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Model ensembles have several benefits compared to single-model applications but are not frequently used within
the lake modelling community. Setting up and running multiple lake models can be challenging and time
consuming, despite the many similarities between the existing models (forcing data, hypsograph, etc.). Here we
present an R package, LakeEnsemblR, that facilitates running ensembles of five different vertical one-
dimensional hydrodynamic lake models (FLake, GLM, GOTM, Simstrat, MyLake). The package requires input
in a standardised format and a single configuration file. LakeEnsemblR formats these files to the input required

by each model, and provides functions to run and calibrate the models. The outputs of the different models are
compiled into a single file, and several post-processing operations are supported. LakeEnsemblR’s workflow
standardisation can simplify model benchmarking and uncertainty quantification, and improve collaborations
between scientists. We showcase the successful application of LakeEnsemblR for two different lakes.

1. Introduction

Numerical process-based lake models are powerful tools to simulate
processes occurring in aquatic ecosystems. These models enable the
users to investigate scientific and engineering hypotheses or scenarios,
which would otherwise not be feasible (or even possible) to field-test for
physical, logistical, political or financial reasons. Over recent decades,
the understanding of fluid dynamics and physical transport processes in
lakes has improved thanks to enhanced field monitoring and intensive
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laboratory studies (Csanady, 1975; Imberger, 1985; Imberger and
Hamblin, 1982; Imboden, 1973; Kitaigorodskii and Miropolsky, 1970;
Spigel et al., 1986; Spigel and Imberger, 1980). With better empirical
relationships and physical understanding of processes, the pioneer lake
models that emerged from these studies were essential to addressing
emerging water quality issues like eutrophication (French and Imberger,
1984).

Today, one-dimensional (1D) lake models are frequently used to
characterise lake hydrodynamics. These models assume complete and
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instantaneous horizontal mixing. In many systems this is a reasonable
assumption, because vertical thermal gradients are typically much
larger than horizontal thermal gradients. The assumption holds for lakes
with a small to moderate surface area that are not affected by Coriolis
acceleration or other significant horizontal transport processes (Patter-
son et al., 1984). To model water column thermal dynamics resulting
from atmospheric exchange processes, inflow entrainment and turbu-
lence, different theoretical approaches have been developed and applied
in lake models, e.g., bulk models, energy-balance approach models, and
models that use a pure turbulence approach to account for mixing
(Goudsmit et al., 2002). Alternative approaches apply simpler schemes
to solve advection-diffusion equations or use constants for transport
processes.

Since the 1980s, there has been a rapid expansion in the publication
of process-based aquatic ecosystem models. However, the aquatic
ecosystem community has not fully exploited the diversity of available
models by comparing the performance of models against one another,
which affords both the opportunity to identify technical improvements
but also improve overall model predictions (Janssen et al., 2015). Crit-
ical voices still highlight the problem that modelling teams tend to
‘reinvent the wheel’ (Mooij et al., 2010) instead of building on existing
software. The Lake Model Intercomparison Project (LakeMIP) had
several key findings regarding the current state of lake modelling: (1)
the majority of lake models replicate surface temperature dynamics
coherently well (Stepanenko et al., 2013), (2) individual lake models
clearly outperform others for specific lake sites (Thiery et al., 2014), and
(3) models that explicitly incorporate sediment heating and resolve
turbulence over lake depth are better suited to represent lakes in nu-
merical meteorological studies and to research hydrodynamic processes
for deep lakes (Stepanenko et al., 2013; Thiery et al., 2014). Most au-
thors agree that open community approaches as well as publishing the
model as open-source code are the best steps for sustainable develop-
ment and to ensure future technical improvements (Frass! et al., 2019;
Janssen et al., 2015; Read et al., 2016). Still, a lack of common com-
munity framework for model calibration, validation, and processing has
resulted in few studies that quantify model performance (bench-
marking) and minimal progress in improving code and applications
(Arhonditsis et al., 2014; Hipsey et al., 2020).

In the 1990s, atmospheric researchers popularised the use of
ensemble modeling in operational forecasting and uncertainty pre-
dictions (Parker, 2013). Ensemble modeling involves either running the
same model multiple times with different settings or running multiple
models on the same study site. One of the main advantages of model
ensembles is that the uncertainty in the model predictions can be esti-
mated (Trolle et al., 2014;Wu et al., 2020). This allows the modeller to
assess the likelihood of occurrence of certain model predictions. Con-
nected to this, ensemble runs of an individual model are a means of
taking into account nonuniqueness (i.e. equifinality - see Beven, 2006)
in parameter sets (Gal et al., 2014; Nielsen et al., 2014). The average of
individual model runs from different models can be a more robust pre-
dictor than any of the individual model runs (Kobler and Schmid, 2019;
Trolle et al., 2014; and sources therein). If only the “best” model is
retained, valuable information in other model fits is disregarded (Baker
and Ellison, 2008). An ensemble of multiple models supports the iden-
tification of methodological and technical differences and shortcomings
between the different models, and covers a wide set of different
parameterisations of processes. This can improve the understanding of
model performance and guide future model development (Frassl et al.,
2019; Janssen et al., 2015).

Model ensembles are now widely used in meteorological forecasting
(Gneiting and Raftery, 2005; Leutbecher and Palmer, 2008), flood
forecasting (Wu et al., 2020), and climate studies (Mu et al., 2017;
Parker, 2010). Ensemble models have gained momentum in large-scale
water quality studies (Van Vliet et al., 2019), but their adoption in
limnology has been slow. We believe the limnology community recog-
nises the benefits of using ensembles and multi-model simulations
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(Nielsen et al., 2014; Stepanenko et al., 2010), but lacks scientific soft-
ware to facilitate lake ensemble modelling. Past efforts to apply multiple
lake models to the same study systems (Nielsen et al., 2014; Trolle et al.,
2014; Yao et al., 2014; ISIMIP: Frieler et al., 2017; Gal et al., 2020;
Kobler and Schmid, 2019; LakeMIP: Stepanenko et al., 2010) have often
been the result of large international collaborations. While these ini-
tiatives have revealed pertinent new information, the labour required to
build these networks is a barrier to broader implementation.

To remove these barriers and facilitate running ensembles of lake
models, we developed LakeEnsemblR. Here, we describe the package
version 1.0.0 and apply it to predict temperature and ice cover in two
lakes. LakeEnsemblR is a numerical framework to run five 1D hydro-
dynamic lake models simultaneously (see Supplement - Table C1), using
the same configuration and driver data, in the form of a package in the R
software environment (R Core Team, 2020). The model source codes are
open-source and the model executables can be run on Windows, MacOS,
and Linux platforms. The two main objectives of LakeEnsemblIR are a) to
improve the accessibility of different hydrodynamic models for new
users and b) to allow experienced users to utilise the powerful approach
of running an ensemble of lake models in a consistent and coherent
framework. These two aims are achieved through six key aspects of its
functionality: 1) facilitating easy setup and configuration of model files;
2) running all models with standardised input files; 3) standardising
model output; 4) providing tools for convenient post-processing; 5)
standardising calibration routines; and 6) aggregating and enabling for
ensemble averaging to account for different sources of uncertainty be-
tween the models. The structure of the package allows future develop-
ment and addition of more models, and the code is freely accessible
under a GNU General Public License v2.0.

2. Methods
2.1. Model descriptions

2.1.1. FLake

FLake (Freshwater Lake model, see Supplement -Table C1) is a bulk
model that was developed primarily for fast lake-to-atmosphere
coupling within numerical weather prediction models (Mironov, 2008,
2005). FLake simulates lake systems using a two-layer parametric rep-
resentation focusing on the heat budget. The upper, well-mixed layer is
considered thermally homogeneous, whereas the temperature in the
lower, stably stratified layer is approximated by a self-similar (dimen-
sionless shape) profile. FLake also uses self-similarity to model ice and
sediment temperatures. Due to its computational efficiency, FLake has
been widely used in numerical weather prediction models (Mironov
et al., 2010; Separovi¢ et al., 2013) and lake studies on both global and
local scale (Thiery et al., 2014 ; Voros et al.,, 2010; Woolway et al.,
2019). LakeEnsemblIR version 1.0.0 uses a version of FLake that has been
adapted to include heat input through inflows (pers. comm. Georgiy
Kirillin). The default FLake model option implemented in LakeEnsemblR
simulates the vertical temperature dynamics up to the mean depth of the
lake, as FLake assumes a rectangular shape of the basin and does not
incorporate the lake’s specific hypsography. The assumptions of FLake
match best when using the mean depth of the lake, therefore the FLake
simulations extend to a shallower depth than the other hydrodynamic
models.

2.1.2. GLM

The General Lake Model (GLM, see Supplement -Table C1) is a ver-
tical 1D hydrodynamic lake model developed by the University of
Western Australia (Hipsey et al.,, 2019). GLM applies a flexible
Lagrangian structure to replicate mixing dynamics. Here, neighboring
layers either split or merge depending on the density of the layers.
Surface mixing dynamics are calculated via an energy balance approach,
where the available kinetic energy is compared to the potential energy
of the water column. The model has been widely applied, for example to
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simulate seasonal dynamics of temperature and ice cover (Bueche et al.,
2017, Fenocchi et al., 2018), project impacts of water management
measures on lake ecosystems (Feldbauer et al., 2020, Ladwig et al.,
2018, Weber et al., 2017), and to assess scenarios regarding extreme
events (Mi et al., 2018, Soares et al., 2019). It has also been rigorously
tested in a large number of lakes (Bruce et al., 2018). In the version 1.0.0
of LakeEnsemblR, version 3.1.0 of GLM is used.

2.1.3. GOTM

The General Ocean Turbulence model (GOTM, see Supplement -
Table C1) was developed by Burchard et al. (1999). It is a vertical 1D
hydrodynamic water column model that includes important hydrody-
namic and thermodynamic processes related to vertical mixing in nat-
ural waters (Umlauf et al., 2005). It was initially developed for
modelling turbulence in the ocean (Burchard et al., 2006), but it has
been adapted for use in hydrodynamic modelling in lakes (Sachse et al.,
2014). GOTM has been used to model the dissolution of CO2 in lakes
(Enstad et al., 2008), extreme events in a eutrophic marine system
(Ciglenecki et al., 2015), impact of macrophytes on water quality
(Sachse et al., 2014) and hindcasting and future climate change pro-
jections of the thermal structure of a lake (Ayala et al., 2020, Moras
et al., 2019). LakeEnsemblR version 1.0.0 uses version 5.4.0 of the lake
branch of GOTM.

2.1.4. Simstrat

Simstrat is a vertical 1D hydrodynamic lake model (see Supplement
-Table C1), combining a buoyancy-extended k-epsilon model with seiche
parameterisation, and was originally developed by Goudsmit et al.
(2002). Simulated variables include surface energy fluxes, and vertical
profiles of turbulent diffusivity and water temperature. Multiple options
for external forcing are available, as well as variable wind drag co-
efficients, inflow settings, and ice and snow formation (Gaudard et al.,
2019). Simstrat has been successfully applied in lakes and reservoirs of
varying morphometry in different climate zones, and in scenarios
regarding climate warming (Kobler and Schmid, 2019; Schwefel et al.,
2016; Stepanenko et al., 2013; Thiery et al., 2014). The model is
currently maintained by the “Surface Waters - Research and Manage-
ment” Department of EAWAG (Switzerland) and version 2.4.1 is
currently used in LakeEnsemblR.

2.1.5. MyLake

MyLake (Multi-year Lake simulation model, see Supplement -
Table C1) is a vertical 1D lake model developed and hosted by the
Norwegian Institute for Water Research (NIVA), the University of Hel-
sinki (Finland), and Université Laval (Canada) (Saloranta and Andersen,
2007). MyLake simulates daily vertical profiles of lake water tempera-
ture, density stratification, seasonal ice and snow cover, sediment-water
dynamics, and phosphorus-phytoplankton interactions (Saloranta and
Andersen, 2007). The model has been used to simulate water tempera-
ture, ice and phytoplankton dynamics in mostly Northern and alpine
regions (Couture et al., 2018; Kobler and Schmid, 2019; Saloranta et al.,
2009). The version used in LakeEnsemblR version 1.0.0 is written in R
and corresponds to the MyLake Matlab version 1.2.

2.2. R package description

R is an open-source and freely available statistical program that is
widely used in the limnological community and has previously been
used for community-developed tools, such as rLakeAnalyzer (Read et al.,
2011; Winslow et al., 2019) and LakeMetabolizer (Winslow et al., 2016).
All core functions in LakeEnsemblR version 1.0.0 have associated
documentation with replicable examples all of which can be accessed
through help functions within R (tested with versions 3.6.2 and 4.0.2, R
Core Team, 2020).
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2.2.1. Main workflow

The package works with one centralised configuration file, in which
the user defines the settings of the model run and provides the locations
of the standardised input files (see Box 1). The package exports the
settings in the configuration file and the standardised input files to the
requirements of each individual model (export config() function), after
which the models can be run (run_ensemble() function). The resulting
water temperatures, densities, and ice cover thickness of the individual
models are then compiled into a netedf file and can be extracted or
plotted in R (Fig. 1). If observations are provided, these are added to the
netcdf file as well. Optionally, this process can be repeated with different
forcing files or different parameter sets, to add multiple ensemble
members to the netcdf (run_ensemble() function, add=TRUE argument).
This supports multi-model ensembles as well as simulations of multiple
parameterisations of the same model(s). The combined model output
can either be stored in text or netcdf format. In case observations are
provided, parameter values of the different models can be calibrated
(cali_ensemble() function), see section “Calibration algorithms” (Fig. 1).

2.2.2. Data requirements

The minimum data requirements to run LakeEnsembIR are a hyp-
sographic file, a light extinction coefficient, an initial temperature pro-
file, and a time-series of meteorological forcing variables. In the
LakeEnsemblR configuration file, the user needs to provide the location
of the files. The files should have specific headings, so the program can
identify what information is provided (see Supplement A).

In the hypsographic file, the surface area (m?) per depth (m) of the
lake is given. The light extinction coefficient (m™1) can be either given as
a single value or varying over time. An initial temperature profile is
needed if temperature observations are not provided for the simulation
starting date. The meteorological forcing must have a constant time step
and not contain missing values. Required meteorological forcing data
include air temperature (°C) and downwelling shortwave radiation (W/
m?). Wind speed (m/s) needs to be given as well, either as a scalar or a
vector (including wind direction). Either relative humidity (%) or
dewpoint temperature (°C) needs to be provided, and if relative hu-
midity is not provided, it is calculated from dewpoint temperature and
air temperature according to the weathermetrics package (Anderson
et al., 2013). Downwelling longwave radiation (W/m?) can either be
provided directly to the models, or if it is not, will be calculated inter-
nally from cloud cover (-), air temperature (°C), and humidity (relative
humidity or dewpoint temperature), according to Konzelmann et al.
(1994). Air pressure at lake surface level is also needed to run the
models, but air pressure at sea level can be provided instead, in which
case air pressure at lake surface level is estimated using the barometric
formula, assuming a sea level temperature of 15 °C (Berberan-Santos
et al., 1997). Lastly, providing precipitation (mm/h or mm/d) is
optional, but omitting it will cause the models that require precipitation
(GOTM and GLM) to be run with a precipitation of 0, which may result in
issues with the water balance. The influence of direct precipitation on
the heat budget tends to be minimal (Imboden and Wiiest, 1995).

Optional data that can be provided are discharge (m®/s), tempera-
ture (°C) and salinity (PSU) of inflows, as well as water temperature and
ice thickness observations. In the present version of LakeEnsemblR,
outflow discharges can only be set to be identical to inflows, due to the
many differences between the models in water balance calculations.
Varying water levels are therefore not yet supported, although users can
change model-specific settings related to the water balance. Observa-
tions are used for initialising temperature profiles, calibration, and
plotting. If provided, observations are added to the output netcdf file.

2.2.3. Getting started

The LakeEnsemblR code is available on GitHub (https://github.
com/aemon-j/LakeEnsemblR) and needs to be installed into the R
environment, following instructions on the GitHub page. LakeEnsemblR
itself cannot run the models, but instead this is done through supporting
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Box 1

Settings controlled by the LakeEnsemblR configuration file. Whenever it is stated “Link to ... file”, the file path to the LakeEnsembIR stand-
ardised file should be given. The configuration file is written in yaml text format and is easily readable in any text editor. Comments are provided
in the example configuration file to explain what each parameter does and what the input options are.

- Location
- Coordinates
- Elevation
- Depth
- Hypsograph
- Time
- Start and end date of simulation
- Model integration time step
- Config files
- Links to model-specific configuration files
- Observations
- Links to observational data (water temperature, ice thickness)
- Input
- Link to meteorological forcing
- Link to initial temperature profile
- Light extinction coefficient (constant or varying over time)
- Switch ice models on or off
- Inflows
- Switch on or off
- Link to inflow file
- Output settings
- File format
- Depth resolution
- Output time step
- Variables to generate output for
- Meteorological scaling factors (optional)
- Model-specific parameter values
- In this section, the user can change values in the model-specific configuration files
- Calibration settings
- Initial value, lower and upper boundaries for calibration of either model-specific parameters or scaling factors for the meteorological forcing.

Main directory I
Model directories
s . : - Direct: Directo Director
Configuration file export_config() Model A Model B Model C
Config file Config fil Config fil e
Ensemble setup . s i Sl
e.g. time step, location, M logy M logy Meteorology
parameter values, etc.
LakeEnsemblR
L ]
: calc_fit() Model

Meteorology OUtPUt dll’ECtOI‘y analyse_ncdf() performance

Inflow Standar?iilsed plot_ensemble()
output file > plot_heatmap() Visualisation

Light extinction L) Gzl netcdf \ plot_resid()
Hypsograph ol load_var() Load data in R
) directory
Observations -
plot_LH Visualisation
: Parameter sets and f
. cali_ensemble() Ll
Standardised calibration results

input data as .csv files \ load_LHC_results() Load data in R

Fig. 1. Conceptual overview of the LakeEnsembIR package showing the main folder structure and important functions.
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R packages (FLakeR, GLM3r, GOTMr, SimstratR, MyLakeR), which
contain ways of running each model on the platforms Windows, MacOS,
or Linux, through executables contained in the packages or having the
model code in R.

After LakeEnsemblR is installed, a folder containing the setup for the
ensemble run should be created. This can be done by editing the tem-
plate folder provided within the package or by copying a setup from
https://github.com/aemon-j/LER_examples. The  LakeEnsemblR
configuration file (in yaml format) contains all modifiable settings and
input file paths. The input files themselves (e.g. for meteorology or in-
flows) need to be in comma-delimited format and need to have the
correct column headers. Templates for any file can be generated through
the get template() function. Once the configuration file and the input files
have been set up, the export config() function can be run. This function
exports the settings in the LakeEnsemblR configuration file and the
LakeEnsemblR input files as required by each individual model. This
means that for some models, units are converted, model parameters are
changed, or input files are saved in a different format. The setup for each
individual model is placed in its own directory.

After running export config(), the ensemble can be run through the
run_ensemble() function. In each model folder, the model-specific output
is generated, which is then written to a netcdf file or text files (user
choice) in a shared “output” folder. run_ensemble() runs the models
without calibration. The cali ensemble() function runs the calibration,
following the specifications in the calibration section of the Lake-
EnsemblR configuration file, and stores the results of the calibration in
the folder specified by the out f argument. If netcdf output is chosen,
several functions are available in the package to visualise the output
(plot_ heatmap(), plot ensemble(), plotresid()), load the data into R
(load_var()), determine start and end of stratification and ice cover
(analyse_ncdf()), or calculate goodness-of-fit (calc_fit()). Each function
has documentation that can be loaded in R by typing ?name_function.

While the running and calibration of the models is controlled by the
R code, both the input and output files are in formats that are accessible
by a wide array of software. Therefore, it is possible for users to do the
pre- and post-processing with different software. A vignette is available
on the LakeEnsemblR GitHub repository, which describes step-by-step
how to run an ensemble, with multiple code examples. A wiki is avail-
able with additional information and frequently asked questions.

2.2.4. Calibration algorithms

The LakeEnsemblR package provides functionality for automated
parameter estimation using one of three methods. A simple calibration
method based on Latin hypercube sampling, a Markov Chain Monte
Carlo approach (MCMC), and a method for constrained fitting of the
models to data using one of several available standard optimisation al-
gorithms. The last two methods are implementations of the R package
FME (Soetaert and Petzoldt, 2010) using the functions modMCMC() and
modFit(), respectively. Details about the MCMC and constrained fitting
can be obtained from Soetaert and Petzoldt (2010) and the sources given
therein. The Latin hypercube sampling method uses upper and lower
bounds for all parameters that are to be calibrated and then samples
evenly within the parameter space given by these bounds (e.g., Mckay
et al., 2000). Then the models are run and evaluated for all sampled
parameters sets. By default, six measures of model performance are
calculated: root mean square error (RMSE), Nash-Sutcliffe efficiency
(NSE), Pearson correlation coefficient (r), mean error (bias), mean ab-
solute error (MAE), and normalised mean absolute error (NMAE) (see
Table C2 in the supplement). The user can also supply their own quality
function which calculates measures of fit from modeled and observed
data. Each of the three calibration methods can be run in parallel
computation, where the models are distributed over the available cores.
The parameters which are to be estimated, and their upper and lower
bounds (if applicable) are specified in the master configuration file.

Scaling factors of meteorological forcing are parameters that are
often calibrated in models (e.g., Ayala et al., 2020; Gaudard et al., 2019).
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Some models within LakeEnsemblR have internal parameters that scale
the (meteorological) forcing, but not all. In order to be able to use the
same scaling factors for all five models, the calibration section of the
master configuration file distinguishes between model-specific param-
eters and meteorological (scaling) parameters. All three calibration
methods can be used to obtain parameters that optimise the chosen
model performance measure for the individual models. If common op-
timum scaling factors for all models in the ensemble are wanted, the user
needs to apply their own method to aggregate the scaling factors of the
models.

2.2.5. Combining multiple ensemble runs

Uncertainty of lake model output comes from different sources that
are related to: forcing data, initial conditions, model parameter values,
or structural reasons like process description and numerical methods
(Thomas et al., 2020). LakeEnsembIR foremost tackles the uncertainties
related to structural differences between different models. But, Lake-
EnsemblR can also be used to address other sources of uncertainties; the
run_ensemble() function allows to add different model runs to a single
netedf file. Using this functionality, model runs with different parame-
terisations, forcing data, or initial conditions can be run and compared.
Many diagnostic functions like calc fit() or plot ensemble() have two
additional arguments dim and dim index to select which dimension
should be used.

3. Example application of LakeEnsembIR

We applied the LakeEnsemblR package to two lake case studies:
Lough Feeagh (IE) and Langtjern (NO). Lough Feeagh is a temperate
monomictic lake with a maximum depth of 46 m and a surface area of
3.9 km?. Langtjern is a shallow dimictic lake with a maximum depth of
12 m and a surface area of 0.23 km?. Langtjern is separated into three
distinct basins and our modelling efforts concentrated in the north basin
with a maximum depth of 9 m and surface area of 0.06 km?2. A detailed
description of Lough Feeagh can be found in Allott et al. (2005), or de
Eyto et al. (2016), and a detailed description of Langtjern can be found
in Couture et al. (2015); Henriksen and Wright (1977); Wright (1983).

The Latin hypercube sampling method with 500 parameter sets was
applied to both study cases. For each model, the parameter set with the
lowest RMSE was selected. One full year was used to calibrate the
models (2013 for Lough Feeagh, May 2014 to May 2015 for Langtjern),
and the following year was reserved for validation of the simulated
temperatures. Scaling factors for wind speed and shortwave radiation
were calibrated for all five models, and in addition model-specific pa-
rameters k min (GOTM), coef mix_hyp (GLM), c_relax_C (FLake), a seiche
(Simstrat), and C shelter (MyLake) were calibrated as well. These pa-
rameters were selected from parameters used for calibration in previous
studies (see Supplement - Table C3). The inflows and outflows were
omitted in all simulations. For the Langtjern simulation, hourly meteo-
rological forcing was used to explore water temperature and ice dy-
namics, whereas for Lough Feeagh, the models were calibrated and
validated using both hourly and daily averaged values to compare per-
formance of water temperature, except for MyLake which only operates
at the daily time scale.

In this section, we provide an example of how LakeEnsemblR can be
used to partition and quantify different sources of uncertainty; boundary
conditions, initial conditions, parameter and structure uncertainty. In
order to do this, the Lough Feeagh ensemble was run a total of 300 times
over a period of 16 days during the stratified period (June 12th to June
27th, 2013), while different factors were varied to estimate their impact
on the simulation output. To isolate the effect of initial conditions, the
models were run using 100 different initial temperature profiles, that
were drawn from a normal distribution around the observed value with
a standard deviation of 0.1 °C. For boundary conditions the models were
forced with 100 different versions of the meteorological data, where
random noise was added to air temperature and wind speed from normal
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distributions with a mean of 0 °C and a standard deviation of 0.5 °C, and
a mean of 0 m/s and a standard deviation of 0.5 m/s, respectively. For
parameter uncertainty, 100 parameter values were drawn for each
calibrated parameter using either a normal or lognormal distribution
(Table C4). To quantify and compare the variation of the different model
runs between the different sources of uncertainty, the standard devia-
tion of the water temperature for each time step at two depths (0.9 m
and 16 m) of the output was calculated across the 100 ensembles, for
each model separately.

For Lough Feeagh, we additionally ran an ensemble with different
parameterisation of the five models to compare the uncertainty related
to the chosen model with the uncertainty related to the calibrated pa-
rameters and scaling factors for each individual model. Starting from the
Latin hypercube calibration (using daily forcing data), we first selected
the best 10% parameter sets in terms of their RMSE for each model.
From these sets, we extracted the range of the calibrated parameter and
scaling factors and then sampled 20 parameter sets for each model
within this range using Latin hypercube sampling. Then we ran the
ensemble using these parameter sets and combined all ensemble runs in
one netcdf file.

3.1. Lough Feeagh: water temperature dynamics

Both simulations in Lough Feeagh using daily and hourly meteoro-
logical forcing generally produced satisfactory results of simulated
temperature in the calibration period, compared to other simulations (e.
g. Arhonditsis et al., 2006; or Arhonditsis and Brett, 2004), with RMSE
<1.3 °C for daily forcing (Table 1, Fig. 2) and RMSE < 0.9 °C for hourly
forcing (Table 2). Except for FLake, even the uncalibrated model runs
had satisfactory model performance, and calibration improved the
model fits further. Compared to the calibration period, most models
performed worse during the validation period (Table 1 for daily data and
Table 2 for hourly data). Except for Simstrat, during the calibration
phase all models tended to underestimate water temperatures over all
depths and throughout the year (Fig. 3), on average ranging from about
0.1 °C (GLM, hourly forcing, Tables 2)-1 °C (GOTM, daily forcing,
Table 1).

In general, the calibrated model performance was better using hourly
forcing data compared to daily forcing data. Of the five models, FLake
performed poorest when using daily forcing data and GLM performed
poorest when using hourly forcing data. The best performing model
differed between hourly and daily forcing data with GOTM performing

Table 1
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best when using hourly data (calibration phase), and Simstrat per-
forming best when using daily data (calibration and validation phase).
In all models the largest residuals were seen at observed temperatures of
10-15 °C, during the time of the onset and end of summer stratification,
and around the depth of the thermocline (Fig. 3). Using daily average
forcing data, the ensemble average was amongst the best performing fits
and when using hourly forcing data the ensemble mean outperformed
the individual models in most of the calculated performance measures,
due to errors of individual models cancelling each other out in the
ensemble mean (Tables 1 and 2).

3.2. Langtjern: lake ice dynamics

The models FLake, GOTM, MyLake and Simstrat accurately captured
the onset of ice cover on Langtjern (—5 to +9 days) while GLM had
larger errors (+10 to +17 days) (Fig. 4). The ensemble mean, which was
calculated by taking the average of the day of year when ice onset and
ice-off occurred, was also relatively accurate (+3 to +6 days). For
capturing the disappearance of ice cover, there was larger variability
between the models compared to ice onset. In both years, GOTM and
Simstrat predicted ice-off too early (—44 to —16 days). GLM over-
estimated ice-off in 2015 and 2016 by 27 to 19 days, respectively,
whereas FLake and MyLake predicted ice-off relatively accurately both
years (—1 to +8 days).

The temperature profiles had a larger RMSE for the calibration and
validation period in general for Langtjern compared to Lough Feeagh,
particularly MyLake (3.62-4.24 °C) and GOTM (3.36-4.70 °C) (Table 3).
These models failed to accurately simulate the stratification structure
with increased mixing during the summer months leading to larger er-
rors. FLake had the lowest uncalibrated RMSE (2.02 °C), which was
further reduced following calibration (1.08 °C). For summary plots of
Langtjern of the model ensemble and residuals see Figure B1 and B2.

3.3. Uncertainty partitioning

Parameter uncertainty had the largest effect on the standard devia-
tion of water temperatures at the depth of 0.9 m compared to initial
conditions and boundary conditions for all the models except FLake in
Lough Feeagh (Fig. 5). Each of the parameters chosen were to account
for mixing within the water column but their implementation in each
model is different due to the different formulation of mixing equations in
each model. Also, the distributions of these parameters were not

Model results or goodness-of-fit - uncal(ibrated), cal(ibrated), and val(idated) - for water temperature (°C) in Lough Feeagh using daily forcing data. Calibration was
done for the year 2013 and validation for the year 2014. The best model performances are marked in bold. Shown are Root Mean Square Error (RMSE), Pearson’s r (1),
Nash-Sutcliffe Efficiency (NSE), Normalised Mean Absolute Error (NMAE), Mean Absolute Error (MAE), and Bias (or mean error).

measure period FLake GLM GOTM Simstrat MyLake Ensemble mean
RMSE uncal 3.057 0.846 1.698 0.625 1.719 1.189
Cal 1.210 0.670 1.261 0.502 0.656 0.629
Val 2.297 0.847 1.425 0.693 0.780 0.916
r uncal 0.682 0.979 0.965 0.977 0.946 0.974
Cal 0.804 0.983 0.969 0.983 0.983 0.985
Val 0.756 0.981 0.964 0.986 0.988 0.984
NSE uncal 0.631 0.948 0.788 0.971 0.783 0.896
cal 0.942 0.967 0.883 0.982 0.968 0.971
val 0.776 0.944 0.840 0.962 0.952 0.934
NMAE uncal 0.175 0.082 0.165 0.044 0.131 0.101
cal 0.072 0.070 0.133 0.035 0.065 0.064
val 0.132 0.081 0.132 0.045 0.067 0.079
MAE uncal 2.011 0.691 1.501 0.438 1.318 0.962
cal 0.812 0.558 1.152 0.337 0.533 0.534
val 1.610 0.720 1.286 0.467 0.628 0.760
Bias uncal —1.909 —-0.575 —1.484 0.038 —-1.308 —0.955
cal —0.720 —0.347 —0.986 0.028 —0.436 —0.458
val —1.560 —0.362 —1.048 —0.352 —0.526 —0.664
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Table 2

Model results or goodness-of-fit - uncal(ibrated), cal(ibrated), and val(idated) -
for water temperature (°C) in Lough Feeagh using hourly forcing data. MyLake
cannot be run with hourly time steps and was therefore not included in this
table. Calibration was done for the year 2013 and validation for the year 2014.
The best model performances are marked in bold. Shown are Root Mean Square
Error (RMSE), Pearson’s r (r), Nash-Sutcliffe Efficiency (NSE), Normalised Mean
Absolute Error (NMAE), Mean Absolute Error (MAE), and Bias (or mean error).

measure  period  FLake GLM GOTM Simstrat ~ Ensemble
mean
RMSE Uncal 2.957 0.943 0.801 1.107 0.726
Cal 0.617 0.819 0.594 0.599 0.469
Val 0.607 1.174 0.855 0.701 0.570
r Uncal 0.682 0.971 0.977 0.966 0.976
cal 0.816 0.977 0.983 0.979 0.985
val 0.824 0.972 0.984 0.985 0.992
NSE uncal 0.655 0.935 0.953 0.910 0.961
cal 0.985 0.951 0.974 0.974 0.984
val 0.984 0.891 0.942 0.961 0.974
NMAE uncal 0.157 0.081 0.074 0.072 0.063
cal 0.040 0.066 0.058 0.046 0.045
val 0.044 0.087 0.070 0.047 0.051
MAE uncal 1.909 0.718 0.634 0.756 0.581
cal 0.413 0.600 0.477 0.445 0.378
val 0.461 0.874 0.672 0.496 0.466
Bias uncal -1.749  —0.340 —0.489  0.567 —0.305
cal —0.191 —0.091 —0.318 0.074 —0.126
val —0.300  0.096 —0.548  -0.345 —0.272

comparable between models with some being normally distributed
while others were log-normal distributed (Table C4). As such,
parameter-uncertainty cannot accurately be compared between models,
but it can be accounted for when using a one-model ensemble. Across
the different models, boundary conditions were more sensitive for GLM
than for the other models, at both 0.9 m and 16 m depth. With regards to
uncertainty in the initial conditions, FLake and GLM had higher stan-
dard deviation at 0.9 m compared with GOTM, Simstrat and MyLake.
GLM had a much higher standard deviation at 16 m for initial condi-
tions, boundary conditions and parameter uncertainty. This is partly due
to the strong stratification which is seen in GLM (Figure B3). For
parameter uncertainty, GOTM, Simstrat and GLM had a high standard
deviation at 0.9 m and 16 m, while it was lower for MyLake and FLake
had the lowest uncertainty. s.

3.4. Multi-parameter ensemble

The model-specific parameters and scaling factors that resulted in
good model performance had a broad distribution (see Figure B4 in the
Supplement as an example). For the model-specific parameters of FLake,
GLM, and Simstrat as well as for the shortwave radiation scaling factor
for FLake and Simstrat this distribution spanned more than 75% of the
range given in the calibration process. This suggests that the chosen
parameters are interrelated and there might not be a single best
parameter set, that the parameters were non-sensitive, or that the
parameter range in the calibration was too narrow. The application of a
multi-parameter ensemble is showing the uncertainty related to not
being able to clearly identify a single best parameter set (Fig. 6). The
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uncertainty of the simulated water temperature was larger during uncertainty due to the calibrated parameter was about the same as the
summer months and at greater depths for all models. For the water one related to the used model.

temperature close to the surface (0.9 m depth) the uncertainty due to the
chosen model was slightly larger than the one related to the calibrated
parameters throughout the year, for all models. At 16 m depth the
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Model results or goodness-of-fit - uncal(ibrated), cal(ibrated), and val(idated) - for water temperature (°C) in Langtjern using hourly forcing data (as MyLake requires
daily input, LakeEnsemblR averages sub-daily input to daily time steps for MyLake simulations). Calibration was done for the year 2014-15 and validation for the year
2015-16. The best model performances are marked in bold. Shown are Root Mean Square Error (RMSE), Pearson’s r (r), Nash-Sutcliffe Efficiency (NSE), Normalised
Mean Absolute Error (NMAE), Mean Absolute Error (MAE), and Bias (or mean error).

Measure Period FLake GLM GOTM Simstrat MyLake Ensemble Mean
RMSE uncal 2.020 2.394 4.696 3.437 4.416 2.838
cal 1.084 2.164 3.364 2.568 3.626 3.013
val 1.135 1.764 4.045 4.171 4.242 3.699
T uncal 0.887 0.868 0.786 0.833 0.807 0.874
cal 0.983 0.906 0.865 0.913 0.845 0.881
val 0.983 0.938 0.818 0.755 0.786 0.824
NSE uncal 0.895 0.760 0.074 0.504 0.181 0.662
cal 0.963 0.794 0.501 0.709 0.420 0.622
val 0.962 0.862 0.275 0.229 0.203 0.433
NMAE uncal 0.453 0.530 0.910 0.632 0.659 0.492
cal 0.450 0.433 0.817 0.569 0.599 0.587
val 0.454 0.362 0.828 0.677 0.636 0.602
MAE uncal 1.260 1.601 3.515 2.637 3.126 1.929
cal 0.830 1.469 2.686 2.211 2.818 2.189
val 0.863 1.022 3.017 3.059 2.880 2.361
Bias uncal 0.985 —0.298 1.076 -0.515 0.409 0.344
cal 0.274 —0.575 0.313 —0.834 -0.615 0.019
val 0.399 —0.104 0.823 —1.062 0.160 0.328
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Fig. 5. Partitioning of the different sources of uncertainty for ensemble simulations in Lough Feeagh; boundary conditions, initial conditions and parameters between
models at depths of 0.9 m and 16 m. Each model was simulated 100 times for 16 days with adjustments to the boundary conditions, initial conditions, and model
parameters accordingly. Standard deviation was calculated across all 100 simulations for each day.

3.5. Discussion

As the simulations with hourly time step in Lough Feeagh show, the
ensemble mean can outperform individual lake models, which is in line
with the findings of Trolle et al. (2014) and Kobler and Schmid (2019).

For the Lough Feeagh simulations with a daily time step, the Simstrat
model performed best, followed by the ensemble mean and MyLake.

Using hourly time steps, GOTM performed best of the four models
individually, albeit not as good as the ensemble mean. In Langtjern,
FLake simulated water temperature profiles best, while Simstrat and
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MyLake performed the worst, although these two models simulated
ice-on and ice-off well. In both Lough Feeagh and Langtjern, most
models performed worse in the validation period than in the calibration
period, which is to be expected due to the short (1 year) calibration
period.

As shown in this study, and also observed while testing Lake-
EnsemblR in multiple other lakes (unpublished results), the best-
performing model could vary per study case, and no single model
consistently outperformed others. This shows an advantage of using
ensembles compared to single model simulations, which are not likely to
provide an optimal fit in every circumstance, while ensembles can
incorporate individual strengths of multiple models. Similarly, ensemble
modelling can highlight weaknesses of individual models compared to
others which can further aid in model selection or refinement.

Ensemble predictions also give an indication of the uncertainty due
to a different process description or parameterisation. This uncertainty
may vary over depth or time (e.g. Figs. 2 and 5). An increased uncer-
tainty in ensemble predictions represents diverging behaviour of
different ensemble members. It might be important to interpret model
predictions during periods with increased uncertainty with additional
caution, and ensembles are a way to identify these periods. For a single
set of parameters, the investigation of model-specific residuals in
particular (e.g. Fig. 3) supports the quantification of uncertainty and the
identification of better suited models for specific case studies. In the
Lough Feeagh case study, the models GOTM, MyLake and Simstrat had a
bias for simulated water temperatures near the lake bottom and during
fall mixing (Fig. 3 a and 3 b). By looking at the depth-discrete residual
dynamics (Fig. 3 c) as well as the density distribution of residuals (Fig. 3
d), the model with the lowest overall bias for Lough Feeagh was GLM
(scattering over the whole vertical axis) and Simstrat (negative bias at
surface and positive bias at bottom). Running a calibrated model
ensemble allows the user to quantify these model-specific biases and
uncertainties, making scenario projections or forecastings more robust.
Additionally, running ensembles with different parameterisations,
initial conditions, or different boundary conditions can help to quantify
the uncertainties related to the respective source.

Similarly to Kobler and Schmid (2019) and Yao et al. (2014), there
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was large variation between the different models in predicting ice cover
phenology (Fig. 4). However, most models captured the overall timing
of ice-on and ice-off, which play a key role in the subsequent timing of
stratification and several ecological processes in a lake. The ensemble
represents the large uncertainty that is inherent in modelling lake ice
cover (Sharma et al., 2019), which is important to account for when
modelling lakes with periodic ice cover. It has recently been shown that
the ensemble mean of ice timing and thickness can perform better than
the individual models (Kobler and Schmid, 2019), which was supported
here.

A key part of modeling is being able to identify and quantify the
different sources of uncertainty. This is especially important if the model
is to be used in a forecasting framework. Thomas et al. (2020) used a
single one-dimensional hydrodynamic model and partitioned out the
sources of uncertainty over a 16-day forecast of water temperature
profiles in a reservoir. Using the LakeEnsembIR framework, this can be
explored and quantified further, using multiple models. The brief ex-
amples that are shown in Figs. 5 and 6 are a way in which such an
analysis can be conducted and the information gained from this explo-
ration can inform decisions on model and parameter selection.

4. Summary
4.1. Framework

LakeEnsemblR facilitates the pre-processing of data that is needed to
run multiple 1D models and combines the results into a single, stand-
ardised output file. Each model in the package requires a different
format and structure of its configuration and input files. This has been
standardised in LakeEnsemblR by requiring only one set of input and
configuration files and by using the same format for all input files. By
having to specify a specific header for each column of an input file,
mistakes involving column order and units are avoided, and in the
configuration file only a reference to the file location needs to be given,
instead of having to specify which column contains what information.

LakeEnsemblR relies on R packages for each model, hosted on
GitHub and archived in Zenodo (see Software Availability). These
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packages contain pre-compiled model executables for the platforms
Windows, MacOS, and Linux, or the model code in R. This greatly fa-
cilitates user access to the models, as the ability to run the models is
gained fully within the R environment. Some models provide pre-
compiled executables on their respective websites, but often for only
one platform, which regularly requires users to compile the model
themselves. LakeEnsemblR removes this initial hurdle for modellers who
want to apply one or multiple models.

The calibration methods provided in LakeEnsemblR can all be
applied to the models without requiring the user to write custom cali-
bration scripts. The ability to use the same calibration method for
multiple models increases the comparability of the simulations. Results
in the present study confirm that LakeEnsemblR’s calibration methods
can markedly improve model fit.

Like the input, each model generates its own specific output, often in
different file types and consisting of different variables and units.
LakeEnsemblR combines these outputs into one standardised format,
either in text or netcdf. This allows quick application of the post-
processing functions provided in LakeEnsemblR (e.g. analyse ncdf()
and plot heatmap()), but also makes it easier for users to extract output
and process the results in their preferred way. The standardised output is
only generated for variables that are shared between the models.
However, the full model-specific output is still available in the model
output folders and can be accessed by the users.

By facilitating pre-processing, running, calibration, and post-
processing, LakeEnsemblR supports accessible model ensemble appli-
cations by aquatic modellers new to the field. However, because all files
required to run the models are present in the model folders, it in no way
restricts more experienced users from using the full functionality of each
of the different models. The “model parameters” section of the Lake-
EnsemblR configuration file allows the user to change any parameter in
the model-specific configuration files, and files generated by Lake-
EnsemblR’s export config() function can be manually altered before
starting the ensemble run.

4.2. Recommendations for use

LakeEnsemblR eases the configuration, running and processing of a
hydrodynamic lake model ensemble, and allows the user to explore the
results in various ways. However, by making it easier to apply multiple
models, there is the risk that less attention will be paid to individual
model setup and that models may be applied to situations beyond what
they were designed and tested for. For example, by considering five
models at once, the overall number of parameters increases markedly
and the user might be tempted to only use default parameter settings
without critical consideration of the consequences.

In order to properly calibrate a model and avoid problems such as
nonuniqueness of calibrated parameter sets (i.e. equifinality - see Beven,
2006) it is important to make deliberate decisions and employ rigorous
model validation. In addition to looking at single performance metrics
for the simulated state variables, it is advisable to assess the model’s
capability to reproduce fluxes and emerging properties, patterns, and
relationships (Hipsey et al., 2020). In order to find and select the right
parameters to calibrate, the best practice approach would be to apply a
sensitivity analysis (e.g. Andersen et al., 2021). Many methods for
sensitivity analysis are available, but the Latin hypercube sampling
method included in LakeEnsemblR can be used as an initial approach to
quantify sensitivity. Where a complete sensitivity analysis is not
feasible, expert or a priori knowledge on the models should be used to
select the calibration parameters. In the present study, we aimed at
demonstrating the possibility of calibration with LakeEnsembIR rather
than exploring the parameter sensitivity of each model, and we chose
model parameters based on the parameter selection done in previous
studies (see Table C3 in the Supplement for parameters that were cali-
brated in previous studies).

However, the possibility to combine runs with multiple models and

11

Environmental Modelling and Software 143 (2021) 105101

parameterisations also is an opportunity to tackle issues regarding
sources of uncertainty. LakeEnsemblR can be used to quantify different
sources of uncertainty (boundary conditions, initial conditions, param-
eter, model structure), increase understanding about what model works
best under different circumstances, and also within-model comparisons
can be made. Although not applied in the present study, post-processing
techniques applied in other research fields, such as blending (Vannitsem
et al., 2020), can be applied to the ensemble result so that ensemble
members are weighted and more information is retrieved from the
ensemble. However, we advocate the use of LakeEnsemblR within
established modelling practices (e.g., Arhonditsis and Brett, 2004;
Hipsey et al., 2020), rather than as a replacement.

4.3. Outlook

The simulations in Lough Feeagh and Langtjern showcase the main
functionalities of the package. However, LakeEnsemblR can be applied
to a wider range of locations and scenarios. In long-term climate simu-
lations, lake model ensembles have been applied as part of the Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP) (Frieler et al.,
2017; Vanderkelen et al., 2020), and LakeEnsemblR can facilitate
similar efforts. Ensembles offer several possibilities for weekly or sea-
sonal forecasting efforts (e.g.,Krishnamurti et al., 2000; Thomas et al.,
2020), and LakeEnsemblR can be run not only with multiple models, but
also forced with several different weather forecasts. Studies of processes
in lake physics that are difficult to model, such as consequences of
extreme weather events (Mesman et al., 2020) or lake ice phenology
(Yao et al., 2014), can especially benefit from an ensemble approach.
While LakeEnsemblR currently only covers hydrodynamic models, its
predictions can also serve as input for water quality models. Such a
water quality ensemble can ultimately serve to assess and qualify the
performance of multiple aquatic ecosystem models (Hipsey et al., 2020),
while also giving uncertainty to the ecological impacts of management
scenarios on ecosystems. More applications are possible, and the
modular structure of the LakeEnsemblR code allows for the addition of
new models and continued development.

Although the advantages of ensemble modelling have been
acknowledged by the lake modelling community, until now no software
to run multiple lake models for a single study site was available. Lake-
EnsemblR provides the necessary tools to widely apply ensembles of 1D
lake models. Additionally to facilitating pre-processing of data, running
of an ensemble of models, and standardising output, LakeEnsemblR al-
lows the aquatic science community to start rigorous intra-model com-
parison studies of alternative process-based vertical 1D hydrodynamic
lake models. Prior to the development of LakeEnsemblR, having an
ensemble of models bound together with a consistent application pro-
gramming interface, rigorous tests and comparison of alternative model
codes were rare. We sincerely hope that LakeEnsemblR can provide a
consistent framework for lake ensemble studies, uncertainty partition-
ing investigations, and intra-comparison modelling studies.
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Software and data availability

The LakeEnsemblR code is available at https://github.com/a
emon-j/LakeEnsemblR. LakeEnsemblR and the packages it relies upon
(FLakeR, GLM3r, GOTMr, SimstratR, MyLakeR, glmtools, gotmtools)
can be installed in R following the instructions on the GitHub page, using
the install github() function of the devtools package (Wickham et al.,
2020). The packages to run the models do not contain the source code of
each model, only the executables for Windows, MacOS, and Linux. Links
to the websites of the respective models are provided on GitHub.
Example set-ups of LakeEnsemblR are provided at https://github.com/a
emon-j/LER_examples. For further instructions on how to run Lake-
EnsemblR, we refer the reader to the AEMON-J GitHub page (https://gi
thub.com/aemon-j/LakeEnsemblR), where a vignette and a Wiki are
available with detailed instructions and code examples.

LakeEnsembIR version 1.0.0 and the model packages have been
archived in Zenodo under the following DOIs:

- LakeEnsemblR: 10.5281/zenodo0.4146899
- FLakeR: 10.5281/zenodo.4139807

- GLM3r: 10.5281/zenodo.4146848

- GOTMr: 10.5281/zenodo.4139780

- SimstratR: 10.5281/zenodo.4139731

- MyLakeR: 10.5281/zenodo0.4067998

When using LakeEnsemblR for a publication, please also cite the
sources of the respective models that you are including in your ensemble
(see citation( “LakeEnsembIR”)).
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