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Abstraci—This paper introduces an amplitude and fre-
quency modulation (AM-FM) model to characterize the pho-
toplethysmography (PPG) signal. The model indicates that
the PPG signal spectrum contains one dominant frequency
component — the heart rate (HR), which is guarded by two
weaker frequency components on both sides; the distance
from the dominant component to the guard components
represents the respiratory rate (RR). Based on this model,
an efficient algorithm is proposed to estimate both HR and
RR by searching for the dominant frequency component
and two guard components. The proposed method is per-
formed in the frequency domain to estimate RR, which
is more robust to additive noise than the prior art based
on temporal features. Experiments were conducted on two
types of PPG signals collected with a contact sensor (an
oximeter) and a contactless visible imaging sensor (a color
camera), respectively. The PPG signal from the contactless
sensor is much noisier than the signal from the contact
sensor. The experimental results demonstrate the effective-
ness of the proposed algorithm, including under relatively
noisy scenarios.

Index Terms—NModulation, photoplethysmography, vital
sign.

[. INTRODUCTION

ONITORING vital signs, such as heart rate (HR) and
M respiratory rate (RR), is essential in understanding a
patient’s physiological condition and monitoring and diagnosing
diseases related to cardiovascular and lung functions. Whereas
electrocardiography (ECG) is the gold standard technology used
to study a patient’s cardiovascular conditions, the portability,
complexity, and cost of ECG equipment limit the breadth and
prevalence of its use in health care, especially home care. Finding
a feasible approach to track multiple vital signs from a simple,
accessible, and easy-to-use sensor is desirable in daily health
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Fig. 1. Three kinds of respiratory-induced variations in the PPG signal.

monitoring, especially in emerging mobile health (mHealth)
care.

Photoplethysmography (PPG) is a popular health-care tech-
nique used in clinical settings to capture vital signs by detecting
blood content and volume changes in the microvascular bed
of tissue. Pioneering work has proven the feasibility of ex-
tracting such vital signs as HR and RR from PPG signals [1],
[2] (The words “signal” and “spectrum” indicate time domain
and frequency domain information, respectively in this paper).
Unfortunately, PPG signals have weak traces of respiratory
information, limiting the accuracy of RR estimation in prior art.

Respiration has three different effects on PPG signals [3]-[5]:
1) The change in intrathoracic pressure leads to blood exchange
between the pulmonary and systemic circulations, resulting in a
change in the perfusion baseline during breathing cycles, which
is referred to as respiratory-induced intensity variation (RIIV).
2) The change in ventricular filling leads to a corresponding
change in cardiac output [6], which represents the change
in peripheral pulse strength during breathing. This is called
respiratory-induced amplitude variation (RIAV). RIAV suggests
that the PPG signal is subject to amplitude modulation (AM).
3) As an autonomic response to respiration, the instantaneous
HR varies to synchronize with the respiratory cycle — the HR in-
creases during inspiration and decreases during expiration. This
phenomenon is called respiratory-induced frequency variation
(RIFV), indicating that the PPG signal is subject to frequency
modulation (FM). Fig. 1 illustrates these respiratory-induced ef-
fects. Beyond RIIV, RIAV, and RIFYV, other respiratory-induced
variations in the PPG signal have been studied to estimate
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RR, such as the pulse amplitude variability and pulse width
variability [7]-[9].

Considering the combined effect of RII'V, RIAV, and RIFV,
time-domain approaches have been proposed to improve the
accuracy of RR estimation [4], [10]. In these studies, the three
respiratory-induced variations are first extracted from the PPG
signal in the time domain and used individually to produce three
seperate RR estimates. Averaging fusion [4] or auto-regression
(AR) fusion [10] is then employed to combine the three RR
estimates and produce the final RR estimate. In these studies,
the fusion strategies demonstrated an improvement of more than
1 breath/min in the root mean square error (RMSE), compared
with the estimates obtained from using RIIV, RIAV, and RIFV
individually. Since these approaches need to examine the valley
and peak points in PPG signals to extract the three types of
respiratory-induced information, they are sensitive to additive
noise. To obtain accurate features in the time domain, these
prior approaches generally require a high data sampling rate.
In addition, auto-regressive modelling [11] and Gaussian pro-
cesses [12] have been used to explore the respiratory-induced
variations in PPG signals.

PPG signals have also been investigated in the frequency do-
main [13]-[18]. In these works, only the RIIV in the PPG signal
is considered with the assumption that the breath-related signal
is superimposed onto the pulse signal. That is, the RR can be es-
timated by observing the lower frequency range of the spectrum
(<0.7Hz). A variety of frequency analysis techniques, including
periodogram [13], wavelet decomposition [14], empirical mode
decomposition (EMD) [15], [17], empirical wavelet transforms
(EWT) [16] and correntropy spectral density (CSD) [18] have
been applied to obtain accurate RR estimates in the normal RR
range. However, the superimposition model does not consider
the other two important effects — RIAV and RIFV. Besides, the
RIIV factor does not always appear detectable in PPG signals,
especially after signal preprocessing operations such as filtering
and detrending have been applied to it. In these studies, the
frequency-domain methods have a low median RMSE of 0.9
breaths/min, but large variances in the estimation error, indicat-
ing that these algorithms are not robust and stable. The work
in [19] detects RIAV and RIFV in PPG signals via the variable
frequency complex demodulation method (VFCDM), which s a
general frequency analysis framework used to estimate variable
frequency. Compared with the frequency-domain methods using
RIIV [13]-[18], the VFCDM has a smaller variance in estima-
tion error but larger median error (about 2.5 breaths/min).

Traditionally, PPG signals have been collected by a pulse
oximeter attached to the skin, which we refer to as the “contact
PPG (cPPG) signal” to facilitate the discussions. The afore-
mentioned studies have only been applied to cPPG signals. In
the emerging mHealth care, a newly formed modality of PPG,
“remote PPG (rPPG)” has garnered growing interests [20]-[23].
The rPPG signal is typically captured from a color video of the
subject’s face.

The principle of rPPG is that the blood volume changes under
the skin influence the intensity and color of the reflected light
from the skin. This pattern is consistent with heartbeat cycles.
Although such subtle momentary changes in the reflected light
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Fig. 2.  The spectrogram of a subject’'s PPG signal in CapnoBase [4],
showing one dominant frequency trace and two guard traces on both
sides.

from the facial skin are not detectable by the human eye, they
can be captured by a color camera [20], [24]. Using a low-cost,
accessible color camera to collect PPG signals, the rPPG tech-
nique is convenient and user-friendly, freeing users of contact
sensors. One major challenge, though, in using rPPG is the low
signal-to-noise ratio (SNR). Since a color camera is normally
one-half to one meter away from a subject’s skin, non-ideal
illumination conditions and the subject’s voluntary movements
can influence the signal quality. Although effective denoising
operations [25]-[28] have been employed to deal with realistic
conditions and improve HR estimation accuracy from the rPPG
signal, the research in RR estimation from such signal is still
limited, and previous works [21], [29], [30] mainly estimate
RR via heart rate variability (HRV) extraction [31] in the time
domain.

To improve the PPG signal analysis technology, we have
developed a frequency-domain method based on a modulation
model to extract RTIAV and RIFV features from the PPG spec-
trum to estimate HR and RR. The motivation for this derives
from the respiratory-induced effects on PPG signals and the ob-
servation of three noticeable signal traces in PPG spectrograms
(Fig. 2). We present the spectrograms (i.e., time-frequency
representations) in the paper to show the variation of the vital
signs with time. We model PPG signals using amplitude and
frequency modulation (AM-FM) and apply it to HR and RR esti-
mation. The proposed AM-FM method utilizes relatively robust
respiration-induced variation features; avoids the drawbacks of
the peak/valley detection algorithms (i.e., detecting peak and
valley points in PPG signals) under noisy or low-sampling rate
scenarios; and improves the accuracy and robustness of RR
estimation from PPG signals. The main contributions of this
paper are as follows:

® We propose a modulation model, AM-FM, for PPG sig-
nals. This model can explain the dominant and guard traces
in a PPG spectrogram as shown in Fig. 2.
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domain methods includes extracting respiratory-induced variation features in the time domain, estimating an individual RR from each variation
feature, and fusing the estimated RRs to produce the final result. The pipeline of the frequency-domain methods consists of estimating the spectrum
of the PPG signal and extracting HR and RR from different frequency ranges of interest. (c) The pipeline of the proposed AM-FM method. Spectrum

analysis is applied to the PPG signal, where three main frequency traces can be easily observed. The dominant frequency component —

HR -

extracted from the spectrum. Then, the dominant trace is adaptively notched and the two guard traces are extracted from the residual spectrum.
The RR is derived from the frequency distance between the dominant and guard traces. In the spectrograms, the horizontal and the vertical axes
denote time and frequency, respectively. We cropped the frequency range from 80 to 160 cycles/min for better visualization.

e Wedevelop arobust frequency-domain algorithm based on
the AM-FM model for HR and RR extraction from PPG
spectra, taking advantage of the symmetry of the dominant
and guard traces.

e We validate the proposed AM-FM method on both the
cPPG and emerging and relatively noisier rPPG signals in
terms of accuracy and robustness.

The remainder of this paper is organized as follows. Section II
introduces the AM-FM model on PPG signals, and develops
a robust frequency-domain algorithm based on the model to
estimate HR and RR from PPG spectra. Section III shows
the experimental results on the cPPG and rPPG signals and
compares the proposed AM-FM method with the-state-of-art
RR estimation methods. Section IV concludes the paper.

II. PROPOSED ALGORITHM

Fig. 2 presents the spectrogram of a person’s PPG signal,
where one dominant frequency trace and two guard traces
on both sides can be easily observed. This phenomenon can
be explained by our proposed AM-FM model as discussed
in Section II-A. Based on this observation, we developed a
frequency-domain algorithm to extract the three traces from
the spectrogram to infer the HR and RR. The pipeline of the
proposed method is illustrated in Fig. 3. Spectrum analysis
is applied to the PPG signal after proper preprocessing (see
Section II-B1 for details), where the dominant and guard traces
can be easily observed. The dominant frequency component is

extracted from the spectrum as the HR and then automatically
notched to extract the two guard components. The RR is derived
from the frequency distance between the dominant and the guard
components.

A. AM-FM Model

As discussed in Section I, respiration influences the PPG sig-
nal in three aspects: RIIV, RIAV, and RIFV. RIIV is not a robust
variation feature for RR estimation, since the baseline shift of
the signal can be easily contaminated. In cPPG cases, high-pass
filtering is usually performed in the pulse oximeter to remove the
slow baseline shift in the cPPG signal. Such built-in filtering may
weaken the RIIV effect. In rPPG cases, illumination variation
from the external environment can influence the baseline shift.
Therefore, we only consider RIAV and RIFV in modeling PPG
signals. For simplicity and clarity of the derivation of our model,
we assume that the HR and RR signals are purely sinusoidal
functions with zero phase in a short time period.

A PPG signal s(t) can be expressed as an AM-FM signal:

s(t) = (1 4 kq sin (27 frrt)) cos (27 frrt + kg sin (27 frrt)),

AM: s, (t)

FM: s (t)

(D
where s(t) is assumed to have unit amplitude; f5, and f,.,.
denote HR and RR, respectively; and k, and ky characterize
the variation strength in RIAV and RIFV, respectively. After
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applying the angle sum identity to the FM part in (1), we obtain
sf(t) = cos (27 fart) cos (kg sin (27 frrt))
— sin (27 fp,,t) sin (kg sin (27 f,.-1)). 2)

In practice, ky is a small positive value in modeling a per-
son’s PPG signal. It was estimated to be between 0.11 to
0.32 from the CapnoBase dataset [4]. Equation (2) can be
approximated by

sf(t) & cos (27 frrt) — sin (27 frrt)ky sin (27 frrt).  (3)

By applying the product-to-sum identity, (3) becomes
k
sp(t) ~ cos (27 frrt) + 7’0 cos (270 (frr + frr)t)

- ]%f cos (27 (frr — frr)t) 4)

Note further that k, is a small positive value in practice, which
is estimated to be between 0.05 to 0.23 from the CapnoBase
dataset [4]. Hence, we ignore the term k. k after expanding the
two terms sq(t) and s¢(¢). Thus, (1) can be simplified to

s(t) &~ cos (27 frt)
+l%f cos (27 (frr + frr)t) + % sin (27 (frr + frr)t)

- k?f COs (271—(th - frr)t) - % sin (27T(th - frr)t) :
4)

Equation (5) indicates that there are three main frequency
components in a person’s PPG signal: fr, — frr, frr, and fr. +
frr» as shown in Fig. 2. The AM-FM model of the PPG signal
reveals that the PPG spectrum contains noticeable HR and RR
information that can be extracted jointly from the spectrum.

Estimation of %, and % ¢: In the signal modulation, the mod-
ulation index k, of an AM signal is computed as (6). For the FM
signal sy (t), the instantaneous frequency (equivalent to RIFV
in the respiration contexts) is computed by f = i . a(g(tt) =
fur + kg frr cos(2m frrt), where ¢(t) denotes the instantaneous

angle of the sinusoidal signal, which gives rise to (7) for k:

ko= Ug,max — Ua,min 6
=, (6)
Uq,max + Uq,min

_ Ufmax — Uf min
TR ™
where Ug max and Ug, min, U max and U s min denote the maxi-
mum and minimum of the RIAV and RIFV signal, respectively.
We apply (6) and (7) to estimate the ranges of k, and k¢ in PPG
signals from the CapnoBase dataset.

In the following subsections, we focus on estimating the
dominant component and its two guard components from the
spectrum of a collected PPG signal. In long-term monitoring,
a moving window is usually employed to track the variation of
the vital signs. We present the core elements of the proposed
algorithm in terms of one window frame. The method can be
easily extended to continuously track the frequency compo-
nents in long-term monitoring, for example, by applying the

AMTC algorithm [32], [33] which applies an efficient tracking
algorithm of frequency traces on spectrograms using dynamic
programming.

B. Heart Rate Estimation

1) Preprocessing: We preprocess the raw PPG signal using
bandpass filtering and normalization. The bandwidth of the filter
is 0.25 Hz to 5 Hz, which contains the normal HR frequency
range. Normalization is applied using a moving window with a
length of one second. We normalize one sample x in the signal by
taking out the mean p,, and scaling by the standard deviation o,
in the z-centered one-second moving window. The normalized
sample  is

=2t ®)
Ox
After applying filtering and normalization, the PPG signal has
approximately invariant signal energy per unit time.
2) Dominant Component: For a PPG signal s(t¢) sampled
with sampling interval A, the power spectral density (PSD)
is estimated through the periodogram:

S0 =3

N-1 2
Y wpe ETIAC ©)
n=0

where z,, denotes the n-th sample of the signal; and [V is the total
number of samples. We estimate the heart rate f,,. by finding
the location of the highest spectral energy in the spectrum.

C. Respiratory Rate Estimation

Two guard components, as shown in Fig. 2, appear sym-
metrically on both sides of the dominant component. They are
estimated in the following steps.

1) Symmetrical Averaging: To utilize the symmetric prop-
erty of the two guard components, we flip the spectrum around
the dominant component [}, to obtain the symmetric spectrum

S(f)-

S(f) = VS(NS2fur — f)-

By imposing the symmetric property around the dominant peak,
this operation emphasizes the symmetric structures that appear
on both sides of the dominant peak and attenuates the isolated
false peaks caused by noise and distortion. Fig. 4 illustrates how
symmetrical averaging successfully attenuates the false alarm
peaks and amplifies the symmetric guard peaks.

2) Energy Notching: To estimate the guard peaks, which are
lower in intensity than the dominant peak from the symmetric
spectrum, we first reduce the interference of the dominant peak
on other smaller peaks by notching its energy. The energy notch-
ing step removes the dominant peak’s influence on its nearby
frequency range, and helps mitigate the false alarm peaks lying
closely on the slope of the dominant peak. Asillustratedin Fig. 5,
the symmetric spectrum is decomposed into the peak spectrum
Sy, (f) which contains the dominant component, and the residual
spectrum S,.( f) which contains the guard components and false
alarm peaks.

(10)
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components. (b) Left side of the bell-shaped curve of the peak spectrum,
where fy is the inflection point of the curve slope.

We assume the peak spectrum is a bell-like shape. Due to the
symmetric property, we only focus on the left side of the peak
spectrum, which has the following characteristics:

e It contains as much energy as possible, but is upper
bounded by the spectrum S(f).

¢ [t is a non-decreasing function.

e Its slope first increases until the inflection point fx and
then decreases to zero.

Let{f;}i=1,2,... ... denote the equally sampled frequency
values, and fx denotes the inflection point on the left side of
the peak spectrum shown in Fig. 5(b). The left side of the peak
spectrum S, ( f;) is convex before fy and concave after fx. To
find fx, we check the concavity of each point f;, starting from
the peak point to the left on the symmetric spectrum and stopping
once reaching the first point that no longer satisfies (11):

25(£:) = S(fi1) + 8(fisn), i=M—1,M —2,... (11)

where S(f;) denotes the symmetric spectrum. For the concave
part where f; > fn, we have

Sy(fi) =8(f), i=N+1,N+2,.... M,

For the convex part where f; < fy, we can solve the peak
spectrum via linear programming expressed in (13).

12)

N
max 2 Sp(fi)
st Sp(fic1) < Sp(fi), i=2,3,...,N,
ZSP(fZ) < Sp(.fi—l) + Sp(fl+1)7 1= 2737 .. 7N - 17
0<Sp(fl)§5(fl)’ Z:17277N
(13)

The first inequality enforces the non-decreasing property. The
second inequality enforces the property of convexity. The third
inequality sets the upper and lower bounds.

We can obtain the residual spectrum S,.(f) by notching the
peak spectrum S,,(f) from the symmetric spectrum S(f).

Se(f) = 5(f) = Splf)-

3) Guard Components: After obtaining the residual spec-
trum, the locations of highest spectral energy on both sides of
the dominant peak in the residual spectrum are selected as the
guard components. Finally, the RR is derived from the length of
interval between the dominant and guard components.

(14)

IIl. EXPERIMENTAL RESULTS AND DISCUSSIONS

We conducted experiments to demonstrate the effectiveness
of the proposed AM-FM method on two PPG signal datasets —
a cPPG dataset collected with a contact oximeter and an rPPG
dataset captured with a color camera. It is worth noting that
the rPPG signal is much noisier than the cPPG signal, due
to the distance between human skin and the sensor and the
subject’s voluntary movements. Since many studies have been
conducted to estimate HR from the PPG signal captured with
either contact [34], [35] or contactless sensors [20], [21], [25],
[28], the evaluation of HR estimation is not the focus of our
paper and we only evaluated RR estimation.

We used a moving window to extract the RR from the PPG
signal throughout its duration. The performance of RR estima-
tion algorithms was assessed using the RMSE metric:

1 n
. - true __
RMSE = \/ - Zi:l(xi

where n is the total number of RR estimates calculated in
one PPG signal and z!"“¢ and x¢*" are the ground truth and
estimated RR in the ¢-th window, respectively. We also computed
the Pearson correlation coefficient (PCC) to measure the linear
correlation between the ground truth and estimated RR. The
PCC ranges from —1 to 1. The coefficient values —1, 0, and 1
indicate perfect negative linear correlation, no linear correlation,
and perfect positive linear correlation between two variables,
respectively. In our evaluation, a PCC value closer to 1 means
better performance of an algorithm in RR estimations.

We compared our proposed method with several prior repre-
sentative works. In the comparisons, we used the results from the

5)

)2,
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SmartFusion [4] and CSD [18] methods provided by the authors,
and implemented the ARFusion [10], EMD [15], EWT [16],
VFCDM [19], and HRV-based [29] methods by ourselves.

The SmartFusion and ARFusion methods first extract the
three respiratory-induced variation signals in the time domain.
SmartFusion estimates three RR values from the three signals,
and then obtains the final result by averaging the three RR
estimates. ARFusion models the three signals via AR modeling,
and derives the final estimate by fusing the AR spectra of the
three respiratory-induced variations with several model orders.
In the rPPG case, the HRV-based method only extracts the RIFV
feature for RR estimation since RIIV and RIAV are usually
attenuated when face videos are captured from a distance. In
the frequency-domain methods, frequency analysis techniques
—EMD, EWT, and CSD - are employed, respectively, to analyze
the frequency components of the PPG signal, and extract the RR
from the expected RR frequency range. VFCDM analyzes the
PPG signal with spectral estimation and identifies AM and FM
dynamics in the signal, which contain RR information.

A. cPPG Dataset Collected with a Contact Oximeter

We used the CapnoBase dataset [4], which contains eight-
minute cPPG signals of 29 pediatric and 13 adult subjects,
during elective surgery and routine anesthesia. The dataset does
not disclose the subjects’ health status. The PPG signals were
collected with an oximeter and the ground truth RR was obtained
from capnography with a sampling rate of 300 Hz.

In the experiments, the length of the moving window was
set to 32 seconds in all the methods, except 120 seconds in
the CSD method, as [18] suggests. The window proceeded for
3 seconds between adjacent estimates. In our proposed method,
the collected signal was downsampled from 300 Hz to 30 Hz
to reduce the computational complexity. Downsampling also re-
veals that our method can be used for PPG signals collected with
alow sampling rate. We compared the proposed method with the
time-domain methods, SmartFusion [4] and ARFusion [10], and
frequency-domain methods, EMD [15], EWT [16], CSD [18],
and VFCDM [19].

For all methods, we zeroed out the measurement artifacts
(provided by the CapnoBase) in the input cPPG signal and the
RR was only estimated on the non-artifact duration of the signal.
Note that SmartFusion may discard additional RR estimates due
to its signal quality assessment strategy. For a fair comparison,
we recovered the discarded estimates from SmartFusion by their
nearest trustworthy neighbors.

Fig. 6 shows boxplots of the different methods” RMSE values
on CapnoBase dataset. Table I summarizes the quantitative eval-
uation of their performance, where the best indices are shown in
bold. As shown in Fig. 6, SmartFusion and ARFusion have simi-
lar performances in RMSE. EMD has the largest median RMSE
and variance. EWT and CSD have smaller median RMSEs, but
larger variances in RMSE than SmartFusion and ARFusion,
indicating that these algorithms are less robust. VFCDM has
a similar RMSE variance but a larger mean and median RMSE,

SmartFusion *}—D:F —— o+ n
ARFusion +D:|» ———4 + +
EMD H \
S | S e
= IR S B
vecoM [ F--I .

AM-FM
(Proposed) +D b * *
0 5 10 15 20 25 30
RMSE (BrPM)
Fig. 6. Comparison of RMSE for RR estimation methods on the Cap-

noBase dataset. The boxplot shows distributions of RMSEs, with the first
(Q1), second (median), and third quartile (Q3) values displayed as left,
middle, and right vertical lines of the boxes. Whiskers represent the most
extreme values within 1.5 times of the interquartile range (i.e., the range
between Q1 and Q3). The outliers beyond the whiskers are displayed as
magenta crosses.

TABLE |
OVERALL PERFORMANCE OF RR ESTIMATION METHODS ON CPPG DATASET
(RMSE UNIT: BRPM)

RMSE statistics
Method Median (QI, Q3) [ Moan p-value | PCC
SmartFusion [4] 1.53 (0.78, 4.04) 2.92 ref. 0.64
ARFusion [10] 1.61 (0.31, 3.63) 2.67 0.48 0.65
EMD [15] 4.36 (1.11, 14.6) 5.68 5.7e-4 0.45
EWT [16] 0.90 (0.32, 7.59) 3.93 0.85 0.53
CSD [18] 0.95 (0.27, 6.20) 3.86 n/a n/a
VFCDM [19] 2.55 (0.57, 3.88) 2.99 0.19 0.60
AM-FM (Proposed) | 0.89 (0.50, 2.54) 2.53 3.2e-3 0.66

compared to SmartFusion and ARFusion. The proposed AM-
FM method has the smallest RMSE median and variance values,
indicating that it is the most accurate and robust among these
algorithms. Table I also shows that the proposed AM-FM method
has lower RMSE means — 0.39, 0.14, 3.15, 1.40, 1.33, and
0.46 breaths per minute (BrPM), compared with SmartFusion,
ARFusion, EMD, EWT, CSD, and VFCDM, respectively. We
can see from the RMSE statistics that the proposed AM-FM
method has a noticeable reduction in both the median and mean
RMSE values and provides the most accurate RR estimates,
compared with the other methods. The PCC index suggests that
the proposed method (p = 0.66) has the best positive correlation
with the ground truth RR.

The Wilcoxon sign rank test [36] was performed to show
the differences between these methods, with the SmartFusion
method as the reference. The test is a nonparametric test
that evaluates whether the group mean ranks differ from two
non-normally distributed data groups when the observations
are paired. The test results indicate that the AM-FM method
(p = 3.2 x 1073)is significantly different from the SmartFusion
method.
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B. rPPG Dataset Captured by a Color Camera

In recent years, rPPG has been attracting a lot of research
attention [21], [25], [28], [37], due to its promising application
in mHealth care. In this section, we also explored the robustness
of the proposed AM-FM method on this new modality of PPG
signal.

We evaluated the HRV-based, EMD, EWT, and proposed
methods on a self-collected rPPG dataset. The study was ap-
proved by the Institutional Review Board of the U.S. Food
and Drug Administration (IRB approval reference number: 17-
043R-CR 0001). The dataset contains 60 one-minute face video
clips of 12 subjects with ages ranging from 18 to 50 years old.
The skin tones of the participants are generally categorized into
three skin types based on the Fitzpatrick scale [38]: western
European (skin type I and II), eastern Asian (skin type III and
1V), and African/southern Asian (skin type V and VI). During the
recordings, the subjects were asked to sitin front of a desk, where
a regular 1080p webcam (HD Pro Webcam C920, Logitech
International S.A., Lausanne, Switzerland) was used to capture
videos of the frontal positions of subjects’ faces at a frame rate of
30 Hz. The ground truth RR was simultaneously measured via a
piezo respiratory belt transducer (Model 116-0018, Great Lakes
NeuroTechnologies (GLNT), Cleveland, Ohio). The transducer
was connected to a BioRadio™ acquisition system (Model
700-0016, GLNT) for signal collection with a sampling rate
of 500 Hz. The subjects’ faces were illuminated the dedicated
fluorescent lights from the ceiling, with a total illuminance
of approximately 200 lux. The Subjects’ voluntary rigid head
motions and non-rigid face motions were allowed during the
recording, including talking and facial expressions. Beyond the
rPPG videos and the corresponding ground truth RR, we did not
collect any information related to subjects’ health status.

For fair comparison of the RR estimation methods, we pro-
cessed the rPPG signal in the same way for each method. A
robust extraction algorithm was deployed to extract the pulse
signal from the videos. We first applied an SSD-ResNet based
face detector [39], [40] to localize the face region in each
frame. Then, the region of interest (ROI), defined by the entire
face region, was obtained and refined with the face landmark
detector [41] and the ROI selection principles [42]. A spatially
averaged RGB color signal was then extracted over the detected
ROI in each frame. Finally, the pulse signal was computed with
the POS algorithm [37] by mapping the 3-channel RGB signal
to a 1-channel rPPG signal. After obtaining the rPPG signal,
the proposed AM-FM method was applied to estimate the RR
and compared with the time-domain HRV-based method [29]
and frequency-domain methods, EMD [15] and EWT [16]. The
HRV-based method only extracted the RIFV signal from the
rPPG signal, since RIIV and RIAV are usually attenuated during
signal preprocessing. EMD and EWT were executed in the same
way as in the cPPG case. In RR estimation, the window length
was set to 32 seconds and the moving window proceeded one
second between adjacent estimates.

Fig. 7 presents boxplots of the RMSE values associated with
the four methods for RR estimation, showing that the proposed
AM-FM method has the smallest estimation error among the

HRv{+F-4{ [ }------- =
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Fig. 7. Comparison of RMSE for RR estimation methods on the self-
collected rPPG dataset. The boxplot settings are identical to Fig. 6.

TABLE Il
OVERALL PERFORMANCE OF RR ESTIMATION METHODS ON RPPG DATASET
(RMSE UNIT: BRPM)

RMSE statistics
Method Median (QT, Q3) | Mean p-value | PCC
HRV [29] 4.10 (2.73, 7.64) 5.24 ref. 0.32
EMD [15] 4.99 (3.83, 6.62) 5.71 0.77 0.25
EWT [16] 4.71 (2.92, 8.03) 5.33 0.85 0.29
AM-FM (Proposed) | 2.46 (1.29, 4.08) 3.08 6.4e-4 0.36

methods. Table II summarizes the performance statistics of the
methods on the rPPG video dataset, where the best values are in
bold. As expected, the RR estimation error of the rPPG signal, in
general, is larger than that of the cPPG signal (Table I), since the
rPPG signal can be easily contaminated by noise from a variety
of sources, such as voluntary motion and illumination variation.
From Table II, we can observe that EMD and EWT have the
largest error, indicating that RIIV is not a robust feature in
the rPPG case. The HRV-based method performs slightly better
than EMD and EWT. Overall, the AM-FM method has the best
performance in terms of median RMSE (2.46 BrPM) and PCC
(p = 0.36) with the ground truth RR. In the Wilcoxon sign rank
test, the p-value of 6.4 x 10~% shows that the performance of the
AM-FM method is significantly different from the HRV-based
method. In the rPPG case, we can see that the proposed AM-FM
method is the most resistant to noise compared with the other
methods.

C. Discussions

As described in Section I, respiration can induce three effects
on the PPG signal: RIIV, a baseline shift in the signal during each
breathing cycles; RIAV, a change in the signal amplitude; RIFV,
a variation in HR during breathing. The first effect indicates
the breath-related signal is superimposed onto the PPG signal.
The second and third effects reveal the AM and FM properties
in the PPG signal, respectively. The previous RR estimation
methods from PPG signals can be mainly categorized into two
groups: time-domain and frequency-domain methods, whose
typical pipelines are presented in Fig. 3(a) and (b), respectively.

Comparison with prior methodologies: To improve algo-
rithm robustness in the cPPG signal, the time-domain meth-
ods in prior art [4], [10] utilize all three respiratory-induced
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variation features in the signal, from which three individual
RR estimates are extracted, but each time-domain approach
fuses these estimates in a slightly different way to obtain the
RR. In SmartFusion [4], averaging is employed to provide a
final estimate in each window, and the algorithm will discard
the RR estimate if a large discrepancy exists among the three
individual estimates. However, discarding data does not truly
improve the RR estimation accuracy, but rather adds an unknown
final estimate. On average, 35% of the windows in each case
were eliminated due to disagreement in the three estimates. In
ARFusion [10], the final estimate is derived by fusing the AR
spectra of the three respiratory-induced variations with several
model orders. Although this fusing method is more advanced
than average fusing, it still cannot avoid the peak/valley detection
problem in a noisy spectrum. The p-value between SmartFusion
and ARFusion (p = 0.48) also shows that their performances
have no significant difference in terms of RMSE.

The frequency-domain methods [13]-[16], [18], unlike the
time-domain ones, only consider the RIIV in the PPG signal.
They model the PPG signal as the superimposition of the pulse
signal and the respiration signal. These methods typically an-
alyze the PPG spectrum and extract HR and RR from differ-
ent frequency ranges of interest. Different frequency analysis
techniques such as periodogram [13], wavelet [14], EMD [15],
EWT [16] and CSD [18] are introduced in these algorithms to
estimate the spectrum of the PPG signal. Given the assump-
tion that the RR component is in a lower frequency range
(0.1 — 0.7 Hz) and the HR component is in a higher frequency
range (0.7 — 4 Hz), the HR and RR can be extracted from these
ranges. Although advanced frequency analysis methods, such as
EMD, EWT, and CSD, can help decompose the signal into dif-
ferent frequency sub-bands and improve the spectral estimation
accuracy, these methods only consider RII'V in the PPG signal,
which can be easily influenced by slow varying noise or removed
by necessary preprocessing steps, such as detrending and filter-
ing. The relatively large variances of RMSE in the EMD, EWT,
and CSD methods (Fig. 6) demonstrate the drawback of these
methods based on the superimposition assumption. Moreover,
the CSD method requires a sliding window of at least 60 seconds
to obtain reliable RR estimates [18], resulting in a time delay in
estimation.

Compared with RIIV, we have focused on RIAV and RIFV
that are more resistant to additive noise and preprocessing,
analogous to the noise resistance of AM and FM in radio com-
munication. Taking the effects of RIAV and RIFV into account,
PPG signals can be modeled with amplitude and frequency
modulation, rather than only considering RIIV, as the prior art
of the frequency-domain methods do. VFCDM can be applied
to extract AM and FM dynamics from a signal [19], but it is a
general frequency analysis framework used to estimate variable
frequency. The results show that VFCDM has a larger perfor-
mance error than our method. Assuming the single-frequency
modulation in AM and FM, we adapt and simplify the AM-FM
model to meet the needs of RR estimation from PPG signals. Our
resulting AM-FM model explains the three noticeable compo-
nents — a dominant component and its two guard components
— in the PPG spectra. By taking advantage of the symmetric

property of the three components, the proposed algorithm can
successfully extract them from the PPG spectrum and obtain
the HR and RR, avoiding the potential problem in peak/valley
detection. The performance in Table I demonstrates that the
AM-FM method can estimate RR from the cPPG signal more
accurately than other methods.

The AM-FM method is computationally efficient. The aver-
age processing time for 100 RR estimations is about 2 seconds
with a single processor thread on a 2.4 GHz PC with § GB
memory, performing real-time execution. The step of energy
notching solves a linear programming problem for each RR
estimate, which takes a substantial percentage of the overall
computational load.

Performance comparison in rPPG scenarios: As presented
in Section III-B, we have also tested the performance of the
AM-FM method on rPPG signals and compare its performance
with the HRV, EMD, and EWT methods. rPPG is an emerging
modality of PPG that has two main challenges in processing
rPPG data. First, an rPPG signal has much lower SNR than a
cPPG signal. The HRV-based methods [21], [29], [30] extracted
the RIFV signal from the rPPG signal to estimate the RR, since
this kind of variation is a relatively robust feature in noisy
scenarios. Due to a large amount of noise in the rPPG signal,
it is difficult for the time-domain methods to provide reliable
detection of peaks and valleys, leading to large estimation errors.
Second, the baseline shift of the rPPG signal coming from illu-
mination variation from the external environment can weaken
the RIIV effect on the signal. We tested on the rPPG signal
EMD [15] and EWT [16] that are based on the RIIV effect,
and Table IT shows these two methods suffer from large error
and variance. The above discussion suggests that the previous
methods may not be applicable to the rPPG signal. In con-
trast, the proposed AM-FM method considers relatively robust
RIAV and RIFV features, and extracts them robustly from the
frequency domain, thus achieving better performance than the
time-domain methods based on peak/valley detection algorithms
and the frequency-domain methods that only consider RIIV
features. Overall, the performance of the AM-FM method on the
rPPG signal (Table II) indicates that it improves the accuracy of
RR estimation and is robust under noisy conditions.

IV. CONCLUSION

In this paper, we introduce the AM-FM to model PPG signals,
which exploits two kinds of relatively robust respiration-induced
features of PPG signals: RIAV and RIFV. The AM-FM model
is consistent with the observation of two guard components
lying symmetrically around the dominant component in the PPG
spectrum. Based on the model, we have developed a robust and
efficient frequency-domain algorithm to directly extract HR and
RR from PPG spectra. The method was evaluated both on a
contact-based PPG dataset collected by a pulse oximeter and on a
remote PPG dataset consisting of a set of face videos collected by
a color camera. The extensive experimental results demonstrate
that the proposed AM-FM method is effective and robust even
in relatively noisy scenarios of remote PPG data.
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