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Analyses of morphological disparity have been used to characterize and
investigate the evolution of variation in the anatomy, function and ecology
of organisms since the 1980s. While a diversity of methods have been
employed, it is unclear whether they provide equivalent insights. Here, we
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ing morphological disparity, all of which have associated limitations that, if
ignored, can lead to misinterpretation. We propose best practice guidelines
for disparity analyses, while noting that there can be no ‘one-size-fits-all’
approach. The available tools should always be used in the context of a
specific biological question that will determine data and method selection
at every stage of the analysis.
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1. Introduction
Clades of organisms are characterized by variation in both
numbers of species and range of phenotypes through time. At
the extremes, clades may be exceptionally rich in species and
phenotypic diversity (hereafter disparity) (e.g. cichlids or mol-
luscs), species-rich but disparity-poor (e.g. rodents or
nematodes), species-poor but rich in disparity (e.g. afrotherian
mammals) or depauperate in both species diversity and dis-
parity (e.g. lungfish). These phenomena suggest that
taxonomic diversity and phenotypic disparity are not inextric-
ably linked, raising important questions, such as: how does
disparity evolve? Are some morphologies more common than
others? Is anatomical evolution unbounded or are some ana-
tomies impossible to achieve? What role does ecology play in
structuring disparity? Analyses of species diversity have a
venerable history, but those of disparity are comparatively
more recent. Originally defined as ‘multidimensional mor-
phological dissimilarity at a macroevolutionary scale’ [1,2],
the concept of disparity emerged from attempts by palaeobiol-
ogists to characterize the evolutionary origin of animal
bodyplans and from attempts by comparative developmental
biologists to provide causal explanations for their emergence.
However, disparity analyses have since expanded into com-
parative biology as a means of capturing how intrinsic
and extrinsic causal agents affect morphological evolution.
Typically, methods to capture disparity are based on multi-
dimensional spaces where each dimension represents an
aspect of morphological variation (a trait) and biological obser-
vations (e.g. taxa) can be placed in this space based on their trait
values. Such multidimensional spaces (or morphospaces—
defined broadly hereafter as a mathematical space relating
morphological configurations generally basedonsomemeasure
of similarity [3]) can then be used to tackle a diverse array of
questions that can be grouped into four main (non-mutually
exclusive) classes.
(a) Descriptive disparity
Pioneering studies of disparity characterized the shapes of
organisms and how they differed among groups [4,5]. These
studies described multidimensional patterns in morphological
trait diversity by addressing pertinent questions: why are some
morphological trait combinations more common than others,
and what are the biological (or mathematical) properties
of the resulting morphospace? [4,6,7]. More recently, this
approach has been used to understand the relationship
between developmental processes and morphology in the
field of evolutionary development (evo-devo). For example,
patterns of disparity have been used successfully to compare
modules of evolution in various groups [8,9], allowing
researchers to link variation in shape to a group’s evolutionary
or developmental constraints [10].
(b) Disparity through time
This approach investigates how the morphologies of organ-
isms have changed over time, by focusing on the disparity
of taxa in particular time intervals or slices. This approach
has been used widely in palaeobiology to answer a range of
macroevolutionary questions, such as: how does disparity
accumulate over the history of a clade [11–13], or how does
disparity change up to and across mass extinction events [14]?
(c) Disparity and taxonomic diversity
Morphological disparity provides another perspective on bio-
diversity; high morphological disparity represents a high
diversity ofmorphologies (i.e. shapes or bodyplans) and is, pre-
sumably, associated with high levels of ecological and
functional diversity (but see [15]). Thismakes disparityan infor-
mative complement to diversity measures based on species
richness alone. Indeed, most studies that have investigated dis-
parity and taxonomic diversity support an effective decoupling
of the two (e.g. [16,17]). The approach has been used to investi-
gate whether some groups are more successful than others in
their exploration of new evolutionary strategies [18].

(d) Disparity as a proxy for ecology
The disparity of a group can be used as a proxy for either the
functional role it plays within an ecosystem or its ecological
niche. This approach assumes that groups with high disparity
are also likely to be functionally and ecologically diverse and
that groups found in similar regions of shape space will have
similar functional and ecological roles [14,18]. The links
between form and function, however, are not always clear.
Traits can be linked to multiple functions and multiple func-
tions can be linked to a single trait [19]. This approach has
been used to investigate hypotheses of competitive replacement
[20] and changes in ecosystem function during and after mass
extinctions [14]. It is one of the primary ways to investigate eco-
system functioning in palaeobiology when the study species
(and their functional characteristics) are extinct [19].

Fundamental insights into evolutionary biology have been
elicited from these four types of disparity analysis. One of the
most important insights is the discovery that morphological
disparity is often greatest early in the evolutionary history of
clades [21–23], indicating that capacity for evolutionary inno-
vation wanes as clades age, which some have argued reflects
the evolutionary assembly of gene regulatory networks that
constrain later fundamental change [22,23]. However, this
example also highlights one of the greatest challenges confront-
ing researchers who are attempting, increasingly, to obtain
general insights from multiple independent studies: can the
insights gained from studies using a diversity of methods,
approaches and data types be considered equivalent?

In attempting to answer this question, we review current
methods and highlight their limitations, as part of a more gen-
eral attempt to propose best practice guidelines for studies of
disparity. We first discuss the appropriate data required for
characterising disparity, then review various challenging
aspects of these approaches. Throughout, it is important to
remember that these tools should always be used in the context
of a specific scientific question, as this will drive data and
methodological choices at every stage of the process.
2. Data and disparity
Disparityanalyses are basedon traits, but traits canbe character-
ized in a number of ways: (i) discrete morphological characters,
e.g. coding the absence or presence of features or a discrete
characteristic of a trait (e.g. [24,25]); (ii) continuous measure-
ments of features (e.g. lengths in [14]); or (iii) more
mathematical descriptors from geometric morphometric land-
mark data (e.g. Procrustes coordinates) (e.g. [26]), Fourier
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coefficients (e.g. [24,27]) or model-based descriptors (e.g. [6,28];
figure 1). None of these approaches is superior, but theymay be
more or less well suited to characterizing the traits compared
and to the question being asked using those traits [29,30].

For example, if investigating variation of bat wing shapes,
both homologous landmarks and continuous measurements
of bones may be appropriate to capture patterns of wing vari-
ation. If the question focuses on comparing wings between
bats and birds, however, different measurements might be
more appropriate depending on the specific question. That
is, if the focus is whether the aerodynamic properties of
wings vary within bats or between bats and birds, the traits
collected should reflect these aerodynamic properties (e.g.
wingspan, aspect ratio, etc.). However, if the focus is on con-
vergence between different bats and birds, it would be
preferable to use traits that have facilitated flight in both
groups (e.g. digit length, integumentary system, etc.).
Where there is any doubt about which traits to analyse, it
may be preferable to use several different kinds of data for
the same feature to determine whether they capture the
same pattern of disparity.

The points above assume that researchers are collecting
their own data for disparity analyses, but this is often not the
case. Discrete characters are commonly recycled from phyloge-
netic studies (e.g. [11,31]). This approach may artefactually
increase disparity between phylogenetically distinct groups,
since phylogenetic characters are often collected to discriminate
among groups. This needs to be considered when interpreting
results, especially as synapomorphies can lead to apparent
shifts or increases in disparity when new clades appear (par-
ticularly if the character-state distribution is skewed towards
a particular clade). Furthermore, many datasets are limited to
subsets of anatomy that are at least implicit samples of overall
anatomy, but explicit tests of this assumption have shown that
different aspects of morphology can exhibit different patterns
of disparity [30]. The influence of trait choice on resulting dis-
parity patterns can be especially challenging where the
available data have non-random missing anatomical parts,
such as the absence of soft tissue in the fossil record [25].

Ultimately, disparity analyses are characterized by the
data they use. Unfortunately, trait data suffer from the same
shortcomings as most biological datasets. The data within
them can be non-overlapping, hierarchical, inapplicable,
ambiguous, polymorphic and/or correlated [32]. There are
also issues of missing data, both where a particular character
cannot be measured for a given taxon and where a given
taxon cannot be sampled at all. Trait data may also be influ-
enced by biological phenomena such as allometry and sexual
dimorphism. More practically, data collection is constrained
by the time and money available, making collating a ‘perfect’
dataset impossible. Even when care is taken, subsamples of
the universe of possible data may not have the power to
uncover the full patterns of disparity. These issues should
be considered when collecting data. It is particularly impor-
tant to collect trait data with the scientific question in mind,
or, where there are limits on the data available, to tailor the
question being asked to match the data.

3. Disparity analysis methods
Once suitable trait data have been collected, the design of the
disparity analysis itself needs to be considered. Study design
encompasses several key aspects including (§3a) the difficulty
of dealing with multidimensional data; (§3b) the indices used
to summarize the relative disparity of groups; (§3c) the
methods used for hypothesis testing within the disparity
analysis framework; and (§3d) the influence of phylogeny on
disparity analyses. We consider these aspects in order below.



royalsocietypublishing.org/journal/rsbl
Biol.Lett.16:20200199

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 Ju

ne
 2

02
1 
(a) To ordinate or not to ordinate? That is the
(multidimensional) question

Disparity analyses often use ordination techniques for
dimensionality reduction. Ordinations are statistical methods
that map observed variables onto a new space of reduced
dimension while maintaining the requirement that similar
observations are closer together than dissimilar ones (e.g.
principal component analysis—PCA; principal coordinates
analysis—PCO; non-metric multidimensional scaling—
NMDS). They come in many flavours depending on the data
and the desired morphospace properties. For example, quanti-
tative (continuous) data can be reduced using PCA, and
dissimilarity matrices based on qualitative, quantitative or
mixed data types can be reduced using PCO (which is equival-
ent to metric multidimensional scaling (MDS)) or NMDS (see
[33, ch. 9] for a detailed overview of ordination methods and
properties). Note that for PCO, the distance metric used can
have significant impacts on the resulting morphospace [34].
The choice of distance metric is, therefore, crucial, and
should not be overlooked when using PCO.

One of the reasons why ordination techniques are common
in disparity analysis is that theymake it easier for researchers to
comprehend patterns in two or three spatial dimensions at a
time, which can be more intuitive than through disparity indi-
ces (see §3b). Additionally, after ordinating the data, it is
possible to focus on just a subset of axes of the morphospace
(i.e. selecting only those axes that describe the majority of the
variation in the dataset—e.g. 95%). In the case of geometric
morphometric data, some ordination techniques (e.g. PCA)
can be particularly useful as they conserve the mathematical
properties of the datawhile efficiently reducing the dimensions
[35]. In practice, this facilitates interpretation of only the major
axis of a highly dimensional dataset as major gradients of bio-
logical variation (e.g. the elongation and flattening of birds’
beaks; [36]).

Like most other aspects of disparity analyses, however,
reducing dimensionality can be fraught. In the case of ordina-
tion, subsampling axes from the ordination can lead to
misinterpretation of the results. Although a common technique
is to consider the d-axes that encompass 95 or 99% of the var-
iance in the dataset (either by manually selecting the d-axes
that encompass the desired cumulative variance or using
methods such as the broken stick model; [33, p. 410], the
interpretation of these principal axes can miss some aspects
of the structure of the data and lead to misinterpretation of
the biological variation mapped on these axes [37,38]. Visual
interpretations of multidimensional data can be particularly
misleading, not least as multidimensional spaces might
not possess the Euclidean properties one often intuitively
assumes [7,25].

Interpreting biological variation along the axes is always
a post hoc procedure and may have little relation to the
overall question (for example, if the first few ordination axes
represent elongation of the beak in birds, but the question is
about wing disparity). Additionally, in some cases, reducing
the dimensionality of a dataset can render its interpretation
more problematic. For example, when the analysed dissimilar-
ity data are non-Euclidean (e.g. as induced, for instance, with
inapplicable characters in discrete character schemes), inter-
preting the resulting ordinated space can be challenging [39].
This can sometimes be problematic when comparing the pos-
ition of groups in multidimensional space, as true
dissimilarities might not be reliably conveyed (although this
can sometimes be improved [40]). Furthermore, post hoc
interpretations of the gradient of variation on the ordination
axes may be biologically meaningless or simply impossible
[39]. Although some gradients are easy to detect or interpret
(e.g. the elongation and depth of mandibles in fishes on first
and second principal components (PC) axes, respectively;
[41]), some are not (e.g. [38]). For example, with discrete mor-
phological data, a gradient between the species that havemany
characters in state 1 and those that have more in state 0 has no
biological meaning if these are binary alternate states.

In general, categorical data are a good deal more proble-
matic than continuous data, because the characters
themselves are invariably non-equivalent, non-independent
and the distribution of the variance is usually more evenly
distributed across axes (i.e. contrary to a PCA, the first few
axes do not encompass most of the variance in the dataset).
Such non-Euclidean spaces often have non-intuitive proper-
ties, for example, straight lines viewed in bivariate plots of
some dimensions are not actually straight and character
coding and missing data can make the pairwise dissimilarity
matrix lose its metric properties (i.e. the distance between A
and B is not equal to the distance between B and A; [39]).
Last, but not least, in many cases, ordination might not be
necessary. For example, if an index characterizing disparity
can use all of the data, it is not necessary to calculate it on
the ordinated dataset (e.g. [31]). For all of these reasons,
multidimensional data should not be ordinated automatically,
and careful consideration should be given to whether the aim
of the study can be achieved without ordination [42,43].

(b) Summarizing disparity using disparity indices
Most disparity datasets are multidimensional and, conse-
quently, a large component of any disparity analysis involves
considering how to extract a meaningful (i.e. interpretable)
summary of disparity (figure 2). This summary is usually
achieved with a disparity measure or index [30]. As with any
summary of multidimensional data, disparity indices will
reflect only some aspects of the morphological variation,
never its whole complexity [46]. It is, therefore, often beneficial
to use more than one index to summarize different aspects of
variation, guided by the aim of the study.

When considering only one dimension, disparity indices
can be used to compare the spread of distributions (e.g. the
range, quantiles or variance) or the differences in the central
tendencies (i.e. mean, median or mode) of groups in the
morphospace. Among these indices, some will have more
attractive properties than others, such as sensitivity to outliers.
Range and mean are highly sensitive, whereas quantiles,
variance and median are less so, making them more or less
appropriate for different questions. For example, if the goal is
to characterize the extent of morphospace occupied by a
group (e.g. does group A occupy as much space as group
B?), indices related to the spread of the group in the morpho-
space are most appropriate (e.g. volume [47]; distance from
the centroid [30,48]; variance and range [11]). Furthermore,
aspects other than variation (sensu disparity) can be of interest:
if we wish to describe the ‘position’ of a group in a mor-
phospace (e.g. does group A occupy the same region of
morphospace as group B?), indices related to the distance
between the elements within a group and a fixed point in the
morphospace are most appropriate [46]. Finally, if we aim to
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characterize the density of morphospace occupation (e.g. is
group A more closely packed than group B?), indices related
to the pairwise distances between elementswill bemost appro-
priate (e.g. nearest neighbour distance, pairwise distances, etc.
[31]—see §3a).

In addition to considering which properties of disparity
these indices capture, it is also important to consider the
mathematical properties of the indices and their associated
caveats [49,50]. For example, measuring the sum of variance
for each dimension of the space before or after ordination
via PCA is equivalent. However, this is no longer true of
other transformations of the space or when a subset of
dimensions or elements are considered, as is often done
after PCA [33].

Furthermore, multidimensional spaces have some counter-
intuitive properties that should be considered, such as the
‘curse of dimensionality’ [51]. In spaces with some axes of var-
iance lower than one, product-based indices used as proxies of
volumes (e.g. product of ranges, hypervolume, hypercube, etc.)
can quickly tend towards zero for spaces with even a modest
number of dimensions [51]. Other types of indices are also
extremely sensitive to outliers and can be biased easily by
sample size, for example, range [49] or convex hull-based [52]
indices.
(c) Testing for differences in disparity
No matter which disparity indices have been calculated, the
research question must be framed in an appropriate statistical
context. The multidimensional statistical toolkit for ecology
and evolution has greatly expanded in recent years [53,54],
but some of these advances have yet to be implemented in
disparity analyses. Instead, hypothesis testing has been
mostly confined to a small set of well-established methods.
One commonly used test is the non-parametric permutation
analysis of variance (PERMANOVA) [55], which tests
whether two groups share the same centroid and dispersion
based on a distance matrix between observations. The past
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decade has also seen a series of developments based on this
test (e.g. the linear regression for multidimensional data
[56] or the phylogenetic ANOVA [57]; but see [42,54] for
more). It is worth noting that most of these tests do not
require the morphospace to be ordinated (see §3a). Regard-
less of the statistical test used, they should only be
employed if they are tailored to the question at hand, rather
than simply following common practices.

It is also important to consider which data should be
subjected to a statistical test. For example, in morphological
disparity analysis, especially for palaeobiological questions,
data are often bootstrapped. This has two advantages:
(i) when the disparity index is unidimensional (e.g. the sum
of variances), bootstrapping the data generates a distribution
of the index that can be analysed using the vast statistical
toolkit available for comparing distributions; (ii) when data
are scarce, bootstrapping the data allows users to introduce
variance, rendering the test less sensitive to outliers. How-
ever, bootstrapped data are pseudoreplicates and thus
non-independent and can increase the false positive rate
(Type I error) [58]. This, again, highlights the importance of
tailoring the statistical test to the data and question at hand.

Finally, it is important to understand the limitations of the
dataset for performing statistical analysis. Mainly, disparity
analyses should be restrained to groups within the same
morphospace and are more difficult between different mor-
phospaces. This can be the case when comparing elements
with different numbers of landmarks or different landmark
configurations that will result in different morphospaces; com-
paring disparity indices between these is not trivial.
(d) Disparity and phylogeny
As with all comparative datasets, the data used in disparity
analyses are not independent because close relatives will
tend to havemore similarmorphologies thanmore distant rela-
tives [59]. Thus, for disparity analyses that consider groups
with phylogenetic relationships (which is common), the non-
independence between observations should be taken into
account. It has been noted, however, that some popular phylo-
genetic correction methods (like phylogenetic PCA) can be
inappropriate, especially when using only the first d-axes of
the ordination, and can lead to incorrect interpretations of the
data (such as wrongly supporting ‘early burst’ type patterns;
[60]). Furthermore, any use of phylogenies in disparity ana-
lyses must also carefully consider the underlying model
of trait evolution. Standard methods assume a model of
Brownian motion, i.e. a ‘random walk’ model where trait var-
iance increases linearly through time with no trend in the
direction of trait evolution. In many biological situations, this
model is not realistic, and different models of evolution
should be considered [61,62]. If an inappropriate model is
used then methods such as phylogenetic PCA and ancestral
state estimations (see below) may give misleading results,
with implications for downstream results of disparity analyses.

One other common way to take phylogeny into account in
disparity analyses is using ancestral state estimations in dis-
parity through time analyses to extract disparity estimates
for non-sampled taxa and/or nodes of a phylogeny [13,63].
Ancestral state estimation can be performed at two points
in the disparity analysis pipeline: either (i) pre-transform-
ation, i.e. the estimation is done before transformation of
the data (e.g. ordination, or distance matrix construction)
and is simply based on the original data, or (ii) post-trans-
formation, i.e. the estimation is done after transformation
of the data by estimating the ancestral states using the
transformed matrix (e.g. the ordination scores; [43]).

Pre-transformation ancestral state estimation will change the
way the ordination space is defined—i.e. the relationship
between the points is not yet estimated—and requires longer
computational times. However, once the morphospace is
defined, its properties will not change. Post-transformation
ancestral state estimation will not change the empirical ordina-
tion space and is faster to compute, but it will add elements in
the space, whose estimated positions can be problematic for
statistical tests and evolutionary inferences down the line [39,43].

All ancestral state estimates are highly dependent on the
data and method used (especially on the underlying model
of trait evolution) [64]. In general, using ancestral state esti-
mation can help with recovering patterns of change in
disparity but should not be used simply to generate extra
data points to increase statistical power. In fact, these extra
points are not independent and can also have problematic
side effects, especially when testing for the influence of mass
extinctions on disparity as they artificially and asymmetrically
increase taxon sampling.
4. Disparity analyses for the future
Morphological disparity analyses are widely employed in evol-
utionary palaeobiology, and are based on adiversityofmethods
and data. There is no ‘one-size-fits-all’ pipeline for morphologi-
cal disparity analyses. As with any multidimensional analysis,
there aremanyvariables that have to be consideredwhendecid-
ingwhich data to use and how to analyse them, stemming from
the explicit hypotheses being tested. Although this makes
comparison between disparity analyses difficult and renders
premature attempts to achieve the generalization required to
answer the broad biological questions (e.g. how does pheno-
typic variation evolve?), this diversity of methodological
approaches provides researchers with a great number of tools
tailored to answer specific biological questions.

Many of the problems in morphological disparity analysis
arise from ‘blind’ application of established methodological
pipelines without consideration of the biological question
being addressed.We advocate that researchers should assemble
their analytical protocol based on an experimental approach
that explores the impact of competing methods, such as
choice of indices, ordination method and ancestral state esti-
mation method on disparity analysis results. Thankfully, this
is becoming easier through the availability of diverse, well-
documented R packages for multidimensional analysis
[42,65–68].Manyof themethods employed in disparity analysis
are used more widely in other fields, including genomics and
ecology, which also encompass analyses of multidimensional
datasets [69–72]. Innovations in morphological disparity
analyses likely await discovery in their respective literatures.

While studies ofmorphological disparitywouldbenefit from
advances in multidimensional analysis in other fields, the con-
cept of a morphospace could reciprocally benefit other
disciplines. For example, the multidimensional analysis of [47],
which analysed patterns of form and function in plants, is essen-
tiallyan eco-morphospace; isotopic analysesoforganisms [52,73]
can be represented as an isotope-space; ecosystem functioning in
[69] as an ecosystem-space [74], etc. These generalizations could
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also be exported for any set of traits: cognate approaches have
been adopted in the analysis of single-cell comparative transcrip-
tome data [75] where interpretation of the resulting
transcriptome spaceswouldbe improvedbygiving careful atten-
tion to the concerns we highlight concerning morphospaces.

Although disparity analyses are now simple to
implement in freely available software [42,65–68], it is crucial
to remember that they are multidimensional analyses and
that multidimensional analyses are complex. We assert that
future morphological analyses will benefit from emphasizing
the methodological decisions made, rather than simply using
disparity analysis because it exists.
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