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Abstract

The inference of Gaussian Processes concerns the distribution of the underlying function
given observed data points. GP inference based on local ranges of data points is able to
capture fine-scale correlations and allow fine-grained decomposition of the computation.
Following this direction, we propose a new inference model that considers the correlations
and observations of the K nearest neighbors for the inference at a data point. Compared
with previous works, we also eliminate the data ordering prerequisite to simplify the in-
ference process. Additionally, the inference task is decomposed to small subtasks with
several technique innovations, making our model well suits the stochastic optimization.
Since the decomposed small subtasks have the same structure, we further speed up the in-
ference procedure with amortized inference. Our model runs efficiently and achieves good
performances on several benchmark tasks.

Keywords: Gaussian Processes, Variational Inference, Probabilistic Machine Learning,
Bayesian Methods, Graph Neural Networks.

1. Introduction

Gaussian processes (GP) (Rasmussen and Williams, 2006) are flexible non-parametric mod-
els with a wide range of applications. GP poses a Gaussian prior over function values f
and assumes observations y are generated independently given f . GP inference considers
the calculation of the posterior of these function values (Matthews et al., 2016) given ob-
servations, namely p(f |y). Direct computation of the posterior is often intractable on large
datasets, motivating people to consider its approximations. Variational inference (Jordan
et al., 1999; Blei et al., 2017) for GP (Rasmussen and Williams, 2006) has achieved great
successes recently. Variational inference constructs a variational distribution, which is usu-
ally a multivariate Gaussian distribution, to approximate the posterior. The approximation
is done by minimizing the KL divergence from the posterior to the variational distribu-
tion (Blei et al., 2017). The variational distribution is often constructed with some special
structures to reduce the number of variational parameters and speed up the computation.

Inducing-point methods (Quiñonero-Candela and Rasmussen, 2005; Titsias, 2009; Hens-
man et al., 2013, 2015) define variational distributions on a small number M of inducing
points and then derive the distribution of non-inducing points conditioned on these inducing
points. Inducing points summarize the entire posterior distribution, and their number M
balances the computational cost and the quality of the approximation. Inducing-point meth-
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ods are further improved in several directions, such as generic inference for non-Gaussian
likelihoods (Sheth et al., 2015; Dezfouli and Bonilla, 2015; Krauth et al., 2016; Hensman
et al., 2015), inter-domain and subspace inducing points (Hensman et al., 2017; Panos et al.,
2018), and decoupled approximation with two different sets of inducing points (Cheng and
Boots, 2017; Salimbeni et al., 2018). Burt et al. (2019) provide theoretical analysis to show
that a relatively small M is sufficient to produce a reliable variational approximation when
the input dimension is low.

While inducing-point methods capture global correlations among data points through
inducing points, inference methods based on local neighbors focus more on correlation
structures at local scales. These methods consider only local-range dependencies to save
computation because local-range correlations are often much stronger than distant ones.
Nguyen-Tuong et al. (2009); Park and Apley (2018) partition the input space into subre-
gions, fit local models over subregions and then stitch local models into one. Other works
examine neighbors of each data point directly. Gramacy and Apley (2015) investigate the
properties of GP predictive equation and construct a local predictive approximator. Covari-
ance tapering (Furrer et al., 2006; Kaufman et al., 2008) gains computational efficiency by
constructing a sparse correlation matrix with zero correlations between distant data points.
Methods based on Vecchia’s approximation (Vecchia, 1988; Datta et al., 2016; Liu and Liu,
2019; Finley et al., 2019) decompose the joint probability of data points into conditionals
according to a data ordering and then neglect far data points that are conditioned on.

Recently, Liu and Liu (2019) propose the AIGP method, which extends the idea of local
inference to GP models with non-Gaussian likelihoods. They use directed graphical models
to approximate both the prior and the posterior. With this construction, the inference
task decomposes into local inference subtasks, then they introduce amortized inference and
use inference networks to identify solutions to these subtasks (Kingma and Welling, 2013;
Dai et al., 2015; Miao et al., 2016). Amortization reduces the number of optimization
parameters and greatly speeds up the inference procedure. However, this method has two
drawbacks. First, the inference at a data point considers a few of its nearest neighbors but
not all of them; therefore, it may lose some important correlations. Second, it depends on
a data ordering. A bad ordering often deteriorates the performance, but it is hard to guard
against such a bad situation. There are no easy fixes of the two issues, because all these
designs in AIGP serve the purpose of decomposition.

In this work, we propose a new GP inference method, LAIN. LAIN considers K near-
est neighbors for the inference at each data point. Particularly, LAIN uses a variational
distribution whose covariance is parameterized by a sparse decomposition. The decompo-
sition focuses on the correlations between every data point and its K nearest neighbors
1. LAIN also eliminates the need for a data ordering. These nice properties come after
several technical innovations. First, the new distribution does not admit a decomposable
entropy calculation. We overcome this difficulty by using a decomposable lower bound of
the entropy (Ranganath et al., 2016; Louizos and Welling, 2017). Second, to decompose the
logarithm of the prior, AIGP and previous methods use a directed graphical model as an
approximation of the prior. We follow this idea, but we consider all possible orderings of

1. We use the term “nearest neighbors” for easy reference, but we actually consider K most correlated
neighbors in the prior. When the kernel is based on some distance metrics, then they are K nearest
neighbors.
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data points and collapse them to local combinations, making the computation manageable.
With these techniques, LAIN still decomposes the inference task into subtasks, so amortized
inference can apply. It is worthing noting that subtasks in LAIN are generated from the
same mechanism while those in AIGP are not. We argue that subtasks sharing the same
“distribution” are more appropriate for amortization.

Our empirical evaluations show that the LAIN method outperforms baseline methods
including AIGP in several learning tasks. Our investigation also indicates that LAIN can
achieve decent performance even only a few neighbors are considered.

2. Background

Gaussian Processes. Suppose we have a dataset containing a feature matrix X = (xi)
N
i=1

and observations y = (yi)
N
i=1. We assume there is a latent function f that generates yi

from xi for each i. Particularly, each yi is generated by a likelihood model p(yi|fi) with
fi = f(xi). Denote f = (fi)

N
i=1, then p(y|f) =

∏N
i=1 p(yi|fi). The likelihood p(yi|fi) can

be very general – here we only assume that log p(yi|fi) is differentiable with respect to fi.
This mild assumption allows a wide range of data distributions. For example, if yi is binary,
p(yi|fi) is a Bernoulli distribution with fi as the logit.

We put a GP prior with a mean function ν(·) and a kernel function κ(·, ·) over the
latent function f . The kernel function encodes the prior knowledge of the smoothness
of f . One commonly used kernel function is the Radial Basis Function (RBF) kernel,
κ(xi,xj) = r2 exp(−0.5‖xi−xj‖22/σ2), with r and σ as parameters. With this prior, function
values in f follow a multivariate Gaussian, f ∼ N (ν,Σ), with the mean ν = (ν(xi))

N
i=1 and

the covariance matrix Σ with Σi,j = κ(xi,xj) ∀i, j.
GP inference concerns the calculation of posterior p(f |y) (Matthews et al., 2016), from

which we can infer the function value f? for any new input x? with integral
∫
f p(f?|f)p(f |y)df .

The posterior p(f |y) is generally not tractable, so we appeal to approximate inference.
Variational Inference for GP. Variational inference approximates the posterior p(f |y)
with a variational distribution q(f), which is defined as a multivariate Gaussian distribution,
q(f) ∼ N (µ,V). The inference is carried out by maximizing the Evidence Lower BOund
(ELBO) with respect to q(f) (Blei et al., 2017).

log p(y|X) ≥ max
q(f)

Eq [log p(y|f)]︸ ︷︷ ︸
Lell

+Eq [log p(f)]︸ ︷︷ ︸
Lcross

−Eq [log q(f)]︸ ︷︷ ︸
Lent

(1)

Here we name the three terms in the ELBO for easy reference later. Typically the ELBO
is maximized by gradient-based optimization, preferably stochastic gradient optimization
when N is large. Direct optimization of the ELBO is challenging, since the kernel matrix
Σ and the variational covariance V are both large and have size N ×N .

Inducing-point methods define q(f) =
∫
fI
q(fI)p(f |fI) dfI , where q(fI) is the distribution

over inducing points I, and p(f |fI) is derived from the prior. The computation is reduced
mainly because only the small distribution q(fI) is optimized, while the conditional p(f |fI)
is fixed when the prior is given.

AIGP parameterizes V by a Cholesky decomposition, V = LL>. Here L is a sparse
lower triangular matrix, and each row of L has at most K non-zero entries. AIGP uses a
triangular L for easy entropy computation. It also approximates log p(f) with a directed
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Figure 1: The structure of the variational distribution. The left box shows the amortization,
which fits µi-s and Rij-s from their related prior kernel and observations. The right part shows the
generation process of fi-s.

graphical model. Both the lower triangular matrix L and the directed graph require an
ordering of data points.

3. Method

3.1. The variational distribution

Following previous works, we also define the variational distribution q(f) to be a multivariate
Gaussian N (µ,V). We parameterize V = RR> + δ2I with R being a sparse matrix and
δ being a small constant. Note that we do not require R to be triangular. The sparse
pattern of R is decided by the nearest neighbors: Rij 6= 0 only when j ∈ n(i). Here n(i) is
the neighbor set containing data points that have the largest covariance with i in the prior
(by definition n(i) includes i). In this work, we fix the size of n(i) to be K, though our
derivation works for varied sizes of n(i). The row Ri can be viewed as a representation of fi
in the variational distribution: Ri informs fi’s correlation with other function values, just
like a word embedding informs its relation with other words (Mikolov et al., 2013).

Efficient sampling from the marginal is critical for the decomposition of the ELBO later.
Owing to the sparse decomposition of the covariance matrix, we can cheaply draw marginal
samples for an fi from q(f) with a linear transformation of white noise. The sampling
scheme is shown in (2) and pictured in the right part of Figure 1.

fi = µi + Ri ε + δξ = µi + Ri,n(i) εn(i) + δξ, ε ∼ N (0, I), ξ ∼ N (0, 1). (2)

The constructed distribution q(f) well approximates the strong correlations in the prior.
From (2), fi and fj correlate in q(f) by sharing noise entries in n(i) ∩ n(j) when the
intersection is not empty. In this case, either fi neighbors fj , or fj neighbors fi, or fi, fj
share common neighbors. When the neighbor sets are large enough, most strong correlations
will be approximated by some non-zero entries in V.

3.2. Optimization of the ELBO

We optimize the ELBO in (1) to find a good q(f) to approximate the GP posterior. To
apply stochastic optimization, we will decompose the three terms in the ELBO. We mainly
consider the decomposition of Lcross and Lent, as the decomposition of Lell is easy.
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We first decompose the cross entropy Lcross. By convention, the GP prior has a zero
mean. Though there is a closed-form calculation of Lcross with both q(f) and p(f) being mul-
tivariate Gaussian, it involves expensive calculations of det(Σ) and Σ−1. Previous works ap-
proximate the prior with Vecchia’s method for easy decomposition and good approximation
(Vecchia, 1988; Stein et al., 2004; Datta et al., 2016; Liu and Liu, 2019; Finley et al., 2019).
The idea is to build a directed graphical model and approximate p(f) ≈

∏N
i=1 p(fi|fα(i))

with α(i) being a small parent set of i. In the original work, Vecchia (1988) first set an
order to data points and then choose α(i) as the K nearest parents of i. But it is not easy
to guarantee a good ordering of data points (Banerjee et al., 2014; Guinness, 2018). Here
we consider all possible orderings and take the average of approximations to address the
data ordering concern.

We estimate Lcross as follows. First, we randomly sample a parent set n′(i) ⊂ n(i) with
i /∈ n′(i) for each i. Then we approximate the log-prior by log p(f) ≈

∑N
i=1 log p(fi|fn′(i)),

with the conditional distribution p(fi|fn′(i)) derived from the joint Gaussian p(fi, fn′(i)) in
the prior. Then Lcross is estimated by a random batch of terms. The complete calculation
is given as

Lcross ≈ L̃cross =
N

|S|
∑
i∈S

Eq(fi,fn′(i))
[

log p(fi|fn′(i))
]
, random set n′(i) ⊂ n(i). (3)

Here S is a random batch of data points.
Now we justify that this is an average over all data orderings. Suppose there is a data

order π(·), such that we can define a directed graphical model over p(f) by assigning every
i a parent set n′π(i) = {j : j ∈ n(i), π(j) < π(i)}. Denote Π as all permutations of N data
points, with each permutation inducing a graphical model. The average of the log densities
of all graphical models can be collapsed to the average computed from local neighborhoods.
Denote Πn(i) as permutations of indices in the set n(i), then we have

1

N !

∑
π∈Π

N∑
i=1

Eq(fi,fn′π(i))

[
log p(fi|fn′π(i))

]
=

N∑
i=1

1

K!

∑
π∈Πn(i)

Eq(fi,fn′π(i))

[
log p(fi|fn′π(i))

]
. (4)

Here we only need to consider permutations of data points within n(i) for each i. Then we
obtain (3) by estimating the inner summation by a single random permutation of n(i) and
the outer summation by a random batch S.

We then decompose the entropy Lent. The entropy of q(f) requires the expensive compu-
tation of det(V). To circumvent this difficulty, we find a decomposable lower bound of the
entropy by using an auxiliary distribution (Ranganath et al., 2016; Louizos and Welling,
2017). Note that we always prefer a lower bound of the objective in this maximization
problem. With an arbitrary distribution r(ε|f), a lower bound of Lent is

Lent = −Eq [log q(f)] ≥ −Eq(f ,ε) [log q(f |ε) + log q(ε)− log r(ε|f)] . (5)

The bound is tight when r(ε|f) matches q(ε|f). In this work, we try to let r(ε|f) match
q(ε|f). Particularly, we set r(ε|f) =

∏
i q(εi|fn(i)), where the conditional q(εi|fn(i)) is derived

from the joint Gaussian distribution q(εi, fn(i)). Then all terms in the lower bound in (5)
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are Gaussian log-likelihoods and are decomposable over data points. We can then reach the
estimation of the entropy lower bound with a batch of data points.

Lent ≥ L̃ent = −1

2

N

|S|
∑
i∈S

log
(

1−R>n(i),i

(
Rn(i),:R

>
n(i),:

)−1
Rn(i),i

)
+ const. (6)

We finally decompose the likelihood Lell. The likelihood term log p(y|f) naturally de-
composes because yi-s are conditionally independent given fi-s.

Lell =
N∑
i=1

Eq(fi) [log p(yi|fi)] , L̃ell =
N

|S|
∑
i∈S

log p(yi|f̂i). (7)

Here for each term i in the summation, the expectation is estimated by a Monte Carlo
sample f̂i from q(fi). The gradients of variational parameters are propagated through f̂i
via reparameterization (Kingma and Welling, 2013).

Finally, the ELBO has a decomposable approximation L̃ell + L̃cross + L̃ent to enable
efficient stochastic optimization. From the derivations above, we see the objective can be
decomposed by data points. The computation for a data point only involves itself and its K
nearest neighbors. Therefore, each stochastic gradient calculation takes time only O(K3).
There are N(K + 1) parameters in µ and R to optimize, so the optimization takes at least
O(N) time. We further reduce the number of parameters by amortizing the cost through a
shared inference model, taking advantage of the fact that the inference for each data point
i only needs its K nearest neighbors.

3.3. Amortized inference

Following AIGP, we also apply amortized inference to GP inference. Particularly, we train
an inference network to identify variational parameters (µi and Ri,n(i)) for each data point
i. Since node correlations at a neighborhood can be easily treated as a weighted graph,
we use Graph Convolutional Networks (GCNs) (Kipf and Welling, 2017) as our inference
network.

A GCN takes an adjacency matrix A ∈ Rk×k of graph and the node features H(0) ∈
Rk×d0 as the input and then makes predictions for all graph nodes. Let Ā be the normalized
adjacency matrix, Ā = D−

1
2 AD−

1
2 , with D being the diagonal degree matrix. A GCN

layer ` with the input H(`−1) is defined by H(`) = g`(H
(`−1),A) := σ

(
ĀH(`−1)W(`)

)
. Here

W(l) ∈ Rd`−1×d` is the weight matrix of the layer `. σ(·) is the activation function. An
L-layer GCN computes its output by H = gcn(H0,A) := gL(. . . g1(H0,A) . . . ,A). We use
two GCNs for the inference task, gcn1 for the calculation of µi and gcn2 for Ri,n(i):

µi = a>gcn1

(
[yn(i), ei],Σn(i),n(i)

)
,Ri,n(i) = gcn2

(
[yn(i), ei],Σn(i),n(i)

)
. (8)

Here we use Σn(i),n(i) as the adjacency matrix and stack the observation yn(i) and the one-
hot vector ei as the input feature. The vector ei indicates the element i for which the
inference is running for. We choose the activation σ(·) to be ReLU for intermediate layers
and identity for the last layer. The last layer of each GCN has size 1 to output a K × 1
vector. a is an averaging vector with all K elements as 1

K . The dashed box in Figure 1
shows the amortization.
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LAIN defines an inference subtask on a data point and its nearest neighbors, while
AIGP defines a subtask on a data point and its parents. Due to this difference, LAIN has
two advantages. First, the inference network of LAIN uses the observations from all the
K nearest neighbors, while the inference network of AIGP uses observations from parents
only but not children. Second, inference subtasks of LAIN are generated with the same
mechanism because the nearest-neighbor relationship is homogeneous across all data points.
However, the parent-child relationship in AIGP depends on the ordering of data points (e.g.
the first one in the order does not have parents). As a learning model, the inference network
prefers subtasks from the same “distribution”.

The computational cost of GCN is O(K2) by treating the network size as constant. The
complexity of one gradient calculation is O(K3). The optimization procedure converges
fast since it only optimizes a constant number of variational parameters. In practice, we
often observe that the optimization procedure converges in less than one epoch, which is not
possible for methods without amortization. Finding nearest neighbors is the only step with
running time bounds to the data size, but it only needs one run and is often fast on medium
to large data sizes. If the data has a very large size, we can use k-d trees for low-dimensional
data and approximate algorithms like locality-sensitive hashing (LSH) (Andoni et al., 2015)
for high dimensional data.

3.4. Prediction

For a new data point x? with its K nearest neighbors n(?) in the prior, the predictive
distribution is

p(y?|x?,X,y) ≈
∫
f?

p(y?|f?)q(f?|x?,Xn(?),yn(?))df? ≈
1

|F |
∑
f̂?∈F

p(y?|f̂?). (9)

Here q(f?|x?,Xn(?),yn(?)) =
∫
fn(?)

p(f?|fn(?))q(fn(?))dfn(?) is a Gaussian with parameters,

µ? = b?µn(?), σ2
? = Σ?,? −Σ?,n(?)b

>
? + b?(Rn(?)R

T
n(?))b

>
? , (10)

with b? = Σ?,n(?)Σ
−1
n(?),n(?). F is a set of Monte Carlo samples from q(f?|x?,Xn(?),yn(?)) .

The Monte Carlo estimation is accurate since the integral is one-dimensional.

4. Experiment

We compare our method with five state-of-the-art methods: SVGP (Hensman et al., 2015),
SAVIGP (Dezfouli and Bonilla, 2015), DGP (Cheng and Boots, 2017), VFF (Hensman
et al., 2017), and AIGP (Liu and Liu, 2019). The first three methods are based on inducing
points, VFF uses inter-domain inducing points, and AIGP uses local neighbors. Through
all experiments, we use RBF as the default kernel, except for VFF we use Mat́ern-3

2 kernel
(the code does not provide RBF kernel). We use the implementation of SVGP from GPFlow
(Matthews et al., 2017), the implementation of DGP from Faust (2018), and implementa-
tions of all other algorithms from their authors.

We vary the number of inducing points, M ∈ {200, 1000, 2000} for SVGP, SAVIGP,
and VFF, to check their performances. DGP has separate inducing points for mean ap-
proximation and those for variance approximation. We use 256 inducing points for variance
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Figure 2: The first two plots compare predictive distributions of full GP and LAIN with K = 10.
The right three plots show how SVGP, AIGP, and LAIN perform with a very small number of
inducing points/neighbors. Data points in blue circles are not well fitted.

approximation and vary the number of inducing points for mean approximation from 200 to
2000. We vary the number of neighbors, K ∈ {10, 20, 40}, for AIGP and LAIN. GCNs used
in these two methods have three hidden layers with dimensions [20, 10, 1]. We randomly
split each dataset into training (75%) and testing (25%) and report both the predictive
performance on the test set and the inference running time. To save the space, we report
results from two settings for each competing method: one setting is M = 200 or K = 10,
with which all methods have their fastest speed (marked by E), and another setting giving
the best predictive performance (marked by X).

4.1. A toy example

In this section, we test different methods on a one-dimensional toy example studied in
(Snelson and Ghahramani, 2006). The dataset contains 200 data points, shown as black
dots in figure 2. We assume Gaussian likelihood in this experiment and run exact inference
as the baseline. A smaller GCN (hidden dimensions [10, 5, 1]) is used in this task.

The predictive mean and variance from the exact inference and LAIN with K = 10 are
shown in the first two plots of Figure 2. The result of LAIN is very similar to that of exact
inference, except that the mean curve of LAIN is less smooth, which does not really hurt
the predictive performance.

We test different methods with very small M and K and observe how they behave. We
are likely to face this situation when we work on large datasets in high-dimensional spaces.
The last three plots of Figure 2 exhibit predictive distributions of SVGP with M = 2
inducing points, AIGP with K = 2 parents, and LAIN with K = 2 nearest neighbors. When
there are not enough inducing points, SVGP over-smooths the prediction and performs
poorly for a good fraction of data points. AIGP does not have a good predictive mean
either, because under a random ordering the directed graph constructed by AIGP cannot
well capture neighboring relations. The predictive mean of LAIN does not deviate far from
the ground-truth in the area with training instances, though the curve is rugged due to
local variations.

4.2. Bird abundance estimation

In this experiment, we estimate the spatial abundance of a bird species (Savannah Sparrow)
using eBird dataset (Munson et al., 2015). The dataset has 14,393 observations, each of
which is a reported bird count at a GPS location. We model the observed counts with GPS
locations as the input. We set the likelihood to be a Poisson distribution, with rate given
by λi = exp(fi).
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We compare different inference methods in terms of Negative predictive Log-Likelihood
(NLL, the smaller the better predictive performance). Table 1 shows the results. We can see
that LAIN achieves the best predictive performance at K = 40. Methods based on inducing
points generally perform worse. In this dataset, observations have strong correlations in
local areas, but inducing points are not efficient to capture the posterior at such a fine
scale. In terms of running speed, LAIN is comparable to AIGP and DGP but faster than
other methods. In our experiment, we have also tried to increase inducing points for DGP,
but it does not improve its performance.

In this experiment, we also investigate whether inference networks work correctly. We
run LAIN without inference networks and optimize µ and L for the variational distribution
directly. Then we compare LAIN models with and without inference networks by checking
their optimization procedure. In this task, we fix hyperparameters, so the two methods
solve a pure inference problem. Figure 3 is the trace plot of the negative ELBO versus
training epochs. The figure shows the ELBO of the two LAIN models eventually converge
to very similar values, though the ELBO without inference networks is slightly better after
50 epochs (likely due to the amortization gap). LAIN with inference networks significantly
reduces the number of optimization epochs – the inference networks are well trained after
only 0.01 epoch (about 100 iterations). In summary, the result indicates that inference
networks can effectively identify the variational parameters using local information.

4.3. Precipitation level estimation

In this task, we evaluate LAIN on a rainfall dataset. We process the precipitation dataset
(Climate Data Online) and obtain the average precipitation level in May at 8,832 stations
that are spatially distributed in the US. The GP inputs are GPS locations of these sta-
tions, and the observations are the average precipitation levels. We use the log-normal
distribution as the likelihood, with its mean as function value f from GP and variance as a
hyperparameter learned from the data.

Table 2 summaries the experimental results. LAIN has better predictive performance,
and its running speed is comparable to or faster than other methods.

We also analyze the goodness of our prior approximation since we can compute the exact
Lcross on this dataset. We compute Lcross with the optimized q(f) distribution as well as
L̃cross. The true value Lcross and the approximation L̃cross are: 5,465 versus 5,396 when
K = 10, 9,905 versus 8,490 when K = 20, and 10,086 versus 9,009 when K = 40. This
result indicates that the approximation L̃cross is relatively accurate. Furthermore, L̃cross
tends to be smaller than the true value and can be considered as a lower bound in such
cases.

4.4. Hand-written digit classification

In this experiment, we explore a high-dimensional inference problem, GP classification of
MNIST digits (LeCun and Cortes, 2010). We consider a binary classification on handwritten
images of 5 and 8. To make performance values of different methods more differentiable, we
randomly choose a subset of size 7,858 from the original dataset. Pixel values are normalized
to [0,1] in the preprocessing step. In the results, we also report the accuracy obtained by
different methods.
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Table 1: Comparison on the eBird dataset.

Method Config Pred NLL Time

SVGP
M=200 E 1.90±.03 107s
M=1000 X 1.88±.02 4.5ks

SAVIGP
M=200 E 2.04±.03 167s
M=2000 X 1.99±.03 50ks

VFF
M=200 E 1.91±.02 1.3ks
M=2000 X 1.91±.02 13ks

DGP
M=200 E 1.82±.02 96s
M=2000 X 1.80±.02 213s

AIGP
K=10 E 1.79±.05 45s
K=20 X 1.71±.05 125s

LAIN
K=10 1.69±.03 55s
K=20 1.65±.03 384s
K=40 1.60±.02 1.3ks

Table 2: Comparison on the precipitation
dataset.

Method Config Pred NLL Time

SVGP
M=200 E 1.57±.03 2.5ks
M=2000 X 1.28±.03 42ks

SAVIGP
M=200 E 1.70±.02 2.8ks
M=2000 X 1.58±.02 50ks

VFF
M=200 E 1.54±.03 9.1ks
M=2000 X 1.53±.03 32ks

DGP
M=200 E 1.07±.05 402s
M=2000 X 1.00±.05 889s

AIGP
K=10 E 0.96±.03 155s
K=10 X 0.96±.03 155s

LAIN
K=10 0.74±.05 129s
K=20 0.72±.05 903s
K=40 0.69±.04 2.3ks
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Figure 3: ELBO trajectories of LAIN
with and without inference networks.

Table 3: Comparison on the MNIST dataset.

Method Config Pred NLL Accuracy Time

SVGP
M=200 E 0.053±.004 98.4 623s
M=1000 X 0.051±.004 98.5 23ks

SAVIGP
M=200 E 0.339±.008 51.7 6.5ks
M=200 X 0.339±.008 51.7 6.5ks

DGP
M=200 E 0.059±.005 98.1 292s
M=2000 X 0.052±.005 98.3 2.1ks

AIGP
K=10 E 0.293±.002 98.0 3.9ks
K=40 X 0.215±.003 98.2 24ks

LAIN
K=10 0.053±.003 98.9 128s
K=20 0.050±.003 99.0 632s
K=40 0.051±.003 99.1 2.9ks

KNN
K=9 N.A. 98.6 24s
K=19 N.A. 98.3 26s
K=39 N.A. 97.6 28s

The results are shown in Table 3. We see that LAIN performs the best in terms of
classification accuracy. Its predictive NLL and running speed also overperform competing
methods, though not very significant. We also observe that AIGP makes less confident
predictions than other methods, which accounts for its worse predictive NLL but high
accuracy. We do not report results from VFF due to memory issues.

We also examine KNN in this experiment. From the results, we notice that a small
number of neighbors are often sufficient for KNN and LAIN models to perform well. By
checking the running time of KNN, we also see that the time of finding nearest neighbors is
only a small fraction of the total inference time on this dataset. There are slight differences
regarding the test accuracy between KNN and LAIN, presumably due to different weighting
schemes: LAIN weights different nearest neighbors according to their correlations, while
KNN treats all nearest neighbors uniformly.
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5. Conclusion

In this work, we propose a novel approach for GP inference. We construct a variational
distribution that has a sparse decomposition on its covariance matrix. With this distribu-
tion, function value at a data point is inferred from its nearest neighbors, encouraging the
inference efficiently focuses on approximating strong correlations posed by the prior. The
proposed variational distribution is expressive to approximate the GP posterior and also
provides a decent structure for efficient ELBO optimization. We further decompose the
ELBO into homogeneous subtasks and therefore enable stochastic optimization. Finally,
we devise inference networks to perform these subtasks and significantly reduce the num-
ber of variational parameters. Our proposed method performs well in terms of predictive
performance and running speed on a series of benchmark tasks.
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