A Hoeffding Inequality for Finite State Markov
Chains and its Applications to Markovian Bandits

Vrettos Moulos
Department of Electrical Engineering and Computer Sciences
University of California Berkeley
vrettos @berkeley.edu

Abstract—This paper develops a Hoeffding inequality for the
partial sums Y ,_, f(Xx), where {Xi}rez., is an irreducible
Markov chain on a finite state space S, and f : S — [a,}]
is a real-valued function. Our bound is simple, general, since
it only assumes irreducibility and finiteness of the state space,
and powerful. In order to demonstrate its usefulness we provide
two applications in multi-armed bandit problems. The first is
about identifying an approximately best Markovian arm, while
the second is concerned with regret minimization in the context
of Markovian bandits.

1. INTRODUCTION

Let { X }rez., be a Markov chain on a finite state space .S,
with initial distribution ¢, and irreducible transition probability
matrix P, governed by the probability law IP,. Let 7 be its
stationary distribution, and f : S — [a,b] be a real-valued
function on the state space. Then the strong law of large
numbers for Markov chains asserts that,

% 760 TS B0, s n—
k=1

Moreover, the central limit theorem for Markov chains pro-
vides a rate for this convergence,

Vvn <711 > F(Xk) - ]E,r[f(Xl)}> 4 N(0,0%), as n — oo,
k=1

where 02 = limy, o + varg (3, f(Xi)) is the limiting
variance.

Those asymptotic results are insufficient in many applica-
tions which require finite-sample estimates. One of the most
central such application is the convergence of Markov chain
Monte Carlo (MCMC) approximation techniques [1], where a
finite-sample estimate is needed to bound the approximation
error. Further applications include theoretical computer science
and the approximation of the permanent [2], as well as statis-
tical learning theory and multi-armed bandit problems [3].

Motivated by this discussion we provide a finite-sample
Hoeffding inequality for finite Markov chains. In the special
case that the random variables {Xy}rez., are independent
and identically distributed according to 7, Hoeffding’s classic

inequality [4] states that,
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D (F(Xk) = E[f(X1)])

k=1

2777

where 2 = 1n(b — a)?. In Theorem 1 we develop a version
of Hoeffding’s inequality for finite state Markov chains. Our
bound is very simple and easily computable, since it is based
on martingale techniques and it only involves hitting times of
Markov chains which are very well studied for many types
of Markov chains [5]. It is worth mentioning that our bound
is based solely on irreducibility, and it does not make any
extra assumptions like aperiodicity or reversibility which prior
works require.

There is a rich literature on finite-sample bounds for Markov
chains. One of the earliest works [6] uses counting and a
generalization of the method of types, in order to derive a
Chernoff bound for Markov chains which are irreducible and
aperiodic. An alternative approach [7], [8], uses the theory
of large deviations to derive sharper Chernoff bounds. When
reversibility is assumed, the transition probability matrix is
symmetric with respect to the space L2(r), which enables the
use of matrix perturbation theory. This idea leads to Hoeffding
inequalities that involve the spectral gap of the Markov chain
and was initiated in [9]. Refinements of this bound were given
in a series of works [10]-[14]. In [15]-[17] a generalized
spectral gap is introduced in order to obtain bounds even for
a certain class of irreversible Markov chains as long as they
posses a strictly positive generalized spectral gap. Information-
theoretic ideas are used in [18] in order to derive a Hoeffding
inequality for Markov chains with general state spaces that
satisfy Doeblin’s minorization condition, which in the case of
a finite state space can be written as,

dm € Zso yeSVxeS: P"(z,y) > 0. (1)

Of course there are irreducible transition probability matrices
P for which (1) fails, but if we further assume aperiodicity,
then (1) is satisfied. Our approach uses Doob’s martingale
combined with Azuma’s inequality, and is probably closest
related to the work in [19], where a bound for Markov chains
with general state spaces is established using Dynkin’s martin-
gale. But the result in [19] heavily relies on the Markov chains
satisfying Doeblin’s condition (1). A regeneration approach
for uniformly ergodic Markov chains, where one splits the
Markov chain in i.i.d. blocks, and reduces the problem to the
concentration of an i.i.d. process, can be found in [20].
Another line of research is related to the concentration of
a function of n random variables around its mean, under
Markovian or other dependent structures. This was pioneered
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by the works of Marton [21]-[23] who used the transportation
method, and further developed using coupling ideas in [15],
[24]-[27].

To illustrate the applicability of our bound we use it to study
two Markovian multi-armed bandit problems. The stochastic
multi-armed bandits problem is a prototypical statistical learn-
ing problem that exhibits an exploration-exploitation trade-
off. One is given multiple options, referred to as arms, and
each of them associated with a probability distribution. The
emphasis is put on focusing as quickly as possible on the best
available option, rather than estimating with high confidence
the statistics of each option. The cornerstone of this field is
the pioneering work of Lai and Robbins [28]. Here we study
two variants of the multi-armed bandits problem where the
probability distributions of the arms form Markov chains. First
we consider the task of identifying with some fixed confidence
an approximately best arm, and we use our bound to analyze
the median elimination algorithm, originally proposed in [29]
for the case of i.i.d. bandits. Then we turn into the problem of
regret minimization for Markovian bandits, where we analyze
the UCB algorithm that was introduced in [30] for i.i.d.
bandits. For a thorough introduction to multi-armed bandits
we refer the interested reader to the survey [31], and the
books [32], [33].

II. A HOEFFDING INEQUALITY FOR IRREDUCIBLE FINITE
STATE MARKOV CHAINS

The central quantity that shows up in our Hoeffding in-
equality, and makes it differ from the classical i.i.d. Hoeffding
inequality, is the maximum hitting time of a Markov chain with
an irreducible transition probability matrix P. This is defined
as,

HitT(P) = max E[T, | X; =z,
z,y€
where T, = inf{n > 0 : X, 41 = y} is the number of
transitions taken in order to visit state y for the first time.
HitT(P) is ensured to be finite due to irreducibility and the
finiteness of the state space.

Theorem 1: Let { X} }rez., be a Markov chain on a finite
state space S, driven by an initial distribution ¢, and an
irreducible transition probability matrix P. Let f : S — [a, }]
be a real-valued function. Then, for any ¢ > 0,

t2
>t] < QGXP{—QQ},
v

where v? = 1n(b — a)?HitT(P)?2.

Proof: We define the sums,

D (F(Xk) = Bq [£(X2)])
k=1

We first note the following bounds on the martingale dif-
ferences,

in E(S1 0 | Fiot, X =
min (Sipn | Frm1, Xk =v)

—E(S1n | Fo-1) < Ay,
and
Ak S gleaé( ]E(Sl,n | ‘Fk—th = x) - ]E(Sl,n ‘ ‘Fk—l)~

Therefore, in order to bound the variation of A it suffices to
control,

E n 1, X = — min E n 1, Xk =
max (St | Foe1, Xk = ) min (Sim | Fre1, Xk =)
- ]E[Sk,n | Xi = y]}

= H;ax {E[S1,n—tt1 | X1 = 2] = E[S1nrt1 | X1 = 9]},

= max {E[Sk.n | Xk = z]

where in the first equality we used the Markov property, and
in the second the time-homogeneity.

We now use a hitting time argument. Observe the following
pointwise statements,

Stn—k+1 < Tyb+ ST, 410 kt1,

and,
ST, 41,n—k+1 +Tya < ST,41,7, +n—kt1s

from which we deduce that,
Sl,n—k+1 S Ty(b - Cl) + STy+1,Ty+n—k+1-
Taking E[- | X7 = x]-expectations, and using the strong
Markov property we obtain,
E[S1n—k+t1 | X1 =17]
< (b—a)E[Ty | X1 = 2] + E[S1 n—k41 | X1 =1].
Therefore,

max {E[S1,n—k+1 | X1 = 2] —

z,y€

E[S1n—ks1 | X1 =]}
< (b— a)HitT(P).

With this in our possession we apply Hoeffding’s lemma, see
for instance Lemma 2.3 in [34], in order to get,

2(h _ 4)\2H; 2

922
=exp{ 21’; } for all § € R.

Using Markov’s inequality, and successive conditioning we

obtain that for 6 > 0,

P (Z (f(Xk) —Eq [f(Xk)]) = t)
k=1

<e PR [69(22:1 Ak)}

Sm:f(Xl)+...+f(Xm), for1<li<m<n, —e*‘%E[ (GA,L ) 7L1Aki|
and the filtration Fy = o(0), Fr = o(Xy,...,Xy) for 02,2 ——
ko= 1,....n. Then {E(Sy, | Fi)—E(Sin | Fo)ll o is Sexp{ Ot + - } [#(Zir &)
a zero mean martingale with respect to {Fi}}_,, and let 2
Ap = E(S1n | Fr) — E(Sin | Fior), for k = 1,....n, <. §exp{ 9t+9 }
be the martingale differences.
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Plugging in 0 = t/v2, we see that,

P(E}ﬂxw—EAﬂxmanfgm{—;Z}
k=1

The conclusion follows by combining the inequality above for
f and —f. ]

Example 1: Consider a two-state Markov chain with S =
{0,1} and P(0,1) = p, P(1,0) = r, with p,r € (0,1]. Then,

HitT(P) = max{E[Geometric(p)], E[Geometric(r)]}
= 1/min{p,r},
> t)

and Theorem 1 takes the form,
2 min{p?, r?}#> }

g
= QGXp{_ n(b— a)?

Example 2: Consider the random walk on the m-cycle with
state space S = {0,1,...,m — 1}, and transition probability
matrix P(z,y) = (I{y =2 +1 (modm)} + {y =2 -1
(mod m)})/2. If m is odd, then the Markov chain is aperiodic,
while if m is even, then the Markov chain has period 2. Then,

HitT(P) = max E[T,, | X; = 0] = max y(m—y) = [m?/4],
yes © yeSs

and Theorem 1 takes the form,
> t)
k=1

“
< 2exp {_n(b = a)Z‘;LimQ/‘UQ} |

Remark 1: Observe that the technique used to establish
Theorem 1 is limited to Markov chains with a finite state space
S. Indeed, if {X;}rez., is a Markov chain on a countably
infinite state space S with an irreducible and positive recurrent
transition probability matrix P and a stationary distribution 7,
then we claim that,

> (F(Xk) = B [£(X3)])
k=1

> (F(Xk) = B [£(X3)])

1

—— <1+sup E[T, | Xy =2], forally €S,
’/T(y) €S

from which it follows that sup,, , s E[T), | X1 = z] = oo, due

to the fact that 3 g 7m(y) = 1 and S is countably infinite.

The aforementioned inequality can be established as follows.

ﬁ — Efinf{n > 1: Xns1 =y} | X1 = 4]
=Y Efinf{n >1: Xu41 =y} | X2 = 2]P(y,2)
z€eS
< su}; Elinf{n >1: Xp11 =y} | X2 = 1]
zE
=1+sup E[T} | X1 =z
z€eS

Moreover, through Theorem 1 we can obtain a concentration
inequality for sums of a function evaluated on the transitions
of a Markov chain. In particular, let

S® = {(x,y) € S x S : P(x,y) > 0}.

On the state space S(?) define the transition probability matrix,

r® ((z,y), (z,w)) = {y = 2} P(y,w).

It is straightforward to verify that the fact that P is irreducible,
implies that P(?) is irreducible as well. This readily gives the
following theorem.

Theorem 2: Let { X} }rez., be a Markov chain on a finite
state space S, driven by an initial distribution ¢, and an
irreducible transition probability matrix P. Let f : 2 —
[a, b] be a real-valued function evaluated on the transitions of
the Markov chain. Then, for any ¢ > 0,

1)
k=1

m(
t2
< 26Xp{22}7
v

where v = 1n(b — a)?HitT (P(z))g.

Corollary 1: When the Markov chain is initialized with its
stationary distribution, 7, Theorem 1 and Theorem 2 give the
following nonasymptotic versions of the weak law of large
numbers for irreducible Markov chains. For any € > 0,

e ( )

2ne?
(b= a)?Hit T (P)? } !

n

> (f(z)(XkaXlH—l) —Eq [f(g)(XkanH)D

L3 (X~ Ex [F(X0)
k=1

< Zexp{—

% > SO (Xk Xiwr) — Ex [f(2>(X17X2)}
k=1

)

2ne?
<2expq — - 5 (-
(b—a)?HitT (P®)

III. MARKOVIAN MULTI-ARMED BANDITS
A. Setup

There are K > 2 arms, and eacharma € [K] = {1,..., K}
is associated with a parameter §, € R which uniquely
encodes! an irreducible transition probability matrix Pj,. We
will denote the overall parameter configuration of all K arms
with @ = (61,...,0r) € RE. Arm a evolves according
to the stationary Markov chain, {X?},cz.,, driven by the
irreducible transition probability matrix FPp, which has a
unique stationary distribution mg_, so that X{ ~ mg_ . There
is a common reward function f : S — [c,d] which generates
the reward process {Y,? } ez, = {f(X%)}nez.,- The reward
process, in general, is not going to be a Markov chain, unless
f is injective, and it will have more complicated dependencies
than the underlying Markov chain. Each time that we select
arm a, this arm evolves by one transition and we observe the
corresponding sample from the reward process {Y,?}ncz.,,
while all the other arms stay rested.

'R and the set of |S| x | S| irreducible transition probability matrices have
the same cardinality, and hence there is a bijection between them.
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The stationary reward of arm a is wp(f,) =
Yowes f(@)me, (). Let p*(0) = maxqek)pu(fa) be the
maximum stationary mean, and for simplicity assume that
there exists a unique arm, a*(@), attaining this maximum
stationary mean, ie. {a*(0)} = argmax,c;g)p(fa). In
the following sections we will consider two objectives:
identifying an ¢ best arm with some fixed confidence level
6 using as few samples as possible, and minimizing the
expected regret given some fixed time horizon 7.

B. Approximate Best Arm Identification

In the approximate best arm identification problem, we are
given an approximation accuracy € > 0, and a confidence level
0 € (0,1). Our goal is to come up with an adaptive algorithm
A which collects a total of N samples, and returns an arm G
that is within € from the best arm, a* (@), with probability at
least 1 — 4, i.e.

Py (4" (6) > u(0a) + ) < 4.

Such an algorithm is called (¢,0)-PAC (probably approxi-
mately correct).

In [35] a lower bound for the sample complexity of any
(e,0)-PAC algorithm is derived. The lower bound states that
no matter the (e, §)-PAC algorithm A, there exists an instance
0 such that the sample complexity is at least,

K. 1
Ez'[N] = Q <€210g 5) .

A matching upper bound is provided for IID bandits in [29]
in the form of the median elimination algorithm. We demon-
strate the usefulness of our Hoeffding inequality, by providing
an analysis of the median elimination algorithm in the more
general setting of Markovian bandits.

Algorithm 1: The $-Median-Elimination algorithm.
Parameters: number of arms K > 2, approximation
accuracy € > 0, confidence level 6 € (0,1),
parameter [3;
r=1, A, = [K], & =¢€/4, §, =0/2;
while |A4,.| > 2 do
N, = ’V% log %—‘ ;
Sample each arm in A, for N, times;
For a € A, calculate Y,[r] = 3 SN v
m, = median ((Yo[r])aca, ):
Pick A,4 such that:
e Apy1 C{a€ A Y, [r] >m,};
o [Arpaf = [1A:]/2);
€rt1 = 3€6-/4, Opp1 =0./2, r=r+1;

end
return G, where A, = {a};

Theorem 3: 1f § > 1 (d—c)? max,¢ (k) HitT(Py, )? then, the
B-Median-Elimination algorithm is (e, §)-PAC, and its sample
complexity is upper bounded by O (£ log 3 ).

Proof: The total number of sampling rounds is at most
[log, K], and we can set them equal to [log, K| by set-
ting A, = {a}, for r > Ry, where Ar, = {a}. Fix
re{l,...,[logy K|}. We claim that,

]Pg*ME (max w(0s) > max u(f,) + e,,> <d.. (2

acA, a€A, 41

We condition on the value of A,. If |A,| = 1, then the claim
is trivially true, so we only consider the case |A,| > 2. Let
Hy = maxgea, p(0q), and ay € argmax, e 4, . (0,)=ps Yalr]-
We consider the following set of bad arms,

By ={be A, : Vilr] > Yaelr], il > p(6s) + €0,
and observe that,
Py ME (uf > i +e) <Py ME(B 2 14,1/2). (3)
In order to upper bound the latter fix b € A, and write,
Py ME (V] > Yol > ju(0h) + e Vs [7) > i — €0/2)
< Py, (YVolr] = p(6h) + €,/2) < 6,/3,

where in the last inequality we used Corollary 1. Now via
Markov’s inequality this yields,

P, M (1B, > Al /2| Yar [r] > 1 — €:/2) < 26,/3. (4)
Furthermore, Corollary 1 gives that for any a € A,.,
Po, (Valr] < u(0a) — e/2) < 6,/3. 5)

We obtain (2) by using (4) and (5) in (3).
With (2) in our possession, the fact that median elimination
is (€, 6)-PAC follows through a union bound,
Py ME (1 (8) > (6a) + €)
[logy K1
U (= u+e)

r=1

< iér <.
r=1

Regarding the sample complexity, we have that the total
number of samples is at most,

B—ME
<P

[log, K1 e} r—1
_ 645K 8 273
K § N, /2" ! < 2K § = log =
r=1 / B i 62 r=1 <9> o 5

K 1

C. Regret Minimization

Our device to solve the regret minimization problem is an
adaptive allocation rule, ¢ = {¢4}+ez. . which is a sequence
of random variables where ¢; € [K] is the arm that we select
at time ¢. Let N, (t) = S, I, —qy» be the number of times
we selected arm a up to time t. Our decision, ¢, at time ¢
is based on the information that we have accumulated so far.
More precisely, the event {¢; = a} is measurable with respect
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to the o-field generated by the past decisions ¢1, .oy Pi—1,and
the past observations { X1}V (=1 {xKyNe (=)

Given a time horizon 7', and a parameter conﬁguratlon 0,
the expected regret incurred when the adaptive allocation rule
¢ is used, is defined as,

RY(T) = > EFIN,(T)|Aw0),

bZa* (0)

where Ay(0) = p*(0) — 11(6y). Our goal is to come up with
an adaptive allocation rule that makes the expected regret as
small as possible.

There is a known asymptotic lower bound on how much
we can minimize the expected regret. Any adaptive allocation
rule that is uniformly good across all parameter configurations
should satisfy the following instance specific, asymptotic re-
gret lower bound (see [36] for details),

Ay(9)
b#a*(0) (Hb || ea*(9)>

where D (0 || \) is the Kullback-Leibler divergence rate be-
tween the Markov chains with transition probability matrices
Py and P,, given by,

DN o () Py (,y).

=) log

z,y€S x y)

Here we utilize our Theorem 1 to provide a finite-time
analysis of the 3-UCB adaptive allocation rule for Markovian
bandits, which is order optimal. The 3-UCB adaptive allo-
cation rule, is a simple and computationally efficient index
policy based on upper confidence bounds which was initially
proposed in [30] for IID bandits. It has already been studied
in the context of Markovian bandits in [37], but in a more
restrictive setting under the further assumptions of aperiodicity
and reversibility due the use of the bounds from [9], [12]. For
adaptive allocation rules that asymptotically match the lower
bound we refer the interested reader to [36], [38].

Algorithm 2: The 5-UCB adaptive allocation rule.
Parameters: number of arms K > 2, time horizon
T > K, parameter [3;
Pull each arm in [K] once;
fort=KtoT-1, do

bii1 € argmax ] Y, (t) +
a€[K]

28 logt
Na(t)

end

Theorem 4: 1f B > 1(d — ¢)* max,e(x) HitT(Pp, )? then,

¢ 1
REver () < 8 — \logT
(T) < 83 #az*(o) 5,0 | o
5 > M),
7 b;éa*(e)

_ 48
where Y= (d—c)? max, e[| HitT(Ps, )? > 2.

Proof: Fix b # a*(0), and observe that,

T—1
83
Nb(T) = 1+Ab(0) IOgT—i—ZI{@H b, Nyp(t)> %

0)2 log T}

On the event {¢t+1 =0, Np(t) > X, (9)2 logT}, we have
that, either Y5 (t) > u(6h) + |/ 20225, or Yo-(g) () < p*(6) —

%, since otherwise the S-UCB index of a*(f) is
larger than the S-UCB index of b which contradicts the
assumption that ¢441 = b.

In addition, using Corollary 1, we obtain,

2B logt
Ny(t)

Py?-ven (Yb@) > u(0y) +

= Zﬂ”"”ﬁ ( W(t) > () +

Similarly we can see that,

_ 281 1
Pﬁﬁ—UCB (Ya*(e)(t) S M*(a) _ ﬁ Ogt ) < -

Ng-9)(t)

The conclusion now follows by putting everything together
and using the integral estimate,
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