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A B S T R A C T   

Model ensembles have several benefits compared to single-model applications but are not frequently used within 
the lake modelling community. Setting up and running multiple lake models can be challenging and time 
consuming, despite the many similarities between the existing models (forcing data, hypsograph, etc.). Here we 
present an R package, LakeEnsemblR, that facilitates running ensembles of five different vertical one- 
dimensional hydrodynamic lake models (FLake, GLM, GOTM, Simstrat, MyLake). The package requires input 
in a standardised format and a single configuration file. LakeEnsemblR formats these files to the input required 
by each model, and provides functions to run and calibrate the models. The outputs of the different models are 
compiled into a single file, and several post-processing operations are supported. LakeEnsemblR’s workflow 
standardisation can simplify model benchmarking and uncertainty quantification, and improve collaborations 
between scientists. We showcase the successful application of LakeEnsemblR for two different lakes.   

1. Introduction 

Numerical process-based lake models are powerful tools to simulate 
processes occurring in aquatic ecosystems. These models enable the 
users to investigate scientific and engineering hypotheses or scenarios, 
which would otherwise not be feasible (or even possible) to field-test for 
physical, logistical, political or financial reasons. Over recent decades, 
the understanding of fluid dynamics and physical transport processes in 
lakes has improved thanks to enhanced field monitoring and intensive 

laboratory studies (Csanady, 1975; Imberger, 1985; Imberger and 
Hamblin, 1982; Imboden, 1973; Kitaigorodskii and Miropolsky, 1970; 
Spigel et al., 1986; Spigel and Imberger, 1980). With better empirical 
relationships and physical understanding of processes, the pioneer lake 
models that emerged from these studies were essential to addressing 
emerging water quality issues like eutrophication (French and Imberger, 
1984). 

Today, one-dimensional (1D) lake models are frequently used to 
characterise lake hydrodynamics. These models assume complete and 
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instantaneous horizontal mixing. In many systems this is a reasonable 
assumption, because vertical thermal gradients are typically much 
larger than horizontal thermal gradients. The assumption holds for lakes 
with a small to moderate surface area that are not affected by Coriolis 
acceleration or other significant horizontal transport processes (Patter
son et al., 1984). To model water column thermal dynamics resulting 
from atmospheric exchange processes, inflow entrainment and turbu
lence, different theoretical approaches have been developed and applied 
in lake models, e.g., bulk models, energy-balance approach models, and 
models that use a pure turbulence approach to account for mixing 
(Goudsmit et al., 2002). Alternative approaches apply simpler schemes 
to solve advection-diffusion equations or use constants for transport 
processes. 

Since the 1980s, there has been a rapid expansion in the publication 
of process-based aquatic ecosystem models. However, the aquatic 
ecosystem community has not fully exploited the diversity of available 
models by comparing the performance of models against one another, 
which affords both the opportunity to identify technical improvements 
but also improve overall model predictions (Janssen et al., 2015). Crit
ical voices still highlight the problem that modelling teams tend to 
‘reinvent the wheel’ (Mooij et al., 2010) instead of building on existing 
software. The Lake Model Intercomparison Project (LakeMIP) had 
several key findings regarding the current state of lake modelling: (1) 
the majority of lake models replicate surface temperature dynamics 
coherently well (Stepanenko et al., 2013), (2) individual lake models 
clearly outperform others for specific lake sites (Thiery et al., 2014), and 
(3) models that explicitly incorporate sediment heating and resolve 
turbulence over lake depth are better suited to represent lakes in nu
merical meteorological studies and to research hydrodynamic processes 
for deep lakes (Stepanenko et al., 2013; Thiery et al., 2014). Most au
thors agree that open community approaches as well as publishing the 
model as open-source code are the best steps for sustainable develop
ment and to ensure future technical improvements (Frassl et al., 2019; 
Janssen et al., 2015; Read et al., 2016). Still, a lack of common com
munity framework for model calibration, validation, and processing has 
resulted in few studies that quantify model performance (bench
marking) and minimal progress in improving code and applications 
(Arhonditsis et al., 2014; Hipsey et al., 2020). 

In the 1990s, atmospheric researchers popularised the use of 
ensemble modeling in operational forecasting and uncertainty pre
dictions (Parker, 2013). Ensemble modeling involves either running the 
same model multiple times with different settings or running multiple 
models on the same study site. One of the main advantages of model 
ensembles is that the uncertainty in the model predictions can be esti
mated (Trolle et al., 2014;Wu et al., 2020). This allows the modeller to 
assess the likelihood of occurrence of certain model predictions. Con
nected to this, ensemble runs of an individual model are a means of 
taking into account nonuniqueness (i.e. equifinality - see Beven, 2006) 
in parameter sets (Gal et al., 2014; Nielsen et al., 2014). The average of 
individual model runs from different models can be a more robust pre
dictor than any of the individual model runs (Kobler and Schmid, 2019; 
Trolle et al., 2014; and sources therein). If only the “best” model is 
retained, valuable information in other model fits is disregarded (Baker 
and Ellison, 2008). An ensemble of multiple models supports the iden
tification of methodological and technical differences and shortcomings 
between the different models, and covers a wide set of different 
parameterisations of processes. This can improve the understanding of 
model performance and guide future model development (Frassl et al., 
2019; Janssen et al., 2015). 

Model ensembles are now widely used in meteorological forecasting 
(Gneiting and Raftery, 2005; Leutbecher and Palmer, 2008), flood 
forecasting (Wu et al., 2020), and climate studies (Mu et al., 2017; 
Parker, 2010). Ensemble models have gained momentum in large-scale 
water quality studies (Van Vliet et al., 2019), but their adoption in 
limnology has been slow. We believe the limnology community recog
nises the benefits of using ensembles and multi-model simulations 

(Nielsen et al., 2014; Stepanenko et al., 2010), but lacks scientific soft
ware to facilitate lake ensemble modelling. Past efforts to apply multiple 
lake models to the same study systems (Nielsen et al., 2014; Trolle et al., 
2014; Yao et al., 2014; ISIMIP: Frieler et al., 2017; Gal et al., 2020; 
Kobler and Schmid, 2019; LakeMIP: Stepanenko et al., 2010) have often 
been the result of large international collaborations. While these ini
tiatives have revealed pertinent new information, the labour required to 
build these networks is a barrier to broader implementation. 

To remove these barriers and facilitate running ensembles of lake 
models, we developed LakeEnsemblR. Here, we describe the package 
version 1.0.0 and apply it to predict temperature and ice cover in two 
lakes. LakeEnsemblR is a numerical framework to run five 1D hydro
dynamic lake models simultaneously (see Supplement - Table C1), using 
the same configuration and driver data, in the form of a package in the R 
software environment (R Core Team, 2020). The model source codes are 
open-source and the model executables can be run on Windows, MacOS, 
and Linux platforms. The two main objectives of LakeEnsemblR are a) to 
improve the accessibility of different hydrodynamic models for new 
users and b) to allow experienced users to utilise the powerful approach 
of running an ensemble of lake models in a consistent and coherent 
framework. These two aims are achieved through six key aspects of its 
functionality: 1) facilitating easy setup and configuration of model files; 
2) running all models with standardised input files; 3) standardising 
model output; 4) providing tools for convenient post-processing; 5) 
standardising calibration routines; and 6) aggregating and enabling for 
ensemble averaging to account for different sources of uncertainty be
tween the models. The structure of the package allows future develop
ment and addition of more models, and the code is freely accessible 
under a GNU General Public License v2.0. 

2. Methods 

2.1. Model descriptions 

2.1.1. FLake 
FLake (Freshwater Lake model, see Supplement -Table C1) is a bulk 

model that was developed primarily for fast lake-to-atmosphere 
coupling within numerical weather prediction models (Mironov, 2008, 
2005). FLake simulates lake systems using a two-layer parametric rep
resentation focusing on the heat budget. The upper, well-mixed layer is 
considered thermally homogeneous, whereas the temperature in the 
lower, stably stratified layer is approximated by a self-similar (dimen
sionless shape) profile. FLake also uses self-similarity to model ice and 
sediment temperatures. Due to its computational efficiency, FLake has 
been widely used in numerical weather prediction models (Mironov 
et al., 2010; Šeparović et al., 2013) and lake studies on both global and 
local scale (Thiery et al., 2014 ; Vörös et al., 2010; Woolway et al., 
2019). LakeEnsemblR version 1.0.0 uses a version of FLake that has been 
adapted to include heat input through inflows (pers. comm. Georgiy 
Kirillin). The default FLake model option implemented in LakeEnsemblR 
simulates the vertical temperature dynamics up to the mean depth of the 
lake, as FLake assumes a rectangular shape of the basin and does not 
incorporate the lake’s specific hypsography. The assumptions of FLake 
match best when using the mean depth of the lake, therefore the FLake 
simulations extend to a shallower depth than the other hydrodynamic 
models. 

2.1.2. GLM 
The General Lake Model (GLM, see Supplement -Table C1) is a ver

tical 1D hydrodynamic lake model developed by the University of 
Western Australia (Hipsey et al., 2019). GLM applies a flexible 
Lagrangian structure to replicate mixing dynamics. Here, neighboring 
layers either split or merge depending on the density of the layers. 
Surface mixing dynamics are calculated via an energy balance approach, 
where the available kinetic energy is compared to the potential energy 
of the water column. The model has been widely applied, for example to 
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simulate seasonal dynamics of temperature and ice cover (Bueche et al., 
2017, Fenocchi et al., 2018), project impacts of water management 
measures on lake ecosystems (Feldbauer et al., 2020, Ladwig et al., 
2018, Weber et al., 2017), and to assess scenarios regarding extreme 
events (Mi et al., 2018, Soares et al., 2019). It has also been rigorously 
tested in a large number of lakes (Bruce et al., 2018). In the version 1.0.0 
of LakeEnsemblR, version 3.1.0 of GLM is used. 

2.1.3. GOTM 
The General Ocean Turbulence model (GOTM, see Supplement - 

Table C1) was developed by Burchard et al. (1999). It is a vertical 1D 
hydrodynamic water column model that includes important hydrody
namic and thermodynamic processes related to vertical mixing in nat
ural waters (Umlauf et al., 2005). It was initially developed for 
modelling turbulence in the ocean (Burchard et al., 2006), but it has 
been adapted for use in hydrodynamic modelling in lakes (Sachse et al., 
2014). GOTM has been used to model the dissolution of CO2 in lakes 
(Enstad et al., 2008), extreme events in a eutrophic marine system 
(Ciglenečki et al., 2015), impact of macrophytes on water quality 
(Sachse et al., 2014) and hindcasting and future climate change pro
jections of the thermal structure of a lake (Ayala et al., 2020, Moras 
et al., 2019). LakeEnsemblR version 1.0.0 uses version 5.4.0 of the lake 
branch of GOTM. 

2.1.4. Simstrat 
Simstrat is a vertical 1D hydrodynamic lake model (see Supplement 

-Table C1), combining a buoyancy-extended k-epsilon model with seiche 
parameterisation, and was originally developed by Goudsmit et al. 
(2002). Simulated variables include surface energy fluxes, and vertical 
profiles of turbulent diffusivity and water temperature. Multiple options 
for external forcing are available, as well as variable wind drag co
efficients, inflow settings, and ice and snow formation (Gaudard et al., 
2019). Simstrat has been successfully applied in lakes and reservoirs of 
varying morphometry in different climate zones, and in scenarios 
regarding climate warming (Kobler and Schmid, 2019; Schwefel et al., 
2016; Stepanenko et al., 2013; Thiery et al., 2014). The model is 
currently maintained by the “Surface Waters - Research and Manage
ment” Department of EAWAG (Switzerland) and version 2.4.1 is 
currently used in LakeEnsemblR. 

2.1.5. MyLake 
MyLake (Multi-year Lake simulation model, see Supplement - 

Table C1) is a vertical 1D lake model developed and hosted by the 
Norwegian Institute for Water Research (NIVA), the University of Hel
sinki (Finland), and Université Laval (Canada) (Saloranta and Andersen, 
2007). MyLake simulates daily vertical profiles of lake water tempera
ture, density stratification, seasonal ice and snow cover, sediment-water 
dynamics, and phosphorus-phytoplankton interactions (Saloranta and 
Andersen, 2007). The model has been used to simulate water tempera
ture, ice and phytoplankton dynamics in mostly Northern and alpine 
regions (Couture et al., 2018; Kobler and Schmid, 2019; Saloranta et al., 
2009). The version used in LakeEnsemblR version 1.0.0 is written in R 
and corresponds to the MyLake Matlab version 1.2. 

2.2. R package description 

R is an open-source and freely available statistical program that is 
widely used in the limnological community and has previously been 
used for community-developed tools, such as rLakeAnalyzer (Read et al., 
2011; Winslow et al., 2019) and LakeMetabolizer (Winslow et al., 2016). 
All core functions in LakeEnsemblR version 1.0.0 have associated 
documentation with replicable examples all of which can be accessed 
through help functions within R (tested with versions 3.6.2 and 4.0.2, R 
Core Team, 2020). 

2.2.1. Main workflow 
The package works with one centralised configuration file, in which 

the user defines the settings of the model run and provides the locations 
of the standardised input files (see Box 1). The package exports the 
settings in the configuration file and the standardised input files to the 
requirements of each individual model (export_config() function), after 
which the models can be run (run_ensemble() function). The resulting 
water temperatures, densities, and ice cover thickness of the individual 
models are then compiled into a netcdf file and can be extracted or 
plotted in R (Fig. 1). If observations are provided, these are added to the 
netcdf file as well. Optionally, this process can be repeated with different 
forcing files or different parameter sets, to add multiple ensemble 
members to the netcdf (run_ensemble() function, add=TRUE argument). 
This supports multi-model ensembles as well as simulations of multiple 
parameterisations of the same model(s). The combined model output 
can either be stored in text or netcdf format. In case observations are 
provided, parameter values of the different models can be calibrated 
(cali_ensemble() function), see section “Calibration algorithms” (Fig. 1). 

2.2.2. Data requirements 
The minimum data requirements to run LakeEnsemblR are a hyp

sographic file, a light extinction coefficient, an initial temperature pro
file, and a time-series of meteorological forcing variables. In the 
LakeEnsemblR configuration file, the user needs to provide the location 
of the files. The files should have specific headings, so the program can 
identify what information is provided (see Supplement A). 

In the hypsographic file, the surface area (m2) per depth (m) of the 
lake is given. The light extinction coefficient (m−1) can be either given as 
a single value or varying over time. An initial temperature profile is 
needed if temperature observations are not provided for the simulation 
starting date. The meteorological forcing must have a constant time step 
and not contain missing values. Required meteorological forcing data 
include air temperature (◦C) and downwelling shortwave radiation (W/ 
m2). Wind speed (m/s) needs to be given as well, either as a scalar or a 
vector (including wind direction). Either relative humidity (%) or 
dewpoint temperature (◦C) needs to be provided, and if relative hu
midity is not provided, it is calculated from dewpoint temperature and 
air temperature according to the weathermetrics package (Anderson 
et al., 2013). Downwelling longwave radiation (W/m2) can either be 
provided directly to the models, or if it is not, will be calculated inter
nally from cloud cover (−), air temperature (◦C), and humidity (relative 
humidity or dewpoint temperature), according to Konzelmann et al. 
(1994). Air pressure at lake surface level is also needed to run the 
models, but air pressure at sea level can be provided instead, in which 
case air pressure at lake surface level is estimated using the barometric 
formula, assuming a sea level temperature of 15 ◦C (Berberan-Santos 
et al., 1997). Lastly, providing precipitation (mm/h or mm/d) is 
optional, but omitting it will cause the models that require precipitation 
(GOTM and GLM) to be run with a precipitation of 0, which may result in 
issues with the water balance. The influence of direct precipitation on 
the heat budget tends to be minimal (Imboden and Wüest, 1995). 

Optional data that can be provided are discharge (m3/s), tempera
ture (◦C) and salinity (PSU) of inflows, as well as water temperature and 
ice thickness observations. In the present version of LakeEnsemblR, 
outflow discharges can only be set to be identical to inflows, due to the 
many differences between the models in water balance calculations. 
Varying water levels are therefore not yet supported, although users can 
change model-specific settings related to the water balance. Observa
tions are used for initialising temperature profiles, calibration, and 
plotting. If provided, observations are added to the output netcdf file. 

2.2.3. Getting started 
The LakeEnsemblR code is available on GitHub (https://github. 

com/aemon-j/LakeEnsemblR) and needs to be installed into the R 
environment, following instructions on the GitHub page. LakeEnsemblR 
itself cannot run the models, but instead this is done through supporting 
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Box 1 
Settings controlled by the LakeEnsemblR configuration file. Whenever it is stated “Link to … file”, the file path to the LakeEnsemblR stand
ardised file should be given. The configuration file is written in yaml text format and is easily readable in any text editor. Comments are provided 
in the example configuration file to explain what each parameter does and what the input options are.  

- Location  
- Coordinates  
- Elevation  
- Depth  
- Hypsograph  

- Time  
- Start and end date of simulation  
- Model integration time step  

- Config files  
- Links to model-specific configuration files  

- Observations  
- Links to observational data (water temperature, ice thickness)  

- Input  
- Link to meteorological forcing  
- Link to initial temperature profile  
- Light extinction coefficient (constant or varying over time)  
- Switch ice models on or off  

- Inflows  
- Switch on or off  
- Link to inflow file  

- Output settings  
- File format  
- Depth resolution  
- Output time step  
- Variables to generate output for  

- Meteorological scaling factors (optional)  
- Model-specific parameter values  

- In this section, the user can change values in the model-specific configuration files  
- Calibration settings  

- Initial value, lower and upper boundaries for calibration of either model-specific parameters or scaling factors for the meteorological forcing.  

Fig. 1. Conceptual overview of the LakeEnsemblR package showing the main folder structure and important functions.  
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R packages (FLakeR, GLM3r, GOTMr, SimstratR, MyLakeR), which 
contain ways of running each model on the platforms Windows, MacOS, 
or Linux, through executables contained in the packages or having the 
model code in R. 

After LakeEnsemblR is installed, a folder containing the setup for the 
ensemble run should be created. This can be done by editing the tem
plate folder provided within the package or by copying a setup from 
https://github.com/aemon-j/LER_examples. The LakeEnsemblR 
configuration file (in yaml format) contains all modifiable settings and 
input file paths. The input files themselves (e.g. for meteorology or in
flows) need to be in comma-delimited format and need to have the 
correct column headers. Templates for any file can be generated through 
the get_template() function. Once the configuration file and the input files 
have been set up, the export_config() function can be run. This function 
exports the settings in the LakeEnsemblR configuration file and the 
LakeEnsemblR input files as required by each individual model. This 
means that for some models, units are converted, model parameters are 
changed, or input files are saved in a different format. The setup for each 
individual model is placed in its own directory. 

After running export_config(), the ensemble can be run through the 
run_ensemble() function. In each model folder, the model-specific output 
is generated, which is then written to a netcdf file or text files (user 
choice) in a shared “output” folder. run_ensemble() runs the models 
without calibration. The cali_ensemble() function runs the calibration, 
following the specifications in the calibration section of the Lake
EnsemblR configuration file, and stores the results of the calibration in 
the folder specified by the out_f argument. If netcdf output is chosen, 
several functions are available in the package to visualise the output 
(plot_heatmap(), plot_ensemble(), plot_resid()), load the data into R 
(load_var()), determine start and end of stratification and ice cover 
(analyse_ncdf()), or calculate goodness-of-fit (calc_fit()). Each function 
has documentation that can be loaded in R by typing ?name_function. 

While the running and calibration of the models is controlled by the 
R code, both the input and output files are in formats that are accessible 
by a wide array of software. Therefore, it is possible for users to do the 
pre- and post-processing with different software. A vignette is available 
on the LakeEnsemblR GitHub repository, which describes step-by-step 
how to run an ensemble, with multiple code examples. A wiki is avail
able with additional information and frequently asked questions. 

2.2.4. Calibration algorithms 
The LakeEnsemblR package provides functionality for automated 

parameter estimation using one of three methods. A simple calibration 
method based on Latin hypercube sampling, a Markov Chain Monte 
Carlo approach (MCMC), and a method for constrained fitting of the 
models to data using one of several available standard optimisation al
gorithms. The last two methods are implementations of the R package 
FME (Soetaert and Petzoldt, 2010) using the functions modMCMC() and 
modFit(), respectively. Details about the MCMC and constrained fitting 
can be obtained from Soetaert and Petzoldt (2010) and the sources given 
therein. The Latin hypercube sampling method uses upper and lower 
bounds for all parameters that are to be calibrated and then samples 
evenly within the parameter space given by these bounds (e.g., Mckay 
et al., 2000). Then the models are run and evaluated for all sampled 
parameters sets. By default, six measures of model performance are 
calculated: root mean square error (RMSE), Nash–Sutcliffe efficiency 
(NSE), Pearson correlation coefficient (r), mean error (bias), mean ab
solute error (MAE), and normalised mean absolute error (NMAE) (see 
Table C2 in the supplement). The user can also supply their own quality 
function which calculates measures of fit from modeled and observed 
data. Each of the three calibration methods can be run in parallel 
computation, where the models are distributed over the available cores. 
The parameters which are to be estimated, and their upper and lower 
bounds (if applicable) are specified in the master configuration file. 

Scaling factors of meteorological forcing are parameters that are 
often calibrated in models (e.g., Ayala et al., 2020; Gaudard et al., 2019). 

Some models within LakeEnsemblR have internal parameters that scale 
the (meteorological) forcing, but not all. In order to be able to use the 
same scaling factors for all five models, the calibration section of the 
master configuration file distinguishes between model-specific param
eters and meteorological (scaling) parameters. All three calibration 
methods can be used to obtain parameters that optimise the chosen 
model performance measure for the individual models. If common op
timum scaling factors for all models in the ensemble are wanted, the user 
needs to apply their own method to aggregate the scaling factors of the 
models. 

2.2.5. Combining multiple ensemble runs 
Uncertainty of lake model output comes from different sources that 

are related to: forcing data, initial conditions, model parameter values, 
or structural reasons like process description and numerical methods 
(Thomas et al., 2020). LakeEnsemblR foremost tackles the uncertainties 
related to structural differences between different models. But, Lake
EnsemblR can also be used to address other sources of uncertainties; the 
run_ensemble() function allows to add different model runs to a single 
netcdf file. Using this functionality, model runs with different parame
terisations, forcing data, or initial conditions can be run and compared. 
Many diagnostic functions like calc_fit() or plot_ensemble() have two 
additional arguments dim and dim_index to select which dimension 
should be used. 

3. Example application of LakeEnsemblR 

We applied the LakeEnsemblR package to two lake case studies: 
Lough Feeagh (IE) and Langtjern (NO). Lough Feeagh is a temperate 
monomictic lake with a maximum depth of 46 m and a surface area of 
3.9 km2. Langtjern is a shallow dimictic lake with a maximum depth of 
12 m and a surface area of 0.23 km2. Langtjern is separated into three 
distinct basins and our modelling efforts concentrated in the north basin 
with a maximum depth of 9 m and surface area of 0.06 km2. A detailed 
description of Lough Feeagh can be found in Allott et al. (2005), or de 
Eyto et al. (2016), and a detailed description of Langtjern can be found 
in Couture et al. (2015); Henriksen and Wright (1977); Wright (1983). 

The Latin hypercube sampling method with 500 parameter sets was 
applied to both study cases. For each model, the parameter set with the 
lowest RMSE was selected. One full year was used to calibrate the 
models (2013 for Lough Feeagh, May 2014 to May 2015 for Langtjern), 
and the following year was reserved for validation of the simulated 
temperatures. Scaling factors for wind speed and shortwave radiation 
were calibrated for all five models, and in addition model-specific pa
rameters k_min (GOTM), coef_mix_hyp (GLM), c_relax_C (FLake), a_seiche 
(Simstrat), and C_shelter (MyLake) were calibrated as well. These pa
rameters were selected from parameters used for calibration in previous 
studies (see Supplement - Table C3). The inflows and outflows were 
omitted in all simulations. For the Langtjern simulation, hourly meteo
rological forcing was used to explore water temperature and ice dy
namics, whereas for Lough Feeagh, the models were calibrated and 
validated using both hourly and daily averaged values to compare per
formance of water temperature, except for MyLake which only operates 
at the daily time scale. 

In this section, we provide an example of how LakeEnsemblR can be 
used to partition and quantify different sources of uncertainty; boundary 
conditions, initial conditions, parameter and structure uncertainty. In 
order to do this, the Lough Feeagh ensemble was run a total of 300 times 
over a period of 16 days during the stratified period (June 12th to June 
27th, 2013), while different factors were varied to estimate their impact 
on the simulation output. To isolate the effect of initial conditions, the 
models were run using 100 different initial temperature profiles, that 
were drawn from a normal distribution around the observed value with 
a standard deviation of 0.1 ◦C. For boundary conditions the models were 
forced with 100 different versions of the meteorological data, where 
random noise was added to air temperature and wind speed from normal 
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distributions with a mean of 0 ◦C and a standard deviation of 0.5 ◦C, and 
a mean of 0 m/s and a standard deviation of 0.5 m/s, respectively. For 
parameter uncertainty, 100 parameter values were drawn for each 
calibrated parameter using either a normal or lognormal distribution 
(Table C4). To quantify and compare the variation of the different model 
runs between the different sources of uncertainty, the standard devia
tion of the water temperature for each time step at two depths (0.9 m 
and 16 m) of the output was calculated across the 100 ensembles, for 
each model separately. 

For Lough Feeagh, we additionally ran an ensemble with different 
parameterisation of the five models to compare the uncertainty related 
to the chosen model with the uncertainty related to the calibrated pa
rameters and scaling factors for each individual model. Starting from the 
Latin hypercube calibration (using daily forcing data), we first selected 
the best 10% parameter sets in terms of their RMSE for each model. 
From these sets, we extracted the range of the calibrated parameter and 
scaling factors and then sampled 20 parameter sets for each model 
within this range using Latin hypercube sampling. Then we ran the 
ensemble using these parameter sets and combined all ensemble runs in 
one netcdf file. 

3.1. Lough Feeagh: water temperature dynamics 

Both simulations in Lough Feeagh using daily and hourly meteoro
logical forcing generally produced satisfactory results of simulated 
temperature in the calibration period, compared to other simulations (e. 
g. Arhonditsis et al., 2006; or Arhonditsis and Brett, 2004), with RMSE 
<1.3 ◦C for daily forcing (Table 1, Fig. 2) and RMSE < 0.9 ◦C for hourly 
forcing (Table 2). Except for FLake, even the uncalibrated model runs 
had satisfactory model performance, and calibration improved the 
model fits further. Compared to the calibration period, most models 
performed worse during the validation period (Table 1 for daily data and 
Table 2 for hourly data). Except for Simstrat, during the calibration 
phase all models tended to underestimate water temperatures over all 
depths and throughout the year (Fig. 3), on average ranging from about 
0.1 ◦C (GLM, hourly forcing, Tables 2)–1 ◦C (GOTM, daily forcing, 
Table 1). 

In general, the calibrated model performance was better using hourly 
forcing data compared to daily forcing data. Of the five models, FLake 
performed poorest when using daily forcing data and GLM performed 
poorest when using hourly forcing data. The best performing model 
differed between hourly and daily forcing data with GOTM performing 

best when using hourly data (calibration phase), and Simstrat per
forming best when using daily data (calibration and validation phase). 
In all models the largest residuals were seen at observed temperatures of 
10–15 ◦C, during the time of the onset and end of summer stratification, 
and around the depth of the thermocline (Fig. 3). Using daily average 
forcing data, the ensemble average was amongst the best performing fits 
and when using hourly forcing data the ensemble mean outperformed 
the individual models in most of the calculated performance measures, 
due to errors of individual models cancelling each other out in the 
ensemble mean (Tables 1 and 2). 

3.2. Langtjern: lake ice dynamics 

The models FLake, GOTM, MyLake and Simstrat accurately captured 
the onset of ice cover on Langtjern (−5 to +9 days) while GLM had 
larger errors (+10 to +17 days) (Fig. 4). The ensemble mean, which was 
calculated by taking the average of the day of year when ice onset and 
ice-off occurred, was also relatively accurate (+3 to +6 days). For 
capturing the disappearance of ice cover, there was larger variability 
between the models compared to ice onset. In both years, GOTM and 
Simstrat predicted ice-off too early (−44 to −16 days). GLM over
estimated ice-off in 2015 and 2016 by 27 to 19 days, respectively, 
whereas FLake and MyLake predicted ice-off relatively accurately both 
years (−1 to +8 days). 

The temperature profiles had a larger RMSE for the calibration and 
validation period in general for Langtjern compared to Lough Feeagh, 
particularly MyLake (3.62–4.24 ◦C) and GOTM (3.36–4.70 ◦C) (Table 3). 
These models failed to accurately simulate the stratification structure 
with increased mixing during the summer months leading to larger er
rors. FLake had the lowest uncalibrated RMSE (2.02 ◦C), which was 
further reduced following calibration (1.08 ◦C). For summary plots of 
Langtjern of the model ensemble and residuals see Figure B1 and B2. 

3.3. Uncertainty partitioning 

Parameter uncertainty had the largest effect on the standard devia
tion of water temperatures at the depth of 0.9 m compared to initial 
conditions and boundary conditions for all the models except FLake in 
Lough Feeagh (Fig. 5). Each of the parameters chosen were to account 
for mixing within the water column but their implementation in each 
model is different due to the different formulation of mixing equations in 
each model. Also, the distributions of these parameters were not 

Table 1 
Model results or goodness-of-fit - uncal(ibrated), cal(ibrated), and val(idated) - for water temperature (◦C) in Lough Feeagh using daily forcing data. Calibration was 
done for the year 2013 and validation for the year 2014. The best model performances are marked in bold. Shown are Root Mean Square Error (RMSE), Pearson’s r (r), 
Nash-Sutcliffe Efficiency (NSE), Normalised Mean Absolute Error (NMAE), Mean Absolute Error (MAE), and Bias (or mean error).  

measure period FLake GLM GOTM Simstrat MyLake Ensemble mean 

RMSE uncal 3.057 0.846 1.698 0.625 1.719 1.189 
Cal 1.210 0.670 1.261 0.502 0.656 0.629 
Val 2.297 0.847 1.425 0.693 0.780 0.916 

r uncal 0.682 0.979 0.965 0.977 0.946 0.974 
Cal 0.804 0.983 0.969 0.983 0.983 0.985 
Val 0.756 0.981 0.964 0.986 0.988 0.984 

NSE uncal 0.631 0.948 0.788 0.971 0.783 0.896 
cal 0.942 0.967 0.883 0.982 0.968 0.971 
val 0.776 0.944 0.840 0.962 0.952 0.934 

NMAE uncal 0.175 0.082 0.165 0.044 0.131 0.101 
cal 0.072 0.070 0.133 0.035 0.065 0.064 
val 0.132 0.081 0.132 0.045 0.067 0.079 

MAE uncal 2.011 0.691 1.501 0.438 1.318 0.962 
cal 0.812 0.558 1.152 0.337 0.533 0.534 
val 1.610 0.720 1.286 0.467 0.628 0.760 

Bias uncal −1.909 −0.575 −1.484 0.038 −1.308 −0.955 
cal −0.720 −0.347 −0.986 0.028 −0.436 −0.458 
val −1.560 −0.362 −1.048 ¡0.352 −0.526 −0.664  
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comparable between models with some being normally distributed 
while others were log-normal distributed (Table C4). As such, 
parameter-uncertainty cannot accurately be compared between models, 
but it can be accounted for when using a one-model ensemble. Across 
the different models, boundary conditions were more sensitive for GLM 
than for the other models, at both 0.9 m and 16 m depth. With regards to 
uncertainty in the initial conditions, FLake and GLM had higher stan
dard deviation at 0.9 m compared with GOTM, Simstrat and MyLake. 
GLM had a much higher standard deviation at 16 m for initial condi
tions, boundary conditions and parameter uncertainty. This is partly due 
to the strong stratification which is seen in GLM (Figure B3). For 
parameter uncertainty, GOTM, Simstrat and GLM had a high standard 
deviation at 0.9 m and 16 m, while it was lower for MyLake and FLake 
had the lowest uncertainty. s. 

3.4. Multi-parameter ensemble 

The model-specific parameters and scaling factors that resulted in 
good model performance had a broad distribution (see Figure B4 in the 
Supplement as an example). For the model-specific parameters of FLake, 
GLM, and Simstrat as well as for the shortwave radiation scaling factor 
for FLake and Simstrat this distribution spanned more than 75% of the 
range given in the calibration process. This suggests that the chosen 
parameters are interrelated and there might not be a single best 
parameter set, that the parameters were non-sensitive, or that the 
parameter range in the calibration was too narrow. The application of a 
multi-parameter ensemble is showing the uncertainty related to not 
being able to clearly identify a single best parameter set (Fig. 6). The 

Fig. 2. Calibrated ensemble output for simulated water temperature in 2013 for Lough Feeagh using daily forcing data, showing: a time series of model output at 0.9 
m depth for all models, b residuals for the time series at 0.9 m depth, c filled contour maps from each of the models and observations, and d the ensemble modeled 
depth profile for 17 June 2013. 

Table 2 
Model results or goodness-of-fit - uncal(ibrated), cal(ibrated), and val(idated) - 
for water temperature (◦C) in Lough Feeagh using hourly forcing data. MyLake 
cannot be run with hourly time steps and was therefore not included in this 
table. Calibration was done for the year 2013 and validation for the year 2014. 
The best model performances are marked in bold. Shown are Root Mean Square 
Error (RMSE), Pearson’s r (r), Nash-Sutcliffe Efficiency (NSE), Normalised Mean 
Absolute Error (NMAE), Mean Absolute Error (MAE), and Bias (or mean error).  

measure period FLake GLM GOTM Simstrat Ensemble 
mean 

RMSE Uncal 2.957 0.943 0.801 1.107 0.726 
Cal 0.617 0.819 0.594 0.599 0.469 
Val 0.607 1.174 0.855 0.701 0.570 

r Uncal 0.682 0.971 0.977 0.966 0.976 
cal 0.816 0.977 0.983 0.979 0.985 
val 0.824 0.972 0.984 0.985 0.992 

NSE uncal 0.655 0.935 0.953 0.910 0.961 
cal 0.985 0.951 0.974 0.974 0.984 
val 0.984 0.891 0.942 0.961 0.974 

NMAE uncal 0.157 0.081 0.074 0.072 0.063 
cal 0.040 0.066 0.058 0.046 0.045 
val 0.044 0.087 0.070 0.047 0.051 

MAE uncal 1.909 0.718 0.634 0.756 0.581 
cal 0.413 0.600 0.477 0.445 0.378 
val 0.461 0.874 0.672 0.496 0.466 

Bias uncal −1.749 −0.340 −0.489 0.567 ¡0.305 
cal −0.191 ¡0.091 −0.318 0.074 −0.126 
val −0.300 0.096 −0.548 −0.345 −0.272  
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uncertainty of the simulated water temperature was larger during 
summer months and at greater depths for all models. For the water 
temperature close to the surface (0.9 m depth) the uncertainty due to the 
chosen model was slightly larger than the one related to the calibrated 
parameters throughout the year, for all models. At 16 m depth the 

uncertainty due to the calibrated parameter was about the same as the 
one related to the used model. 

Fig. 3. Water temperature residual diagnostic outputs from the calibrated ensemble run for Lough Feeagh in the year 2013 using daily forcing data. a Observed water 
temperature vs. residuals; b residuals vs depth, with the absolute simulated temperature in ◦C; c day of the year vs residuals and d distribution of the residuals. 

Fig. 4. Calibrated ensemble model time series output for ice thickness for Langtjern, Norway. Dashed lines indicate the observed onset of ice and dotted lines indicate 
observed ice-off. 
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3.5. Discussion 

As the simulations with hourly time step in Lough Feeagh show, the 
ensemble mean can outperform individual lake models, which is in line 
with the findings of Trolle et al. (2014) and Kobler and Schmid (2019). 

For the Lough Feeagh simulations with a daily time step, the Simstrat 
model performed best, followed by the ensemble mean and MyLake. 
Using hourly time steps, GOTM performed best of the four models 
individually, albeit not as good as the ensemble mean. In Langtjern, 
FLake simulated water temperature profiles best, while Simstrat and 

Table 3 
Model results or goodness-of-fit - uncal(ibrated), cal(ibrated), and val(idated) - for water temperature (◦C) in Langtjern using hourly forcing data (as MyLake requires 
daily input, LakeEnsemblR averages sub-daily input to daily time steps for MyLake simulations). Calibration was done for the year 2014–15 and validation for the year 
2015–16. The best model performances are marked in bold. Shown are Root Mean Square Error (RMSE), Pearson’s r (r), Nash-Sutcliffe Efficiency (NSE), Normalised 
Mean Absolute Error (NMAE), Mean Absolute Error (MAE), and Bias (or mean error).  

Measure Period FLake GLM GOTM Simstrat MyLake Ensemble Mean 

RMSE uncal 2.020 2.394 4.696 3.437 4.416 2.838 
cal 1.084 2.164 3.364 2.568 3.626 3.013 
val 1.135 1.764 4.045 4.171 4.242 3.699 

r uncal 0.887 0.868 0.786 0.833 0.807 0.874 
cal 0.983 0.906 0.865 0.913 0.845 0.881 
val 0.983 0.938 0.818 0.755 0.786 0.824 

NSE uncal 0.895 0.760 0.074 0.504 0.181 0.662 
cal 0.963 0.794 0.501 0.709 0.420 0.622 
val 0.962 0.862 0.275 0.229 0.203 0.433 

NMAE uncal 0.453 0.530 0.910 0.632 0.659 0.492 
cal 0.450 0.433 0.817 0.569 0.599 0.587 
val 0.454 0.362 0.828 0.677 0.636 0.602 

MAE uncal 1.260 1.601 3.515 2.637 3.126 1.929 
cal 0.830 1.469 2.686 2.211 2.818 2.189 
val 0.863 1.022 3.017 3.059 2.880 2.361 

Bias uncal 0.985 ¡0.298 1.076 −0.515 0.409 0.344 
cal 0.274 −0.575 0.313 −0.834 −0.615 0.019 
val 0.399 ¡0.104 0.823 −1.062 0.160 0.328  

Fig. 5. Partitioning of the different sources of uncertainty for ensemble simulations in Lough Feeagh; boundary conditions, initial conditions and parameters between 
models at depths of 0.9 m and 16 m. Each model was simulated 100 times for 16 days with adjustments to the boundary conditions, initial conditions, and model 
parameters accordingly. Standard deviation was calculated across all 100 simulations for each day. 
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MyLake performed the worst, although these two models simulated 
ice-on and ice-off well. In both Lough Feeagh and Langtjern, most 
models performed worse in the validation period than in the calibration 
period, which is to be expected due to the short (1 year) calibration 
period. 

As shown in this study, and also observed while testing Lake
EnsemblR in multiple other lakes (unpublished results), the best- 
performing model could vary per study case, and no single model 
consistently outperformed others. This shows an advantage of using 
ensembles compared to single model simulations, which are not likely to 
provide an optimal fit in every circumstance, while ensembles can 
incorporate individual strengths of multiple models. Similarly, ensemble 
modelling can highlight weaknesses of individual models compared to 
others which can further aid in model selection or refinement. 

Ensemble predictions also give an indication of the uncertainty due 
to a different process description or parameterisation. This uncertainty 
may vary over depth or time (e.g. Figs. 2 and 5). An increased uncer
tainty in ensemble predictions represents diverging behaviour of 
different ensemble members. It might be important to interpret model 
predictions during periods with increased uncertainty with additional 
caution, and ensembles are a way to identify these periods. For a single 
set of parameters, the investigation of model-specific residuals in 
particular (e.g. Fig. 3) supports the quantification of uncertainty and the 
identification of better suited models for specific case studies. In the 
Lough Feeagh case study, the models GOTM, MyLake and Simstrat had a 
bias for simulated water temperatures near the lake bottom and during 
fall mixing (Fig. 3 a and 3 b). By looking at the depth-discrete residual 
dynamics (Fig. 3 c) as well as the density distribution of residuals (Fig. 3 
d), the model with the lowest overall bias for Lough Feeagh was GLM 
(scattering over the whole vertical axis) and Simstrat (negative bias at 
surface and positive bias at bottom). Running a calibrated model 
ensemble allows the user to quantify these model-specific biases and 
uncertainties, making scenario projections or forecastings more robust. 
Additionally, running ensembles with different parameterisations, 
initial conditions, or different boundary conditions can help to quantify 
the uncertainties related to the respective source. 

Similarly to Kobler and Schmid (2019) and Yao et al. (2014), there 

was large variation between the different models in predicting ice cover 
phenology (Fig. 4). However, most models captured the overall timing 
of ice-on and ice-off, which play a key role in the subsequent timing of 
stratification and several ecological processes in a lake. The ensemble 
represents the large uncertainty that is inherent in modelling lake ice 
cover (Sharma et al., 2019), which is important to account for when 
modelling lakes with periodic ice cover. It has recently been shown that 
the ensemble mean of ice timing and thickness can perform better than 
the individual models (Kobler and Schmid, 2019), which was supported 
here. 

A key part of modeling is being able to identify and quantify the 
different sources of uncertainty. This is especially important if the model 
is to be used in a forecasting framework. Thomas et al. (2020) used a 
single one-dimensional hydrodynamic model and partitioned out the 
sources of uncertainty over a 16-day forecast of water temperature 
profiles in a reservoir. Using the LakeEnsemblR framework, this can be 
explored and quantified further, using multiple models. The brief ex
amples that are shown in Figs. 5 and 6 are a way in which such an 
analysis can be conducted and the information gained from this explo
ration can inform decisions on model and parameter selection. 

4. Summary 

4.1. Framework 

LakeEnsemblR facilitates the pre-processing of data that is needed to 
run multiple 1D models and combines the results into a single, stand
ardised output file. Each model in the package requires a different 
format and structure of its configuration and input files. This has been 
standardised in LakeEnsemblR by requiring only one set of input and 
configuration files and by using the same format for all input files. By 
having to specify a specific header for each column of an input file, 
mistakes involving column order and units are avoided, and in the 
configuration file only a reference to the file location needs to be given, 
instead of having to specify which column contains what information. 

LakeEnsemblR relies on R packages for each model, hosted on 
GitHub and archived in Zenodo (see Software Availability). These 

Fig. 6. Uncertainty of the simulated water temperature due to the calibrated model parameter and scaling factors for the five models in Lough Feeagh, at 0.9 m depth 
and 16 m depth. The shaded areas give the range of values of an ensemble of 20 model runs with different parameterisation. 
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packages contain pre-compiled model executables for the platforms 
Windows, MacOS, and Linux, or the model code in R. This greatly fa
cilitates user access to the models, as the ability to run the models is 
gained fully within the R environment. Some models provide pre- 
compiled executables on their respective websites, but often for only 
one platform, which regularly requires users to compile the model 
themselves. LakeEnsemblR removes this initial hurdle for modellers who 
want to apply one or multiple models. 

The calibration methods provided in LakeEnsemblR can all be 
applied to the models without requiring the user to write custom cali
bration scripts. The ability to use the same calibration method for 
multiple models increases the comparability of the simulations. Results 
in the present study confirm that LakeEnsemblR’s calibration methods 
can markedly improve model fit. 

Like the input, each model generates its own specific output, often in 
different file types and consisting of different variables and units. 
LakeEnsemblR combines these outputs into one standardised format, 
either in text or netcdf. This allows quick application of the post- 
processing functions provided in LakeEnsemblR (e.g. analyse_ncdf() 
and plot_heatmap()), but also makes it easier for users to extract output 
and process the results in their preferred way. The standardised output is 
only generated for variables that are shared between the models. 
However, the full model-specific output is still available in the model 
output folders and can be accessed by the users. 

By facilitating pre-processing, running, calibration, and post- 
processing, LakeEnsemblR supports accessible model ensemble appli
cations by aquatic modellers new to the field. However, because all files 
required to run the models are present in the model folders, it in no way 
restricts more experienced users from using the full functionality of each 
of the different models. The “model parameters” section of the Lake
EnsemblR configuration file allows the user to change any parameter in 
the model-specific configuration files, and files generated by Lake
EnsemblR’s export_config() function can be manually altered before 
starting the ensemble run. 

4.2. Recommendations for use 

LakeEnsemblR eases the configuration, running and processing of a 
hydrodynamic lake model ensemble, and allows the user to explore the 
results in various ways. However, by making it easier to apply multiple 
models, there is the risk that less attention will be paid to individual 
model setup and that models may be applied to situations beyond what 
they were designed and tested for. For example, by considering five 
models at once, the overall number of parameters increases markedly 
and the user might be tempted to only use default parameter settings 
without critical consideration of the consequences. 

In order to properly calibrate a model and avoid problems such as 
nonuniqueness of calibrated parameter sets (i.e. equifinality - see Beven, 
2006) it is important to make deliberate decisions and employ rigorous 
model validation. In addition to looking at single performance metrics 
for the simulated state variables, it is advisable to assess the model’s 
capability to reproduce fluxes and emerging properties, patterns, and 
relationships (Hipsey et al., 2020). In order to find and select the right 
parameters to calibrate, the best practice approach would be to apply a 
sensitivity analysis (e.g. Andersen et al., 2021). Many methods for 
sensitivity analysis are available, but the Latin hypercube sampling 
method included in LakeEnsemblR can be used as an initial approach to 
quantify sensitivity. Where a complete sensitivity analysis is not 
feasible, expert or a priori knowledge on the models should be used to 
select the calibration parameters. In the present study, we aimed at 
demonstrating the possibility of calibration with LakeEnsemblR rather 
than exploring the parameter sensitivity of each model, and we chose 
model parameters based on the parameter selection done in previous 
studies (see Table C3 in the Supplement for parameters that were cali
brated in previous studies). 

However, the possibility to combine runs with multiple models and 

parameterisations also is an opportunity to tackle issues regarding 
sources of uncertainty. LakeEnsemblR can be used to quantify different 
sources of uncertainty (boundary conditions, initial conditions, param
eter, model structure), increase understanding about what model works 
best under different circumstances, and also within-model comparisons 
can be made. Although not applied in the present study, post-processing 
techniques applied in other research fields, such as blending (Vannitsem 
et al., 2020), can be applied to the ensemble result so that ensemble 
members are weighted and more information is retrieved from the 
ensemble. However, we advocate the use of LakeEnsemblR within 
established modelling practices (e.g., Arhonditsis and Brett, 2004; 
Hipsey et al., 2020), rather than as a replacement. 

4.3. Outlook 

The simulations in Lough Feeagh and Langtjern showcase the main 
functionalities of the package. However, LakeEnsemblR can be applied 
to a wider range of locations and scenarios. In long-term climate simu
lations, lake model ensembles have been applied as part of the Inter- 
Sectoral Impact Model Intercomparison Project (ISIMIP) (Frieler et al., 
2017; Vanderkelen et al., 2020), and LakeEnsemblR can facilitate 
similar efforts. Ensembles offer several possibilities for weekly or sea
sonal forecasting efforts (e.g.,Krishnamurti et al., 2000; Thomas et al., 
2020), and LakeEnsemblR can be run not only with multiple models, but 
also forced with several different weather forecasts. Studies of processes 
in lake physics that are difficult to model, such as consequences of 
extreme weather events (Mesman et al., 2020) or lake ice phenology 
(Yao et al., 2014), can especially benefit from an ensemble approach. 
While LakeEnsemblR currently only covers hydrodynamic models, its 
predictions can also serve as input for water quality models. Such a 
water quality ensemble can ultimately serve to assess and qualify the 
performance of multiple aquatic ecosystem models (Hipsey et al., 2020), 
while also giving uncertainty to the ecological impacts of management 
scenarios on ecosystems. More applications are possible, and the 
modular structure of the LakeEnsemblR code allows for the addition of 
new models and continued development. 

Although the advantages of ensemble modelling have been 
acknowledged by the lake modelling community, until now no software 
to run multiple lake models for a single study site was available. Lake
EnsemblR provides the necessary tools to widely apply ensembles of 1D 
lake models. Additionally to facilitating pre-processing of data, running 
of an ensemble of models, and standardising output, LakeEnsemblR al
lows the aquatic science community to start rigorous intra-model com
parison studies of alternative process-based vertical 1D hydrodynamic 
lake models. Prior to the development of LakeEnsemblR, having an 
ensemble of models bound together with a consistent application pro
gramming interface, rigorous tests and comparison of alternative model 
codes were rare. We sincerely hope that LakeEnsemblR can provide a 
consistent framework for lake ensemble studies, uncertainty partition
ing investigations, and intra-comparison modelling studies. 
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Software and data availability 

The LakeEnsemblR code is available at https://github.com/a 
emon-j/LakeEnsemblR. LakeEnsemblR and the packages it relies upon 
(FLakeR, GLM3r, GOTMr, SimstratR, MyLakeR, glmtools, gotmtools) 
can be installed in R following the instructions on the GitHub page, using 
the install_github() function of the devtools package (Wickham et al., 
2020). The packages to run the models do not contain the source code of 
each model, only the executables for Windows, MacOS, and Linux. Links 
to the websites of the respective models are provided on GitHub. 
Example set-ups of LakeEnsemblR are provided at https://github.com/a 
emon-j/LER_examples. For further instructions on how to run Lake
EnsemblR, we refer the reader to the AEMON-J GitHub page (https://gi 
thub.com/aemon-j/LakeEnsemblR), where a vignette and a Wiki are 
available with detailed instructions and code examples. 

LakeEnsemblR version 1.0.0 and the model packages have been 
archived in Zenodo under the following DOIs:  

- LakeEnsemblR: 10.5281/zenodo.4146899  
- FLakeR: 10.5281/zenodo.4139807  
- GLM3r: 10.5281/zenodo.4146848  
- GOTMr: 10.5281/zenodo.4139780  
- SimstratR: 10.5281/zenodo.4139731  
- MyLakeR: 10.5281/zenodo.4067998 

When using LakeEnsemblR for a publication, please also cite the 
sources of the respective models that you are including in your ensemble 
(see citation(“LakeEnsemblR”)). 
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