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Abstract—This paper develops a Hoeffding inequality for the
partial sums

∑
n

k=1
f(Xk), where {Xk}k∈Z>0 is an irreducible

Markov chain on a finite state space S, and f : S → [a, b]
is a real-valued function. Our bound is simple, general, since
it only assumes irreducibility and finiteness of the state space,
and powerful. In order to demonstrate its usefulness we provide
two applications in multi-armed bandit problems. The first is
about identifying an approximately best Markovian arm, while
the second is concerned with regret minimization in the context
of Markovian bandits.

I. INTRODUCTION

Let {Xk}k∈Z>0 be a Markov chain on a finite state space S,

with initial distribution q, and irreducible transition probability

matrix P , governed by the probability law Pq . Let π be its

stationary distribution, and f : S → [a, b] be a real-valued

function on the state space. Then the strong law of large

numbers for Markov chains asserts that,

1

n

n
∑

k=1

f(Xk)
Pq −a.s.→ Eπ[f(X1)], as n → ∞.

Moreover, the central limit theorem for Markov chains pro-

vides a rate for this convergence,

√
n

(

1

n

n
∑

k=1

f(Xk)− Eπ[f(X1)]

)

d→ N(0, σ2), as n → ∞,

where σ2 = limn→∞
1
n
varq (

∑n
k=1 f(Xk)) is the limiting

variance.

Those asymptotic results are insufficient in many applica-

tions which require finite-sample estimates. One of the most

central such application is the convergence of Markov chain

Monte Carlo (MCMC) approximation techniques [1], where a

finite-sample estimate is needed to bound the approximation

error. Further applications include theoretical computer science

and the approximation of the permanent [2], as well as statis-

tical learning theory and multi-armed bandit problems [3].

Motivated by this discussion we provide a finite-sample

Hoeffding inequality for finite Markov chains. In the special

case that the random variables {Xk}k∈Z>0
are independent

and identically distributed according to π, Hoeffding’s classic

inequality [4] states that,

P

(∣

∣

∣

∣

∣

n
∑

k=1

(f(Xk)− E[f(X1)])

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp

{

− t2

2ν2

}

,

where ν2 = 1
4n(b− a)2. In Theorem 1 we develop a version

of Hoeffding’s inequality for finite state Markov chains. Our

bound is very simple and easily computable, since it is based

on martingale techniques and it only involves hitting times of

Markov chains which are very well studied for many types

of Markov chains [5]. It is worth mentioning that our bound

is based solely on irreducibility, and it does not make any

extra assumptions like aperiodicity or reversibility which prior

works require.

There is a rich literature on finite-sample bounds for Markov

chains. One of the earliest works [6] uses counting and a

generalization of the method of types, in order to derive a

Chernoff bound for Markov chains which are irreducible and

aperiodic. An alternative approach [7], [8], uses the theory

of large deviations to derive sharper Chernoff bounds. When

reversibility is assumed, the transition probability matrix is

symmetric with respect to the space L2(π), which enables the

use of matrix perturbation theory. This idea leads to Hoeffding

inequalities that involve the spectral gap of the Markov chain

and was initiated in [9]. Refinements of this bound were given

in a series of works [10]–[14]. In [15]–[17] a generalized

spectral gap is introduced in order to obtain bounds even for

a certain class of irreversible Markov chains as long as they

posses a strictly positive generalized spectral gap. Information-

theoretic ideas are used in [18] in order to derive a Hoeffding

inequality for Markov chains with general state spaces that

satisfy Doeblin’s minorization condition, which in the case of

a finite state space can be written as,

∃m ∈ Z>0 ∃y ∈ S ∀x ∈ S : Pm(x, y) > 0. (1)

Of course there are irreducible transition probability matrices

P for which (1) fails, but if we further assume aperiodicity,

then (1) is satisfied. Our approach uses Doob’s martingale

combined with Azuma’s inequality, and is probably closest

related to the work in [19], where a bound for Markov chains

with general state spaces is established using Dynkin’s martin-

gale. But the result in [19] heavily relies on the Markov chains

satisfying Doeblin’s condition (1). A regeneration approach

for uniformly ergodic Markov chains, where one splits the

Markov chain in i.i.d. blocks, and reduces the problem to the

concentration of an i.i.d. process, can be found in [20].

Another line of research is related to the concentration of

a function of n random variables around its mean, under

Markovian or other dependent structures. This was pioneered
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by the works of Marton [21]–[23] who used the transportation

method, and further developed using coupling ideas in [15],

[24]–[27].

To illustrate the applicability of our bound we use it to study

two Markovian multi-armed bandit problems. The stochastic

multi-armed bandits problem is a prototypical statistical learn-

ing problem that exhibits an exploration-exploitation trade-

off. One is given multiple options, referred to as arms, and

each of them associated with a probability distribution. The

emphasis is put on focusing as quickly as possible on the best

available option, rather than estimating with high confidence

the statistics of each option. The cornerstone of this field is

the pioneering work of Lai and Robbins [28]. Here we study

two variants of the multi-armed bandits problem where the

probability distributions of the arms form Markov chains. First

we consider the task of identifying with some fixed confidence

an approximately best arm, and we use our bound to analyze

the median elimination algorithm, originally proposed in [29]

for the case of i.i.d. bandits. Then we turn into the problem of

regret minimization for Markovian bandits, where we analyze

the UCB algorithm that was introduced in [30] for i.i.d.

bandits. For a thorough introduction to multi-armed bandits

we refer the interested reader to the survey [31], and the

books [32], [33].

II. A HOEFFDING INEQUALITY FOR IRREDUCIBLE FINITE

STATE MARKOV CHAINS

The central quantity that shows up in our Hoeffding in-

equality, and makes it differ from the classical i.i.d. Hoeffding

inequality, is the maximum hitting time of a Markov chain with

an irreducible transition probability matrix P . This is defined

as,

HitT(P ) = max
x,y∈S

E[Ty | X1 = x],

where Ty = inf{n ≥ 0 : Xn+1 = y} is the number of

transitions taken in order to visit state y for the first time.

HitT(P ) is ensured to be finite due to irreducibility and the

finiteness of the state space.

Theorem 1: Let {Xk}k∈Z>0 be a Markov chain on a finite

state space S, driven by an initial distribution q, and an

irreducible transition probability matrix P . Let f : S → [a, b]
be a real-valued function. Then, for any t > 0,

Pq

(∣

∣

∣

∣

∣

n
∑

k=1

(f(Xk)− Eq [f(Xk)])

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp

{

− t2

2ν2

}

,

where ν2 = 1
4n(b− a)2HitT(P )2.

Proof: We define the sums,

Sl,m = f(Xl) + . . .+ f(Xm), for 1 ≤ l ≤ m ≤ n,

and the filtration F0 = σ(∅), Fk = σ(X1, . . . , Xk) for

k = 1, . . . , n. Then {E(S1,n | Fk)− E(S1,n | F0)}nk=0, is

a zero mean martingale with respect to {Fk}nk=0, and let

∆k = E(S1,n | Fk) − E(S1,n | Fk−1), for k = 1, . . . , n,

be the martingale differences.

We first note the following bounds on the martingale dif-

ferences,

min
y∈S

E(S1,n | Fk−1, Xk = y)− E(S1,n | Fk−1) ≤ ∆k,

and

∆k ≤ max
x∈S

E(S1,n | Fk−1, Xk = x)− E(S1,n | Fk−1).

Therefore, in order to bound the variation of ∆k it suffices to

control,

max
x∈S

E(S1,n | Fk−1, Xk = x)−min
y∈S

E(S1,n | Fk−1, Xk = y)

= max
x,y∈S

{E[Sk,n | Xk = x]− E[Sk,n | Xk = y]}

= max
x,y∈S

{E[S1,n−k+1 | X1 = x]− E[S1,n−k+1 | X1 = y]} ,

where in the first equality we used the Markov property, and

in the second the time-homogeneity.

We now use a hitting time argument. Observe the following

pointwise statements,

S1,n−k+1 ≤ Tyb+ STy+1,n−k+1,

and,

STy+1,n−k+1 + Tya ≤ STy+1,Ty+n−k+1,

from which we deduce that,

S1,n−k+1 ≤ Ty(b− a) + STy+1,Ty+n−k+1.

Taking E[· | X1 = x]-expectations, and using the strong

Markov property we obtain,

E[S1,n−k+1 | X1 = x]

≤ (b− a)E[Ty | X1 = x] + E[S1,n−k+1 | X1 = y].

Therefore,

max
x,y∈S

{E[S1,n−k+1 | X1 = x]− E[S1,n−k+1 | X1 = y]}

≤ (b− a)HitT(P ).

With this in our possession we apply Hoeffding’s lemma, see

for instance Lemma 2.3 in [34], in order to get,

E
(

eθ∆k | Fk−1

)

≤ exp

{

θ2(b− a)2HitT(P )2

8

}

= exp

{

θ2ν2

2n

}

, for all θ ∈ R.

Using Markov’s inequality, and successive conditioning we

obtain that for θ > 0,

P

(

n
∑

k=1

(f(Xk)− Eq [f(Xk)]) ≥ t

)

≤ e−θt
E

[

eθ(
∑n

k=1 ∆k)
]

= e−θt
E

[

E
(

eθ∆n
∣

∣Fn−1

)

eθ(
∑n−1

k=1 ∆k)
]

≤ exp

{

−θt+
θ2ν2

2n

}

E

[

eθ(
∑n−1

k=1 ∆k)
]

≤ . . . ≤ exp

{

−θt+
θ2ν2

2

}

.
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Plugging in θ = t/ν2, we see that,

P

(

n
∑

k=1

(f(Xk)− Eq [f(Xk)]) ≥ t

)

≤ exp

{

− t2

2ν2

}

.

The conclusion follows by combining the inequality above for

f and −f .

Example 1: Consider a two-state Markov chain with S =
{0, 1} and P (0, 1) = p, P (1, 0) = r, with p, r ∈ (0, 1]. Then,

HitT(P ) = max{E[Geometric(p)],E[Geometric(r)]}
= 1/min{p, r},

and Theorem 1 takes the form,

Pq

(∣

∣

∣

∣

∣

n
∑

k=1

(f(Xk)− Eq [f(Xk)])

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp

{

−2min{p2, r2}t2
n(b− a)2

}

.

Example 2: Consider the random walk on the m-cycle with

state space S = {0, 1, . . . ,m − 1}, and transition probability

matrix P (x, y) = (1{y ≡ x + 1 (mod m)} + 1{y ≡ x − 1
(mod m)})/2. If m is odd, then the Markov chain is aperiodic,

while if m is even, then the Markov chain has period 2. Then,

HitT(P ) = max
y∈S

E[Ty | X1 = 0] = max
y∈S

y(m−y) = ⌊m2/4⌋,

and Theorem 1 takes the form,

Pq

(∣

∣

∣

∣

∣

n
∑

k=1

(f(Xk)− Eq [f(Xk)])

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp

{

− 2t2

n(b− a)2⌊m2/4⌋2
}

.

Remark 1: Observe that the technique used to establish

Theorem 1 is limited to Markov chains with a finite state space

S. Indeed, if {Xk}k∈Z>0 is a Markov chain on a countably

infinite state space S with an irreducible and positive recurrent

transition probability matrix P and a stationary distribution π,

then we claim that,

1

π(y)
≤ 1 + sup

x∈S

E[Ty | X1 = x], for all y ∈ S,

from which it follows that supx,y∈S E[Ty | X1 = x] = ∞, due

to the fact that
∑

y∈S π(y) = 1 and S is countably infinite.

The aforementioned inequality can be established as follows.

1

π(y)
= E[inf{n ≥ 1 : Xn+1 = y} | X1 = y]

=
∑

x∈S

E[inf{n ≥ 1 : Xn+1 = y} | X2 = x]P (y, x)

≤ sup
x∈S

E[inf{n ≥ 1 : Xn+1 = y} | X2 = x]

= 1 + sup
x∈S

E[Ty | X1 = x].

Moreover, through Theorem 1 we can obtain a concentration

inequality for sums of a function evaluated on the transitions

of a Markov chain. In particular, let

S(2) = {(x, y) ∈ S × S : P (x, y) > 0}.

On the state space S(2) define the transition probability matrix,

P (2) ((x, y), (z, w)) = I{y = z}P (y, w).

It is straightforward to verify that the fact that P is irreducible,

implies that P (2) is irreducible as well. This readily gives the

following theorem.

Theorem 2: Let {Xk}k∈Z>0 be a Markov chain on a finite

state space S, driven by an initial distribution q, and an

irreducible transition probability matrix P . Let f (2) : S(2) →
[a, b] be a real-valued function evaluated on the transitions of

the Markov chain. Then, for any t > 0,

Pq

(∣

∣

∣

∣

∣

n
∑

k=1

(

f (2)(Xk, Xk+1)− Eq

[

f (2)(Xk, Xk+1)
])

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp

{

− t2

2ν2

}

,

where ν2 = 1
4n(b− a)2HitT

(

P (2)
)2

.

Corollary 1: When the Markov chain is initialized with its

stationary distribution, π, Theorem 1 and Theorem 2 give the

following nonasymptotic versions of the weak law of large

numbers for irreducible Markov chains. For any ǫ > 0,

Pπ

(∣

∣

∣

∣

∣

1

n

n
∑

k=1

f(Xk)− Eπ [f(X1)]

∣

∣

∣

∣

∣

≥ ǫ

)

≤ 2 exp

{

− 2nǫ2

(b− a)2HitT(P )2

}

,

and,

Pπ

(∣

∣

∣

∣

∣

1

n

n
∑

k=1

f (2)(Xk, Xk+1)− Eπ

[

f (2)(X1, X2)
]

∣

∣

∣

∣

∣

≥ ǫ

)

≤ 2 exp

{

− 2nǫ2

(b− a)2HitT
(

P (2)
)2

}

.

III. MARKOVIAN MULTI-ARMED BANDITS

A. Setup

There are K ≥ 2 arms, and each arm a ∈ [K] = {1, . . . ,K}
is associated with a parameter θa ∈ R which uniquely

encodes1 an irreducible transition probability matrix Pθa . We

will denote the overall parameter configuration of all K arms

with θθθ = (θ1, . . . , θK) ∈ R
K . Arm a evolves according

to the stationary Markov chain, {Xa
n}n∈Z>0

, driven by the

irreducible transition probability matrix Pθa which has a

unique stationary distribution πθa , so that Xa
1 ∼ πθa . There

is a common reward function f : S → [c, d] which generates

the reward process {Y a
n }n∈Z>0

= {f(Xa
n)}n∈Z>0

. The reward

process, in general, is not going to be a Markov chain, unless

f is injective, and it will have more complicated dependencies

than the underlying Markov chain. Each time that we select

arm a, this arm evolves by one transition and we observe the

corresponding sample from the reward process {Y a
n }n∈Z>0

,

while all the other arms stay rested.

1
R and the set of |S| × |S| irreducible transition probability matrices have

the same cardinality, and hence there is a bijection between them.
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The stationary reward of arm a is µ(θa) =
∑

x∈S f(x)πθa(x). Let µ∗(θθθ) = maxa∈[K] µ(θa) be the

maximum stationary mean, and for simplicity assume that

there exists a unique arm, a∗(θθθ), attaining this maximum

stationary mean, i.e. {a∗(θθθ)} = argmaxa∈[K] µ(θa). In

the following sections we will consider two objectives:

identifying an ǫ best arm with some fixed confidence level

δ using as few samples as possible, and minimizing the

expected regret given some fixed time horizon T .

B. Approximate Best Arm Identification

In the approximate best arm identification problem, we are

given an approximation accuracy ǫ > 0, and a confidence level

δ ∈ (0, 1). Our goal is to come up with an adaptive algorithm

A which collects a total of N samples, and returns an arm â
that is within ǫ from the best arm, a∗(θθθ), with probability at

least 1− δ, i.e.

P
A
θθθ (µ

∗(θθθ) ≥ µ(θâ) + ǫ) ≤ δ.

Such an algorithm is called (ǫ, δ)-PAC (probably approxi-

mately correct).

In [35] a lower bound for the sample complexity of any

(ǫ, δ)-PAC algorithm is derived. The lower bound states that

no matter the (ǫ, δ)-PAC algorithm A, there exists an instance

θθθ such that the sample complexity is at least,

E
A
θθθ [N ] = Ω

(

K

ǫ2
log

1

δ

)

.

A matching upper bound is provided for IID bandits in [29]

in the form of the median elimination algorithm. We demon-

strate the usefulness of our Hoeffding inequality, by providing

an analysis of the median elimination algorithm in the more

general setting of Markovian bandits.

Algorithm 1: The β-Median-Elimination algorithm.

Parameters: number of arms K ≥ 2, approximation

accuracy ǫ > 0, confidence level δ ∈ (0, 1),
parameter β;

r = 1, Ar = [K], ǫr = ǫ/4, δr = δ/2;

while |Ar| ≥ 2 do

Nr =
⌈

4β
ǫ2r

log 3
δr

⌉

;

Sample each arm in Ar for Nr times;

For a ∈ Ar calculate Ȳa[r] =
1
Nr

∑Nr

n=1 Y
a
n ;

mr =medianmedianmedian
(

(Ȳa[r])a∈Ar

)

;

Pick Ar+1 such that:

• Ar+1 ⊆ {a ∈ Ar : Ȳa[r] ≥ mr};

• |Ar+1| = ⌊|Ar|/2⌋;

ǫr+1 = 3ǫr/4, δr+1 = δr/2, r = r + 1;

end

return â, where Ar = {â};

Theorem 3: If β ≥ 1
2 (d−c)2 maxa∈[K] HitT(Pθa)

2 then, the

β-Median-Elimination algorithm is (ǫ, δ)-PAC, and its sample

complexity is upper bounded by O
(

K
ǫ2

log 1
δ

)

.

Proof: The total number of sampling rounds is at most

⌈log2 K⌉, and we can set them equal to ⌈log2 K⌉ by set-

ting Ar = {â}, for r ≥ R0, where AR0
= {â}. Fix

r ∈ {1, . . . , ⌈log2 K⌉}. We claim that,

P
β−ME
θθθ

(

max
a∈Ar

µ(θa) ≥ max
a∈Ar+1

µ(θa) + ǫr

)

≤ δr. (2)

We condition on the value of Ar. If |Ar| = 1, then the claim

is trivially true, so we only consider the case |Ar| ≥ 2. Let

µ∗
r = maxa∈Ar

µ(θa), and a∗r ∈ argmaxa∈Ar:µ(θa)=µ∗
r
Ȳa[r].

We consider the following set of bad arms,

Br = {b ∈ Ar : Ȳb[r] ≥ Ȳa∗
r
[r], µ∗

r ≥ µ(θb) + ǫr},
and observe that,

P
β−ME
θθθ

(

µ∗
r ≥ µ∗

r+1 + ǫr
)

≤ P
β−ME
θθθ (|Br| ≥ |Ar|/2). (3)

In order to upper bound the latter fix b ∈ Ar and write,

P
β−ME
θθθ

(

Ȳb[r] ≥ Ȳa∗
r
[r], µ∗

r ≥ µ(θb) + ǫr
∣

∣Ȳa∗
r
[r] > µ∗

r − ǫr/2
)

≤ Pθb(Ȳb[r] ≥ µ(θb) + ǫr/2) ≤ δr/3,

where in the last inequality we used Corollary 1. Now via

Markov’s inequality this yields,

P
β−ME
θθθ

(

|Br| ≥ |Ar|/2
∣

∣Ȳa∗
r
[r] > µ∗

r − ǫr/2
)

≤ 2δr/3. (4)

Furthermore, Corollary 1 gives that for any a ∈ Ar,

Pθa(Ȳa[r] ≤ µ(θa)− ǫr/2) ≤ δr/3. (5)

We obtain (2) by using (4) and (5) in (3).

With (2) in our possession, the fact that median elimination

is (ǫ, δ)-PAC follows through a union bound,

P
β−ME
θθθ (µ∗(θθθ) ≥ µ(θâ) + ǫ)

≤ P
β−ME
θθθ





⌈log2 K⌉
⋃

r=1

{

µ∗
r ≥ µ∗

r+1 + ǫr
}





≤
∞
∑

r=1

δr ≤ δ.

Regarding the sample complexity, we have that the total

number of samples is at most,

K

⌈log2 K⌉
∑

r=1

Nr/2
r−1 ≤ 2K +

64βK

ǫ2

∞
∑

r=1

(

8

9

)r−1

log
2r3

δ

= O

(

K

ǫ2
log

1

δ

)

.

C. Regret Minimization

Our device to solve the regret minimization problem is an

adaptive allocation rule, φφφ = {φt}t∈Z>0 , which is a sequence

of random variables where φt ∈ [K] is the arm that we select

at time t. Let Na(t) =
∑t

s=1 I{φs=a}, be the number of times

we selected arm a up to time t. Our decision, φt, at time t
is based on the information that we have accumulated so far.

More precisely, the event {φt = a} is measurable with respect
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to the σ-field generated by the past decisions φ1, . . . , φt−1, and

the past observations {X1
n}N1(t−1)

n=1 , . . . , {XK
n }NK(t−1)

n=1 .

Given a time horizon T , and a parameter configuration θθθ,

the expected regret incurred when the adaptive allocation rule

φφφ is used, is defined as,

Rφφφ
θθθ (T ) =

∑

b 6∈a∗(θθθ)

E
φφφ
θθθ [Nb(T )]∆b(θθθ),

where ∆b(θθθ) = µ∗(θθθ) − µ(θb). Our goal is to come up with

an adaptive allocation rule that makes the expected regret as

small as possible.

There is a known asymptotic lower bound on how much

we can minimize the expected regret. Any adaptive allocation

rule that is uniformly good across all parameter configurations

should satisfy the following instance specific, asymptotic re-

gret lower bound (see [36] for details),

∑

b 6=a∗(θθθ)

∆b(θθθ)

D
(

θb
∥

∥ θa∗(θθθ)

) ≤ lim inf
T→∞

Rφφφ
θθθ (T )

log T
,

where D (θ ‖ λ) is the Kullback-Leibler divergence rate be-

tween the Markov chains with transition probability matrices

Pθ and Pλ, given by,

D (θ ‖ λ) =
∑

x,y∈S

log
Pθ(x, y)

Pλ(x, y)
πθ(x)Pθ(x, y).

Here we utilize our Theorem 1 to provide a finite-time

analysis of the β-UCB adaptive allocation rule for Markovian

bandits, which is order optimal. The β-UCB adaptive allo-

cation rule, is a simple and computationally efficient index

policy based on upper confidence bounds which was initially

proposed in [30] for IID bandits. It has already been studied

in the context of Markovian bandits in [37], but in a more

restrictive setting under the further assumptions of aperiodicity

and reversibility due the use of the bounds from [9], [12]. For

adaptive allocation rules that asymptotically match the lower

bound we refer the interested reader to [36], [38].

Algorithm 2: The β-UCB adaptive allocation rule.

Parameters: number of arms K ≥ 2, time horizon

T ≥ K, parameter β;

Pull each arm in [K] once;

for t = K to T − 1, do

φt+1 ∈ argmax
a∈[K]

{

Ȳa(t) +

√

2β log t

Na(t)

}

end

Theorem 4: If β > 1
2 (d− c)2 maxa∈[K] HitT(Pθa)

2 then,

R
φφφβ−UCB

θθθ (T ) ≤ 8β





∑

b 6=a∗(θθθ)

1

∆b(θθθ)



 log T

+
γ

γ − 2

∑

b 6=a∗(θθθ)

∆b(θθθ),

where γ = 4β
(d−c)2 maxa∈[K] HitT(Pθa )

2 > 2.

Proof: Fix b 6= a∗(θθθ), and observe that,

Nb(T ) ≤ 1+
8β

∆b(θθθ)2
log T+

T−1
∑

t=2

I{
φt+1=b, Nb(t)≥

8β

∆b(θθθ)
2 log T

}.

On the event
{

φt+1 = b, Nb(t) ≥ 8β
∆b(θθθ)2

log T
}

, we have

that, either Ȳb(t) ≥ µ(θb)+
√

2β log t
Nb(t)

, or Ȳa∗(θθθ)(t) ≤ µ∗(θθθ)−
√

2β log t
Na∗(θθθ)(t)

, since otherwise the β-UCB index of a∗(θθθ) is

larger than the β-UCB index of b which contradicts the

assumption that φt+1 = b.
In addition, using Corollary 1, we obtain,

P
φφφβ−UCB

θθθ

(

Ȳb(t) ≥ µ(θb) +

√

2β log t

Nb(t)

)

=

t
∑

n=1

P
φφφβ−UCB

θθθ

(

Ȳb(t) ≥ µ(θb) +

√

2β log t

Nb(t)
, Nb(t) = n

)

≤
t
∑

n=1

Pθb

(

1

n

n
∑

k=1

Y b
k ≥ µ(θb) +

√

2β log t

n

)

≤
t
∑

n=1

1

tγ
=

1

tγ−1
.

Similarly we can see that,

P
φφφβ−UCB

θθθ

(

Ȳa∗(θθθ)(t) ≤ µ∗(θθθ)−
√

2β log t

Na∗(θθθ)(t)

)

≤ 1

tγ−1
.

The conclusion now follows by putting everything together

and using the integral estimate,

T−1
∑

t=2

1

tγ−1
≤
∫ ∞

1

1

tγ−1
dt =

1

γ − 2
.
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