defining the 7™ component of the cluster
operator 7 and the R%C) and the L%C) components of the EOM excitation and deexcitation

operators, RLP ) and L(: ), respectively, used in the CC(P), EOMCC(P), and CC(P;Q) calculations

for the CH radical, were extracted from the i-FCIQMC propagations for the lowest-energy states

of the relevant irreps of Cav, namely, the *B,(C,,) component of the X °IT state, the lowest state
of the *A,(C,,) symmetry in the case of the A ’A and C°L" states, and the lowest >A,(C,,)

state when considering the B °Z" state (again, we used Cay, which is the largest Abelian subgroup

of the true point group of CH, C_ ).

As explained in our earlier papers [36,45,85,86] and as shown in Ref. [26], all three excited
states of the CH radical considered here, especially B°L”™ and C’X*, which are dominated by

two-electron excitations (cf. the reduced excitation level (REL) diagnostic values in Tables II and
IIT of Ref. [36] or Table II of Ref. [45]), constitute a significant challenge, requiring the full

EOMCCSDT treatment to obtain a reliable adiabatic excitation spectrum. This can be seen by
inspecting the z=0 EOMCC(P), i.e., EOMCCSD, energies for the A A, B?Y ", and C°X" states

of CH shown in Table 3, which are characterized by the ~13, ~39, and ~44 millihartree errors

relative to EOMCCSDT, respectively. The CR-EOMCC(2,3) triples corrections to EOMCCSD,
represented in Table 3 by the 7= 0 CC(P;Q) values, help, especially in the case of the C *X* state,

but the situation is far from ideal, since errors on the order of 8 and 5 millihartree for the A °A

and B °Y" states, respectively, remain. The situation considerably improves when we turn to the

semi-stochastic CC(P;Q) calculations, which incorporate the leading triples in the relevant P
spaces by extracting them from the corresponding i-FCIQMC propagations and correct the

resulting energies for the remaining triple excitations that were not captured by i-FCIQMC at a

given time 7. As shown in Table 3, in the case of the A *A and B°Z states, which are not only
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challenging to EOMCCSD, but also to CR-EOMCC(2,3), we can reach comfortable 1-2
millihartree errors relative to EOMCCSDT using the semi-stochastic CC(P;Q) corrections
developed in this work once the relevant P spaces contain about 2040 % of all triples. With ~50
% triples in the same P spaces, the CC(P;Q) energies of the A °A and B’Y" states are within
fractions of a millihartree from EOMCCSDT. These are considerable improvements relative to the
purely deterministic EOMCCSD and CR-EOMCC(2,3) computations, which give ~13-39 and ~5—
8 millihartree errors, respectively, for the same two states, and the semi-stochastic EOMCC(P)
calculations that reach 1-2 millihartree accuracy levels with about 70—80 % triples in the respective
P spaces. In the case of the C °X* state, which is a major challenge to EOMCCSD, but not to CR-
EOMCC(2,3), the behavior of the EOMCC(P) and CC(P;Q) approaches is different, since the
CC(P;Q) corrections obtained with the help of some triples in the P space captured by i-FCIQMC
are no longer needed to obtain the well-converged energetics, i.e., the 7= 0 CC(P;Q) result, where
the P space is spanned by singles and doubles only, is sufficiently accurate, but it is still interesting

to observe that one can tighten the convergence further, reaching stable < 0.1 millihartree errors
relative to EOMCCSDT with about 50 % of all triples in the P space. In analogy to the A *A and
B X" states, it is also interesting to observe a reasonably smooth convergence of the uncorrected

EOMCC(P) energies toward EOMCCSDT. It is clear from the results presented in Table 3 that the
CC(P;Q) corrections to the semi-stochastic CC(P) and EOMCC(P) energies offer considerable
speedups compared to the uncorrected CC(P)/EOMCC(P) calculations, not only for the closed-

shell molecules, such as CH", but also when examining open-shell species.

3.3. CNC

Our last example, which is also the largest many-electron system considered in the present
study, is the linear, D, , symmetric, CNC molecule. Following our earlier CR-CC(2,3)/CR-
EOMCC(2,3) and EA-EOMCC calculations for this challenging open-shell molecular species
[36,74,75], we considered the X °TT < ground state and two low-lying doublet excited states, A °A,
and B’} . The i-FCIQMC-driven CC(P) ground-state and EOMCC(P) excited-state energies and

the corresponding CC(P;Q) corrections, along with their deterministic EOMCCSD, CR-
EOMCC(2,3), and EOMCCSDT counterparts, were calculated using the equilibrium C-N
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distances optimized in Ref. [74] with EA-SAC-CI. They are 1.253 A for the X *IT . state, 1.256 A

for the A 2Au state, and 1.259 A for the B 22; state. As in the case of the CH radical, we used the

ROHEF reference determinant. Following the computational protocol adopted in this study, and in

analogy to the CH" and CH species, the lists of triples defining the 7,M, R%C), and L%C)

components used in the semi-stochastic CC(P), EOMCC(P), and CC(P;Q) calculations for CNC

were obtained using the i-FCIQMC propagations for the lowest-energy states of the relevant irreps

of the largest Abelian subgroup of D_,, i.e., D,,, meaning the °B, ¢(D,,) component of the

X °I1, state and the lowest state of the *B,,(D,,) symmetry in the case of the A °A, and B’%}

states.
As shown in Table 4 and in agreement with one of our previous studies [36], all three states

of CNC considered in this work, especially A A, and B *X’, are poorly described by CCSD and

EOMCCSD, which produce more than 18, 31, and 111 millihartree errors, respectively, relative to
the target EOMCCSDT energetics (see the =0 CC(P) and EOMCC(P) energies in Table 4). The
excessively large, > 111 millihartree, error in the EOMCCSD energy of the B 2’ state is related
to its strongly multireference character dominated by two-electron excitations (cf. the REL values
characterizing the excited states of CNC in Table IV of Ref. [36]). In the case of the ground state
and the B’X' excited state, the CR-CC(2,3) and CR-EOMCC(2,3) corrections to CCSD and
EOMCCSD seem to be quite effective, reducing the large errors relative to CCSDT/EOMCCSDT
observed in the CCSD and EOMCCSD calculations to a sub-millihartree level, but the ~16
millihartree error resulting from the CR-EOMCC(2,3) calculations for the A A, state, while
considerably lower than the >31 millihartree error obtained with EOMCCSD, is still rather large
(see the 7 = 0 CC(P;Q) energies in Table 4). By incorporating the dominant triply excited
determinants captured by the i-FCIQMC propagations in the respective P spaces, the semi-
stochastic CC(P) and EOMCC(P) approaches help, allowing us to reach stable ~1-2 millihartree
accuracy levels for the XZHg and A °A, states relative to the target CCSDT/EOMCCSDT

energetics with about 50-60 % triples, but the CC(P;Q) corrections that account for the remaining
triples, missing in the i-FCIQMC wave functions, are considerably more effective. In the case of

the A A, state, which poses problems to both EOMCCSD and CR-EOMCC(2,3), which give
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about 31 and 16 millihartree errors relative to EOMCCSDT, respectively, we reach a stable ~1-2
millihartree accuracy level with about 30-40 % triples in the corresponding P space, as opposed

to the aforementioned 50-60 % needed in the uncorrected EOMCC(P) run. The benefits of using
the semi-stochastic CC(P;Q) vs. deterministic CR-EOMCC(2,3) corrections for the X °IT . and

B’ states are less obvious, but it is encouraging to observe the rapid convergence toward the

target CCSDT and EOMCCSDT energetics in the former calculations. In particular, they allow us
to lower the 0.4—0.5 millihartree errors obtained with CR-EOMCC(2,3) to a 0.1 millihartree level

with about 10 % of all triples, identified by i-FCIQMC, in the case of the X °IT . state and with

~30-40 % triples in the P space when the B °Z’ state is considered. Once again, the CC(P;Q)

corrections to the energies resulting from the semi-stochastic CC(P) and EOMCC(P) calculations
speed up the uncorrected CC(P)/EOMCC(P) computations, while allowing us to improve the CR-
CC(2,3) and CR-EOMCC(2,3) energetics by bringing them very close to the CCSDT and
EOMCCSDT levels at the fraction of the cost.

4. Conclusions

We have demonstrated that the semi-stochastic, CIQMC-driven, CC(P;Q) algorithm
developed in this work, which is based on correcting the results of the EOMCC(P)
diagonalizations, using the ideas presented in Refs. [55,58], for the effects of higher—than—doubly
excited determinants that were not captured by the corresponding CIQMC propagations, is capable
of faithfully reproducing the parent high-level EOMCC energetics, such as EOMCCSDT, out of
the early stages of CIQMC runs. We have illustrated the performance of this algorithm by reporting
the results of the CC(P;Q) and underlying CC(P) and EOMCC(P) calculations aimed at
converging the EOMCCSDT energetics for a few benchmark systems, including CH" at the
equilibrium and stretched geometries and the open-shell CH and CNC species. While the details
of the rate of convergence of the semi-stochastic CC(P;Q) calculations toward EOMCCSDT,
especially when one wants to tighten it, may depend on the specific excited state being calculated,
the combination of the CIQMC wave function sampling with the CC(P;Q) corrections to the
EOMCC(P) energies proposed in this work is as efficient as its ground-state counterpart developed
in Ref. [55]. We have shown that the excited-state CC(P;Q) corrections accelerate the convergence

of the uncorrected EOMCC(P) energies in the same way as their ground-state analogs, allowing
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us to reach millihartree or sub-millihartree accuracy levels relative to the parent EOMCC (in this
study, EOMCCSDT) methodology with the relatively small fractions of higher—than—doubly
excited determinants captured in the early stages of the CIQMC runs. By relaxing the one and two-
body components of the cluster and EOM excitation and deexcitation operators in the presence of
their higher-order counterparts, which are determined using the excitation lists provided by
CIQMC, they are capable of considerably improving the CR-EOMCC(2,3) corrections to
EOMCCSD without making the calculations a lot more expensive. This is true for both the excited
states dominated by one-electron transitions and for the more strongly correlated multireference
states having significant double excitation character.

The results reported in this study are promising, but, in addition to code optimization, we
need more testing, including larger molecules and larger basis sets, for which parent EOMCCSDT
data can be generated (cf., e.g., Refs. [90-92]), and examining extensions of our semi-stochastic
CC(P;Q) methodology beyond the CCSDT and EOMCCSDT levels. It would also be interesting
to consider various ways of modifying the semi-stochastic excited-state CC(P;Q) algorithm
proposed in this work, such as the state-specific generalization suggested at the EOMCC(P) level
in Ref. [58], where one would use as many stochastically determined P spaces as the number of

the calculated states by taking advantage of the excited-state CIQMC framework proposed in Refs.
[69,70]. As shown, for example, in Table 2 and Fig. 1 (d), the CC(P;Q) energies of the 4 'S" state
of CH" at R = 2Re, while accelerating convergence of the uncorrected EOMCC(P) energies toward
EOMCCSDT, converge to EOMCCSDT slower than the CC(P;Q) calculations for the n 'S states

with n =1-3. Similarly, the CC(P;Q) energies of the 2 'A state of CH" converge toward the parent

EOMCCSDT energetics somewhat slower than those obtained for the 1'A state (see Tables 1 and

2). Thus, using the excited-state CIQMC framework of Refs. [69,70] to adjust each P space
employed in the CC(P;Q) calculations to the corresponding excited electronic state of interest is a
direction worth pursuing. This may become especially important for the high-lying excitations, for
which the P spaces determined for the lowest-energy states of the relevant symmetries may no
longer be adequate. Last, but not least, we plan to explore other ways of capturing the leading
higher—than—doubly excited determinants to define the P spaces needed in the CC(P;Q)
considerations, such as the adaptive CI [93,94], adaptive sampling CI [95,96], heat-bath CI [97—

99], and related methodologies, to mention a few representative examples.
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Table 1. Convergence of the CC(P)/EOMCC(P) and CC(P;Q) energies toward CCSDT/EOMCCSDT for the CH" ion, calculated using
the [5s3p1d/3slp] basis set of Ref. [71], at the C—H internuclear distance R = Re = 2.13713 bohr. The P spaces used in the CC(P) and
EOMCC(P) calculations were defined as all singles, all doubles, and subsets of triples extracted from i-FCIQMC propagations for the
lowest states of the relevant symmetries. Each i-FCIQMC run was initiated by placing 1500 walkers on the appropriate reference

function [the RHF determinant for the '=* states, the 30 — Iz state of the 'B,(C,,) symmetry for the 'TT states, and the 36> — 17

state of the 'A,(C,,) symmetry for the 'A states], setting the initiator parameter n, at 3 and the time step Az at 0.0001 a.u. The Q
spaces used in constructing the CC(P;Q) corrections consisted of the triples not captured by the i-FCIQMC.

MC Iters. 1's" 213" 31" 413" 1'T1 21 1'A 2'A

(x10°)  P* ((POP%T P (PO P (PO P (PO)P P (POP%TT P (PO P (PO %I P (PO
0¢ 1.845 0.063 0 19.694 1.373 3.856 0.787 5.537 0954 3.080 0.792 0 11.656 2.805 34.304—-0.499 0 34.685 0.350
2 1.071 0.024 7 11.004 0.909 3.248 0.587 4.826 —4.469 0.772 0.179 13 3.746 0.530 1.492 0.151 10 5951 0.432
4 0.423 0.009 15 5474 0.090 1.893 0.047 1.980 0.100 0.513 0.102 20 1.852 0.128 0.525 0.051 16 2.542 0.128
6 0.249 0.003 20 4.712 0.111 1.268 0.046 1.077 0.068 0.213 0.054 25 0.957 0.073 0471 0.028 18 1.892 0.094
8 0.181 0.003 23 1371 0.112 0.643 0.067 0.702 0.075 0.170 0.058 27 0.743 0.060 0.240 0.021 22 0.940 0.057
10 0.172 0.004 24 1.572 0.061 0.295 0.044 0.385 0.026 0.118 0.046 29 0.411 0.047 0.198 0.017 24 0.877 0.041
50 0.077 0.001 37 0.755 0.026 0.139 0.037 0.208 0.032 0.053 0.027 43 0.157 0.027 0.039 0.008 42 0.133 0.011
100 0.044 0.000 48 0.277 0.009 0.007 0.013 0.155 0.017 0.021 0.013 57 0.063 0.012 0.014 0.005 56 0.043 0.005
150 0.015 0.000 59 0.085 0.005 0.058 0.006 0.041 0.007 0.008 0.005 71 0.020 0.004 0.004 0.002 71 0.008 0.003
200 0.006 0.000 69 0.024 0.002 0.014 0.002 0.002 0.003 0.004 0.003 82 0.008 —0.001 0.003 0.002 82 0.003 0.002

o0® —38.019516 —37.702621  —37.522457  —37.386872 —37.900921 —37.498143 —37.762113 —37.402308

“Errors in the CC(P) (the 1'S" ground state) and EOMCC(P) (excited states) energies relative to the corresponding CCSDT and EOMCCSDT data, in millihartree
[58].

°Errors in the CC(P;Q) energies relative to the corresponding CCSDT and EOMCCSDT data, in millihartree.

“The %T values are the percentages of triples captured during the i-FCIQMC propagations for the lowest state of a given symmetry [the 1'S* =1'A,(C,,) ground
state for the '2" states, the 'B,(C,,) component of the 1'TT state for the 'TT states, and the 'A, (C,,) component of the 1'A state for the 'A states].

4The CC(P) and EOMCC(P) energies at 7 = 0.0 a.u. are identical to the energies obtained in the CCSD and EOMCCSD calculations. The z = 0.0 a.u. CC(P;Q)
energies are equivalent to the CR-CC(2,3) (the ground state) and CR-EOMCC(2,3) (excited states) energies.
°The CC(P) and EOMCC(P) energies at 7 = oo a.u. are identical to the energies obtained in CCSDT and EOMCCSDT calculations (see Refs. [20,21]).
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Table 2. Same as Table 1 for the stretched C—H internuclear distance R = 2R. = 4.27426 bohr.

MC Iters. 1z 21z 31" 41zt 1'T1 211 1'A 2 1A

(x10°) P PO %NT P (PO) P (PO P PO P (PO KT P (PO P (PO %T P P;0)

0 5.002 0.012 0 17.140 1.646 19.929-2.871 32.639 12.657 13.552 2.303 0 21.200-1.429 44.495-4.526 0 144.414 —63.405

2 1.588 0.031 3 5.209 0478 12.524-2.079 33.400 14.297 1.398 0.306 7 1.644 —0.060 1.372 0.046 6 13.363 0.368
4 0.504 0.015 7 4.263 —1.741 6.383 —0.760 12.671 2.178 0.712 0.058 12 0.724 0.050 0.451 0.014 9 3.338 0.130
6 0.275 0.002 11 1.405 0.047 1.352 0.051 5.870 0.593 0.409 0.033 14 0.612 0.031 0.422 0.022 12 2340 0.063
8 0.263 0.004 12 1.543 0.065 1.173 0.020 4.406 0.699 0.436 0.050 16 0.457 —0.002 0.253 0.007 13 2.088 0.021
10 0.148 0.003 14 0.792 0.094 0.613 0.047 2331 0.342 0.227 0.039 17 0.220 0.014 0.122 -0.001 14 0.862 0.038

50 0.030 0.000 26 0.302 0.002 0.339 0.007 0.457 0.013 0.061 0.007 30 0.079 0.006 0.047 0.005 26 0.288 0.005
100 0.009 0.000 39 0.103 0.003 0.119 0.006 0.110 0.011 0.013 0.002 41 0.016 0.004 0.013 0.004 36 0.038 0.000
150 0.004 0.000 52 0.031 0.000 0.035 0.003 0.076 0.006 0.005 0.002 52 0.007 0.002 0.005 0.001 47 0.014 0.000
200 0.001 0.000 63 0.024 0.000 0.019 0.000 -0.006 0.001 0.002 0.001 65 0.001 0.000 0.001 0.000 57 0.003 0.000

0 —37.900394 —37.704834  —37.650242  —37.495275 —37.879532 —37.702345 —37.714180 —37.494031
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Table 3. Convergence of the CC(P)/EOMCC(P) and CC(P;Q) energies toward CCSDT/EOMCCSDT for the CH radical, calculated
using the aug-cc-pVDZ [76,77] basis set. The P spaces used in the CC(P) and EOMCC(P) calculations were defined as all singles, all
doubles, and subsets of triples extracted from i-FCIQMC propagations for the lowest states of the relevant symmetries. Each i-FCIQMC

run was initiated by placing 1500 walkers on the appropriate reference function [the ROHF ?B,(C,,) determinant for the X *TT ground
state, the 17 — 40 state of the *A(C,,) symmetry for the A °A and C°T" states, and the 30 — 17 state of the *A,(C,,) symmetry

for the B*Y™ state], setting the initiator parameter n, at 3 and the time step Az at 0.0001 a.u. The Q spaces used in constructing the
CC(P;Q) corrections consisted of the triples not captured by the i-FCIQMC.

MC Iters. X 1 A A B 2%~ C 2z

(x10%) P (P;0)°  %T° P (PO  %T° P? (P;0)°  %T° P (P;0)° %T°
04 2987 0231 0.0 13.474  7.727 0.0 38.620 —4.954 0.0 43.992  0.087 0.0
2 2405 0170 138 13.009  7.395 9.8 10.602 —1.848 185 40.700 —0.689 9.8
4 1413 0.086  41.7 10.907 5288 193 7.066 —1259  38.9 31.017 0319  19.7
6 0.883  0.035 589 10.119 4577 272 3452 —0371 532 26364 —0.508  28.8
8 0.603  0.022  66.8 7764 2436  34.6 2309 —0.149 614 20.545 —0.412 343
10 0495 0.019 726 6.987 2.170  38.1 1.965 —0.024  64.8 17.180  0.435 383
12 0.445 0015 765 6.640 1981 423 1.832  —0.081  69.5 16929  0.029 425
14 0.389  0.013  77.5 7.040  1.887 457 1.180  0.030  72.2 13.114  0.253  45.1
16 0.309  0.008 792 6.047 1.667 483 1.303  0.012  75.6 7.646  —0.041 487
18 0292  0.008  80.3 4.646  0.875  49.8 1349 -0.062 775 5312 0011  50.1
20 0243  0.006 822 3.809  0.754 526 0.796  0.038  79.5 4691  0.108 522
50 0.150  0.002  89.1 1367 0.112  74.1 0298  0.038 916 1436  0.070  74.0
100 0.055 0.002 953 0.177  0.017  91.7 0.144  0.014 983 0204  0.013 913
150 0.025 0.000  98.1 0.042 —0.003  98.0 0.010  0.007  99.6 0.063  0.010 982
200 0.010  0.000  99.2 0.007  0.001  99.7 —-0.001  —0.001 _ 99.9 0.010  0.001  99.7

o0° —38.387749 —38.276770 —38.267544 —38.238205

“Errors in the CC(P) (the X °IT ground state) and EOMCC(P) (excited states) energies relative to the corresponding CCSDT and EOMCCSDT data, in millihartree,
calculated at the experimentally obtained equilibrium C—H distances used in Refs. [26,36,45], which are 1.1197868 A for the X *IT state [87], 1.1031 A for the

A *A state [87], 1.1640 A for the B>X™ state [88], and 1.1143 A for the C *Z" state [89]. The lowest-energy core orbital was frozen in all correlated calculations.
Errors in the CC(P;Q) energies relative to the corresponding CCSDT and EOMCCSDT data, in millihartree, calculated at the experimentally determined
equilibrium C—H distances as used in Refs. [26,36,45] (see footnote ‘a’ for the C—H distances).

“The %T values are the percentages of triples captured during the i-FCIQMC propagations for the lowest state of a given symmetry [the *B,(C,,) component of
the X *TT ground state, the lowest *A,(C,,) state for the A *A and C’T" states, and the lowest *A,(C,,) state for the B’ state].

4The CC(P) and EOMCC(P) energies at = 0.0 a.u. are identical to the energies obtained in CCSD and EOMCCSD calculations. The = 0.0 a.u. CC(P;Q) energies
are equivalent to the CR-CC(2,3) (the ground state) and CR-EOMCC(2,3) (excited states) energies.
°The CC(P) and EOMCC(P) energies at 7 = co a.u. are identical to the energies obtained in the ROHF-based CCSDT and EOMCCSDT calculations.
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Table 4. Convergence of the CC(P)/EOMCC(P) and CC(P;Q) energies toward CCSDT/EOMCCSDT for the CNC molecule, calculated
using the DZP[4s2p1d] basis set of Refs. [78,79]. The P spaces used in the CC(P) and EOMCC(P) calculations were defined as all
singles, all doubles, and subsets of triples extracted from i-FCIQMC propagations for the lowest states of the relevant symmetries. Each
i-FCIQMC run was initiated by placing 1500 walkers on the appropriate reference function [the ROHF 2B2g (D,,) determinant for the

X ’I1, ground state and the 3o, — 17, state of the *B, (D,,) symmetry forthe A °A, and B °Z; states], setting the initiator parameter

n, at 3 and the time step Az at 0.0001 a.u. The Q spaces used in constructing the CC(P;Q) corrections consisted of the triples not
captured by the i-FCIQMC.

MC Iters. X *11, A2\, B 23,

(x10°) P (PO %T P (P00 %I P (PO %I
0¢ 18.458 —0.495 0.0 31.157 16.017 0.0 111.307 —-0.433 0.0
2 10.331 -0.043 13.2 18.835 9.114 6.5 81.493 2496 6.5
4 4424 —0.029 33.2 10.637 5.717 16.1 53.677 -2.526 16.0
6 2.824 -0.011 44.1 7.555 4199 227 35.539 -1.254 228
8 1.818 —0.013 499 6.181 3.090 275 26.767 —-0.864 27.9
10 1.306 —-0.006 53.3 5.187 2.441 30.8 21.337 -0.284 31.5
12 1.092 -0.003 56.5 4162 1.778 34.0 17.056 0.196  34.3
14 0911 -0.005 58.7 3529 1418 37.0 12.843 0.046 375
16 0.820 -0.003 60.6 3.106 1.149 395 9.197 0.134 399
18 0.651 -0.003 62.5 2.510 0.811 41.7 8.879 —0.034 424
20 0.610 -0.001 63.9 2395 0785 444 7.548 0.151 447
50 0.077 0.000 79.7 0.172 0.058 70.9 0.732 0.055 70.7
100 0.002 0.000 94.5 0.002 0.001 92.3 0.005 0.003 91.9
150 0.000 0.000 99.3 0.000 0.000 99.1 0.000 0.000 99.1

oo® —130.421932 —130.276946 —130.252999

“Errors in the CC(P) (X 1 . state) or EOMCC(P) (the remaining states) energies relative to the corresponding CCSDT or EOMCCSDT data, in millihartree,
calculated at the equilibrium C—N distances optimized in Ref. [74], which are 1.253 A for the X *T1 . state, 1.256 A for the A ZAM state, and 1.259 A for the B 22:

state. The three lowest-energy core orbitals were frozen in all correlated calculations.
YErrors in the CC(P;Q) energies relative to the corresponding CCSDT or EOMCCSDT data, in millihartree, calculated at the equilibrium C-N distances optimized
in Ref. [74] (see footnote ‘a’ for these C—N distances ).

“The %T values are the percentages of triples captured during the i-FCIQMC propagations for the lowest state of a given symmetry [the *B, ¢ (D,;,) component of
the X °IT, ground state and the lowest °B,, (D,,) state for the A A, and B’Z; states].

4The CC(P) and EOMCC(P) energies at 7= 0.0 a.u. are identical to the energies obtained in CCSD and EOMCCSD calculations. The 7= 0.0 a.u. CC(P;Q) energies
are equivalent to the CR-CC(2,3) (the ground state) and CR-EOMCC(2,3) (excited states) energies.
°The CC(P) and EOMCC(P) energies at 7 = co a.u. are identical to the energies obtained in the ROHF-based CCSDT and EOMCCSDT calculations.
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Figure 1. Convergence of the EOMCC(P) (panels (a) and (c)) and CC(P;Q) (panels (b) and (d))
energies toward EOMCCSDT for the three lowest-energy excited states of the '=* symmetry, two

lowest states of the 'TT symmetry, and two lowest 'A states of the CH" ion, as described by the
[5s3pld/3slp] basis set of Ref. [71], at the C—H internuclear distance R set at Re = 2.13713 bohr
(panels (a) and (b)) and 2Re = 4.27426 bohr (panels (c) and (d)).
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Figure 2. A comparison of the distributions of the differences between the R

their EOMCCSDT counterparts resulting from the EOMCC(P) computations at (a) 4000, (b)
10000, and (c) 50000 MC iterations using Az =0.0001 a.u. for the 2'S" state of CH" at R = 2R.

with the analogous distribution characterizing the R, , amplitudes obtained with the EOMCCSDt

approach employing the 30, 1, 17, and 40 active orbitals to define the corresponding triples

Index of triples

(MC)
"3

space (panel (d)). All vectors R, needed to construct panels (a)—(d) were normalized to unity.
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