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1 Introduction

Despite their limited field contents, minimal, or pure, gauged supergravitites prove very use-
ful for holography when embedded in string or M-theory. These theories involve the gravity
multiplet only, stripped of additional matter multiplets. Thus, they capture holographi-
cally universal aspects of large classes of superconformal field theories that are governed
exclusively by the R-symmetry, and that are independent of details involving particular
matter couplings or flavour symmetries, see [1-17]. In this paper, I will present dimen-
sional reductions of ten-dimensional massive type IIA supergravity [18] to the minimal
N =219, 20] and N = 3 [20] gauged supergravities in four dimensions. These will be ob-
tained by consistent truncation on the internal six-dimensional geometries corresponding to
the N'= 2 and N = 3 AdS, solutions of type ITA recently constructed in [21] and [22, 23].
Such consistent truncations should exist, based on the general arguments of [24, 25] (see
also [26, 27]). I will show by direct construction that this is indeed the case.



A natural strategy to build consistent truncations of string or M-theory down to pure
gauged supergravities relies on the existence of a G-structure description [28] of the back-
ground geometry. A Kaluza-Klein truncation ansatz can be constructed involving the
lower-dimensional fields together with forms on the internal geometry suitably selected
among those defining the G-structure [24]. Consistency is then shown by enforcing the
higher-dimensional equations of motion on the lower-dimensional ones while making use
of the torsion classes. This technique or variations thereof has been fruitfully applied in
various contexts [24, 25, 29-40]. G-structure analyses exist [41-43] for the N’ = 2 AdS,
type IIA solution of [21] and generalisations thereof. The construction of the associated
consistent truncation would thus be amenable in this case to the use of this technology.
Unfortunately, for the N' = 3 AdS, solution, a workable G-structure description is not
readily available — although it should follow from the Killing spinor analysis of [23].

A different strategy can nevertheless be employed for the cases at hand, which relies
on the existence of a truncation to a larger (in fact, maximal) supergravity on the relevant
geometries. More concretely, the internal space for both the N’ = 2 [21] and N = 3 [22, 23]
AdS, solutions corresponds to a topological six-sphere, S® (equipped with metrics that
display isometry groups smaller than the largest possible one, SO(7)). Not unrelated
to this fact is the existence of a truncation of massive ITA supergravity on S°® [21, 44]
(see also [45-47]) down to D = 4 N’ = 8 supergravity with a dyonically gauged [48-50]
ISO(7) = SO(7) x R” gauge group [51]. In fact, the A" = 2 [21] and N = 3 [22, 23] AdS,
solutions of massive ITA arise as the S® uplifts of critical points of ISO(7) supergravity
that break the N' = 8 supersymmetry of the theory to N' =2 [21] and N' = 3 [52]. In this
context, the argument of [24] indirectly implies that truncations should exist, within four
dimensions, of the N' = 8 ISO(7) theory to the minimal A/ = 2 and N = 3 supergravities
around the corresponding critical points. I will show that this is indeed the case.

The desired type ITA truncations can thus be constructed by a two-step process. First
of all, truncate D = 4 N' = 8 ISO(7) supergravity to the minimal N' = 2 and N' = 3
gauged supergravities around the corresponding critical points. This is achieved by leaving
the D = 4 metric and suitable combinations of the massless vectors dynamical, while
placing restrictions on the remaining fields. These restrictions amount to turning off the
remaining massless vectors and the massive ones, as well as freezing the scalars to their
vacuum expectation values (vevs). Some of the gauge fields that need to be truncated
out are the dyonically gauged non-compact ones of ISO(7). Interestingly, this is done
by writing them in terms of the surviving compact R-symmetry gauge fields and their
Hodge duals, rather than by setting them to zero. Secondly, bring these field restrictions
to the D = 10 to D = 4 consistent truncation formulae of [21, 44], in order to find the
embedding into massive type ITA. The consistency of the ITA truncation to the full N’ = 8
supergravity [21, 44], along with the consistency of the further truncations within D = 4,
translates into the consistency of the ITA truncation to the minimal D = 4 A/ = 2 and
N = 3 theories.

The minimal /' = 2 and N = 3 theories arise as different, non-overlapping subsectors
of the parent N' = 8 supergravity. Indeed, the relevant U(1) and SO(3) R-symmetry gauge
groups are embedded differently into the SO(7) compact subgroup of the parent ISO(7)



gauge group of the N/ = 8 theory. More precisely, this U(1) is not the Cartan subgroup
of this SO(3). The N = 3 gauged supergravity can nevertheless be truncated to N' = 2
by retaining the U(1) Cartan subgroup of SO(3). This yields an alternative embedding
of N' = 2 supergravity into N/ = 8 and type IIA. In any case, in order to construct the
embeddings into A = 8, it is thus convenient to start from a smaller sector of the N = 8
supergravity that is more manageable than the full theory, yet is large enough to contain
both minimal truncations. A suitable such sector is the N' = 4 one built in [53], which is
reviewed in section 2 for convenience. The minimal theories are then embedded into this
N = 4 sector and the full A/ = 8 theory in section 3, and then uplifted to type ITA in
section 4. Section 5 concludes, and technical details are left for the appendices.

2 An intermediate N = 4 sector

With the aim of finding consistent truncations of the D = 4 A/ = 8 theory to minimal
D =4 N = 2 and N = 3 supergravites, it is useful to start from a suitable subsector
of the N' = 8 theory. The relevant subsector should be small enough so that an explicit
parametrisation for its fields can be introduced, and large enough to contain both disjoint
pure N = 2 and N/ = 3 subsectors. The N' = 4 subsector constructed in [53] suits that
purpose. In this section, I will review the aspects of that N/ = 4 model that are relevant for
the present discussion, referring to that reference for further details.! This AN/ = 4 model
arises as the subsector of the A/ = 8 theory that retains all singlets under a certain SU(2)
subgroup of the ISO(7) gauge group of the A/ = 8 theory. This SU(2) is defined via the
following embedding into SO(7) C ISO(7),

SO(7) D G2 D SU(3) D SU(2), (2.1)

with the triplet of SU(3) branching as 3 — 2 + 1 under SU(2). Equivalently, this SU(2) =
SO(3)g is also embedded in SO(7) through

SO(7) O SO(3) x SO(4)',  with  SO(4) =SO@3)L x SOB)r.  (2.2)

The sector of N' = 8 ISO(7) supergravity invariant under the intermediate SU(3) in (2.1) is
N =2, and was studied in section 3 of [51]. That sector contains, among others, the N’ = 2,
SU(3) x U(1)-invariant critical point. The sector invariant under the diagonal subgroup,
SO(3)q, of SO(4) = SO(3)" x SO(3)y, defined in (2.2) is N = 1 and was studied in section 5
of the same reference. The latter sector contains the ' = 3, SO(3)q x SO(3)g-invariant
critical point. It is clear that the sector of NV = 8 supergravity that is invariant under
SU(2) = SO(3)r contains both subsectors and thus both critical points of interest. It also
contains both minimal N' = 2 and N = 3 subsectors.

'T follow the notation of [53] and [23] with minor changes. Indices i = 1,2,3 here and in [23, 53] label
the fundamental representation of SO(3)" in (2.2); a = 0,1,2,3 here (o = 0,1,2,3 in [53] and i=0,1,2,3
in [23]) label the fundamental of SO(4)’; and 7 = 1,2,3 here (a = 1,2,3 in [53]) label the fundamental of
SO(3)L. Since the fundamentals of SO(3)" and SO(3)1, are irreducible under the diagonal SO(3)4, tensors
under SO(3)4 can be effectively labelled by identifying ¢ and i, formally removing the hat on the latter.
This identification was implicitly used in [23].



The SO(3)g-invariant sector of N/ = 8 ISO(7) supergravity corresponds to an ' = 4
supergravity coupled to three vector multiplets. The scalar manifold is therefore

SL(2,R) S0(6,3)
SO(2) ~ 50(6) x SO@3)

(2.3)

The scalar fields of (2.3) are collectively denoted as ¢*, u = 1,...,20. Specifically, ¢, x
denote the gravity multiplet scalars which parametrise the first factor. The vector multiplet
scalars, which parametrise the second factor, are ¢;, hij, @ij, bij, with ¢+ = 1,2,3 and
? = 1,2,3, see footnote 1. The scalars h’; are only defined for i < j, and a;; = —aj;. It
is helpful to introduce the 3 x 3 matrices a and b defined to have components a;; and bij,
respectively. It is also useful to note that the scalars ¢;, h’; parametrise a GL(3,R)/SO(3)
submanifold of the second factor in (2.3) with coset representative v given in (2.9) of [53]
and scalar matrix m = vTv. The components of m will be denoted myj.
The nine vectors of the model gauge (dyonically, in the frame inherited from the N'= 8
theory), an
ISO(3)" x SO(3)L, = (SO(3)' x R?) x SO(3)r, (2.4)

gauge group, where SO(3)" and SO(3);, were defined in (2.2), and R? are the three trans-
lations of ISO(7) = SO(7) x R” that commute with SO(4)’. The electric gauge fields
associated to each factor on the r.h.s. of (2.4) are respectively denoted A", AW AL)E
their field strengths H’: | H ®i gL and the corresponding magnetic duals A/, A(t), A

@ H@) » P s i ;
and H <’2)i, H ((2t))i7 H ((QL)Z Collectively, these are denoted as

AN = (A7 A4 A =1,.0,9, (2.5)

and similarly for the field strengths, H, {;, and the magnetic duals, Ay, H, A~ In the gauged
theory, the electric field strengths explicitly read

. 1. .
Hiyy = dA™ + 5 geljp A7 N AT

P 1o 5 k
H((QI;) = dAM? 4 5 9€ 5 AT A AL

; . . . 1 . S .
HE)' = dAY 4 gelj A9 A AWDF = Smel B 47 A A £ mBY, (2.6)

and their magnetic counterparts,

. 1 1 . 1 o _ )
H{,,; = dA] + 5 geii™ AN AL+ 5 geii” AWM A A,(Ct) ~3 me;I* A;t) A AS) + g€ By?

7 (L (L i ;o x(L
- - 1 S .
H((Qt))l = dAgt) + igeijk A7 A A,(:) +gdi; B’ . (2.7)

In (2.6), (2.7), g and m are the electric and magnetic gauge couplings of the parent N =
8 ISO(7) theory, and B', B/, B; are SO(3)g-invariant [53] two-form potentials in the
restricted [51] tensor hierarchy [54]. Their explicit three-form field strengths will not be



needed. The three-form potentials in the hierarchy will not be needed either, short of
generically keeping track of an auxiliary three-form whose four-form field strength becomes
the Freund-Rubin term upon uplift to type IIA, as in [23, 44, 55].

The bosonic Lagrangian of this /' = 4 subsector reads [53]

1 1 -
£ = Rvoly + huyDg" AxDq" + JTae His A H, + SRae Hiy A HE) = mB'A ), (2.8)

1 A 1 - 1 - - . .
+§gm5ijB’ N B+ Zme”k Agt) A Ag-t) A dA® + gIm AZ(-t) A Ag.t) NA"NAY —Vivoly.
In this paper, no significant role will be played by either the non-linear scalar selfcouplings,
or the higher-rank tensor hierarchy fields as already indicated. For that reason, I simply
refer to (2.15)—(2.17) of [53] for the scalar kinetic terms hy,Dg" A *Dq", to (2.25) of
that reference for the scalar potential V', and to appendix B therein for the dualisation
conditions for the two- and three-form potentials in the tensor hierarchy. The gauge field
self-couplings via their field strengths (2.6), (2.7) will be important, as will their couplings
to the scalars. These couplings occur minimally, through the covariant derivatives Dg",
explicitly given by
Dmij = dm,] + 29 Ekh(im]’)k A/h y
Da;j = da;; — 2g ekh[iaj]k AN e (gA(t)k —-m 5khf~1§:)) ,
Dbij = dbij - g€jkhAlkbih - geijk A(L)j b]%j 5 (29)
and non-minimally through the gauge kinetic matrix Myy; = Raxn+iZps. In the basis (2.5),
this is
M Ny N3
N=NT"=| NS Ny N5 | (2.10)
Ng' Ny N
Defining the scalar-dependent 3 x 3 matrix,

= —ieP(14+e*)m — (—x +ie ¥)blb, (2.11)
the blocks that compose (2.10) read
1 1
N = —iePm — <z’e“’xm — ibTb — a> N1 <ie‘me — ibTb + a> ,
Ny = Lr_ L (—x +ie™%) <ie‘pxm ~ Ly a> N~ 't
V2 V2 2 ’
1

N3 = <ie“"xm - §bTb - a) N—L,

1 . — 1 —\2 p A —1pT
Ny = —5(—X+ze )15 — 5(—x+ze ?)BN"'b

1
Ns = —=(—x+ie ?)bN ',
Ng = -N"1. (2.12)



Of the tensor dualisation conditions, the only ones that will play a role here are the vector-
vector duality relations,

f{(Q)A:RAgHg)—I—IAE *Hg), (2.13)

with Ray and Zpy, the scalar matrices just defined.
For future reference, the equations of motion that derive from the Lagrangian (2.8),
upon variation of the scalars g%, the electric vectors A*, and the metric Juv are

1
D (hyy * Dg") (Ouhww)Dq” AN *Dg" + iauv voly

1
2

1 1
— (OuTax) Hiy N <H — 7 (OuRas) Hiy NHE =0,

DHpp + 2hyp ki + Dg" =0,
1 1 1
Ry = huwDug" Duq” + 5V g — 5Tax <H£AHEA - Zgw,Hé\aHz PU) ;o (2.14)

with &k} the Killing vectors on the second factor of the scalar manifold (2.3) that can be
read off from the covariant derivatives (2.9). In addition, the variation w.r.t. the magnetic
gauge field flz(.t) yields the last three components, in the basis (2.5), of the vector duality
relations (2.13). Finally, the variation w.r.t. the two-form potential B’ gives a dualisation

condition for its field strength H (i3>,

H{y = huy k" % Dq" (2.15)

with k" three of the Killing vectors EX.

The vector equations of motion in (2.14) are equivalent to the Bianchi identities for
the magnetic field strengths (2.7), once the duality hierarchy [56] is employed. The Bianchi
identities for their electric counterparts (2.6) read

L)z i i
—0, DHY'=0, DHY =mH

14
DH @)

i (2.16)

with the covariant derivatives defined as

DHJ, = dH[} + ge'j A NHE

L) _ g @i, 0 4L 4 gLk
DHy)" = dHy,)" + g AW A H™

DHY) = dHY) + gy AT A HYF + e (gAY —m g AN A HYF . (217)

Finally, the covariant derivatives of the magnetic field strengths (2.7), which feature in the
vector equations of motion in (2.14), are

D.FNI{QW = dlEI(’z)z- + geijk AT A fI('Z)k + eijk(gA(t)j — méjhflglt)) A .FNI((;))k ,

2L _ e @) A A gD
DH,; = dH(2>i + gei;m AVIN H(z)l%’
le[g))i = dﬁ((;))i + gei ™ AT A IS{S},{ . (2.18)

As argued briefly above and in more detail in [53], the present N’ = 4 model contains
the SU(3)- and SO(4)-invariant sectors of N = 8 ISO(7) supergravity constructed in [51].



In that reference, the SU(3)-invariant scalars were denoted by ¢, x, ¢, a, C, ¢, the electric
and magnetic gauge fields by A%, A!, Aj, A; and their field strengths by H(%), H(12), ﬁ(2>0,
H 5. This SU(3)-invariant field content is recovered from the A" = 4 model by identifying

, x here and there, and further identifying the scalars as

Pr=02=V2¢, ¢3=V20p, h';=0, a2 =—a, ajz=a3 =0,
by =2y, bilzb%z—\gﬁ bizz_b%;\}if’

by =b2 = b3 =% =0, (2.19)
the electric vectors as

A0 = A3 Al = 4B _%A(L)Q’ AT — A7 = AT 402 401 Z 402 _ g

(2.20)

and their magnetic duals as

Ay=-AY, A=3dy=-3A0, A =Ay=AY =4} =AY =AY =0. (221)

With these identifications, the present N' = 4 model reduces to the SU(3)-invariant sector
as given in section 3 of [51]. The SO(4)-invariant sector, in turn, contains four scalars, ¢/,
X'y @', p' (denoted in [51] with no primes), and no vectors. Setting to zero the vectors of
the N’ = 4 model and identifying the scalars as

QDEQb/, XEp,a ¢1:¢2:¢3E\/§¢/7 hz]:Oa CLij:O, bijE_\/iX,(S;a (222)

the SO(4)-invariant sector is recovered, as given in section 5 of [51].

The N' = 4 model contains all previously known AdS vacua of N/ = 8 dyonic ISO(7)
supergravity (see table 1 of [51] for a summary) and, as shown in [53], some new non-
supersymmetric vacua. In particular, the N' = 2, SU(3) x U(1)-invariant AdS vacuum is
located within the NV = 4 theory at

1
oo Ees _ 04 (g)Q C VIh  Vie g (2)2 R Y N <m) ,
27 \m m g

(Zij :0, hzj :O, bil :biQ :bigzbél :bQQ :bégzbgl :bég = R (223)

while the N = 3, SO(4)-invariant critical point occurs at

:277E g 27 \m

1
59 4 (g )2 L x=-—27% <m>3’ e3V201 _ 3V2¢2 _ 3V2¢3 _ 256 <£>2 ,
9

. ) s (m\ 3
Qi5 = 0, hlj = 0, ij =—-2"5 (g) (5; . (2.24)
Unlike in the SU(3) and SO(4)-invariant sectors which respectively contain them, these
vacua preserve their full A/ = 2 and N = 3 supersymmetries within the N' = 4, SO(3)r-
invariant sector [53]. See that reference for the allocation of the spectra within the N' = 4
theory in OSp(4|2) and OSp(4|3) multiplets, and [52, 57] for the supersymmetric spectra

within the full N'= 8 ISO(7) supergravity.



3 Minimal truncations of ISO(7) supergravity

I will now move on to show that the A/ = 4 subsector of N' = 8 dyonic ISO(7) supergravity
discussed in [53] and reviewed in the previous section can be further truncated around the
vacua (2.23), (2.24) to the minimal /' = 2 and N' = 3 gauged supergravities (A.2), (A.6).
The conventions for these theories are specified in appendix A.1.

3.1 General strategy

The goal is to show that the Bianchi identities (2.16) and the equations of motion (2.14) of
the N' = 4 model are satisfied on the field equations (A.1), (A.4) of the minimal theories.
In order to do this, the metric must be left dynamical; the scalars must be frozen to the
respective vevs (2.23), (2.24); the two-form potentials set to zero, B' = B;/ = B; = 0; the
three-form potentials similarly turned off (except for the generic three-form argued above);
and the N'= 2 and N' = 3 dynamical vectors must be conveniently selected among those of
the N' = 4 theory that gauge the residual R-symmetry. Thus, for the N'= 2 and the N’ = 3
minimal truncations, the retained vectors must respectively gauge a U(1) and the diagonal
SO(3)q of the compact subgroup SO(3)" x SO(3)y, of the N' = 4 gauge group (2.4). The
vectors that gauge the remaining compact generators must be truncated out, even if they
remain massless at the relevant vacuum. The vectors A that gauge the non-compact R3
factor of the gauge group (2.4) become massive at both, and any other, vacua. The gauge
fields A7 must therefore be truncated out too, albeit not by naively setting them to zero
but, as will be argued below, by relating their field strengths to the R-symmetry vector
field strengths and their Hodge duals.

To see this, note that the requirement that the scalars ¢“ be frozen to their vevs can
be phrased in a covariant way by requiring that they are covariantly constant, Dg¢*“ = 0.
This must happen even if some of the vectors A, A, are left dynamical. Bringing the
vevs (2.23) and (2.24) to the definition (2.9) of the covariant derivatives, this requirement
translates into the algebraic relation

gAW sl AV =0, (3.1)

for the non-compact gauge fields at both the N' = 2 and the N/ = 3 vacua. Of course,

AW = 0, Agt) = 0 is a valid solution to the constraint (3.1). However, for the cases of

interest, it can be checked that the equations of motion then imply that all vectors must
vanish A* = 0, Ay = 0. This choice thus leads to the A' = 2 and ' = 3 AdS vacuum
solutions. One is thus led to enquire whether there are more general solutions with A®)?,
flgt) non-vanishing, along with some of the compact vectors. It turns out that there are.
Using the definitions (2.6), (2.7) of the vector field strengths, (3.1) can be seen to imply
the constraint

gHg))l - méijf[((;))j =0, (3.2)

at the level of the field strengths. Equation (3.2) can be rewritten with the help of the
duality relations (2.13), by trading the magnetic field strengths H <(2t))z

combinations of the electric field strengths H é) and their Hodge duals. Taking the Hodge

for ¢“-dependent



dual of the resulting equation, further algebraically independent constraints are generated
that allow one to solve for H ((Qt))z and H ((;))Z
fields.

Under these assumptions, the A' = 4 field equations must then be shown to reduce to
those, (A.1), (A.4), of the minimal N' = 2 and N = 3 theories. With ¢“ set to their vevs
and Dg" = 0, the N' = 4 equations of motion (2.14) and Bianchi identities (2.16) give rise
to the following algebraic constraints on the gauge field strengths

in terms of the dynamical R-symmetry gauge

(OuZns) Hiy A xH + (0uRas) Hiy ANHG =0, (3.3)

and to the equations

DHl5 =0, DHup=0, Ry = %Vg,w - %IAE <H£)\ HE igw o, H2m> . (3.4)
The gauge covariant derivatives here are given in (2.17) and (2.18). In (3.3), the deriva-
tives 0,Zay and 0, Rpy; w.r.t. the scalar fields ¢* are computed from the explicit ex-
pression (2.10)—(2.12) of the gauge kinetic matrix, and then evaluated at the scalar vevs.
In (3.4), the potential V' becomes the cosmological constant at each critical point (see e.g.
tables 3 and 4 of [51]) and the gauge kinetic matrix Zpy, is also evaluated at the constant
scalar vevs. At this stage, the constraint (3.3) on the vector field strengths must be identi-
cally satisfied, and (3.4) must reduce to the field equations (A.1), (A.4) of the N' =2 and
N = 3 theories upon suitable rescalings of the non-vanishing gauge fields and the metric.
In particular, the N = 4 (and N = 8) metric g,, and the metrics g, of the N' = 2 and
N = 3 theories are related by the constant rescaling

_ r
Juv = _69 2 V guv (3.5)

in terms of the relevant cosmological constants V. These rescalings involve the N' = 4 (and
N = 8) non-vanishing gauge couplings g and m through V. The magnetic gauge coupling
m turns out to be eventually rescaled away, while the electric gauge coupling survives as
the coupling g of the minimal N' = 2 and N = 3 theories.

The restricted tensor hierarchy fields can be safely disregarded in all this process. The
three-form field strengths are set to zero. Their dualisation conditions are equivalent to
projections of the scalar equations of motion, and these are identically satisfied for Dqg" =0
and vanishing three-form field strengths (see (2.15) and, more generally, appendix B of [53]).
A non-vanishing three-form potential related to the type ITA Freund-Rubin term plays an
auxiliary role.

3.2 Truncation to minimal AN = 2 supergravity

Let us make the above discussion more explicit for the truncation to minimal N = 2
supergravity around the N' = 2 vacuum. Similar operations were performed in [12] starting
from the N' = 2 SU(3)-invariant sector [51] of N' = 8 ISO(7) supergravity, to show that a
particular black hole was a solution of the A/ = 8 theory. The present analysis turns out
to be a simple extension of [12] to general dynamical metric and graviphoton.



First of all, the scalars need to be frozen to their vevs (2.23). Since the dynamics must
be SU(3)-invariant, the N' = 4 electric gauge fields must in turn be truncated as in (2.20),

A/l _ A/Q _ A(L)i _ A(L)Q — A(t)l _ A(t)Q _ 07 (36)

with similar relations for the magnetic duals, and

3

A=34%= —§A(L)3. (3.7)

Bringing (2.23), (3.6), (3.7) to the scalar covariant derivatives (2.9), all of them become zero,
even for A # 0, except Da;; which produces the constraint (3.1) with AW = A2 —
/ngt) = flgt) = 0. One may insist in setting A®3 = 0, flgt) = 0 as well, but then the
equations of motion enforce A = 0 and the N’ = 2 AdS vacuum is recovered.

Instead, one can proceed with A®)3 =£ 0, flét) # 0. Setting to zero the two-form
potentials and using (3.6), (3.7) the electric vector field strengths (2.6) become

L)1 L)2 2
Hy = Hj) = H<(2>)1 = H<(2>) = H<(2t>)1 = H<(2t>) =0, (3.8)

and give the following non-vanishing Abelian field strength:

3 ~
— A — 3 _ (L)3
F=dA=3Hf = —SHG)”. (3.9)
The compact gauge field A”® = —%A(L)g gauges the residual U(1) R-symmetry. In (3.7)
and (3.9), this gauge field has been identified with the graviphoton A of the N’ = 2 the-
ory (A.2) and its field strength F', up to a suitably chosen normalisation. On (2.23), (3.8),

the vector duality relations (2.13) simplify to

7 g gt g0 gl gl
Hop = Hepp = H 5 = Hi, 5 = Hojy = Hejp =0, (3.10)
and
- ( ) R T S (@3_@1 _1 w3 4 1 o1 2 11
23 — H(Q)g— 14g3m 3H(2) 14g3m 3 H(z) 219 sms I 7\/39 am3s *x I,
- 1 . w3 3V3 _ 3 5 1 _1 V31
((;))3 = ?gm lH((;)) — Tgm 1*H((2t)) + ﬁgsm, sEF — ﬁgsm 3x F (3.11)
and the constraints (3.1), (3.2) reduce to
gAD —m AP =0, gHY? -m AL, =0. (3.12)
Combining (3.11) with the second relation in (3.12) and further taking Hodge duals, a set
of equations is obtained that allows one to solve for H<(2t))3, H ((;33 and H 23 = —I:I((QL); in
terms of F' and *F' as
1
Y’ = g imd (F — V3 F) , (3.13)
_ 1 . ~ 1
Hg))3 = gg% m=3 (F—\/g*F) , ('2)3 = —H((QI;:)3 = —gg_% ms (F+\/§*F) .
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Finally, the metric is rescaled as in (3.5),
Guv = 2\/39%7717% Juv - (3.14)

At this point, all of the vectors of the N' = 4 model have either been set to zero or
written in terms of the N' = 2 graviphoton and its Hodge dual. It only remains to verify
that, with these definitions, the constraints (3.3) are satisfied and the equations (3.4) give

rise to the N/ = 2 field equations (A.1). Bringing (3.8), (3.9) and H((;)3 given in (3.13)
to (3.3), and using the explicit expression (2.10)—(2.12) for the gauge kinetic matrix, some
calculation reveals that these constraints are indeed satisfied identically for any F. Next,

the Bianchi identities and vector equations of motion in (3.4) reduce to
dF —V3d+xF=0, dF+V3d+«F=0. (3.15)

These are straightforwardly satisfied on the A/ = 2 Bianchi identity and Maxwell equation
in (A.1). Finally, the /' = 4 Einstein equation in (3.4) becomes, after some calculation,

2

Ry = —392%% <FWF1,”—igW F,JC,FP")JF("}/g (%) ’ (F)\(HGV)MTFUT—&-i guyqme’\pF”> .

(3.16)

The last parenthesis is identically zero, as can be checked by giving concrete values to the
indices in tangent space. Thus, (3.16) reduces to the N' = 2 Einstein equation in (A.1).

To summarise, the identifications (2.23), (3.6)-(3.10), (3.13), (3.14) have been shown

to define a consistent truncation of the D = 4 N = 4 model [53] of section 2, to minimal

D = 4 N = 2 gauged supergravity (A.2). In retrospect, it was critical to get rid of the

magnetically gauged non-compact vector Ag?3 with field strength H((2t>)3, not by naively

setting it to zero, but by writing it in terms of the surviving graviphoton F' and its Hodge

dual through the relations (3.13). Setting H<(2t>)3 = 0 also leads to F' = 0.

3.3 Truncation to minimal N = 3 supergravity

The truncation to minimal N' = 3 supergravity proceeds similarly. First of all, the scalars
are fixed to their N = 3 vevs (2.24). On this vacuum, only the vectors® 5 (A" 44! AM)I) that
gauge the diagonal SO(3)q R-symmetry remain massless, while the anti-diagonal combina-
tions %(A’ - 5;; A(L)j) become massive. Thus, the latter combinations must be truncated
out by identifying the SO(3) graviphoton A° of the A" = 3 theory (A.6) with

A [ 7 L)j
A=A =gt AL (3.17)

Together with (3.17) we also have, from (A.3) and (2.6), the following identifications at
the level of the electric field strengths:

e
Fl=Hl =§H}. (3.18)

“Here, 5} is the invariant tensor of SO(3)4. This symbol can be removed by notationally identifying the
indices ¢ and 7 as suggested in footnote 1. I will leave both types of indices explicit in this section, but will
identify them in section 4.2.
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Satisfactorily, the covariant derivatives of H{s and H, gjﬁ in (2.17) then coincide with them-
selves and with that of F* defined in (A.5). Bringing the vevs (2.24) and the vector iden-
tifications (3.17) to (2.9), all the covariant derivatives are seen to vanish, except the ones
of the Stiickelberg scalars a;;, which produce the relation (3.1). The latter can be solved
by letting A®7 = 0, flgt) = 0, but then the equations of motion also set F* = 0. This leads
to the A/ = 3 AdS vacuum solution.

Alternatively, A®" and fl(t) can be left non-vanishing but still subject to the con-
straint (3.1), with their field strengths H((Q)) , H(/Q)Z subject to the constraint (3.2). On (2.24),
(3.18), the vector duality relations (2.13) give

1 O 2 1 _1 (4t V3 6

5% H(,z)J = 5”H((2)3 ﬁ2 3gsm SH((2>)Z N ﬁ2 s QSm 3 *H((m)Z
Lot bt r - kb (319)
1 B . 3\/> 15 3[ _2

(WH((Q))J = ggm 1H((2)) - ogm 1*H((2)) ‘*‘ﬂQ 393m 3F2—72 3937” Sx P

Combining the equation for H ((2))1 (3.19) with the constraint (3.2), and further taking
Hodge duals, a set of equations is obtained that allows one to solve for the electric field
strength H((Q)) and the magnetic H((2>)2’ H(I2>1 = 15]H((2)§ in terms of F* and I as

HE' =278 imd (F1 VB FY) U =078 ghm (P VB FY),

1 .. . .
89 H Y, = 50U = <273 g Emd (F' 4 VB« ). (320)

23 gim 5 gy, . (3.21)

Now, it only remains to verify that, with these definitions, the constraints (3.3) are
satisfied and the equations (3.4) give rise to the N' = 3 field equations (A.4). Bringing (3.18)
and H((Q)) given in (3.20) to (3.3), some calculation shows that these constraints indeed
check out identically for arbitrary F*. The Bianchi identities and equations of motion for
H[ and Hé))i immediately reduce to their N' = 3 counterparts in (A.4), while those for

H ((Qt)) give

—V3DxF'=0, DF +V3DxF' =0, (3.22)

with the covariant derivatives defined as in (A.5). Equations (3.22) are equivalent to the
N = 3 Bianchi identity and Maxwell equation in (A.4). Finally, the N' = 4 Einstein
equation in (3.4) becomes, after some calculation,

_ . 1.
Ry = —36Gu +2 (FZWFWU — 39w ) FP")

512 2/g % . o 1 S
+m 23 (E) (F)Z\(MEV) Fior + 1 g;we)\pchFZ pFi . (3.23)
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The last parenthesis is identically zero, as can be easily checked in tangent space by giving
concrete values to the indices, and (3.23) reduces to the N’ = 3 Einstein equation in (A.4).
In summary, I have shown, at the level of the bosonic field equations, that (2.24), (3.17),
(3.18), (3.20), (3.21) define a consistent truncation of the D = 4 N = 4 subsector [53] of
N = 8 ISO(7) supergravity reviewed in section 2, to minimal D = 4 N = 3 gauged
supergravity (A.6). In turn, minimal D = 4 N' = 3 supergravity (A.6) can be further
truncated consistently to the A/ = 2 minimal theory (A.2). This is achieved by turning off
two of the SO(3) Yang-Mills fields and by selecting the N' = 2 graviphoton to lie in the U(1)
Cartan subgroup of SO(3), as in (A.7). As discussed in appendix A.2, this U(1) Cartan
subgroup is different from the U(1) gauge group of the A/ = 2 model of section 3.2. Thus,
this further truncation provides an alternative embedding of minimal D = 4 A/ = 2 gauged
supergravity (A.2) into D = 4 N' = 8 ISO(7) supergravity (via the N' = 4 SO(3)g-invariant
subsector of the latter), which is different from the embedding discussed in section 3.2.

3.4 Embedding into N' = 8 supergravity

The minimal A" = 2 and N = 3 supergravities can be finally embedded into the full A" = 8
ISO(7) theory by combining their embeddings, given in sections 3.2 and 3.3 above, into the
intermediate N' = 4 model, with the embedding [53] of the latter into the parent N = 8
theory. With the metric rescaled as in (3.5), the two-form potentials in the restricted tensor
hierarchy set to zero, and simply keeping an eye on the auxiliary three-form potential that
will eventually give rise to the Freund-Rubin term upon uplift to ITA, the problem reduces
to keeping track of the gauge fields. The electric vectors (2.5) of the N' = 4 model are
embedded into their N = 8 counterparts [51] A/, Al, T =1,...,7, as [53]

A = @i AR pe =g, At =)

2(Ji_)abA(L)"Z, A= A0 g =0, (3.24)

and their magnetic duals into the A/ = 8 magnetic duals as [53]

A= A, Ain=0, Ag=-J)pA"Y, 4=4AY, A, =0.  (3.25)

The indices here have been split as I = (i,a), where ¢ = 1,2,3 and a = 0,1, 2,3 with the
index conventions of footnote 1. The antisymmetric, anti-selfdual, quaternionic matrices
(JV)ap are defined in appendix A of [53].

The field strengths (2.6), (2.7) are similarly embedded into the N = 8 ones, 7-[{2{,
7—[([2>, Hx1s, Her. Bringing (3.8) and (3.13) to the field strengths version of (3.24), (3.25),
the N' = 2 graviphoton is finally embedded into the N/ = 8 vector field strengths. Note
that this embedding involves both the minimal A/ = 2 graviphoton field strength F' and
its Hodge dual *=F'. Similarly, bringing (3.18), (3.20) to (3.24), (3.25) written for the field
strengths, the ' = 3 graviphoton field strength F* and its Hodge dual *F* are embedded
into the N' = 8 vector field strengths. Equations (3.24), (3.25) and their analogues for the
field strengths are useful to work out the ten-dimensional uplift of the minimal theories, to
which I now turn.
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4 Minimal D = 4 truncations of massive ITA supergravity

Having obtained the consistent embedding of the minimal N' = 2 and N' = 3 theories
into N/ = 8 ISO(7) supergravity through the intermediate ' = 4 SO(3)g-invariant sector,
these theories can now be uplifted to D = 10. This is done by particularising the general
truncation formulae for massive ITA on S% [21, 44] to the cases at hand through the A" = 8
expressions outlined in section 3.4. The consistency of the truncation from ITA to D =
4 N = 8, together with the consistency of the D = 4 subtruncations, guarantee the
consistency of the truncation from ITA to the minimal D = 4 N = 2 and N = 3 gauged
supergravities. In any case, for further reassurance, the consistency of these minimal
truncations is manifestly checked in appendix B at the level of the Bianchi identities and
equations of motion of the type IIA supergravity forms. All the type IIA expressions below
are written in the Einstein frame conventions of appendix A of [44].

4.1 Truncation to minimal AN = 2 supergravity

Particularising the N' = 8 consistent truncation formulae of [21, 44] to the relevant N = 4
subsector and on to the minimal A/ = 2 theory as discussed in sections 3.2 and 3.4,
a consistent truncation of massive IIA supergravity to D = 4 N' = 2 minimal gauged
supergravity is obtained. For this purpose, the SU(3)-invariant truncation formulae of [55]
also come in handy, along with the generic formulae of [21, 44]. This is because the minimal
N = 2 theory discussed here is also a subsector of the SU(3)-invariant sector of ISO(7)
supergravity. The minimal truncation can be expressed in terms of the same geometric
structures on the internal S® discussed in [55]. The resulting truncation formulae are
formally identical to those found in [12] for the ITA uplift of a particular D = 4 black hole.
The D = 4 metric and graviphoton here are generic, though: they are only required to
obey the D =4 N = 2 field equations (A.1).

Proceeding along these lines, some calculation gives the following formulae for the
consistent truncation of massive ITA supergravity to minimal D = 4 N = 2 gauged super-
gravity (A.2):

dsly = -5371 g*ﬁ mis (3+c032a)1/2 (5 + cos 204)1/8 ds3 + ds?
. 0 1 2 _1
H :H(3)+ﬁg 3m~ 3 sinada A xF,
0 1 2 11—
F(4)—F(4)+ﬁ93m3V04
1 oL 4sinacoson+d AdlAF
—= m3 sinacosq | ——— o
4g 3 + cos 2« i
1 -1 is' 2sin " 3 cosa do Adl A sF
3m3 sin« « .
2\/39 3 + cos 2a 5 4+ cos 2 n

2 COS « 1
5 + cos 2« 24/3

A /\O _2

F(2) = F(Q) + g 3ms
Here, d5% and F are the metric and field strength of the D = 4 A = 2 theory (A.2), and
*F is the Hodge dual with respect to the former. The S® angle a ranges as 0 < a < 7,

g_g m3 cosa* F. (4.1)
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while J is the Kahler form on the complex projective plane; the one-form 7 is defined as
. 1 1
nEn—i—ggAEcw—l—a—l—ggA, (4.2)

in terms of the S% angle v, with 0 < ¢ < 27, a one-form o such that do = 2J, and the
D = 4 N = 2 gauge field A affected by the coupling constant g. Finally, the metric ds%
and the forms Fg), H (03) and }3’(2) correspond to the background values of the NV =2 AdSy
solution of [21], shifted with the D = 4 gauge potential A through 7j in (4.2), namely,

3 6sin® o 9sin® o
ds? = L* 2a)"/? 20)"% | S da? 4 o ds*(CP?) b
56 (34cos2a) ™'~ (54cos 2a) 5 do +3—|—cos2a s%(C )+5+0052an ,
A 3/4
b — oo (5+cos 2a)
3-+cos 2a
.3
L2300 = 4v2 — % Jnda,
(34cos 2a)
14 7 2
L_361¢°F(2> = IQﬁM sin? a vol(CP?)
(34-cos 2a)
(9+cos 2a) sin® & cos o .
18v3 JAda
+18v3 (3+cos 2ar) (5+cos 2a) s
-2
By o 3—cos 2a)
L1300 f0 _ sin® o cos o _3VE ( o doAd
¢ ) (3+cos 2ar) (5+cos 2ar) Ve (5+4cos 2a)* s qan,
Le%(bOF‘(U) B 3_% . (4.3)

In these expressions, ds?(CP?) and vol(CP?) are the Fubini-Study metric, normalised
so that its Ricci tensor equals 6 times the metric, and the corresponding volume form.
In this minimal N/ = 2 truncation, the dilaton e? and the Romans mass F(O) take on
their exact background values [21]. Although the expressions (4.1) were given in terms
of the N/ = 8 couplings g and m, these should be traded for the classical parameters L
and 1% that characterise the background geometry, via [21] L? = 275371 g_% miz and
%0 = 21 g% m~¢. These parameters are quantised in the full string theory [55, 58].

The general formalism of [21, 44, 55] ensures the consistency of the truncation formu-
lae (4.1)—(4.3). I have nevertheless verified, up to an explicit check of the Einstein equation,
that consistency does indeed hold: (4.1)—(4.3) solve the field equations of massive type ITA
supergravity provided the Bianchi identity and the equations of motion (A.1) of minimal
D =4 N =2 gauged supergravity are imposed. See appendix B.1 for the details.

4.2 Truncation to minimal AN = 3 supergravity

The uplift of the minimal N' = 3 theory to massive type ITA proceeds similarly. Together
with the general uplifting formulae of [21, 44], the SO(4)-invariant uplifting formulae of [23]
are useful for this purpose, even though the ' = 3 minimal theory is not a subsector of the
SO(4)-invariant sector of the full N'= 8 supergravity. In any case, the general embedding
formulae of [21, 44] provide the contributions of the SO(3)q Yang-Mills gauged fields on
top of the N' = 3 background solution as constructed in [23]. T will drop the hat on the
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SO(3)1, index 7 in order to label SO(3)4 triplets as ¢ = 1,2,3 (see footnote 1), and will
follow the conventions of [23] for the quantities that pertain to the background geometry.

In order to express the result, it is convenient to introduce the S% angle o (different
from the angle « of section 4.1), with range 0 < o < Z. It is also useful to introduce

2
constrained coordinates fi‘, i = 1,2, 3, on an S2,

Sij il =1, (4.4)

and right-invariant one-forms p’ on an S, subject the Maurer-Cartan equations
dp =~ pf A gt 4.5
pr= g€ A" (4.5)

In all the expressions below, the right-invariant forms and the covariant derivatives of the
[i* appear shifted with the gauge field A* of D = 4 N' = 3 supergravity as

p=pl - gA, (4.6)

and

.2
Pifl = dii' + 0t ATGE 4 b A0 ith A= MY i 47

fi'=dp' +ge AR + e ART, wi A = s osza P (4.7)
These definitions allow one to express the massive ITA uplift of minimal D =4 N =3

gauged supergravity (A.6). A long calculation yields

1/4
dsjy = 2712 3% g 12 miz (3+cos 2cv) 18 <3 cos® a+3 cos? a+2) ds3+ds?,

.2 3
. . 5 2 1 sin® o cos® « - .
Hgy = HY —-32"5¢g 3m™ 3 D NF*
@) @) J 3 cost a+3 cos? a+2 Hi
.2
5 sin” o cos « o ~
+3-273 g_% m~s o LR eijkﬂzﬁ’/\Fk—Q_%B% g_% m=s sin o daAfi;x F*
3+cos 2«
.2
. 4 sin® « cos « o
+2*%~3% g*% m=3 cosaDﬂi/\*FZ—i—Z*%-?)% gfg m~s o L ERA eijk[ﬂﬁ]/\*F’“ ,
34cos 2«

21— _10 71, C o ai i
g3 m3voly+3-273 g~ 3 m3 sina cosadaNfiifij p'NF?

(3+cos 2a) cos* o

—327% g s ms eijp DEFAD AFF
3cost a+3cosza+2
.2 2
T _7 1sin“acosta _ - -
—3-273 g 3m3 ——————— [ D Ap'NF?
g.om 34-cos 2« HiZ 1P
4 2
10 _7 1 sin®a cos®a .
3273 g7 mI o AP AEF
i g.om (3+cos2a)? €k 1’

13 11 T+cos2a T
—3273 g s ms m sin? o coszozeijk,u’p]/\pk/\thh
12533 g—% m3 Tsinat3sinda cos a daAp; A F*

3+cos 2«
1+3 2 . ;
—97%.33 g_% ms Stocosca sin o cos v daAfuifij p'AxFV
3-+cos 2«
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+2*%~3% gfg m% sin «v cosada/\eijkﬂif)ﬂj/\*Fk

(3—|—cos 2a) cos? o

—97%5.32 g 5m3 eiin Dt AD I A+ FF
3cost a+3cos?a+2 Y
o Taty Tt SO i
gy ® COS(Bij:sC;;) " i €ijup NP A
+2*?.3% g*% m3 (E;ii(j;);i(; sin? v cos® a eijkﬂiﬁj/\,ﬁk/\,&h*Fh ,
Fo = FO 23 gfg ms % ﬂiF"+2*g-3% g*% m3 cos o i F . (4.8)

Here, F' is the D = 4 N = 3 field strength (A 3) and xF* its Hodge dual with respect to the
four-dimensional metric ds2. The forms F(4>, H s and F| correspond to the background
values of the N' = 3 AdS, solution given in [23], shlfted by the D = 4 gauge field A’ as
n (4.6), (4.7), namely,

dsg = L* (3+cos 2a)1/8 (3 cos® a+3 cos? a+2)1/4><
2 (3+4-cos 2a) cos? o 2sin® a i
S D' Djil +2d — i
3cost at3coszate 9TH #+2do +3—|—COS 2q " 7
e? = e (3+c0s 20) 1/2 7
(3 cost a+3 cos? a+2) "
. 4\/6 (2 cos? a+3 cos? a—i—S) sin a cos® «v oA
L 3ei% [0 — _ danex Diii ADjiI ApF
‘ @ (3+cos 2a) (3 cos* a+3 cos? a+2) gk ZIEALZHEAP

V6 (543 cos 2a) sin? a cos? a
2 (3 cos? a+3 cos? a+2)

DjiiADfi; Np' A

44/6 sin® . o
46 sin AEO L danji; Dy Ap Ap
(3+cos 2a)

2v/2 (543 cos 2a) sin® arcos o
V3 (3+cos 20)*

23 (3 cos® a+8 cos? a+11 cos? a+2)
(3 cos* a+3 cos? a+2)?

daneijn pPAY AD"

—2 -1 0
2 2(250 H(s) - _

sin o cos? & doaNejy, [Liﬁﬂj/\f?,&k

8\/3 (cos4 a+cos? a+2) sin o cos? o
(3+cos 2a) (3 cos* a+3 cos? a+2)

daAD Ny
V3 (3+4cos 2a) sin? a cos
2 (3 cos* a+3 cos? a+2)

2\[ 3 sin® «

daNe AP
(3+Cos 20) ik P90

eiji D' ApI Ap*
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3 ;2
[-1p3%0 Fg) _ V2 (543 cos 2a) cos® - ﬂiDﬂj/\Dﬂk+2ﬂ sin” a cos o Dinp

4 (3 cos* a+3cos? a+2) 3+cos 2
4/2 sin® o . 3sin? avcos o -
- dan P+ €iin P AE
(3+-cos 20)* e V2 (34cos2a)* RPN
- 3
Lei% F = V3 (4.9)

2v2°

Again, the dilaton ¢® and the Romans mass Fy in (4.9) correspond to their exact back-
ground values [23]. Like in the previous case, the constants g and m that appear in (4.8)
should be replaced with the constants L and e® that characterise the background geometry
where, now, L? = 9= 1 3% g_% miz and e = 276 31 g%m_% [23].

By the consistency of the general A" = 8 truncation of massive IIA on S® [21, 44], and
the consistency of the further truncation within D = 4 discussed in sections 3.3 and 3.4,
the particular subtruncation (4.8), (4.9) must also be consistent. As a further check, I have
verified that this is indeed the case at the level of the ITA form field equations: the type ITA
configuration (4.8), (4.9) solves the field equations of massive type ITA supergravity when
those, (A.4), of minimal D = 4 N = 3 gauged supergravity are imposed. See appendix B.2
for the details. Moreover, using the conditions (A.7) under which the minimal N' = 3
theory truncates into the N' = 2 one, equations (4.8), (4.9) provide a second consistent
truncation of massive ITA to minimal D = 4 N = 2 supergravity (A.2). This N' = 2
truncation is different from that defined by (4.1), (4.3).

5 Discussion

Consistent truncations have been presented to the pure N'= 2 and N’ = 3 gauged super-
gravities in D = 4, both from a larger theory also in D = 4, and from ten-dimensional
massive type ITA supergravity. Similar two-step truncations, from string/M-theory down
to a matter-coupled (or even maximal) D-dimensional gauged supergravity, followed by a
further truncation to a pure gauged supergravity have been constructed in [59-68]. The
strategy to strip off the matter couplings of a D-dimensional supergravity and truncate it
to the gravity multiplet consists in fixing the scalars to their vevs at a suitable vacuum, and
truncating out the massive gauge fields at that vacuum (possibly along with some massless
gauge fields as well).

In this sense, the truncations constructed in this paper are in the same spirit than
the minimal truncation constructed recently in section 3.3 of [68]. In that reference, min-
imal D = 4 N = 2 gauged supergravity was embedded into D = 4 N = 8 SO(8)-gauged
supergravity [69] around its N/ = 2 vacuum [70], and then uplifted [71, 72] to D = 11 su-
pergravity [73] on the N/ = 2 solution of [74]. Unlike in [68], in the present case some of the
massive vector fields to be truncated out gauge dyonically shift symmetries of Stiickelberg
scalars. As shown in section 3, the procedure to switch those off is not simply to set them
to zero. Instead, the vector duality relations (2.13) must be employed to write these gauge
fields in terms of the surviving R-symmetry gauge fields and their Hodge duals. Essentially
the same process was performed in e.g. section 6.1 of [65], in a symplectic frame where the
Stiickelberg scalars there appeared dualised into tensors.
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These subtruncations of larger theories to pure supergravities do not follow from any
obvious symmetry principles. Thus, their consistency must be checked at the level of the
field equations. This has been done in section 3 for the truncations presented in this paper.
In contrast, the intermediate N/ = 4 subsector of the N'= 8 ISO(7) theory, that was used
for convenience, does arise from the latter as a singlet sector truncation. This N' = 4 theory
corresponds to the sector of the NV = 8 supergravity that is invariant under the SU(2) or
SO(3)r in (2.1) or (2.2) [53].

Using the general N' = 8 consistent truncation formulae of [21, 44], the minimal N =
2 and N = 3 theories have been uplifted to ten dimensions. In this way, consistent
truncations have been constructed of massive type ITA supergravity on the internal spaces
of the N = 2 and N' = 3 AdS, solutions of [21] and [22, 23], to the minimal D = 4
N =2 and N = 3 gauged supergravities. The N = 2 truncation formulae of section 4.1
are straightforward extensions of the formulae given in [12] for the ITA embedding of a
particular D = 4 black hole. In section 4.1, the only restriction on the D = 4 N = 2
fields is that they obey the minimal supergravity field equations (A.1). Thus, not only the
black hole considered in [12] uplifts to D = 10, but in fact any other solution of minimal
N = 2 supergravity does through those consistent embedding formulae. For example,
the SU(3)-invariant, supersymmetric Reissner-Nordstrom black hole with constant scalars
discussed in [75, 76] can be more economically regarded as a solution of minimal N' = 2
gauged supergravity. Also this black hole uplifts to ITA using the same formulae in [12] and
section 4.1 here, as any other solution, supersymmetric or otherwise, of minimal D = 4 N =
2 supergravity does. Explicit calculations in related contexts and in [12] for their specific
black hole, make supersymmetry expected to be preserved in general by the uplifting
process. Similar statements apply to the N’ = 3 uplift. The supersymmetric solutions to
minimal D =4 N = 2 gauged supergravity have been classified in [77].

In addition to the ITA uplift of NV = 2 supergravity given in section 4.1, an alternative
uplift of this theory can be given. This follows from the results of section 4.2 simply by
bringing to that section the restrictions (A.7) for the further truncation of the D =4 N =3
theory to A/ = 2. While various consistent truncations of string or M-theory are known
to D =4 N = 2 pure gauged supergravity [24, 29, 40, 68], truncations to the pure N' =3
gauged theory are less common. One such truncation has been constructed, from D = 11,
in [30] (see also [63]).

The internal spaces corresponding to the ITA truncations of section 4 correspond to
smooth geometries on topological six-spheres. Some (singular) generalisations for the back-
ground geometries can be easily engineered [21, 23] (see also [78]), that are carried over to
the corresponding minimal truncations. For example, the A/ = 2 truncation of section 4.1
is still valid if CP? is replaced, along with its related quantities J and o, with any local
Kahler-Einstein four-dimensional space of positive curvature. Similarly, the A/ = 3 trun-
cation of section 4.2 still holds if the S on which the p’ take values is replaced with the
lens space S3/ Z,,, with the discrete identification acting on the Hopf fiber.

In any case, the results of this paper deliver the consistent truncations to minimal
gauged supergravities envisaged in general in [24, 25], corresponding to the supersymmetric
AdSy solutions of massive type IIA supergravity constructed in [21] and [22, 23].
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A  Minimal N = 2 and N = 3 gauged supergravities

A.1 Conventions

The bosonic sector of minimal D = 4 N/ = 2 gauged supergravity [19, 20] includes the
metric3 Juv» With line element ds?, and a gauge field A with field strength F' = dA, subject
to the field equations
_ 1 1
dF =0, d«F =0, Ry, = —3g2gW + 3 <FWF,,‘T — Zg’“/ Fpon”> . (A1)

The latter two derive from the Einstein-Maxwell Lagrangian with a negative cosmological
constant —6g2,

1 o

£ =Rvoly — 5 F A+F + 6g% voly . (A.2)

The AdS vacuum is attained for ds7 = g2 ds?(AdSs), with ds?(AdSs) the unit-radius
anti-de Sitter metric, and A = 0.

The bosonic field content of minimal D = 4 N' = 3 gauged supergravity [20] contains
the metric g, with line element ds%, and SO(3) gauge fields A’ with field strengths

F' = dA" + %geijk AI N A (A.3)

These fields obey the field equations

A . A 1 .
DF' =0, D*F'=0, R/‘V:_392§W+2(FliaFiVU_ZlgWF;UF{M) , (AA4)

where the SO(3) indices ¢ = 1,2,3 are raised and lowered with 0;;, and the covariant
derivatives are

DFiEdFi—i—geijkAj/\Fk, D*Fizd*Fi+geijkAjA*Fk. (A.5)

The equations of motion (the latter two equations in (A.4)) derive from the Einstein-Yang-
Mills Lagrangian with a cosmological constant —6g¢2,

L = Rvoly — 2 F" A F; 4 6¢* voly . (A.6)

The AdS vacuum is attained for ds? = g=2 ds?(AdS,), where ds?(AdS,) is again the unit-
radius anti-de Sitter metric, and A® = 0. The N/ = 3 theory (A.6) can be consistently
truncated to the A/ = 2 theory (A.2) through the identifications

Al =A%=0, A=243. (A7)

3The metrics g, of the minimal N = 2 and N = 3 theories are denoted with bars, as they are related

to the metric g, of the parent N’ = 8 theory (and the intermediate N' = 4 theory of section 2) by the
constant rescaling (3.5). Unlike in [68], bars are omitted for simplicity in the A' = 2 graviphoton F' and its
Hodge dual *F with respect to g,., and similarly for F* and *F" in the A = 3 case.
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A.2 SO(7) embedding of the N' = 2 and N = 3 gauge groups

It is interesting to determine the generators of SO(7), and ultimately of SL(8) C Eq(7),
corresponding to the U(1) and SO(3)4 subgroups that are gauged in the N'= 2 and N’ = 3
minimal models. This U(1) is the commutant of the SU(3) of (2.1) inside SO(7). The
group SO(3)q is the one that appears in (2.2), and its generators have already been given
in (A.5) of [53]. In any case, the relevant generators can be found by bringing (3.24), to
the general expression for the ISO(7) gauge fields coupled to SL(8) generators [51]. If £ 7,
A=1,...,8, are the generators of the SL(8) subalgebra of E7(, then SO(7) is generated
by Try = 2t %0k, with A = (1,8), I = 1,...,7. The U(1) and SO(3)q R-symmetry
groups of the minimal A/ = 2 and N' = 3 supergravities turn out to be generated by the
generators T' and Ty, k = 1,2,3, of SO(7) given by:

- - 1 .
U(l) : T=e3Ty; + (J3 ) Tup, SO(3)q : Th = &V Ty — 5 0L (Jin)® Ty, (A.8)

with the index I = (4, a) split as below (3.25) (see also footnone 1), and the antisymmetric,
anti-selfdual matrices (J;_)® as defined in appendix A of [53]. In particular this U(1) is
different from the U(1) Cartan subgroup of SO(3)q, since T' # T5.

B Consistency proof for the ITA truncations

The truncations of massive type IIA down to minimal N' = 2 and N' = 3 gauged super-
gravities given in the main text are consistent by construction. First of all, the truncation
within D =4 from N’ = 8 to N’ = 2 and N = 3 was checked to be consistent at the level of
the D = 4 bosonic equations of motion, including Einstein, in section 3. Then, the minimal
subsectors were uplifted using the general consistent truncation formulae of [21, 44, 55] in
section 4. Nevertheless, it does not hurt to check explicitly the consistency of the D = 10
to D = 4 truncations of section 4. Here I present a lengthy, but worthwhile, explicit con-
sistency proof at the level of the bosonic field equations of the type ITA supergravity forms.
Short of explicitly checking the Einstein equation, these results confirm the consistency of
the minimal D = 4 truncations of type ITA presented in the main text.

B.1 Truncation to minimal N’ = 2 supergravity

The massive type IIA configuration (4.1), (4.3) has the local form

sty = X ds] + 24 da® + 2PV ds? (CPy) + 5%, d=¢(a),
Fly = povoly + As(a) vol(CPy) + By(a) J Ada A
+(P(a) J 4+ Q(a) da Aj) ANF + (S(a) J + T(a) da A ) AF,
H = Bs(o) J Ada + N3(a) * F Ada,
Foy = As(a) J + Ba(a)da A+ Ma(a) F + No(a) * F, (B.1)

with = n + %gA =dy+o+ %gA. In these expressions, d57 and F = dA are the fields
of minimal N' = 2 gauged supergravity (A.2), uo is a constant, X («a), etc., are functions
of the angle « that can be read off from (4.1), (4.3), and J = 3do is the Kihler form
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on CPy. This configuration, with the explicit functions X («), etc. that can be read off
from (4.1), (4.3) of the main text, was obtained in section 4.1 by consistent uplift using
the formulae of [21, 44, 55]. Here, I will explicitly verify at the level of the field equations
of the ten-dimensional form fields that these expressions do indeed define a consistent
truncation of massive ITA supergravity down to minimal N' = 2 gauged supergravity in
four dimensions.

Imposing the Bianchi identities of massive type IIA, (A.4) of [44] in our conventions,
on the configuration (B.1), and using the Bianchi identity, dF' = 0, and Maxwell equation,
dx F =0, of the D = 4 graviphoton, the relations (B.4) of [55] (with Cy = Dy = C3 =
D3 = E3 = F3 = Cy = Dy = 0 there) are recovered, together with

P/—gB4—M2B3—2Q = 0,
S" — AyN3 — B3Ny — 2T = 0,

gQ — NaN3 = 0,
gl + M>Ns = 0,

Mj —gB; =0,

N, —mNy = 0. (B.2)

Here and subsequently, a prime denotes derivative with respect to «, and the explicit «
dependence is suppressed from the functions. These and the following relations are obtained
by assuming that F', «xF', A F' and F' A xF' are non-vanishing and independent.

Next, I turn to check the equations of motion of the type IIA form fields, collected
in (A.5) of [44]. The F, equation of motion gives (B.5) of [55] along with

!
(e%¢fA+4B*CQ) — 4e3%TATCP L OB S 4 Ny A, = 0,

)

(e%‘b’AHB’CT)/ _ 4e3otAYCg _opp, gu0€%¢>f4X+A+4B+C _0
N3 = ges?t44C, (B.3)
the H equation of motion gives (B.6) of [55] and

(e—¢—A+4B+C Ng)’ _ e3¢ AHBOp. T 9030 +AC G A, L OPB, + A4Q
_meg¢+A+4B+cN2 — o e%¢—4X+A+4B+CM2 =0,

20 ATB=C R0 4 22T ATC P Ay 4 29B, + AT
+m ez HATABHO N g a0 AXFABIC N, —
ge O ATBHC N, e39—A+4B-C (MoT + NoQ) + P? — 5% = 0,
39 M4C (MyS + NoP) — PQ + ST = 0,
p3$—A+4B—C (MyQ — NoT) +2PS =0,

e29TATC (VMLP — N, S) + PT +SQ = 0;  (B.A)
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the F, equation of motion gives (B.7) of [55] together with

g e%¢+A+CM2 + eéd)*A*CNgT =0,

ger?tATON, — e30-A-C Ny = 0; (B.5)
and the dilaton equation of motion gives (B.8) of [55] along with

3 36+AtaB+C (M2 — N3) 4 ¢ @ AHBICN2 | 30+A+C (P2 _ g2)

\]

+%e%¢—A+4B—C (Q2 _ T2) -0,

ge%¢+A+4B+CM2N2 +e29tATOpg 4 %e%¢_A+4B_CQT =0. (B.6)

Equations (B.2)-(B.6) can be shown to be identically satisfied with the functions that
can be read off from (4.8), (4.9) of the main text. This shows that the massive IIA field
equations are satisfied on the field equations of D = 4 N' = 2 minimal gauged super-
gravity (A.2). Up to a check of the D = 10 Einstein equation, the truncation is thus
consistent.

B.2 Truncation to minimal N’ = 3 supergravity

The massive type ITA configuration (4.8), (4.9) is of the (also massive) local form

ds2y = X @52 4 2B 5. D Dt + MV da? + i C@ g5y, 6= ola),
Fly = povoly + Cy(a)da A egjp Diit A Dii? A pF + Co(a) Djis A Djij A pEA 5
+C3( )doz/\mDuj APEA P+ Cule)da A e p A PP A P
+My(a) da A pi A F' + Ny(o) doa A fisfig p° A F? 4 Py(a) da A eijk,aif),&j A FF
+Qu(a) e D’ A Dii? A F* + Ry(a) i Dji; A p* A F?
+Ty() eijip’ A ' AN FY + Us(a) i’ A p5 A F"
+My(a)da A pi A*F" + Ny(@) da A fiifi; p° A *F7 + Py(a) da A eijkﬂif)ﬁj A «FF
+Q4(a) e Dji* A Dj? A xF* + Ry() fis Djij A p A xF7
+Ta(a) eiip’ A PP N*F* + Us() eijifi' @ A pF A fun + F"
ﬁ<3) = Bi(a) da A €jp, @' Di? A Dii* + By(a) do A Djig A p' + B () €ijk Dt A po A pF
+By(a) da A e it A pF
+M;(a) da A i, F* + Py(a) Dji; A F* + Ry(a) egp it P A F*
Ms(o) da A iy % F' + P3(a) Djig A «F* + Rs(a) e fitp?! N xFR
Fay = Ai(a) 5 fi' D A Dji* + As(r) Djig A p' + As(e) da A fig p+ Aala) g fi' 7 A pF
+Ms(a) fi; F* + My(o) i * F*, (B.7)
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where ds? and F' are the fields of D = 4 N' = 3 gauged supergravity (A.6), uo is a
constant, X (), etc., are all real functions of the angle o, the i, i = 1,2, 3, are constrained
coordinates that define a unit radius S? through (4.4), and p’ correspond to the right-
invariant Maurer-Cartan forms on S2, shifted by the D = 4 A" = 3 SO(3) gauge field A?,
as in (4.6). In this appendix, I will denote the covariant derivative of ji* for convenience as

Djit = dji’ + ge' p AV iF + € Ak, with AT = Ag(a) 5. (B.8)

The function Ag(«), as well as all other functions of « in (B.7), can be read off from the
concrete expressions given section 4.2 of the main text. It is worth emphasising that all of
the above functions are real. Bars have been used as a mere notational device, in order to
neutralise the real threat of running out of symbols. For example, Ms () and Ms(a), etc.,
are real and unrelated.

Let us now find the equations that these functions must obey for the configura-
tion (B.7), (B.8) to solve the massive type IIA field equations, assuming that the D = 4
Yang-Mills field strength F? is covariantly closed and co-closed as dictated by its Bianchi
identity and equation of motion, (A.4). For that purpose, one needs to use the identities
recorded in equation (A.10) of [23] as well as the following ones involving the D = 4 gauge
field strength:

1 1 o
S €ukP N NF" = eijifit o7 NN F™

eijkﬂiDﬂj/\bﬂk/\ﬂhFh = fijkﬁﬂi/\bﬂj/\Fk ,

finp" Nejiet' o' NFE

. o 1 o .
Dinnp" Neijrii’ P AFF —geijkﬂ’ﬁj/\ﬁk/\Dﬂh/\Fh ,
~ A~ S 1 Y N SN ~
,uhph/\ei]-kDp AP ANFF = EﬁijkD/L AP NPT AR F™

eijnfi' DI ADR" Nenim i pPAF™ = 2D AD i A AF? |

1 iy Aj | i
Sk NP NFENF" i — = et P NpEAF" NF,

prieirpi' P ANFR AF" 5 5

o 1 o
fmp" Neijrpi PP AFFAF" iy, = ieijkp”/\[f/\Fk/\Fhﬂh

1 ~1 AJ ~ m n ~ ~
=€l NS NET AE i i

R L 1 L
D" neijiit D ANFFAF;, = 5eijkﬂ’DﬂJAD,]’“A(Fh/\,f?’ﬂhﬁl4?’%&),

€ijifi' DI AF* Nemnp DET AP ADP = €156 DR ADE A" Nemnpi™ p™ AFP
= 2 D ADn Ap" AP NFI
o 1 ~ib~j E»Jc AT A AT Fp D~ D~ PNINN Fk~
= gk DA Nemnpp AP NET =D ND g ANp ANp” AE i
0. (B.9)

€ijni 7AD" Nemmp i P AFP

Equipped with these identities, and requiring that F?, xF' F' A F, fi;fi; F* A FJ,
F' A %F; and it F' " A xFJ be independent quantities, a very lengthy calculation allows
one to obtain the set of algebraic and differential relations that the functions of a in (B.7)
must obey for that configuration to solve the type IIA field equations. The F<4> Bianchi
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identity gives the first equation in (C.7) of [23] and

Q) —Py+9gC1— A1 Ms— By Mo
RQ—N4+A0P4+903—29(1—A0)C1+A3P3
Ny+AgPy+9C5+2Q4 Ay+As M3+ By Mo

1 3 1 1 1 1
U41—|—§N4—§N4A0—EAO(1—Ao)P4+§gCg))(1—A0)—§R4A,0—|—§A3R3—A4M3—B4M2

T+ Mik Nado+ 5 Ao(1-A0) Pa— 5 gCs(1—Ao)+39Ci+ 5 Ray— 3 AsRs
Ry+2A0Q4+29C5—2A1 R3+As Py
(1-2A0) Rat2g(1— Ag)Cot-2Us+ Ay Ry —2A4 Py
AoRa+2A0(1—Ag)Qu—2U4+2B3 My
My—Py(1-Ap)
gNs+gPy(1—Ag)—MoMs+Mo M3
29(1—A0)Qa+gRs—MyPs+M,P3
29Uy —MoR3+ Mo R3
@2—?4—A1H3—31M2
R,—Ni+AgPy+A3Ps
Ny+AgPs+2Q,Ay+As M 3+Bo Mo
Uﬁﬁ—%ﬁr%N4A0—%A0(1—A0)P4—%§4A{)+%A3E3—A4M3—B4M2
T;ﬁ1M4+1N4A0+le(l—Ao)F4+1§4A6—1A3R3

2 2 2 2 2
Ry+240Q,—2A1 R3+ Ay P
(1-2A4¢0)Ry+2U 4+ AsR3—2A4 P
AgR4+2A0(1—Ag)Q4—2U 4, +2B3 M5

My—Py(1—Ap) =
gNa+gPs(1—Ag)—MyM3—MoM;z =
29(1—-A0)Qu+9gRs—MoP3—MoPs =

2gU4—MsR3—MsoR3 =

the H s Bianchi identity gives the second equation in (C.7) of [23], together with

Pé — M3 — 2931(1 - A()) —gBQ = 0,
Ré - A6P3 - AOM3 - 932(1 - Ao) - 2gB4 = 0,
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R3 — AgP3 —2gBs =0,

Py—Ms =0,
Ry — AbPs — AgMs = 0,
Ry — AgP3 = 0; (B.11)

and the Fl,, Bianchi identity gives the third through sixth equations in (C.7) of [23] and

M} — mMs + gAs = 0,
My —mPs+ gAs +2g(1 — Ap)A; =0,
MyAg —mR3 +2gAs + g(1 — Ag)A2 = 0,
Mé —mM3 =0,
My —mP3 =0,
MyAy —mR3 = 0. (B.12)
In these expressions, I have dropped the explicit @ dependence and have denoted with a
prime the derivative with respect to it.

Turning now to the equations of motion, the F(4) equation of motion gives (C.8) of [23]
together with

<6%¢7A+SCP4)/74 eBO-ARIBIC N[ AL 9 30+A-2BHICH g B6HALC R A
3229 HAT2B=Cp) A (1 Ag)+16B.T4—16B5M4+16 B4Ry
—48C4P3—8C3R3 = 0,
(6%¢—A+2B+CM4)/+ e3OHATC R LR FOHAT2B=C (7, L1y A
+8B1T4+2ByRy+4B3P3+2C3P3+4C 1 Ry = 0,
(€%¢—A+23+0N4)l_3 e3PHATC R, 18 e3¢ TAT2B-C (1_340)U,
+8Blﬁ4—232R4—4BSP4+8B4@4+402M3_203F3_401§3 =0,
4ge29tAT2B=CT 4 PP 4 PPy = 0,
4ge%¢+A+2B—CU4_|_2 (M3Q4+M3Q4)—(PsPy+PsPy) =0,
ge3?tATCR, 12 (RyPy+RyPy) = 0,
49 e39HAT2B=C, (1 Ag)+ PsMy+PsMy = 0,
4ge%¢+A+23*CU4(1—A0)—(M3§4+M334)+P3N4+P3N4 =0,

qg 6%¢+A72B+BCQ4+8 (M3T4+M3T4)+4 (R3M4+R3M4)+4 (R3N4+E3N4 =

g €%¢+A+CR4(1—A0)+2 (R3M4—|—§3M4

ges?=AT2BHON, 1y (R3Q4+R3Qq

) =0,
) =0,
g ez YO R (1- Ag)+4 (M3Us+M3Us) —2 (RsN4+R3Ny) = 0,
) =0,
) =0,

4g 6%¢7A+QB+CM4(1—A0)+Q 6%¢7A+SCP4—|—16 (P3T4+F3T4)+8 (R3§4+§3R4 =
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gez? AT2BIC N (1 A )+4 (P3U4+PsUs)—2 (R3sRy+R3Ry)
(e%¢fA+3CF4>I_4e%¢fA+2B+CM4A6_2 BOTARBEICE 4y 3OHATCR, A
+32e39HAY2B=CT A (1 Ag)—16BoTy+16Bs My —16 By Ry+48C, P3+8C5 Ry
—gtio e%¢*4X+A+QB+BC(1*A0)
(e%¢—A+2B+CM4>/+e%¢+A+CR4+86%¢+A+QBfC (T4+U4Ao)+iguo e3¢—4X+A+2B+3C
—8B11T4—2BsRy4—4B3P,—2C3P;—4C1 R3

(e%¢—A+2B+CN4)/_3 HOHATCR, 48 3 0HAT2B-C (1_34\T,
—8B1U4+2ByR4+4B3Py—8B,Q4—4C5 M3+2C5 P3+4C1 R3

4g e3¢ TA+2B-CT, _ (P3sPy—P3Py)

4gez?+ATE=CT 9 (M3Qa—M3Q,)+(P3Ps—P3P4)

gzt AHCR, 2 (RyPy—R3Py)

4g e3¢t AY2B=CT, (1— Ay)—PsMy+Ps M,

4g et ATB=CT (1-Ag)+ My Ry~ M3R4—PsNy+ P3Ny

ge2 ¢t A72BECq, 8 (MyTy—MsTy)—4 (RsMy—RsMy)—4 (RsNa—RsN.)

ge3¢TATCR (1— Ag)—2 (RyMy—R3M )

geRtHAYCR (1= Ag)—4 (M3Uy—M3U 1) +2 (R3N -R N4)

3Qu)
)
)

€2¢ A+ZB+CN —4(R (
4g e%¢_A+2B+CM4(1—A0)+g €%¢_A+SC?4—16 (P3T4—P3T4) (R3R4 R3R4

g
gez¢=A2BHON, (1-Ag)—4 (P3Us—P3U4)+2 (Rs Ra—R3Ry
the H s equation of motion gives (C.9) of [23], along with

(67¢7A+ZB+3CM3> ’_26—¢>+A+3CP3_8e—¢>+A+2B+CAOR3
—32C4T4—32C,U4—16Co M 4—16C5 N4 —96C4Q —m e29HAT2BH3C )
_4€%¢>+A—2B+BCA1Q4_4e%¢fA+ZB+CA3M4_4€%¢>7A+2B+CA3N4
—64e%¢+A+23’CA4T4—64e%¢+A+2B’CA4U4+,uOM2 039—4X+A+2B+3C
ge PTATEBTC R 19 (PyRy+PyRy
_ —— 1 _ —
ge ¢+A+2B+CR3_4 (M4Q4+M4Q4) _8e3¢tA+2B-C (M2T4—M2T4

)

)

N4@4+N4Q4—% (PyRytPyRy)+2e29A428=C (MU, — U )
ge PHATC Pt 16 (PyTa+PaTy)

)

g €_¢+A+2B+CR3(1—A0)—|—2 (M4R4—|—M4R4
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o 1 o
PiU+PiUst 2 45C (My Ry~ MRy
q 6_¢+A+3CP3(1—A0)—|—16 (M4T4—|—M4T4
g €_¢+A+3CP3(1—A0)—16 (M4U4—|—M4U4) —16 (N4U4—|—N4U4) —16 (N4T4—|—N4T4

_26%¢>+A72B+30 (M2Q4—M2Q4

g e ¢ AT2BEIC 4 20 (Q4T4+@4T4)+4e%¢_14+23+0 (MyMy— oM,

) =
)
)
)
)
Q4U4+@4U4+ée%¢_’4+23+0 (MyNy—MoNy)

ge PTATIBTCO N (1- Ag)—16 (RaU 4+ R4Us) —16 (RyT4+RyTy)
—e39ATC (M, P~ Mo Py) =

(e—¢—A+2B+3CM3> ’_2€—¢+A+3Cp3_8e—¢+A+23+CA0§3
1320, Ty +320,Us+16Co My+16Co Ny +96C4 Q4 —m e 39 TAT2BHCRT,

_46%¢+A—QB+30A1©4_4€%¢—A+QB+CA3M4_4€%¢—A+2B+CA3N4

_64e%¢+A+QB—CA4T4_64e%¢+A+QB—CA4U4_MOM2 039—4X+A+2B+3C

0,
g €_¢+A+28+C§3—2 (P4R4—ﬁ4R4 0,
g €7¢+A+2B+0E3+4 (M4Q4—M4@4) —8€%¢+A+2Bic (M2T4—M2T4 0,

1 _ . B _
N4Q4—N4Q4—§ (P4R4—P4R4)—26%¢+A+23 (MU 4+ MU,y

g e OTATCP, 16 (PyTy—PyTy
ge OHAT2BHCR (1 A))—2 (MyRy—M 4Ry

1 .
P4U4—P4U4—ze%¢+‘4+c (MoRy+ MR,y

ge PTATOPS(1-Ag)+16 (MyUs—M4U 1) +16 (NyUs—N4U 1) +16 (NyTy—N4 T4

_2€%¢+A—23+3C (M2@4—|—M2Q4

ge ¢ ABIONL, 39 (QuTu—QyTa) +4e2 A48 +C (My M+ M, My

)
)
)
)
)
)
ge OTATCPy(1-Ag)—16 (MyTy—M4Ty)
)
)
)
QT L
ge PTATIBTON(1- Ag)+16 (RaUs—R4U4) +16 (RyTy—RaT4)

) =

—e3¢7AH3C (ML P 4 Mo Py
(B.14)
the Fl,) equation of motion gives (C.10) of [23] as well as
ge%¢+A+QB+3CM2(1_A0)_e%¢>—A+3C (M3P4—M3?4)

+2€2¢+A 2B+3C (P3Q4 P3Q4) =0,
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g62¢+A+2B+3cM —|—4e2¢ A+2B+C (M3M4 M3M4) +39 e%¢+A+2ch

/‘\

+32€%¢+A+23—C (R T,
o309~ A+2B+C (M3N4 —M3W4) 3 tA+C (P R,
_geadtA+2B-C (R3U4 RU4

e29TATC (PyRy—P3Ry) —8 €20 TAT28-C (RyTy —RyT,
+2e20HARBEC (PG 1 PaQy) =
g 20 TAF2B3CNL, | fo30—A+2B+C (M3 M 4+M3My)+32 29T AT2B—C (RsT4+R3Ty
+3239+A+2B-C (R, 4 RaU,) =

€39~ AY2BHC (VLN (4 3Ny ) -39+ 44C (PyRy+P3Ry

T4)

Us) =

Ry)

) =

) =

g e3P ATZBE3ONE) (1 Ag)—e29AH3C (M P4+ M3 Py)
)

)

)

)

—8e2?HAT2B-C (RTT, L Ryl
)

29t ATC (PyRy4+PyRy) —8 29 A+28-C(RyT, L RyTy) = 0;
(B.15)
and, finally, the dilaton equation of motion gives (C.11) of [23] together with
36%¢+A+2B+BCM2M2_267¢7A+2B+BCM3M3+267¢+A+30P3ﬁ3+867¢+A+2B+CR3§3
+4e39-AT2BHC (N4N4+M4N4+N4M4) —6%¢7A+3CP4P4+46%¢+A72B+3CQ4@4
—46%¢+A+CR4R4+646%¢+A+237C(U4ﬁ4+T4ﬁ4—|—U4T4) =0,
267¢+A+3CP3P3+8ef¢+A+2B+CR3R3_46%¢7A+2B+CM4M4_e%¢fA+SCP4ﬁ4
—4e29TAYC R R —64e2?TATZB-CT T, — (),
3e30+A+2B+3C (M22 —Mi) _9p—#—A+2B+3C (M32 —M§> 19— d+A+3C (P32 _pg)
8o HHARILO (RERT) b0 ATREHC (NN L2 M N, 20N,
_eo—A+3C (Pf _ﬁi) 1 fe3TA-2B+30 (Qi—@i) _geietA+C (RQ )
164e2¢TAT2B-C (UZ—UE+2T4U4—2T4 4)
(B. 16)
2~ HATIC (PR ge ot ALIHC (RRRT) —dehomA42B4C (A2 0T

Ao-Atac (Pf—ﬁi) _prota+C (R?;—RQ;) _GlesdtA+2B-C (Tf—T4) = 0.

I have explicitly checked that equations (B.10)-(B.16) are identically satisfied for the
functions that can be read off from (4.7)—(4.9). In other words, the bosonic field equations
of massive ITA supergravity are fulfilled on the field equations of D = 4 N/ = 3 minimal
gauged supergravity (A.6). This shows the consistency of the truncation, up to a check of
the D = 10 Einstein equation.
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