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On amalgamation in NTP2 theories and generically

simple generics

Pierre Simon

Abstract We prove a couple of results on NTP2 theories. First, we prove an

amalgamation statement and deduce from it that the Lascar distance over exten-

sion bases is bounded by 2. This improves previous work of Ben Yaacov and

Chernikov. We propose a line of investigation of NTP2 theories based on S1

ideals with amalgamation and ask some questions. We then define and study a

class of groups with generically simple generics, generalizing NIP groups with

generically stable generics.

Introduction

The class of NTP2 theories contains both simple and NIP theories. It is probably

the largest class where forking is sufficiently well behaved to be taken seriously. A

couple of important facts are known: over extension bases, forking equals dividing

([CK12]) and the non-forking ideal is S1 ([BYC14]). In addition, some theorems on

groups generalizing similar results for simple and NIP theories have been proved:

Hempel and Onshuus [HO17] construct definable envelopes for abelian and solvable

subgroups; [CKS15] studies chain conditions and [MOS18] sets the foundations for

the theory of definably amenable NTP2 groups. More recently [KS17] explores ana-

logues of some NIP-like phenomena.

After a first section of preliminaries, the second section of this paper improves

some results from [BYC14]: we give a stronger, more natural, amalgamation theo-

rem and, using an argument from Itaï Ben Yaacov, we give the optimal bound of 2

for Lascar distance over extension bases. We also speculate on a strategy for devel-

oping the theory of NTP2. We observe that in simple theories, one usually works

with a type p over a small set and consider its non-forking extensions all at once. In

NIP however, we prefer to fix some global non-forking (or invariant) extension p̃ of

p and study it, possibly using compactness of the space of non-forking extensions at

the end of our construction to obtain a result on p itself. Our idea is that in NTP2,

one would have to do a mixture of those two things and we suggest that the class
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of non-forking S1 ideals with amalgamation will replace the ideal of non-forking

extensions in simple theories and the use of global invariant types in NIP.

We then turn our attention to definable groups. In the NIP setting, groups with

an invariant measure play an important role. Some results concerning them have

been generalized to NTP2 in [MOS18]. In this paper, we pursue this enterprise by

generalizing a subclass: that of groups with a generically stable generic. Such groups

play an important role in Hrushovski and Rideau’s study of metastable groups [HR]

(where they appear with the stronger property of having a stably dominated generic

type). Moving from NIP to NTP2, the condition becomes that of having a generically

simple generic. We show that under this assumption all forking-generic types are

generically simple and non-forking over any extension base. We leave open the

questions of generalizing the classes of fsg groups and compactly dominated groups.

There are some natural candidates for these, but we were not able to prove convincing

statements about them.

1 Preliminaries

Our notations are standard. We work in a complete theory T which has a monster

model U . Usually, A,B,C, . . . will denote small subsets of U and M,N, . . . small

submodels. The group of automorphisms of U fixing A pointwise is denoted by

Aut(U /A). We will often assume that T is NTP2. For definitions and basic facts

about this condition see [CK12]. We will actually never use the definition of NTP2,

but only certain properties that we recall here.

A subset A of the monster model is an extension base if no type p ∈ S(A) forks

over A. It is proved in [CK12] that if A is an extension base in an NTP2 theory, then

forking and dividing over A coincide.

We use the notation a |̂
C

b to mean that tp(a/Cb) does not fork over C. We know

from [CK12] that if C is an extension base, then this relation satisfies extension on

both sides: If a |̂
C

b (resp. a |̂
C

b) and d is any tuple, then there is d′ ≡Ca d such that

d′ |̂
C

b (resp. b |̂
C

d′). Also, in any theory, non-forking satisfies left transitivity: if

a |̂
Cd

b and d |̂
C

b, then ad |̂
C

b, as well as base monotonicity: if a |̂
C

bd, then

a |̂
Cd

b.

A Morley sequence over A is a sequence (ai : i < ω) which is A-indiscernible

and such that ai |̂
A

a<i for all i < ω . Recall that Lascar equivalence over a set A

is defined as the finest bounded A-invariant equivalence relation. A class of this

equivalence relation is called a Lascar strong type. We let Lstp(a/A) denote the

Lascar strong type of a over A and ≡L
A denote equality of Lascar strong types over A.

If a,b have the same Lascar strong type over A, then there are a = a0,a1, . . . ,an = b

such that (ai,ai+1) starts an A-indiscernible sequence for all i. The minimal such n

is called the Lascar distance of a and b over A and denoted dA(a,b).

Fact 1.1 ([BYC14],Theorem 3.3) Let T be NTP2 and let A be an extension base.

Assume that c |̂
A

ab, a |̂
A

bb′ and b ≡L
A b′. Then there is c′ such that c′ |̂

A
ab′,

c′a ≡A ca c′b′ ≡A cb.

The following lemma will be useful in the next section.

Lemma 1.2 Let T be NTP2 and let A be an extension base. Let a |̂
A

b and c ∈U .

Then there is ac′ ≡L
A ac such that ac′ |̂

A
b.
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Proof Let C be a set of tuples of same size as c such that for any c′ ∈C, ac′ ≡A ac

and the set {Lstp(ac′/A) : c′ ∈C} is maximal. By maximality, it contains all possible

Lascar strong types over A of some ac′, with ac′ ≡A ac. By left-extension, there is

C′ ≡Aa C such that aC′ |̂
A

b. Then {Lstp(ac′/A) : c′ ∈ C′} is also maximal, hence

we can find the c′ we are looking for in C′.

1.1 Measures and ideals A (Keisler) measure µ(x) on a definable set D over A is

a finitely additive probability measure on A-definable subsets of D (in the variable

x). Measures play an important role in NIP theories. They are useful for the general

theory (for instance distality can be defined via properties of measures) and as well as

to study definable groups, where translation-invariant measure are an essential tool.

In NTP2 theories, we believe a similar role will be played by ideals.

By an ideal, we always mean an ideal on the boolean algebra of definable sets

over some A. If I is such an ideal, we say that a type p is I-wide if it does not imply

a formula in I.

A measure µ(x) over U is M-invariant if µ(φ(x;a)) depends only on tp(a/M),
equivalently µ is invariant under Aut(U /M). Similarly, an ideal is M-invariant if it

is invariant under Aut(U /M). The following definition comes from [Hru12].

Definition 1.3 Let I be an M-invariant ideal on definable sets. We say that I is S1

if given an M-indiscernible sequence (ai : i < ω) and a formula φ(x;y), if φ(x;a0) is

I-wide, then so is φ(x;a0)∧φ(x;a1).

Note that one then has the stronger property that the full partial type {φ(x;ai) : i<ω}
is I-wide. It follows that if I is A-invariant and S1, then I contains all formulas which

divide over A.

If µ is an M-invariant measure, then we can associate to it an ideal Iµ on defin-

able sets by defining X ∈ Iµ if µ(X) = 0. Then Iµ is S1 (see for example [Hru12]

or [Sim15, Lemma 7.5]). Another source of S1 ideals comes from the following

important fact.

Fact 1.4 ([BYC14], Theorem 2.9) Let T be NTP2 and let A be an extension base.

Then the ideal of formulas that fork over A is (A-invariant and) S1.

2 Amalgamation

Throughout this section, we assume that T is NTP2. We will improve Fact 1.1. We

first show that we can always amalgamate a type with itself.

Proposition 2.1 Let A be an extension base. Let φ(x;a) be non-forking over A

and assume that b |̂
A

a with b ≡L
A a. Then φ(x;a)∧φ(x;b) is non-forking over A.

Proof Let b |̂
A

a, with b ≡L
A a. Build an indiscernible sequence (bi : i < ω)

in tp(b/Aa) which is Morley over Aa and with b0 = b. We then have b1 |̂
A

ba,

b ≡L
A a and by the S1 property, φ(x;b)∧ φ(x;b1) is non-forking over A. By Fact

1.1, φ(x;a) ∧ φ(x;b1) is non-forking over A. As tp(b1/Aa) = tp(b/Aa), also

φ(x;a)∧φ(x;b) is non-forking over A.

We deduce the following strengthening of Fact 1.1.

Theorem 2.2 Let A be an extension base and φ(x;y),ψ(x;y) over A. Let

a,b,b′ ∈ U , b ≡L
A b′ and either a |̂

A
b′ or b′ |̂

A
a. Assume that φ(x;a)∧ψ(x;b) is

non-forking over A, then so is φ(x;a)∧ψ(x;b′).
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Proof Assume first that b′ |̂
A

a. Let M ⊇ A be a model such that b′ |̂
A

Ma. Find

b′′ ≡Ma b′ such that b′′ |̂
A

Mab. Then we have b′′ ≡L
Aa b′ and replacing b′ by b′′, we

may assume that b′ |̂
A

ab. By Lemma 1.2, we can then find a′ such that a′b′ ≡L
A ab

and a′b′ |̂
A

ab. By the previous proposition, (φ(x;a)∧ψ(x;b))∧(φ(x;a′)∧ψ(x;b′))

is non-forking over A and a fortiori so is φ(x;a)∧ψ(x;b′).
Now assume that a |̂

A
b′. Let σ be a Lascar-strong automorphism over A sending

b to b′ and set a′ = σ(a). Then a ≡L
A a′, φ(x;a′)∧ψ(x;b′) does not fork over A and

a |̂
A

b′. We can then apply the previous paragraph to conclude that φ(x;a)∧ψ(x;b′)
is non-forking over A.

Here is another way to state the result of the theorem.

Corollary 2.3 Let A be an extension base. Let a,b,b′,c ∈ U , b ≡L
A b′ and either

a |̂
A

b′ or b′ |̂
A

a. If c |̂
A

ab, then there is c′ such that c′ |̂
A

ab′, c′a ≡A ca and

c′b′ ≡A cb.

Proof Write p(x;a) = tp(c/a) and q(x;b) = tp(c/b). By Theorem 2.2 the partial

type p(x;a)∧ q(x;b′) does not fork over A. Take c′ to realize a completion of that

type over Aab′ which is still non-forking over A.

The following consequence of Theorem 2.2 is due to Itaï Ben Yaacov. It answers

Question 3.8 from [BYC14].

Theorem 2.4 Let A be an extension base and b ≡L
A b′. Then dL(b,b

′) ≤ 2. Fur-

thermore, if b |̂
A

b′, then b,b′ start a Morley sequence over A.

Proof It is sufficient to prove the furthermore part, since we can then take

b′′ |̂
A

bb′ with b′′ ≡L
A b ≡L

A b′ (by Lemma 1.2 say) and the sequence (b,b′′,b′)

witnesses that dL(b,b
′)≤ 2.

Fix some large enough cardinal κ and we build by induction a sequence (bi : i< κ)
such that for each i< κ , bi |̂

A
b<i and for i< j < κ , bib j ≡A bb′. We will also ensure

that the sequence tp(bi/b<i) is increasing. Start by setting b0 = b and b1 = b′. At

some limit λ , let bλ realize
⋃

i<λ tp(bi/b<i). This satisfies the conditions. Assume

we have constructed bi for i ≤ α and we look for bα+1. Let p(x;b<α) = tp(bα/b<α)
and q(x;b0) = tp(bα/b0) = tp(b′/b0). Then p(x;b<α)∪ q(x;b0) ⊆ tp(bα/b<α) is

non-forking over A. Since b0bα ≡A bb′, we have bα ≡L
A b0. Also bα |̂

A
b<α so by

Theorem 2.2, the type p(x;b<α)∪q(x;bα) does not fork over A. Take bα+1 to realize

it so that bα+1 |̂
A

b≤α . This finishes the construction. Finally, using Erdős-Rado,

we extract from the sequence (bi : i < κ) an indiscernible subsequence. This gives

what we were looking for.

2.1 Some speculations and questions Let Autf(U /A) be the group of automor-

phisms of U which fix every Lascar-strong type over A.

Definition 2.5 Let A be an extension base and let B,C ⊆ U contain A. Let

p ∈ S(B) and q ∈ S(C) both non-forking over A. We say that p and q are compatible

over A if for some/every σ ∈ Autf(U /A) such that either σ(B) |̂
A

C or C |̂
A

σ(B),

the type σ(p)(x)∪q(x) is non-forking over A.

Note that the independence on the automorphism follows from Theorem 2.2.

We find the following question very appealing.
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Question 2.6 Assume that p and q are M-invariant types such that p(ω)|M = q(ω)|M .

Does it follow that p and q are compatible?

This is true in simple theories because any two M-invariant types having the same

restriction to M are compatible. It also holds in NIP theories because the condition

p(ω)|M = q(ω)|M implies p = q ([Sim15, Proposition 2.36]).

Definition 2.7 Let A be an extension base. An Autf(U /A)-invariant S1 ideal µ(x)
has amalgamation if any two µ-wide types are compatible over A.

Example 2.8 The dual ideal of a global type non-forking over A has amalgamation

over A. In an NIP theory those are the only ones since two different non-forking types

are never compatible.

In a simple theory, if p(x) ∈ Lstp(A), the ideal of formulas φ(x) such that

p(x)∧φ(x) forks over A has amalgamation.

Let A be an extension base and for simplicity assume Lascar strong types and

types over A coincide. We speculate that A-invariant S1 ideals with amalgamation

could play in NTP2 theories the same role that A-invariant types play in NIP. Of par-

ticular importance should be the minimal A-invariant S1 ideals with amalgamation.

In a simple theory, there is only one such ideal: the ideal of all forking formulas. In

NIP, those are precisely duals of A-invariant types since two different invariant types

can never be amalgamated. In both cases, we see that those minimal ideals partition

A-invariant types (in two opposite trivial ways). We ask whether this holds in all

NTP2 theories.

Question 2.9 Let A be as above. Is the compatibility relation on A-invariant types

an equivalence relation? Is it the case that if µ and ν are two distinct minimal A-

invariant S1 ideals with amalgamation, then no A-invariant type can be wide for both

µ and ν?

3 Groups

Recall that a group is definably amenable if it admits a translation-invariant mea-

sure, that is a measure µ(x) on G over some model M with µ(g ·X) = µ(X) for any

g ∈ G(M) and M-definable set X . There is a rich theory of NIP definably amenable

groups. As shown in [CS18], a group which is not definably amenable cannot ad-

mit any notion of generic type (this includes for instance strongly f-generic types,

defined below, or types having a small orbit under translation). In NTP2 theories,

definable amenability is slightly too strong and the right condition that generalizes

jointly simple groups and definably amenable NIP groups is the existence of strongly

f-generic types. This was studied in [MOS18] and we recall the main results here.

Let G be a group definable in an NTP2 structure M.

Definition 3.1 A global type p ∈ SG(U ) is strongly (left) f-generic over A if for

all g ∈ G(U ), g · p does not fork over A.

It is strongly bi-f-generic if for all g,h ∈ G(U ), g · p ·h does not fork over A.

If G admits a strongly f-generic type over some extension base A, then it admits a

bi-f-generic type over any extension base. When this is the case, we say that G has

strong f-generics. Any group definable in a simple theory is such, as is any definably

amenable NTP2 group. In NIP, this condition is equivalent to definable amenability.
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Definition 3.2 Let φ(x) ∈ L(A) be a formula. We say that φ(x) is f-generic over

A if no (left) translate of φ(x) forks over A. We say that φ(x) G-divides over A if

for some A-indiscernible sequence (gi : i < ω) of elements of G, the partial type

{gi ·φ(x) : i < ω} is inconsistent.

Fact 3.3 ([MOS18], Lemma 3.7) Let A be an extension base and φ(x)∈ L(A). Then

φ(x) is f-generic over A if and only if it does not G-divide over A.

Fix some model M and let µM be the ideal of formulas which do not extend to a

global type strongly f-generic over M. A definable set is wide if it does not lie in µM

(i.e., if it extends to a global type strongly f-generic over M). A type is wide if all

formulas in it are wide. A type over M is wide precisely if it is f-generic, that is all

formulas in it are f-generic.

For any wide type p, let StµM
(p)= {g∈G : gp∪ p is wide}. We have the following

stabilizer theorem.

Fact 3.4 ([MOS18], Theorem 3.18) Assume that G has strong f-generics. Let

p ∈ SG(M) be f-generic and define µM as above.

Then G00
M = G∞

M = StµM
(p)2 = (pp−1)2 and G00

M \StµM
(p) is contained in a union

of non-µM-wide M-definable sets.

3.1 Generically simple types In [Che14], Chernikov defines simple types in NTP2

theories (see Definition 6.1 there). We define here a weaker notion of generically

simple types. We prove their basic properties following essentially the arguments in

[Che14].

Definition 3.5 Let A be any set and p ∈ S(A). We say that p is generically simple

if for every b ∈ U and a |= p, b |̂
A

a =⇒ a |̂
A

b.

If A ⊆ B, p ∈ S(B) does not fork over A and p|A is generically simple, we say that

p is generically simple over A.

Lemma 3.6 Assume that tp(a/A) is generically simple and b ∈ dcl(Aa), then

tp(b/A) is generically simple.

Proof Let c |̂
A

b. By taking a non-forking extension of tp(c/Ab) to Aa, we may

assume that c |̂
A

a. Then a |̂
A

c and in particular b |̂
A

c.

Lemma 3.7 If p,q ∈ S(A) are generically simple, a |= p, a′ |= q with a |̂
A

a′, then

tp(a,a′/A) is generically simple.

Proof Let b |̂
A

aa′. We have a |̂
A

a′, hence by left transitivity, ba |̂
A

a′. As

tp(a′/A) is generically simple, a′ |̂
A

ba. On the other hand, we have b |̂
A

a, hence

a |̂
A

b by generic simplicity of tp(a/A). Therefore by left transitivity again, aa′ |̂
A

b

as required.

Lemma 3.8 Assume that tp(a/A) is generically simple and tp(b/Aa) is generi-

cally simple. Then tp(ab/A) is generically simple.

Proof Let c |̂
A

ab. Then c |̂
Aa

b and hence b |̂
Aa

c. On the other hand, as tp(a/A)

is generically simple, a |̂
A

c. By left transitivity, ab |̂
A

c as required.

Lemma 3.9 Let (ai : i < n) be tuples, possibly of different sizes. Assume that

for each i, tp(ai/A) is generically simple and ai |̂
A

a<i. Then for any two disjoint

subsets I,J ⊆ n, we have aI |̂
A

aJ (where aI = (ai : i ∈ I)).
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Proof First, by Lemma 3.7 and induction on |I|, tp(aI/A) is generically simple for

all I ⊆ n. Fix k ≤ n. Then we have a≥k |̂
A

a<k and a<k |̂
A

a≥k by generic simplicity.

It follows that a<k |̂
Aa>k

ak. As also a>k |̂
A

ak, we have by left transitivity a 6=k |̂
A

ak

and ak |̂
A

a 6=k by generic simplicity. This shows that the hypothesis of the lemma is

stable under permutation of the indices of the ai’s. The result then follows from the

fact that a≤k |̂
A

a>k for all k < n.

Note that the lemma goes through with infinitely many tuples.

Proposition 3.10 Let A be an extension base, and assume that p ∈ S(A) is gener-

ically simple. Let a |̂
A

b where a |= p. Then b |̂
A

a.

Proof The proof of [Che14, Section 6.2] of the analogue result for simple types

goes through using the lemmas above. More precisely, Lemma 6.1 there follows

from Fact 1.4 (with no assumption of simplicity). In Lemma 6.13, simplicity is

only used for checking that property (3) holds. Note that each sequence b̄i realizes a

generically simple type over the base A by Lemma 3.7. We then have by construction

b̄i |̂ a>ib̄<i. So the sequence (b̄0, . . . , b̄i,ai+1,ai+2, . . .) satisfies the hypothesis of

Lemma 3.9 and we conclude a>i+1b̄≤i |̂ ai+1 as required. Lemma 6.14 only uses

generic simplicity, then Proposition 6.15 goes through unchanged.

Corollary 3.11 If q ∈ S(B) is generically simple over A, A an extension base, then

it is generically simple itself.

In fact, if a |= q and b |̂
B

a, then a |̂
A

Bb.

Proof Let b with b |̂
B

a. We have B |̂
A

a as tp(a/A) is generically simple and

a |̂
A

B by assumption. By left transitivity, Bb |̂
A

a, hence a |̂
A

Bb. In particular,

a |̂
B

b, which shows that q is generically simple.

Lemma 3.12 Assume that tp(a/A) is generically simple. Let A ⊆ B ⊆ C with

a |̂
A

B and a |̂
B

C. Then a |̂
A

C.

Proof As a |̂
A

B, Corollary 3.11 implies that tp(a/B) is generically simple. There-

fore we have C |̂
B

a. Then again by Corollary 3.11, a |̂
A

C.

The following is the analogue of Problem 6.6 in [Che14].

Question 3.13 Assume that q ∈ S(B) is generically simple and does not fork over

A, then is q|A generically simple?

Note that by Lemma 3.8, this is true if tp(B/A) is generically simple.

3.2 Generically simple generics We now define a notion of generically simple

generic type, which is stronger than that of strong f-generics. We will then prove

that if a definable group admits such a type, then all its f-generic types are such

and do not fork over any extension base, similarly to what happens with groups in

simple theories. In particular, in those groups, any global f-generic type is a strong

f-generic.

In what follows, G is again a group definable in an NTP2 structure; SG(A) denotes

the space of types over A that concentrate on G.

We adopt the convention that if a,b ∈ G, then ab always denotes the product a ·b
(as opposed to concatenation of tuples, which will be denoted by aˆb).
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Definition 3.14 A type p ∈ SG(A) is generically simple generic (gsg) if p is gener-

ically simple and for any B ⊇ A and b ∈ G, we have a |̂
A

Bb =⇒ b ·a |̂
A

Bb.

The type p will be said to be a two-sided gsg if it is generically simple and for

any B ⊇ A and b,c ∈ G, we have a |̂
A

Bbˆc =⇒ b ·a · c |̂
A

Bbˆc.

Note that if p is generically simple generic, then any non-forking extension of p

is again generically simple generic. (If say a |= p, a |̂
A

B and a |̂
B

b, then a |̂
A

Bb

by Lemma 3.12.)

Now if p is gsg and p̃ is a non-forking extension of p to U , then no translate g · p̃,

g ∈ G(U ) forks over A. Hence p̃ is strongly f-generic over A.

Lemma 3.15 Let A be an extension base and tp(a/A) be gsg, a |̂
A

b, then

tp(ba/A) is generically simple.

Proof Let d |̂
A

ba. We can assume furthermore that d |̂
A

baˆbˆa. Hence d |̂
Ab

a.

As a |̂
A

b, by Corollary 3.11, a |̂
A

bˆd. As tp(a/A) is gsg, we conclude ba |̂
A

d as

required.

It will follow from the statements proved below that in fact tp(ba/A) is gsg (take

a model M such that a |̂
A

Mb, then tp(ba/M) is f-generic and by Proposition 3.19,

tp(ba/A) is gsg).

Lemma 3.16 Let p ∈ SG(A) be two-sided gsg and b,c ∈ A. Then tp(bac/A) is

two-sided gsg.

Proof Assume that bac |̂
A

Bdˆd′. Then a |̂
A

Bbˆcˆdˆd′ since b,c ∈ A. Therefore

dbacd′ |̂
A

Bbˆcˆdˆd′ as tp(a/A) is two-sided gsg.

Lemma 3.17 Let A be an extension base, p ∈ SG(A) be gsg and take a,b |= p,

a |̂
A

b. Then tp(ab−1/A) is two-sided gsg.

Proof By Lemma 3.7, tp(a,b/A) is generically simple, therefore so is tp(ab−1/A).
Now let B ⊇ A and c,d ∈ G such that ab−1 |̂

A
Bcˆd. By left extension, we may as-

sume that aˆb |̂
A

Bcˆd. Then Bcˆd |̂
A

aˆb by generic simplicity. Since also b |̂
A

a, by

left transitivity, Bbˆcˆd |̂
A

a and therefore ca |̂
A

Bbˆcˆd as tp(a/A) is gsg. Similarly,

db |̂
A

Baˆcˆd. By left transitivity, ca,db |̂
A

Bcˆd and in particular cab−1d |̂
A

Bcˆd

as required.

Proposition 3.18 Let A ⊆ M an extension base. Assume that p ∈ SG(A) and

q ∈ SG(M) are two-sided gsg. Then q does not fork over A and q|A is (two-sided)

gsg.

Proof Let M ≺ N, N sufficiently saturated. Recall that µM is the ideal of formulas

which do not extend to a strongly f-generic type. It is invariant by translation on the

left. Let d0 ∈N be a realization of p and take e0 ∈N, such that d0 |̂
A

e0 and d := e0d0

lies in the same G00
M -coset as q−1. By Lemma 3.15, tp(d/A) is generically simple.

Let b |= q, with tp(b/N) µM-wide and set b′ = db. Then tp(b′/N) is µM-wide and

lies in G00
M .

Let p′ be a non-forking extension of p to M. Then p′ is generically simple over

A and gsg. By Fact 3.4, the type b′p′ ∪ p′ is µM-wide, hence so is p′ ∪ b′−1 p′ by

left-invariance of µM . Let a realize the latter type such that tp(a/Nb) is µM-wide. In
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particular a |̂
M

Nb and Nb |̂
M

a as tp(a/M)= p′ is generically simple. By Corollary

3.11,

(0) a |̂
A

Nb.

As tp(a/M) is gsg over A, we deduce

(1) b′a |̂
A

Nb.

On the other hand, we deduce from a |̂
M

Nb that a |̂
M

Nb′ and then a |̂
N

b′ by base

monotonicity. As tp(b′/N) is two-sided gsg by Lemma 3.16, it follows that

(2) b′a |̂
N

a.

By construction, tp(b′a/M) = p′ and thus tp(b′a/A) is generically simple. By (1),

(2) and Lemma 3.12, b′a |̂
A

Na. Now tp(b′a/A) = p is two-sided gsg, so we have

b′ |̂
A

Na and b |̂
A

Na. In particular, b |̂
A

M. Therefore q does not fork over A.

It remains to see that tp(b/A) is two-sided gsg. We first show that it is generi-

cally simple. We know that tp(b′a/A) is generically simple and b′a |̂
A

Na, hence

b′a |̂
A

dˆa. We deduce that tp(b′a/Adˆa) is generically simple, hence so is tp(b/Aa)

by Lemma 3.6. Since a |̂
A

N, tp(dˆa/A) is generically simple and Lemma 3.8 gives

that tp(b/A) is generically simple.

Now assume that b |̂
A

Bcˆc′ and we want to show that cbc′ |̂
A

Bcˆc′. By generic

simplicity, M |̂
A

b. Moving M over Ab, we may assume that M |̂
A

Bbˆcˆc′. As

Bcˆc′ |̂
A

b, by left transitivity, MBcˆc′ |̂
A

b. It follows that b |̂
M

Bc. As tp(b/M)

is gsg, cbc′ |̂
M

Bcˆc′. Now tp(cbc′/Mcˆc′) is also two-sided gsg by Lemma 3.16,

hence by what we have already proved, it is generically simple over A. We conclude

that cbc′ |̂
A

MBcˆc′.

Proposition 3.19 Let A ⊆ M an extension base. Assume that p ∈ SG(A) is two-

sided gsg and q ∈ SG(M) is f-generic. Then q does not fork over A and q|A is two-

sided gsg.

Proof Let a |= p such that a |̂
A

M and let b |= q with tp(b/Ma) µM-wide. Then

ab |̂
M

a and also ab |̂
A

Mb. Since b |̂
M

a and tp(a/M) is generically simple over A,

we have a |̂
A

Mb. If N is a model containing Mb such that a |̂
A

N, then by Lemma

3.16, tp(ab/N) is gsg. By Proposition 3.18, it does not fork over A and is gsg over A.

Hence ab |̂
M

a implies ab |̂
A

Ma and then b |̂
A

Ma by gsg. In particular, b |̂
A

M

and q does not fork over A. It remains to see that q|A is two-sided gsg. We know that

tp(ab/Ma) is two-sided gsg, and then so is tp(b/Ma). By the previous proposition,

tp(b/A) is two-sided gsg.

Corollary 3.20 Assume that G has a gsg type and let A be an extension base. Then

any f-generic type of G is non-forking over A.

Proof Assume that G has a gsg type over some B ⊇ A. Let p ∈ SG(N) be an f-

generic type. By Proposition 3.19, it is gsg over B. Let a |= p and take B′ |̂
A

aN,

B′ ≡A B. As tp(a/N) is generically simple over B, we have a |̂
B

NB′. As B′ is a

conjugate of B, there is a gsg type over B′ and therefore also a two-sided gsg type.

Proposition 3.19 implies that a |̂
B′ N. As B′ |̂

A
N, we have a |̂

A
N.
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Question 3.21 Given G an arbitrary definable groups in an NTP2 theory, assume

that p ∈ SG(A) is generically simple and f-generic, then is it gsg?
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