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ABSTRACT: New renormalisation group flows of three-dimensional Chern-Simons theories
with a single gauge group SU(N) and adjoint matter are found holographically. These RG
flows have an infrared fixed point given by a CFT with A/ = 3 supersymmetry and SU(2)
flavour symmetry. The ultraviolet fixed point is again described by a CFT with either
N =2 and SU(3) symmetry or N' = 1 and G2 symmetry. The gauge/gravity duals of these
RG flows are constructed as domain-wall solutions of a gauged supergravity model in four
dimensions that enjoys an embedding into massive IIA supergravity. A concrete RG flow
that brings a mass deformation of the N’ =2 CFT into the A/ =3 CFT at low energies is
described in detail.

KeEYywoRrDS: AdS-CFT Correspondence, Supergravity Models

ARX1v EPRINT: 1910.06866

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP03(2020)100


mailto:adolfo.guarino@uniovi.es
mailto:javier.tarrio@helsinki.fi
mailto:oscar.varela@usu.edu
https://arxiv.org/abs/1910.06866
https://doi.org/10.1007/JHEP03(2020)100

Contents

1 Motivation and summary of results 1
2 Minimal gauged supergravity model 4
2.1 A four-chiral sector of dyonic ISO(7) supergravity 4
2.2  Domain-wall setup 5
2.3 Modes and dual operators around AdSy solutions 7
3 The gravity dual of the Gaiotto-Yin flow 9
3.1 Field theory 9
3.2 Supergravity and the field-operator map 14
3.3 The numerical four-dimensional domain-wall 17
4 A family of holographic RG flows with N =1 - N =3 22
4.1 Generic flows 22
4.2 The bounding symmetry-enhanced domain-wall 22
5 The flows in ten dimensions 24
A N = 1 truncation of ISO(7) supergravity with seven chirals and new
supersymmetric vacua 27
B Previously known domain-wall solutions 31
C Symmetries along the GY flow 32
D Ten-dimensional geometries 35
D.1 IIA uplift of the D = 4 SO(3)g-invariant sector 35
D.2 Geometric realisation of the GY flow symmetries 37

1 Motivation and summary of results

Recently, the study of Chern-Simons-matter (CS-matter) theories with a single gauge group
SU(N) and matter [1, 2] in the adjoint representation has become holographically accessible
at strong coupling and large N. This new holographic arena has opened up by the consistent
truncation of massive type IIA supergravity [3] on S° [4, 5] down to a maximal supergravity
in four dimensions with an ISO(7) gauge group [6]. The supergravity gauging is of dyonic
type [7, 8], with the magnetic coupling m identified with the Romans mass Fy and with
the CS level k as [4]
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Figure 1. Network of domain-walls connecting the D2-brane behaviour (SYM-CS) and the pre-
viously known supersymmetric AdS, solutions (CFTs) of the ISO(7) maximal supergravity. The
black lines (solid and dashed) correspond to domain-walls previously constructed in the SU(3) in-
variant sector of the theory [14]. The blue and yellow solid lines are new domain-walls constructed
in this paper within the SO(3)g invariant sector of the theory. Actual plots corresponding to these
new domain-walls can be found in figure 2 and figure 4.

with /5 the string length. The supersymmetric AdS4 solutions of the dyonically-gauged
ISO(7) supergravity that preserve at least SU(3) or SO(4) residual gauge symmetry have
been classified. The supergravity contains four such solutions with ' = 1 and G, gauge
symmetry [9], N' = 2 and SU(3) x U(1) gauge symmetry [4], N' = 3 and SO(4) gauge
symmetry [10], and ' = 1 and SU(3) gauge symmetry [6] (see table 1 in section 2.1). These
give rise to AdS, solutions of massive ITA [4, 11-13] and are respectively dual to three-
dimensional superconformal field theories (SCFTs) with N'=1 and Gz flavour symmetry,
N = 2 and SU(3) flavour symmetry, N' = 3 and SU(2) flavour symmetry, and N' = 1
and SU(3) flavour symmetry. The N’ = 2 and N' = 3 gauge/gravity duals have concrete
proposals [4] in terms of the field theories of [1, 2] with appropriate superpotentials. Two
new A/ =1 AdS, solutions with U(1) gauge symmetry are found in appendix A.

A network of BPS domain-wall configurations connecting two supersymmetric AdSy
solutions with at least SU(3) gauge symmetry was uncovered in [14]. These domain-walls
are displayed with black solid lines in figure 1. The holographic duals of such domain-
walls are renormalisation group (RG) flows between two different CFTs with at least SU(3)
flavour symmetry. In addition, there are RG flows connecting a non-conformal theory in the
ultraviolet (UV) to a CFT in the infrared (IR). The non-conformal theory is identified with



the maximally supersymmetric Yang-Mills theory (SYM) in three dimensions deformed
with a CS term, and describes the worldvolume of a stack of D2-branes in massive IIA. The
domain-walls reaching the D2-branes in the UV are also represented in figure 1 with black
dashed lines. Flows involving the N' = 3 CFT with SU(2) = SO(3)g flavour symmetry as a
fixed point were excluded from the analysis of [14]. The purpose of this paper is to fill this
gap. We will show that this A/ = 3 CFT can serve as an IR fixed point by constructing new
domain-wall solutions that end at this critical point. A natural, simplifying assumption
is to request that the flows preserve the SO(3)r flavour of the IR phase. The SO(3)g-
invariant sector of N’ = 8 ISO(7) supergravity that we recently constructed in [15] is thus
the natural arena to construct these solutions.

The outcome of our study of supersymmetric four-dimensional domain-walls is two-fold:

e On the one hand, we find a one-parameter family of domain-wall solutions corre-
sponding to RG flows that connect the N'=1 CFT with Gs flavour symmetry in the
UV to the N' =3 CFT with SU(2) symmetry in the IR. One would expect these RG
flows to be triggered by mass deformations of the UV theory. However, due to the
lack of a continuous R-symmetry for N’ = 1 theories in three dimensions, a precise
description of these RG flows is not yet available.

e On the other hand, we find a unique domain-wall solution corresponding to an RG
flow that connects the N/ = 2 CFT with SU(3) flavour symmetry in the UV to
the N/ = 3 CFT with SU(2) symmetry in the IR. This RG flow preserves N' = 2
supersymmetry and is created upon deforming the UV CFT with a mass term. This
flow is of the type discussed by Gaiotto and Yin (GY) in [2] and, for this reason,
we will refer to it in the following as the GY flow. Interestingly, the GY flow can
be “glued” to another RG flow connecting the NV = 1 CFT with G symmetry in
the UV to the N' =2 CFT with SU(3) symmetry in the IR, whose holographic dual
was already constructed in [14]. The combined RG flow then provides a limiting
behaviour of the flows referred to above. The full network of available domain-walls
is sketched in figure 1.

Being generated by a mass deformation of the N’ = 2 CFT, the GY flow is similar to
the well-known flows of [16] and [17-19], created by mass deformations of four-dimensional
N =4 SYM [20] and ABJM [21]. This similarity is reflected in the dual type ITA geometry.
The latter can be depicted as an S? bundle over a four-dimensional base, with S® topology
for the total space. In the UV and at intermediate holographic energies along the flow, the
S? fibres are deformed and show only a U(1) symmetry. This is the R-symmetry preserved
along the flow. The S? fibres get squashed inhomogeneously against the base as the flow
moves on towards lower energies. Finally, at the IR fixed point the S? fibres become
round and a full SO(3) R-symmetry emerges. All along the flow, the four-dimensional
base displays an intact CP! acted upon by the SO(3)gr flavour group. Geometrically, the
holographic GY flow is thus the analogue to the D3 [16] and M2 [17-19] flows created
by similar mass deformations, where the internal S® and the S7 become squashed along
their Hopf fibers [19]. The geometries involved in [17-19], in [16] and in the present case



should correspond to configurations of intersecting M-branes and Dp-branes with all allowed
(odd or even) values for p, respectively. These configurations are not known precisely in
any of these cases, and it is beyond the scope of this paper to address this issue. See
however [22, 23] for early examples in a related context.

The paper is organised as follows. In section 2 we present a minimal four-dimensional
gauged supergravity model that contains the AdS, solutions of interest. This minimal
model contains both the gravity dual of the GY flow and a family of domain-walls interpo-
lating between the Go N = 1 critical point in the UV and N = 3 fixed point in the IR. The
former is investigated in section 3, and the latter in section 4. Concrete proposals exist for
the NV = 2 and N/ = 3 SCFTs linked by the GY flow. We review them in section 3 and
provide field-operator maps relevant to this flow. In section 5 we discuss the uplift of the
domain-wall dual to the GY flow to ten-dimensional massive ITA supergravity. The paper
concludes with various appendices with complementary material.

2 Minimal gauged supergravity model

Our starting point to holographically investigate RG flows with an N/ = 3 and SU(2)
flavour symmetric fixed point in the IR is the half-maximal supergravity coupled to three
vector multiplets that we recently constructed in [15]. This theory describes the dynamics
of the SU(2) ~ SO(3)R invariant sector of the maximal ISO(7) supergravity [6]. The latter
arises upon reduction of massive ITA on S° [4, 5].

2.1 A four-chiral sector of dyonic ISO(7) supergravity

Fortunately, the full SO(3)g-invariant model of [15] is not needed in order to construct the
solutions of interest here. The minimal setup that accommodates such solutions consists
of a subsector thereof containing the metric field g,, and four complex scalars z; with

I =1,...,4. The dictionary between the complex scalars z; and the real fields of [15] is
given by
b b b
2 = £+i6—¢1/\/§’ :,£+ie—¢2/\/§’ _7ﬁ+ie—¢3/\/§7 (2.1)
2 2 V2
and

= —x+ie?. (2.2)

Here, ¢, ¢1, ¢p2, ¢3 are proper scalars and x, b11, bes, b3z pseudoscalars. All other fields in
the model of [15] can be turned off consistently with their equations of motion. In other
words, the sector that contains the four complex scalars (2.1), (2.2) is a consistent trunca-
tion of the N/ = 4 SO(3)g-invariant sector [15] of N' = 8 dyonic ISO(7) supergravity [6].
See appendix A for an alternative derivation of this minimal eight-scalar model directly
from the full N’ = 8 supergravity.

This simple model can be recast as a minimal (AN = 1) supergravity coupled to
four chiral fields. The complex scalars z; serve as coordinates on the scalar geometry



[SL(Z)/SO(2)]4, equipped with the Kéhler potential

3
K = -2 log[—i(z — )] — log[—i(z4 — 24)] . (2.3)
=1

Interactions are codified in a cubic holomorphic superpotential
W:2m+2g[4z1zQ23+(z%+z§+z§) za ], (2.4)

where g and m are the coupling constants of the parent N' = 8 supergravity [6]. The
(bosonic) action is then of Einstein-scalar form

1 1 ;
Sbosz/d4x\/§ <2R—V—2KIJGMZIZ9“ZJ> , (2.5)

where K;7 = 0,:10,;K is the Kéhler metric on the scalar geometry

3
; 2 1
Kppde'de’ = =Y — =z ds — ———dz dz, 2.6
Y = (2 - 7)° -z 20

and V = V(z!,27) denotes the scalar potential. The latter can be readily computed
from (2.3) and (2.4) using the standard AN/ = 1 formula

V=8K7 9 Wa W —-12W?, (2.7)

involving the gravitino mass term

W = %eK/Q (ww)'/? (2.8)

and the inverse Kéhler metric K17.

This N/ = 1 model suffices to capture all the known supersymmetric AdS4 solutions
of the ISO(7) maximal supergravity with at least SU(3) or SO(4) gauge symmetry (see
table 1). Moreover, and importantly for the purposes of this paper, these solutions also
appear as supersymmetric within the N/ = 1 model presented here, thus satisfying the
F-flatness conditions F; = OW + (1K) W = 0 that follow from the superpotential (2.4).
This fact will allow us to construct BPS domain-wall solutions that interpolate between
the supersymmetric AdSy critical points of table 1. These domain-walls will describe,
holographically, RG flows between the corresponding dual CFTs.

2.2 Domain-wall setup

In order to describe the three-dimensional RG flows holographically, we are interested in
gravitational configurations that preserve SO(1,2) Lorentz symmetry. This requirement is
accommodated by a domain-wall Ansatz of the type

ds* = e2A(p)anx“d:c” + dp?, (2.9)
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Table 1. Supersymmetric AdS, solutions ordered by decreasing value of the scalar potential V.
The first four columns show respectively the number of preserved supersymmetries in the maximal
theory, the residual gauge symmetry preserved at the AdSy solution, the value of the AdS, radius,
and a numeric approximation to the value of Vz. The last four columns give the position of the
AdS, solutions in field space. We have set g = m = 1.

where p € R is the coordinate transverse to the domain-wall and holographically dual to
the energy scale in the field theory, 7,, = diag(—1,1, 1) is the 241-dimensional Minkowski
metric, and A(p) is a function that we will refer to as the domain-wall function. This
Ansatz enjoys two reparameterisation symmetries related to shifts in the holographic radial
coordinate and re-scalings of the Minkowski coordinates

' — ot A— A-logo, p—p+ps. (2.10)

The minimisation of the action (2.5) gives rise to a set of second order ordinary dif-
ferential equations. However, we are interested in BPS configurations preserving various
amounts of supersymmetry. Such configurations are solutions of a set of BPS first-order
differential equations

BpA=2W , 9l = 4K 8. W, (2.11)

where W is the gravitino mass term given in equation (2.8). In (2.11), it is convenient
to scale away all the dependence on the coupling constants g and m by considering the

redefinition
m\ /3 m\ ~2/3
2! () = K;7— K5 (> . (2.12)
g g
From (2.3) and (2.4), it then follows that the gravitino mass (2.8) scales as
7\ 1/6
W — W <9> . (2.13)
m

The quantity £ = (¢7/m)~/% becomes the natural length scale with respect to which all
the remaining dimensionful fields and functions are measured

V = V/E2, {zt, p} — {a*, p} ¢, A—A. (2.14)
The AdS, radius Lg at each critical point scales accordingly as
LG — ng. (2.15)

From now on, we will always use the dimensionless quantities just introduced. The explicit
dependence of quantities on g and m is restored by simply applying the above rescalings.
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Table 2. Modes allowed by the BPS equations around each of the supersymmetric AdS, solutions
labelled by their residual gauge symmetry G. We have ordered them in increasing magnitude and
highlighted with a gray background the modes with A¢g , < 0 which parameterise regular domain-
wall solutions ending in the IR (p — —00).

2.3 Modes and dual operators around AdSy4 solutions

The BPS equations (2.11) admit AdS4 solutions where the scalar fields acquire a value ng)

that extremises the superpotential: the r.h.s. of the BPS equations for the scalars vanishes
and the domain-wall function takes the linear form

p

A=—. 2.16

£ (2.16)
The constant Lg = 1/ QW(ZgG)) here is the corresponding AdS, radius, and the label G
refers to the residual gauge symmetry preserved at a given AdS, solution. All the AdSy
solutions considered in the main body of this paper were previously known [6, 10] and are
summarised in table 1.

The scalar spectrum around each of the AdSy solutions can be obtained by considering

fluctuations of the chiral fields

21(p) = 77+ 62(7(p). (2.17)

Linearising the BPS equations in the variables 6z§G) one finds that a generic solution can

be expressed as a linear superposition

8
G G —£-Ag,
557 (0) = D 7y (4 e TR (2.18)
a=1
We will refer to the exponents Ag, as modes. These modes and the constant matrix

(@)

of coefficients z; ' are completely determined by the BPS equations, whereas the eight

integration constants C(SG) remain arbitrary and specify the most general solution to the
linearised BPS equations. We list the modes corresponding to each of the AdS, solutions
in table 2. It is worth noticing that the radial shift introduced in (2.10) gets reflected in a
non-trivial transformation of the integration constants

pptps, (D etatond@, (2.19)

This symmetry will prove useful in sections 3 and 4 to construct domain-wall solutions. It
will also be helpful in appendix B, where the flows previously constructed in the SU(3)-
invariant sector of ISO(7) supergravity [14] are re-obtained as solutions of our present
four-chiral model.



The normalised spectrum of scalar masses at the various AdS, solutions of table 1 can
be obtained from the potential (2.7), and is related to the independent modes in table 2.
The relation between the two sets of data is given by

Mg, L = Aga (Aga —3) . (2.20)

By virtue of the gauge/gravity correspondence, the modes with Méya L%; > 0 are dual
to irrelevant scalar operators (with conformal dimension A > 3) whereas those modes
with —% < Mé o L% < 0 are dual to relevant scalar operators (with conformal dimension
A < 3). Modes with a vanishing mass squared correspond to marginal scalar operators
(with conformal dimension A = 3). For the AdSy solutions of tables 1 and 2 the number
of dual operators of each type is given in table 3.

Note that the counting of relevant and irrelevant operators dual to the scalar fields
does not coincide, in general, with the counting of positive and negative modes around the
AdSy solutions (the latter are highlighted in table 2). Recall that the reason lies in the
existence of two solutions, denoted A, to the equation (2.20) [24]. On the one hand, for a
positive mass squared, dual to an irrelevant operator, there are two solutions A, > 3 and
A_ < 0, and the BPS equations select one of them. If the negative root A_ is selected,
the gauge/gravity correspondence establishes that the dual CFT Lagrangian is deformed
by adding an irrelevant operator, which has an important effect in the UV of the theory.
If, on the contrary, the positive root A is selected, the dual field theory possesses a non-
trivial vacuum expectation value (vev) for the corresponding irrelevant operator, but the
source of this operator is absent in the Lagrangian. On the other hand, for a negative
mass squared, dual to a relevant operator, both solutions AL are positive, and the BPS
equations again selects only one of them. As before, if the negative root A_ is selected the
dual CFT is deformed by adding a relevant operator, whereas if the positive root A is,
the dual field theory possesses a vev with no source in the Lagrangian. However, the role of
the roots A4 can be reversed in the case where the negative mass square lies in the range
—% < Mg; a L% < —%, when an alternative quantisation of the scalar field is possible [24].

Whenever one of the modes in the expansion (2.18) is activated, the maximally sym-
metric AdS, geometry ceases to be a solution of the BPS equations (2.11). The latter
dictate a new and non-trivial domain-wall solution whose holographic interpretation cor-
responds to an RG flow of the dual field theory. When the active modes are the negative
ones associated with irrelevant operators, as we will consider shortly, the AdS,4 solution
provides the IR endpoint of the RG flow. In field theory language, the RG flow brings the
dual field theory to a fixed point in the IR with appropriate deformations turned on.

In [14] we presented a study of the domain-wall solutions involving the N’ = 1, Gy
point, the N' = 2, SU(3) x U(1) point and the N' = 1, SU(3) point as IR endpoints. In that
reference the negative modes in the IR are the same ones that appear in the truncation
under scrutiny here, and therefore the structure of domain-wall solutions with these fixed
points in the IR is the same as in [14]. See appendix B for a summary. For this reason, in
the rest of this paper we will focus on domain-wall solutions ending at the N' = 3, SO(4)
solution in the IR. From equation (2.18) and table 2, only three modes can be seen to



G Relevant operators Irrelevant operators Marginal operators
Go 6 2 0
SU(3) x U(1) 5 3 0
SO(4) 4 4 0
SU(3) 3 4 1

Table 3. Number of relevant, irrelevant and marginal operators dual to the scalar modes in the
AdS, solutions.

allow for a regular solution in the IR (p — —o0). We will denote these as
Aso(y1 = —V3, Aso()2 = Asouys =1— V3. (2.21)

For these modes, the coefficients are determined in terms of three integration constants

C§80(4)) (with @ = 1,2,3), which determine the chiral field fluctuations by means of the
equation (2.18) with a parameterisation of the coefficients of the form
1+(24/3)i 1—(2—/3)i 0
2.21/3 2:21/3
_ 1-(2+V3)i _ V3—(3—2V3)i 14+(2—/3)i
(S0(4)) _ 22173 62173 59173 (2.22)
fla T 12043 0 1+ (2-v3)i :
— BN 20 (3 - 2v8) — 2 0

Using the shift symmetry (2.19) we can set one of the integration constants to any desired
value, for example, to one. Furthermore, the fact that two of the modes are equal, namely
Asowy2 = Asowys = 1 — v/3, implies that the dual field theory is perturbed by two
operators of the same dimensionality. But there are particular combinations that result
more convenient to study certain domain-walls, as we will show.

3 The gravity dual of the Gaiotto-Yin flow

A concrete supersymmetric domain-wall solution of the flow equations derived in section 2
connects the N' = 2 SU(3) x U(1)-invariant fixed point in the UV to the N = 3 SO(4)
fixed point in the IR. We will argue that this domain-wall corresponds holographically to
one of the field theory RG flows envisaged by GY in [2]. We will review the boundary
and bulk sides of the story in sections 3.1 and 3.2, and will finally integrate the numerical
domain-wall solution in section 3.3.

3.1 Field theory

The SCFTs of interest arise as low-energy phases of the theory defined on the worldvolume
of a stack of N planar D2-branes in R”, namely, three-dimensional N' = 8 SU(N) SYM,
upon turning on supersymmetric CS terms at level k for the SU(NN) gauge fields. At
sufficiently high energies, the relevant field content thus includes 1 vector field A, 7 real
scalars X1, I =1,...,7, corresponding to the directions transverse to the D2-branes, and
8 Majorana fermions A4, A = 1,...,8, all of them in the adjoint of the SU(NV) gauge group



and in the indicated representations of the SO(7) R-symmetry. The fields have canonical
dimensions A(XT) = 1, A(4,) = A(M) = 1. The CS terms overrule the (irrelevant)
Yang-Mills contributions and dominate the low-energy physics. Additional couplings can
be included among the matter fields X!, A4 that render the resulting CS-matter models
superconformal.

Two such CS-matter SCFTs have A = 2 and N' = 3 supersymmetry. In general, the
on-shell field content of this type of theories includes, in N/ = 2 language, a non-Abelian
gauge field A, in a vector multiplet, along with a number Ny (arbitrary for N’ = 2 and
Ny =2 for N = 3) of complex scalars Z* and complex fermions x%, a = 1,...,Ny. These
are the on-shell components of chiral multiplets ®%, and lie in a given representation of
the gauge group. For the cases at hand, we chose gauge group SU(N) and matter in
the adjoint in order to make contact with the D2-brane description at sufficiently high
energies. In these cases, the Z% and x® will respectively be complexifications of X' and
M namely, Z! = X! + iX2, etc. At weak coupling, these SCFTs admit the on-shell
Lagrangian description [1, 2]

k 2 _
L=tr |:471' e"rr <A,u,8Ap + g A/LAVAP> + DMZH, DHZe +1 )Za IYHDMXG

4 _ ) _ . _ .
— % tr(Z,T;2%) tr(xTx°) — 8% tr(a T°Z%) tr(Z,T'X°)
4 _ _ .
- % tr(Z T, 2%) tr( 2Ty 2°) tr( ZT'T9 2°) + Ly | (3.1)

where the traces are taken in the adjoint and T* are the SU(IV) generators. The Yukawa
terms and the quartic scalar potential arise upon elimination of auxiliary fields. In addition,
we have allowed for further interaction terms Ly governed by a superpotential W. This
is a holomorphic function of Z¢, and arises as the lowest component of a chiral superfield
W holomorphic in ®¢. Explicitly, these interaction terms read

Cor —tr W(Z)OW (Z) 1PW(Z) , 4  1PW(Z)_ _
WY "oz oz, T 20z0022X X T 297,07, XX )

(3.2)

see e.g. (A.34) of [25]. The addition of a superpotential will typically break the manifest
U(Ny) flavour symmetry of the theory with no superpotential to a subgroup thereof.

The N = 3 theory has Ny = 2, flavour symmetry SU(2) = SO(3)gr, and quartic
superpotential [2]

Wi=3 = 2% tr ([@', %)%, (3.3)

with (dimensionless) coefficient locked in terms of the Chern-Simons level k. With free-
field assignments for the conformal dimensions, A(®%) = A(Z%) = 1, A(x*) = 1, the
superpotential (3.3) is marginal and the classical action (3.1) is manifestly scale-invariant.
A more general quartic superpotential of the type (3.3) but with a generic coupling «
would only preserve N' = 2. GY argue, at weak coupling k > 1, that this more general
N =2 a-dependent theory flows into the theory with superpotential (3.3), therefore expe-

riencing an A/ = 3 supersymmetry enhancement at low energies [2]. The superpotential is

~10 -



non-renormalised and the N’ = 3 theory does not have R-charge or wave function renor-
malisation either. For this reason, the Lagrangian (3.1)—(3.3) can be expected to provide a
good description of the N' = 3 theory also at strong ’t Hooft coupling A = N/k > 1 with k
of order 1 [2]. We will review evidence from the field theory later in this section and from
supergravity in section 3.2 that support this picture. The full symmetry of this theory
is OSp(4]3) x SO(3)r. Denoting by SO(3)q the N' = 3 R-symmetry group contained in
OSp(4]3), the full global bosonic symmetry of the N'=3 SCFT is thus SO(3)q x SO(3)Rg.

The N = 2 theory (3.1) with no superpotential, WW = 0, and free-field dimension
assignments is also manifestly scale-invariant. In contrast to the A/ = 3 case, however, the
N = 2 chirals may undergo both R-charge and wave function renormalisation [2]. Based on
holographic evidence at strong coupling [4], we claim that the N' = 2 theory with Ny = 3,
which we fix henceforth, and cubic superpotential

1
G Cabetr ([@*, @°) @), (3.4)

is in fact also conformal. This could not possibly happen without R-charge renormalisation.

W= =

The coefficient of (3.4) is not fixed by N' = 2 supersymmetry (in particular, it is not fixed
to the Chern-Simons level k) but is nevertheless dimensionless, consistent with conformal
invariance. Thus, the Lagrangian (3.1), (3.2) does not provide a good description of the
N = 2 theory with superpotential (3.4), and it should be replaced by the Wilsonian effective
action corresponding to the CS-driven flow from A/ = 8 SYM. The latter may contain,
for example, a Kéahler potential for the kinetic terms of the chirals. The full symmetry
of this strongly coupled N' = 2 SCFT is thus OSp(4]2) x SU(3), where the latter factor
is the flavour symmetry preserved by the (non-renomalised) superpotential (3.4). The
R-symmetry group contained in OSp(4/|2) will be denoted U(1),, following the geometric
conventions of section 5. The full global bosonic symmetry of the NV = 2 SCFT is thus
U(1)y x SU(3).

With the benefit of hindsight, it is possible to argue purely in field-theoretical terms
that a strongly coupled N' = 2 SCFT theory with flavour SU(3) and superpotential (3.4)
makes perfect sense. The free energy F of this type of field theories on S? can be determined
at strong coupling [26, 27] using localisation techniques [26, 28, 29]. If the SCFT has a
superpotential, then F' can be computed as a function of arbitrary dimension assignments
A, for the chirals ®% a = 1,2,3, subject to the sole requirement that the (exact, non-
renormalised) superpotential be marginal. For (3.4), this translates into the condition

A1+A2+A3:2. (35)

The real part of the leading order free energy as a function of A, is [30]

3V3w 2 23 1/3 a75/3
F=o " 21/3[1+Z (1-AL)[1—2(1-2.)%| K/3N3, (3.6)

with Ny = 3. On the surface (3.5), the function (3.6) attains an extremum at

Mi=dy=ng=2,
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consistent with SU(3) symmetry and renormalised away from the free field values. These,
and only these, must be the dimensions of the chirals at the N/ = 2 fixed point [26],
reproducing the assignments of [4]. With (3.7), the free energy (3.6) evaluates to

313/67 132\ %/®

thus reducing to the result of [4]. Subleading corrections to this free energy have been
worked out in [31].

Of course, the leading order free energy of the A/ = 3 SCFT can be computed in the
exact same way [32]. Assigning arbitrary dimensions A, to the two chirals consistent with
the marginality of the (again, exact and non-renormalised) superpotential (3.3),

Ar+Ar=1, (39)

the free energy, (3.6) with Ny = 2, becomes extremal for the free-field values

1

These are now compatible with SU(2) = SO(3)r symmetry. This provides evidence that
the classical N' = 3 action (3.1)—(3.3) with Ny = 2 is not renormalised at strong coupling.
At the extremum (3.10), the leading contribution of the A/ = 3 free energy becomes [32]

313/671'
40
From (3.8) and (3.11), it straightforwardly follows that

Fr—z = kM3 NO/3 (3.11)

Faneo > Fa—3. (312)

By the argument of [27], these two theories could thus be connected by an RG flow, with
the N'= 2 SCFT in the UV and the N' = 3 one in the IR. In fact, GY had previously
argued that this flow is indeed generated upon deforming the N' = 2 theory by a mass term
for one of the three chirals.! Consider a deformation of the AN/ = 2 superpotential (3.4)
quadratic in, say, the ®3 superfield:

1
Wavma.aa = o (04,8907 + (@) (3.13)

A mass term must always be relevant. Indeed, for the N' = 2 assignment Az = % in (3.7),
4
3
potential. The dimensionful parameter p introduces a scale, conformal invariance is lost,

the dimension of the operator (®3)? is 3, less than the marginal dimension 2 of the super-

and the N/ = 2 theory plunges down an RG flow. At sufficiently low energies, the massive
field ®3 is integrated out. From (3.13), the effective superpotential becomes

W = ;Ltr([cbl,cb?])? (3.14)

'Here we focus on a simplified version of the model in section 4.2 of [2] with no D6-branes, Ny = 0 there,

and consequently no fundamental matter, QY = Q7 = 0 there. It is this simplified flow that we dub GY
after these authors, although we will argue slightly differently.
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Flavour R-symmetry Flavour R-symmetry

SUB3) X U(1)y

SO@)r x U(1),  x U(1)y

SO(3)R X U(l)d SO(3)R X U(l)d
uv RG flow IR

SO(3)R X SO(3)d

SO(3)r ¥ U(1)a

Table 4. Summary of bosonic global symmetry groups involved in the GY flow. The top lines
correspond to the full symmetry enjoyed by the fixed points, with subsequent rows giving the
explicit subgroups mentioned in the text.

GY argue that this A/ = 2 superpotential will finally end up flowing to the N/ = 3 super-
conformal fixed point whose superpotential has coeflicient fixed by the Chern-Simons level
(see below equation (3.3) above). At long distances, conformal invariance is restored and
supersymmetry is even enhanced.

It is interesting to determine the symmetry groups preserved along the GY flow. See
table 4 for a summary and appendix C for further details. The mass deformation in (3.13)
obviously breaks the SU(3) UV flavour to the SU(2) subgroup such that 3 — 2 + 1. Here
!, &2 are the doublet and ®3 the singlet. By construction, this SU(2) is identified with
the SO(3)r flavour symmetry of the IR SCFT. In addition, the GY flow preserves an extra
U(1). This is a mixture of the U(1) (call it U(1), following again section 5) that commutes
with SO(3)r inside SU(3), and the UV R-symmetry U(1),. This mixing follows from a
group theory argument whose implementation is cleaner if the parameter p in (3.13) is
thought as dimensionless. In this case, a reassignment of the dimensions of ®¢ is needed,
as in e.g. [33-35]. Both terms in the superpotential (3.13) must now be separately requested
to be marginal. This in turn leads to a split of the constraint (3.5) as A; + Ag = 1 and
Az = 1. The free energy (3.6) with Ny = 3 is now extremal under these constraints when

1
M=0y=5,  Mg=1, (3.15)

of course reproducing the SO(3)g-symmetric assignments (3.10) for the doublet that sur-
vives in the IR. But by OSp(4|2) representation theory, these dimensions are also the
R-charges (with opposite sign in our conventions) preserved along the flow. The U(1)
charges (3.15) only branch appropriately from SU(3) x U(1),, if this U(1) is strictly con-
tained in U(1), x U(1)y. This U(1) can also be shown to be contained in the SO(3)q
R-symmetry of the IR (it can thus be denoted U(1)4). This follows by assuming that
both UV, SU(3) x U(1)y, and IR, SO(3)i x SO(3),, global symmetry groups are con-
tained in SO(7), as required for both N' = 2 and N = 3 theories to arise as different
CS-matter phases of the D2-brane field theory. To summarise, the global bosonic symme-
try preserved by the GY flow is U(1)q x SO(3)Rr, where SO(3)g is flavour and U(1)4 is the
R-symmetry. From (3.13), the GY flow is manifestly /' = 2 like the UV theory. However,
the R-symmetry U(1)q that rotates the supercharges along the flow is different from the
R-symmetry U(1), of the UV. Instead, U(1)q corresponds to the precise mixture of UV
R-symmetry U(1), and UV flavour U(1), that is contained in the IR R-symmetry group
SO(3)q (see table 4 and appendix C).
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Finally, it is useful to elucidate the N' = 2 operators that drive the GY flow at the level
of the Lagrangian. We have argued that the weak-coupling Lagrangian description (3.1)
breaks down at strong coupling. A Kéahler potential might be generated, and the super-
potential interaction terms (3.2) should require modification accordingly. We may never-
theless make naive use of (3.2) to find the schematic form for these operators. Plugging
the superpotential (3.13) into (3.2), cubic interaction terms and quadratic mass terms are
generated for the component fields of ®3. The latter are of the form

Op ~trZs Z3, Or ~ tr (x*X® + X3X3) - (3.16)

These mass operators are clearly invariant under the SO(3)r flavour group of the GY
flow. Moreover, as the group theory analysis of appendix C shows, these operators are also
neutral under the U(1)q R-symmetry along the flow.

3.2 Supergravity and the field-operator map

The CS-matter SCFTs described in section 3.1 have gravity duals in massive type ITA string
theory [4, 11-13]. In addition, these models enjoy a convenient four-dimensional description
in terms of maximal, N' = 8, supergravity with a dyonic ISO(7) gauging [6]. This is
similar to the existence of holographic descriptions of four-dimensional N' = 4 SYM [20]
and ABJM [21] in terms of the maximal supergravities in five and four dimensions with
SO(6) [36] and SO(8) gauge groups [37]. In those cases, like in the present case, some of the
supergravity fields are dual to mass terms for the boundary fields. Let us determine the map
between supergravity fields and gauge-invariant operators of the boundary field theories.

We find it convenient to work in the SL(8) frame for the N' = 8 supergravity, the frame
used in [6], because the proper scalars can be straightforwardly identified with quadratic
combinations of the vector representation where SL(8) acts. Identifying these as the co-
ordinates transverse to the branes and ultimately as the adjoint scalars in the boundary
theory, these quadratic combinations become related to mass terms for the latter. The
supergravity pseudoscalars, in turn, are related to mass terms for the dual field theory
fermions. The SL(8) frame is, however, rather inconvenient to identify these mass terms,
as the pseudoscalars are parametrised in this frame as self-dual four-rank antisymmetric
tensors in the vector representation. A triality rotation is needed to bring the parametri-
sation into quadratic combinations of spinor representations, for which the relation to
the field theory’s fermion mass terms then becomes obvious. In the following, we will
assume that appropriate triality transformations on the supergravity pseudoscalars have
been performed.

Although there is no supersymmetric AdS critical point with SO(7) symmetry, the
35 proper scalars of ISO(7) supergravity can be nevertheless assigned to the 27 + 7 + 1
representations of SO(7), and the pseudoscalars to the 35. The latter correspond to gauge-
invariant mass terms tr A(AAP) for the 8 fermions \* of A" = 8 SYM. The 27 scalars are
dual to symmetric-traceless gauge-invariant mass terms tr X1/ X7} for the 7 scalars X7.
The singlet can be seen to be related to the second factor in the D = 4 A/ = 8 branching
E7¢7y D SL(7) x SO(1,1) and thus to the ITA dilaton. For this reason, this bosonic operator
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scalar/pseudoscalar ‘ SU(3) x U(1)y ‘

SO(@)r x U(1), x U(L),,

| SO@RxU(Wa [ M2L? |

A ‘ Osp(4]2) multiplet ‘

7%, — Y637°2, 8 Lo.0) +2(-2,0) T 22,0 T 300 + 21421430 -2 1 massless vector
VA 3 a3 1<71 -2 + 2(% -2 1.+ 27% —% % short gravitino
VA 353 14 2+ 2(7% 2) 1, + 2% —% % short gravitino
Zlazb) 6_y/3 1(72 -1 + 2<71§ -1 + 3(1 -1 1.5 27% +3_1 % % hypermultiplet
Z(aZb) 64/3 1(2 4y + 2(%,%) + 3< 1,4 19+ 2% + 31 —% % hypermultiplet
VAV IR YAV 19 1(0,0) 3— V17 | 27 | long vector
Re(Z4z%) 1 10,0) 34+ V17 H%/ﬁ long vector
Im(Z4Z%) 1 1(0,0) 1o 0 — eaten

VA A 3,2/3 1(,] ~2) + 2(15 75) 1.+ 2715 0 — eaten

ZoZy 32/3 1<1%) + 2(7% 2) 1; + 215 0 eaten

XX — %@?Xcic 8¢ L0,0) +2(_2,0) T 2¢2,0) + 3000 + 27% + 2% +30 -2 2 massless vector
y(ayd) 623 Lian+2C 12 +302 Lo+ 21 +31 o z hypermultiplet
X(aXb) 6_5/3 1 2+ 2(517@ +3 2 1 275 +3_ —% % hypermultiplet
Re(x*x*) 1.5 1,2 1., 2 :H;/ﬁ long vector
Im(x*x?) 1y 10.2) 2 3+§m long vector
X*Xa — 3X*Xa 1o 1(0,0) 1o 2 3+§/ﬁ long vector
X*X4 3 93 1(—1 _2) + 2(;7%) 1.+ 27% 0 eaten

)ZQXA 32/3 1(1%) +2<_%%) 1; +2% 0 — eaten

a4 o
X*x 34/3 1(71%)-&-2(%%) 1 +2% 0 eaten
XaX4 343 1(1,_%) + 2(_5_%) 1+ 2_% 0 — caten

Table 5. The scalar spectrum at the A/ = 2 point.

can be assigned to the Yang-Mills Lagrangian, tr £}, F'*”, in analogy with the D = 5
N = 8 situation where Eg) D SL(6) x SL(2), with the second factor associated to the
IIB axion-dilaton. Finally, the 7 in the branching 27 + 7 + 1 does not have a holographic
interpretation because it corresponds to Stiickelberg scalars that are eaten and disappear
from the physical spectrum.

The spectrum at the N' = 2 critical point of ISO(7) supergravity was given in [6] and
allocated into representations of OSp(4]2) x SU(3) in [38]. See table 5 for a summary. The
SU(3) x U(1)y representations branch from the SO(7) representations discussed above,
see appendix C. Further branchings under the various subgroups of SU(3) introduced in
section 3.1 have also been included for convenience. From the table, chiral condensates
tr Z(®Z% and real (traceless) mass terms tr (Z®Z, — trace) for the boundary scalars Z¢,
a = 1,2,3, can be seen to be included in the spectrum. The chiral condensates have
dimension 3, consistent with the dimensions (3.7) for Z% Curiously, the real traceless
mass terms have dimension 1, rather than twice the dimension of Z¢. This is perhaps not
so surprising when one realises that these operators arise as the lowest component of the
conserved SU(3) flavour supercurrent multiplet, and thus must have protected dimension 1.
The AdS; mass squared of these fields is M?L? = —2. Alternative quantisation [24] is
therefore needed for these supergravity fields to be dual to dimension 1 operators.

Two SU(3) x U(1), singlets are contained in the spectrum of proper scalars, both of
them contained in the same long vector multiplet of OSp(4|2). One of them, tr Re(Z4Z4),
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descends directly from the SO(7) singlet identified above, and thus corresponds to
tr F,, F*”. Indeed, it is this mode that drives holographically the N = 8 SYM theory
into the N' = 2 CS-matter SCFT [14]. It is fun to note that supergravity in this con-
text gives a precise value, (5 + /17)/2, for the dimension of the irrelevant Yang-Mills
term in three-dimensions. The other singlet is related, up to a term proportional to the
Konishi-like operator

Op = tr (lel +Z2ZQ+ZBZ3+Z4Z4) , (3.17)

to the square of the 7th coordinate, X7, transverse to the D2-branes. Indeed, (X7)? can
be identified with the auxiliary, SU(3)-singlet scalar ¢ in the vector multiplet that arises
from splitting the N' = 8 SYM field content into N/ = 2 multiplets. This auxiliary field
turns out to be integrated out as tro ~ tr Z¢Z, (with sum in a = 1,2,3), see e.g. (A.33)
of [25], thus matching the table assignment.? The three scalars tr Z¢Z4 and their complex
conjugates are potentially related to minimal couplings in the covariant derivatives of Z¢.
They belong to massive gravitino multiplets, and thus are dual to operators in the six
N =8 SYM supersymmetry current multiplets broken by the A" =2 SCFT.

The pseudoscalar spectrum contains mass terms, tr (Re(x4x4) + iIm(X4X4)), for the
complex gaugino that enters the N/ = 2 vector multiplet. Like the auxiliary scalar
tro ~ tr(X7)? in this multiplet, the complex gaugino is also integrated out from the
weakly-coupled Lagrangian (3.1). These fermionic mass terms belong to the same OSp(4/|2)
long vector multiplet. Other pseudoscalars in the spectrum can be assigned to different
quadratic fermionic operators in the boundary. Most importantly for our purposes, the
spectrum contains gauge-invariant mass terms tr x(*x? for the boundary fermions x*. Su-
pergravity predicts that these mass terms should have a renormalised dimension of %,
consistent with the dimension % for x* that follows from (3.7), see appendix C.

A proposal for the supergravity fields that should drive holographically the GY flow
can be made upon inspection of table 5. The appropriate scalars should be singlets under
the SO(3)r C SU(3) flavour symmetry preserved along the flow. Twenty such singlets can
be found in the fourth column of the table. These are the scalars contained in the SO(3)g-
invariant model of [15]. Further discrete symmetries and identifications can be imposed,
along the lines of appendix A, that allow one to retain only the boxed fields in that column
(boxes containing two entries account for a single supergravity field). The boxed fields
correspond to those of the eight-real-scalar model described in section 2.1. In addition to
be SO(3)g singlets, the supergravity fields driving the GY flow must also be invariant under
the U(1)q R-symmetry along the flow. In particular, the pseudoscalar in the 1y C 8y with
M?L? = —2 s set to zero along the flow by virtue of the BPS compatibility condition (3.22)

2Up to terms in the Konishi-like operator (3.17), which has a dual only in the full type ITA string theory
and not in D = 4 N = 8 ISO(7) supergravity, the operator tr(X")? ~ trZ*Z, is in turn akin to the Konishi
operator of N' =4 SYM in four-dimensions. Unlike in D = 5 N = 8 SO(6) supergravity, this operator
does have a dual scalar in ISO(7) supergravity, again up to terms proportional to the actual Konishi-like
operator (3.17) in the present case. The fact that tr(X7)? is integrated out of the (weakly coupled) on-shell
N = 2 Lagrangian (3.1) does not mean that it becomes irrelevant in the A" =2 CS-matter SCFT. On the
contrary, supergravity predicts a relevant dimension (1 + V17 )/2 for this operator.
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below. Of course, they must be relevant in the UV as well. The only supergravity fields
that satisfy all these requirements are the two scalars and the pseudoscalar marked in blue
in table 5. The selected pseudoscalar indeed corresponds to a mass term Op of the type
discussed in (3.16). Up to terms in the Konishi-like operator (3.17), the proper scalars are
also of the form Op argued in (3.16). The numerical integration of section 3.3 will confirm
that these are indeed the modes that drive the flow out of the A/ =2 UV phase.

As the field theory flows into the N/ = 3 fixed point at long distances, the dual su-
pergravity spectrum allocates itself into OSp(4|3) x SO(3)r representations. These were
worked out in [10], to which we refer for the details. Here we only note that the supergrav-
ity spectrum at the N/ = 3 point contains an SO(3)g triplet of massless OSp(4|3) vector
multiplets, each one containing in turn an SO(3)q triplet of scalars and an SO(3)q triplet
of pseudoscalars, along with the adjoint SO(3)q massless R-symmetry vectors. All of these
scalars and pseudoscalars have AdS mass M2L? = —2. The 9 proper scalars have AdS
mass M2L? = —2 and are dual to A = 1 operators in alternative quantisation. More
concretely, each vector multiplet contains the SO(3)q triplet

o _ 1 _
Zezh  Z Zy, 292, — =682°Z, ), a=1,2, 3.18
( ) 2 b

where each entry is itself an SO(3)g triplet. The first two entries are condensates of the
chiral fields Z%, a = 1,2, and their conjugates, that remain massless on the GY flow.
The field theory operators dual to the supergravity scalars (3.18) have now dimension 1,
protected by the conservation of the SO(3)r flavour current. Moreover, the dimension
1 of all these operators is now consistent with the free-field dimension assignment (3.10)
for Z% a = 1,2, in the IR. This is in contrast with the situation at the N/ = 2 fixed
point. This provides a holographic argument that the A’ = 3 Lagrangian (3.1)—(3.3) is not
renormalised at strong coupling. A similar analysis for the pseudoscalars can be made.
These are dual to dimension 2 fermionic mass terms with a structure analogue to (3.18).
Finally, we note that the supergravity modes with irrelevant dimensions (2.21) that were
shown in section 2.3 to possibly drive flows into the N' = 3 IR fixed point, belong to the
long OSp(43) gravitino multiplet retained in the SO(3)gr-invariant model of [15]. We do
not have a concrete proposal for the dual operators.

3.3 The numerical four-dimensional domain-wall

The intricacy of the BPS equations (2.11) forces us to consider a numeric strategy to
integrate them. The strategy we follow consists in performing an IR shooting from a
convenient radial value p = prr < 0, with the perturbations in (2.18) used as a boundary
condition. This allows us to set the starting point in prr instead of the deep IR p — —o0.
As previously discussed, regularity of the flow permits only the negative modes in (2.21),
thus corresponding to turning on irrelevant operators in the dual field theory. This strategy
has been implemented successfully in similar contexts (see e.g. [16] for an early example).
Let us first note that in both the UV and IR endpoints of the domain-wall the z; and

29 chiral scalars are identified as
21 = —22. (319)
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Using the parameterisation (2.1), this condition amounts to identifying ¢1 = ¢ and by; =
ba2 in the larger (half-maximal) theory constructed in [15]. It is in this half-maximal context
where (3.19) appears as the requirement that the U(1)q = SO(2) C SO(3), subgroup of
the R-symmetry group in the IR is preserved also in the UV and, more generally, along
any domain-wall solution where (3.19) holds.

At the level of the fluctuations described by the coefficients in (2.22), we observe that
the first column therein already satisfies (3.19) whereas only a combination of the second
and the third columns does (recall that the modes to which they are associated have the
same value). Alternatively, we can re-express this as a condition on the two corresponding

1
(50W) _ <\/§ )4250(4) (3.20)

As a result, any deviation from the AdS, solution with SO(4) symmetry that is regular

integration constants

towards p — —oo and satisfies the condition (3.19) for U(1)4 invariance takes the form

1 2 V3p

,21/3

1-(2-V3)i\ (sou) Gt

+< 2.21/3 >C2 Wre Fsow ...

SO(4 1—(2+V3 SO()) T2
23(p) = 24 ())+< 2( o1/3 = ) 150 eTsow (3.21)
(v3-1)

N 3—\/§+9 5V3.\ (s0 D¢ Tsom 4 ...

6.921/3 6.921/3 2 ’

3+1)— (V3 —1)i 3o
Z4(p) _ ZELSO(4)) + (_(\[—’— 2) 21(/\3[ )2) C( 0(4)) e Lso)

92/3 /3 (L\/gfl)p
2 (3_ _z SO(4) .
+ 3 (3 —2v3) f (2 +

where the ellipsis represent terms with a dependence of the form e(m1v3+ma(V3-1)) p/Lso

with m; +mg > 1. Truncating at order m; + mo = k corresponds to an expansion that

keeps all the correct radial dependence only up to ek V3p/Lsow)

Despite being consistent at the level of the equations of motion that derive from the ac-
tion (2.5), the identification (3.19) poses additional constraints on the BPS equations (2.11).
Plugging (3.19) into (2.11) yields two algebraic relations for the imaginary parts of z3 and
24 of the form?

Re(z3)  Re(z1) V/2Re(z3)% Re(zg)
Im(z3) Im(zs) /1T —2Re(z3)? Re(z1) | (3.22)

3In the parameterisation (2.1), (2.2), the algebraic relations (3.22) become the two conditions
: 1 1
me‘/ﬁ%—i—ng(l—i—e%XQ):O, ﬁbg,ge\/ﬁ‘b?’zxew7

where the supergravity couplings g and m have been restored.
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Figure 2. Numerically integrated domain-wall with z; = —Z5 that interpolates between AdS,

solutions with SU(3) x U(1) symmetry in the UV (brown square) and SO(4) symmetry in the IR
(purple circle). This domain-wall is dual to the GY flow reviewed in section 3.1.

These are in turn consistent with the flow equations (2.11), in the sense that the latter are
identically satisfied on the combinations (3.22). The remaining undetermined components,
Re(z1), Im(z1), Re(z3) and Re(z4), then satisfy a set of coupled differential equations

Re(z1) (2Re(z3) — Re(zy))

Re(z1) = )
(21 (2Re(23)? Re(24)) Y% (1 — 2Re(23)? Re(24))*/
(1) = _Im(21)3 1-— 8Re(23)2Re(Z4) + Re(z1)2 (2Re(z3) — Re(z4))
L 4 (2Re(z3)2Re(24))* (1 — 2Re(z3)2 Re(z4)) ¥t

(1974 — el Z: 2 el z. 1/4

s = 42 (Y -t - )
el Z. — ez 2 el Z. 1/4

i = 42 (Y ) - )

(3.23)
where the prime represents a derivative with respect to p. A numeric domain-wall solution
to the BPS equations can now be readily constructed by performing a shooting from the
IR using (3.21) as boundary conditions.

We have performed the numeric integration after using the shift symmetry in (2.19)

Y. The value of CQS W turns to

= 1 and choosing a particular value for CQS o
be restricted to a finite range for the domain-wall solution to admit a non-singular UV
behaviour. A generic value within this range produces a domain-wall that reaches the

scaling behaviour of the D2-brane solution (deformed by Roman’s mass [14]) in the UV.
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)

rise to the special domain-wall displayed in figure 2. The UV endpoint of this particular

domain-wall corresponds to the N’ = 2 AdS fixed point. This critical value for CQS O Jacks

However, there is a critical value for CZS O 4t the edge of the permitted range that gives

physical significance since, by repeated use of the arbitrary shift symmetry (2.19), it can be
4)

set to any value upon changing the value of CIS o accordingly. Still we can provide a radial
shift-independent relation between the two IR parameters that determines the domain-wall

depicted in figure 2 uniquely. This relation reads
1 1
(EOW) 7 21554 (OW) (3.24)

As we have just shown, there is a unique domain-wall solution that is SO(3)g-invariant
by construction and is also subject to the relations (3.19) that ensure that U(1)q-invariance
is also preserved. This domain-wall is N' = 2 all along and interpolates between the N' = 2
AdS critical point in the UV and the N' = 3 one in the IR. In section 2.3 we discussed in
detail the allowed deformations around the IR (p — —o0) as well as the relations (3.20)
and (3.24). Here we analyse the UV (p — 00) regime of the domain-wall and perform a
characterisation of deformations around the /' =2, SU(3) x U(1) solution.

Amongst the modes listed in table 2, only the six that are positive correspond to regular
solutions in the UV. However, not all of them are compatible with the conditions (3.19)
and (3.22) that need to be imposed when constructing the domain-wall of figure 2. Out of
the six positive modes, only three are compatible with these conditions. These are:

2 1417

Asu@)xu)3 = 3 Asu@)xuna =1, Asu@)xua)),r 5 (3.25)
The fluctuations around the AdS, UV solution are determined by the matrix of coefficients
z§SaU (3)XU(1)), where a = 3,4, 7 in the current notation, with the label specifying the posi-

tion in table 2. It is illuminating to provide higher-order terms in the near-UV solution,
corresponding to the complementary modes to those listed in (3.25). These can be cal-
culated as 3 — Asy(3)xu(1)),a» and appear as free coefficients when integrating the second
order equations of motion but are completely determined in terms of the UV coefficients?
(3,4,7 when considering the BPS equations subject to the conditions (3.19) and (3.22). This
analysis gives

1 0 i
Al \/i %
_1 0 L
29 _2p _L 2 _14+Vi7 p
= 2 & .
o I R B e e IR
2 0 L3 ~ LT - V3)
_3% 33 \Zf
22
_ 53 - Sﬁ ) i )
+ 3 _3\/].51 . C§C4 e 3L + 322 Cg + %l/idz Cz 672f +-
32 3y/30 0 - ==
1 17_; 0 1+2v/3i
16 83 1

(3.26)

“In the remaining of this section we omit the label GYG)*UM) in the UV coefficients and the AdS radius

to avoid excessive cluttering.
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with the ellipsis denoting other terms that we are not interested in. I.e., the expres-
sion (3.26) is not a UV expansion since we are omitting terms, that in particular scale as
4
e 3% and 67%%, which are more important in the UV limit p — oo than some of the terms
. . . . _5=V17p
shown here. Notice also that a non-normalisable contribution e~ 2~ L does not appear
in table 2 and is thus not allowed by the BPS equations. For the numerical domain-wall

of figure 2, the coefficients (34,7 in (3.26) become functions of the IR parameters (3.24).

Armed with the expansion (3.26) we can make contact with the field theory picture
reviewed in section 3.1, using the field-operator map discussed in section 3.2. The constant
(3 corresponds to the source for the SO(3)r x U(1)g-invariant fermion bilinear operator
Op ~ tr (x*x® + X3x3) with dimension A = % that belongs to an OSp(4]2) hypermultiplet
in table 5. This source is the only dimensionful parameter in the field theory side, and
therefore its exact value carries no physical significance. The corresponding property in
the gravitational side is, again, the use of the shift symmetry (2.19) that allows to set (3
to any value without changing the physics. From our numerical integration we can find

SO(4))

the UV constants of integration in terms of the IR parameter Cé . For our discussion

it suffices to give the physically-meaningful relations between the UV ones

3/2 30+ 17)
Ci~097722¢Y2 G~ 1.04957C, ¢ . (3.27)

The constants (4 and (7, related to (3 via (3.27), correspond in principle to vevs for the
boson bilinears with conformal dimensions A = 1 and A = %ﬁ that belong to the
massless and massive (long) vector multiplets in table 5, respectively.

The coefficients in the second line of equation (3.26) also carry information about the
7
behaviour of the dual operators. The first one scales like e 3% and corresponds to a vev

for Op. This term, proportional to C:ff C4, takes the exact value that allows to kill the

14
~u
condensate for this fermion bilinear. To see this explicitly we constructed the asymptotic

normalizable mode associated to the field of mass square M?L? = i.e., there is no
solution to the second order equations of motion for the relevant fields and compared
it to the expansion in (3.26). The matching between both expressions determined that
the constant of integration associated to the fermion bilinear condensate, via holographic
renormalisation [39], has to vanish. A similar holographic renormalisation analysis should
be performed to assess whether the naive vevs mentioned above for the boson bilinears
actually hold up as actual vevs for operators that turn out to condense along the flow.
This is, however, immaterial for our discussion. More important is the term in (3.26)

A . . .
2T. This term corresponds to a source for the dimension 1 operator

that scales like e~
that requires alternative quantisation and sits in the massless vector multiplet of table 5.
Crucially, from (3.26) and (3.27), the coefficient of this term is completely determined from
the fermion mass parameter as Cg.

This analysis confirms that the SO(3)gr x U(1)q4-invariant domain-wall plotted in figure 2
approaches the N' = 2 UV fixed point with sources, governed by a unique parameter, for the
field theory operators O and Op defined in (3.16), up to contributions of the Konishi-like

operator (3.17). This domain-wall is thus dual to the GY flow.
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4 A family of holographic RG flows with N =1 - N =3

Relaxing the field identification in (3.19), the unique domain-wall depicted in figure 2 gets
generalised to a full family of domain-walls labelled by a single parameter. This family
consists of new domain-wall solutions that connect the N’ = 3, SO(4) solution in the IR
and the N/ = 1, Gy solution in the UV. The generic flows in the family are A’ = 1 and
preserve only the SO(3)r flavour of the IR fixed point. The family is limited on one side by
the N' =2, SO(3)r x U(1)g-invariant GY domain-wall of section 3.3, and bounded on the
other side by a new /' =1 SO(3)r x SO(2)-invariant domain-wall. The supersymmetry of
the latter is also N/ = 1, and SO(2) corresponds to an additional flavour symmetry.

4.1 Generic flows

A numerical study reveals that the range of the parameter describing different members
of this family is delimited by two special cases. On one side of the allowed range there is
the limiting domain-wall that passes arbitrarily close to the N’ =2, SU(3) x U(1) solution
before reaching the A’ = 1, Gg in the UV. This limiting domain-wall eventually disappears
in favour of the N' = 2 — N = 3 domain-wall studied in section 3 for which the scalar
identification in (3.19) holds and we concluded that

(SO(4)) 1
5 V3
see (3.20). The N =2 — N = 3 domain-wall of figure 2 can be “glued” to the N' =1 —
N =2 domain-wall connecting the Gy and SU(3) x U(1) solutions [14] (see appendix B).
On the other side of the allowed range for the parameter there is a bounding domain-
wall that does reach the N' = 1, Gy point in the UV. For this bounding domain-wall a
different scalar identification of the form zo = z3 holds, which translates into the condition
SO(4
C;E, (4)) 1
SO(4)) :
é “) 23

(4.2)

As a result, a family of domain-wall solutions exists and is given by a parameter delimited
by the radial shift-independent values in (4.1) and (4.2), namely,

. gsow
<\/§ - 1) < (50(@) = 23’ (4.3)

An example of a member of this family of BPS domain-walls is displayed in figure 3,

together with the limiting (blue solid line) and bounding (yellow solid line) domain-walls.

4.2 The bounding symmetry-enhanced domain-wall

Similarly to section 3.3, let us note here that in both the UV and IR endpoints of the
bounding domain-wall, the z9 and z3 chiral scalars are identified as

Z9 = 23. (4.4)
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Figure 3. Numerically integrated domain-walls that interpolate between the Gy solution (red
triangle), the SU(3) x U(1) solution (brown square) and the SO(4) solution (purple circle). They
form a one-parameter family of domain-walls delimited by two solid lines: the limiting domain-wall
dual to the GY flow (blue solid line) and the bounding domain-wall (yellow solid line). In both
cases additional scalar identifications occur which translate into symmetry—enhanced domain—walls
The dashed, green line corresponds to a generic domain-wall with (5 (SO0) — _2 C2 ) that passes
close to the N' =2 SU(3) x U(1), fixed point without reaching it.

Using the parameterisation (2.1), this identification translates into beg = bsg and ¢2 = ¢3
in the larger (half-maximal) theory constructed in [15]. As a result, an SO(2) C SO(3)4
subgroup of the R-symmetry in the IR is again preserved in the UV. The identification (4.4)
is this time consistent with the BPS equations (2.11) and holds all along the bounding
domain-wall. Its effect in the linearised solution around the AdS; endpoint in the IR
reduces to the identification of the integration constants

SO SO
¢FOW) = \f@ @), (4.5)

since the first column in (2.22) is already compatible with (4.4).

As before, we can use of the radial shift symmetry (2.19) to set C§SO(4))

= 1 without loss
of generality. It is then straightforward to solve the first-order BPS equations by shooting
from the IR with the boundary conditions being determined by the expansions (2.17)
and (2.18), and the parameters (2.22) being constrained by (4.5). There is again a critical

(SO(4))

value of (5 such that the domain-wall depicted by the yellow line in figure 3 occurs.

This unique domain-wall appears when the relation between the IR parameters reads

( 280(4)> ~ 11. 26( SO(4)> . (4.6)

This domain-wall is plotted in figure 4.
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Figure 4. Numerically integrated bounding domain-wall with z, = 23 that interpolates between
AdS, solutions with A" = 1, G, symmetry in the UV (red triangle) and N' = 3 SO(4) symmetry
in the IR (purple circle). This domain-wall holographically describes an RG flow between three-
dimensional SCFTs with A/ =1 — N = 3 supersymmetry enhancement.

5 The flows in ten dimensions

We conclude with some considerations about the type IIA uplift of the flows that we
have constructed in this paper, focusing on the GY flow of section 3. All of the above
four-dimensional domain-walls give rise to solutions of massive type IIA supergravity upon
uplift on deformed six-spheres. In order to obtain the ten-dimensional geometries, we
have particularised the formulae for the consistent truncation [4, 5] of massive type ITA
supergravity [3] on S% to the eight-scalar sector of D = 4 ISO(7) supergravity [6] that was
identified in section 2. The resulting uplifting formulae are quite complicated and can be
consulted in appendix® D.1.

Here we will simply analyse some qualitative features of the six-dimensional internal
geometry corresponding to the GY flow of section 3. The geometry corresponding to the
UV N = 2 fixed point [4] can be understood as an S? bundle over CP?, with S% topology for
the total space. The S? fibre is deformed and displays a U(1),, isometry only. The effect on
this geometry of the field theory deformation (3.13) that triggers the GY flow is to realign
the deformed S? fibres inside of the ambient R” in which S is defined. This realignment
selects a U(1)q symmetry group, preserved along the entire flow, as a certain combination
of U(1),, and another U(1), that acts on the UV CP? base. As the flow proceeds towards
lower energies, the total S% internal space undergoes, in turn, a combination of two types of

®As discussed in the appendix, we have in fact obtained the uplift of the entire N' = 4 SO(3)gr-invariant
sector of ISO(7) supergravity to the ten-dimensional type ITA metric, dilaton and Ramond-Ramond
one-form.
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deformations. On the one hand, ellipsoidal deformations are inflicted by the proper scalars
©, ¢1, ¢2, ¢3. On the other hand, the pseudoscalars y, b11, bea, b3z together with the
proper scalars squash inhomogeneously the deformed, U(1)g-invariant, S? fibres against
the four-dimensional base. At the IR N = 3 fixed point [12, 13] the deformation of the
fibre disappears. The fibre becomes a round S?, and its U(1)q symmetry blows up into
the full SO(3)q IR R-symmetry group. A flavour SO(3)g symmetry is also preserved along
the flow.
Let us see how this works in more detail, referring to appendix D.2 for the technicalities.
The six-dimensional geometry corresponding to the N/ =2 UV fixed point is [4]
3 9sin® o
ds% - §da2 + 9 4+ cos 2«
6sin® o
+ 3 + cos 2«

1 2
(dw + 5 sin? ¢ (dr + J))
{dﬁQ + cos? £ ds?(CPY) + %(:OSQE sin? € (dr + 0)?] . (5.1)

The angles «, 1, parametrise a (globally defined, see [11]) S?, fibred over the four-dim-
ensional geometry within brackets. In this case, this base is also globally defined and
corresponds to the complex projective plane, CP?, equipped with the Fubini-Study metric.
In (5.1), the latter has been written out in a standard parametrisation that exhibits a
manifest SO(3)r x U(1),; symmetry, with SO(3)g ~ SU(2) acting homogeneously on the
CP! factor and U(1), generated by the Killing vector d,. Of course, the full symmetry
of the term within brackets is the SU(3) that acts homogeneously on CP?, in agreement
with the flavour symmetry of the dual N' = 2 field theory. This SU(3) rotates the adjoint
chirals @, a = 1,2, 3, of the dual N’ = 2 SCFT, leaving the superpotential (3.4) invariant.
The UV configuration (5.1) also has a manifest U(1),, symmetry generated by 0. This is
dual to the R-symmetry of the N' = 2 UV field theory. The metric on the topological S?
parametrised by «, ¢ is deformed away from the standard round form by a function of «,
and thus displays only U(1), symmetry. At the UV configuration (5.1) we thus have

N =2 UV symmetry : U(1)y x U(1); x SO(3)r manifest (actually U(1)y x SU(3)).
(5.2)
In the field theory, the SO(3)r ~ SU(2) subgroup of the full UV SU(3) flavour sym-
metry group acts on the first two adjoint chirals, ®?, a = 1,2, as a doublet and leaves ®3
invariant. The mass deformation (3.13) that generates the GY flow therefore breaks the
SU(3) flavour of the UV field theory to SO(3)r. This mass deformation is also invariant
under a combination U(1)q of the residual flavour symmetry U(1), that commutes with
SO(3)r inside SU(3), and the UV R-symmetry U(1),. Thus, along the N' = 2 GY flow
we have

N =2 GY flow symmetry : U(1)q x SO(3)r, (5.3)

where the first factor is R-symmetry and the second is flavour. Geometrically, U(1)q is
generated by the Killing vector (D.22) of the UV geometry (5.1), and still acts on the S?
fibres. However, these get realigned inside the ambient R that contains the topological
56 as a consequence of the mixing of 9, and Oy. Also as a consequence of this mixing, the
four-dimensional base of the S? fibration is no longer globally defined. Nevertheless, the
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base still displays an intact CP! upon which SO(3)r acts. The scalars and pseudoscalars
squash the U(1)g-invariant S? fibres against the SO(3)g-invariant base as they run along
the flow. The proper scalars by themselves tend to deform the metric on S® inherited by
the constraint (D.2) to the ellipse Myyulp’ = 1 in R7, for some scalar-dependent matrix
Mjy. This can be seen by setting the pseudoscalars to zero (formally, as they are non-
vanishing along the flow) in the internal geometry (D.5), (D.6). In any case, the symmetry
group (5.3) at intermediate stages of the GY flow is a subgroup of both the manifest and
the full symmetries, (5.2), of the UV geometry (5.1).

At the N = 3 fixed point, the internal six-dimensional geometry [12, 13| becomes, in
a notation close to [13],

gs2 — 2(3—|—cos2ﬁ) cos?
% = 3cost B+ 3cos? B+ 2

.2
Sii DDy +2 |dB* + m (dsQ(CIP’l) + i (p3)2>] .
(5.4)
Here, 3 is an angle related to a, € in (5.1) through (D.21), and i*, i = 1,2, 3, are constrained
coordinates on R?® defining a round S?, §;; i’/ = 1. This S? is fibred on the (local)
geometry within brackets in (5.4) via

2
sinf (5.5)

D~iEd~i i, J~k ith Z': e
f p+ e AT wi A 3t cos2s”

where pf, i = 1,2,3, are the right-invariant one-forms on an S% within the local four-
dimensional base. This S® should be regarded as the Hopf fibration over CP!, with p3 the
one-form along the Hopf fibre. The SO(3)r ~ SU(2) flavour symmetry acts homogeneously
on the (global) CP! factor within the S in the base. This CP! factor is inherited by the IR
geometry (5.4) from its UV counterpart (5.1), and survives the GY flow unscathed. More
interestingly, an enhanced SO(3)q R-symmetry emerges in the IR, as the metric on the S?
fibres becomes round. At the A/ = 3 IR fixed point, we get

N =3 1R symmetry : SO(3)q x SO(3)Rr, (5.6)

where the first factor, which contains the U(1)q R-symmetry along the GY flow, is the
R-symmetry and the second factor is flavour. The IR symmetry group (5.6) contains the
GY flow symmetry (5.3) but, interestingly, is not contained in the UV symmetry (5.2). All
three, UV, intermediate, and IR, symmetry groups are nevertheless contained in the SO(7)
group that rotates the undeformed internal S6. This SO(7) is also the R-symmetry of the
three-dimensional N/ = 8 super-Yang-Mills (SYM) theory defined on a stack of D2-branes,
prior to deforming with Chern-Simons terms, see [14].

With some differences, this behaviour is qualitatively analogue to that of similar solu-
tions in type IIB [16] and M-theory [17-19, 40] that are respectively dual to mass defor-
mations of four-dimensional N' = 4 SYM [20] and ABJM [21]. The mass deformation of
N =4 SYM considered in [16] breaks the UV SU(4) R-symmetry to N' = 1, and preserves
SU(2) x U(1) symmetry along the flow. Here, the first factor is flavour and the second is
the R-symmetry. A similar flow on the M2-brane [17-19, 40] breaks the manifest N' = 6
supersymmetry and SU(4) x U(1) global symmetry of ABJM to N' =2 and SU(3) x U(1)
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with, again, the first factor corresponding to flavour and the second to R-symmetry. The
internal geometries dual to these flows correspond to odd-dimensional sheres S?"*1, with
n = 2 in type IIB and n = 3 in M-theory. In both cases, the SU(n) flavour group acts homo-
geneously on a CP"~! submanifold of the CP" base of $2"*! [19]. The U(1) R-symmetry is
a combination of the U(1),, that acts on the Hopf fiber and the U(1), that acts on CP" and
commutes with SU(n) inside SU(n + 1) [19]. As the flow proceeds, the S?"*! is squashed
ellipsoidally by the proper scalars, and the Hopf fiber is squashed inhomogeneously against
the base by the running scalars and pseudoscalars [19]. An intact CP" ! is preserved all
along. Except for the family of M2-brane flows of [40] and unlike the GY flow, these flows
do not exhibit supersymmetry enhancement in the IR.
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A N =1 truncation of ISO(7) supergravity with seven chirals and new
supersymmetric vacua

The four-chiral model described in section 2 was argued to arise as a further subtruncation
of the SO(3)g-invariant sector [15] of N' = 8 ISO(7) supergravity. We have verified that the
equations of motion, (2.6)—(2.8) of [15], of the SO(3)r-invariant sector reduce consistently
to the equations of motion for the model of this paper. Here, we provide an alternative
derivation of the four-chiral model directly from the full N’ = 8 ISO(7) supergravity.
More precisely, the starting point here is a consistent A = 1 subsector of N' = 8 ISO(7)
supergravity that retains seven chiral fields. As we will now show, this seven-chiral model
arises as a Zj X Zgl) X Zg2) invariant sector of the dyonic ISO(7) maximal supergravity.

Here,
7V x 78 c SL(8) c E (A1)
2 2 7(7) .
is a four-element Klein subgroup whose action on the SL(8) fundamental index A =1,...,8
is given by
I: (l‘l,l‘Q, X3, T4, T5, Te, L7, .1'8)—)(171,172, XT3, T4, T5, T, L7, xS)a
(1) .
ZQ . (xlaan T3, T4, L5, Te, T7, $8) — (m17m27 X3, —T4, =5, —TLe, —L7, l’g),
(2) .
ZQ : (x1>x27 I3, T4, L5, Te, T7, l‘g)-) (5[517 —Zx2, —T3, T4, X5, —T6, —LT7, .’L'g),
70 70 ey —
2 2 .(.’L'l,.’L'Q,x3,x4,x5,$6,$7,$8)—>(x1, x2, —T3, —T4, $5,IE6,$7,.T8).

(A.2)
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In addition, we will also require invariance under an additional Z3 acting on the coordi-
nates as

75 (x1, x2, T3, Ta, T5, T, T7, T3) — (T1, —T2, T3, —T4, T5, —T6, T7, —Tg).
(A.3)

This truncation retains the seven dilatons of E;(7) together with seven axions in order
to furnish seven N/ = 1 chiral multiplets. This sector has been extensively considered in
the past when exploring N’ = 1 flux compactifications in the presence of generalised flux
backgrounds [41-43]. In this context, the Zél) X Z;Q) factors in (A.1) are associated with
a (toroidal) orbifold action on T whereas the Zj factor in (A.3) is identified with an
orientifold projection halving the number of supersymmetries [44]. Recently, this sector
has also been studied within the context of the SO(8) maximal supergravity [45].

Following the conventions of [46], the fourteen real scalars in the truncation are asso-
ciated with the following E7(7) generators in the SL(8) basis. The dilatons have associated
generators of the form

9o = —t1t —to? — 3%+t + 157 + 165+t — 1S,

Gpr = —t1' +ta? + 135 —tyt — 15" +16° + 77 — 55,

Gps = —t1t +to? 3%+t + 157 — 165 — 177 — 1%,

Gps = t1' —to® + 3% + 1yt — 157 + 6% —t77 — 155, (A.4)
Gps = t1' 2% — 3% —ty* + 155 + 6% — 177 — 158,

Gpr = t1' Fta® — 133 gt — 155 — 6%+ 177 — 155,

Gpy = t1' —ta® + 3% — 1yt 155 — 6% + 177 — 155,

whereas the axions correspond to generators of the form

Ix1 = 11238, Ixs = 12578,
Gxo = 1458, Gye = ta738, Gya = 18246 - (A.5)
Yxs = 1678, 9Ix7 = 16358,

Exponentiating the above generators as

7

—12 ) X1 9xs

I=1

V = Exp

7
1
Exp [4 ;w g@,] : (A.6)

yields a parameterisation of an [SL(2)/SO(2)]” coset space. The scalar kinetic terms in the
resulting N = 1 supergravity model are of the form

7
1 > [(@er) + €21 (9x1)?] - (A7)

»Ckin = _1
I=1
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These are the kinetic terms for a set of seven chiral fields z; = —x7 + ¢ e~ %7 with Kéhler
potential

7
K ==Y log[—i(zr - z1)]. (A.8)
I=1

A direct computation shows that the scalar potential in this sector of the theory can be
re-expressed in terms of a holomorphic superpotential of the form

W=2m+2g[z12023+ 212627+ 222725 + 2325 26 + (21 25 + 2226 + 23 27) 24] , (A.9)
using standard N = 1 formulas.

New N = 1 AdS4 vacua. We have performed a numerical scan of supersymmetric
extrema by solving the F-flatness conditions that derive from (A.9) and found six such
AdS, vacua. Four of them were known previously, and their location in field space was
discussed in the main text (see table 1 with the identifications in equation (A.20) below).
The other two vacua are new and preserve N = 1 supersymmetry together with only a
U(1) symmetry within the maximal ISO(7) gauged supergravity. This U(1) turns out to be
the Cartan subgroup, U(1)g, of the SO(3)r subgroup of SO(7) discussed in the main text.

The new vacua have a smaller value of the potential compared to the ones in table 1.
In particular, setting ¢ = m = 1, we find:

e The first one has a value of the potential

V = —25.6971, (A.10)

and its location in field space is given by®

z1 = z5 = 0.4874 4 0.5961 7 ,
29 = 26 = 0.1082 + 1.17287¢,
z3 = —0.2178 4 0.5098 7 , (A.11)
z4 = —0.5989 + 0.5894 7,
z7 = 1.2101 4 0.8849¢ .
In terms of the AdS, radius, the spectrum of normalised scalar masses around this
solution, within this seven-chiral sector, is given by
M?L?* ={8.1644, 8.0986, 4.2223, 2.7101, 2.6648, 0.7839, 0.1342,

—1.6232, —1.6997, —1.8625, —1.8766, —2.0988, —2.1075, —2.2066} ,
(A.12)

and the corresponding values A of the modes that are selected by the BPS equations
originating from (A.9) read
A ={-1.7271, —1.7169, —1.0441, 3.7271, 3.7169, —0.2418, 3.0441,

A.13
0.7083, 2.2418, 0.8775, 0.8889, 1.1111, 1.1225, 1.2917}. (A.13)

These modes arrange themselves into seven chiral multiplets of OSp(4]1).

SThere are additional (but equivalent) discrete realisations of this vacuum.
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e The second one has a smaller value of the potential
V = —-35.6102, (A.14)
and is located at (see footnote 6)
z1 = z5 = —0.1103 + 0.7629 ¢ ,
29 = 26 = 0.8364 + 0.3907¢,
z3 = —0.4021 4+ 0.31201¢, (A.15)

24 = —0.9449 + 1.4406 4 ,
27 = 0.7402 + 1.1526 5 .

The spectrum of normalised scalar masses around this solution is given by

M?L? ={10.8555, 9.8092, 7.5707, 4.6152, 4.1131, 4.0254, 3.8639,

2.3031, 0.0681, 0.0152, —1.1885, —1.4465, —2.2393, —2.2491},
(A.16)

and the corresponding values A of the modes that are selected by the BPS equations
that follow from (A.9) read

A ={-2.1202, —1.9726, —1.6338, 4.1202, —1.0225, —1.0051, 3.9726,

A7
3.6338, 3.0225, 3.0051, 0.4697, 0.6036, 1.3964, 1.5303} . ( )
Again, these modes arrange themselves into seven chiral multiplets of OSp(4|1).

Enhancements to SO(3) symmetry. Denoting the chiral fields as z; = (21, 22, 23) and
2 = (25,26, 27), two cases of symmetry enhancement are then immediately envisaged:

e A continuous SO(3) invariance is recovered upon the identifications
=9, u=® , z=o;, (A.18)
thus yielding the superpotential of the three-chiral model of appendix A of [6]
W=2m+2g [®}+ 30 D3 + 3P, &y 03] . (A.19)

The identifications in (A.18) reduce the seven-chiral sector to the Za x SO(3) invariant
sector studied in [46] for general CSO gaugings of maximal supergravity.

o A different continuous SO(3) invariance is restored upon the identification

Zi =z, (A.QO)

(2
which connects with the SO(3)g invariance of [15]. This yields a four-chiral model
with a superpotential, from (A.9), of the form

W=2m+2g [4212223+(z%+z%+z§) 2] (A.21)

This coincides with (2.4) of the main text and is the superpotential that we have
used in this paper. If (A.20) is relaxed as z; = z5, 22 = 2¢ while leaving 23 and z7
unidentified, as in the new N = 1 critical points (A.11) and (A.15), the continuous
symmetry is only the Cartan subgroup U(1)g of SO(3)g.
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Let us conclude with an observation. When analysed within the seven-chiral sector
of this appendix, the N' = 3 solution with SO(4) symmetry has an enlarged scalar mass
spectrum with no additional irrelevant operators apart from those already listed in table 2.
Therefore, no additional domain-walls exist in the seven-chiral model ending at the N = 3
and SO(4) symmetric solution in the IR.

B Previously known domain-wall solutions

For completeness, we give here some details on the domain-wall solutions contained in the
minimal model of section 2 that coincide with flows discussed previously in [14].

e The N' = 1, Gy fixed point has a unique negative (and therefore regular) mode in
the IR, Ag,1 =1 — V6, with the matrix of coefficients

@) _ 1 (9-4/6 15
ZI,l - 4_21/3 ( \/i + 9 ¢ (B'l)

for I = 1,2,3,4. The constant of integration Cle) is the only dimensionful scale in

the system, and the freedom to perform the radial shift (2.19) allows to re-scale it to
any convenient value, for example CfGQ) = 1; the field theory counterpart consists in
noticing that the CFT is perturbed by a source that sets the only scale of the theory.
Such scale can be always set to a convenient value by a redefinition of the energy

units.

The domain-wall describes a solution interpolating between the D2-brane geometry
asymptotics in the UV and the Gg fixed point in the IR. Holographically this cor-
responds to a Go-preserving deformation in the UV of the SYM theory that lives in
the worldvolume of the D2-branes, to a CS-matter theory in the IR governed by a
conformal fixed point [14].

e There are two regular deformations of the N' = 2, SU(3) x U(1) solution as the
_ 117
=2

IR endpoint of a domain-wall solution: Agy(z)xu(1),1 and Agy3)xu()2 =

3—75/ﬁ' The linearized BPS equations are solved by the matrix of coefficients

SU(3)xU(1 -3
Avew |72

O .
0 1-/17

= e nols.

(B.2)

|
EE

o
(]
5
~|
[=2
—~~
.
~—

which preserves SU(3) symmetry since the perturbation maintains z; = zo and
z3 = z4. Once again, the arbitrary radial shift (2.19) allows to set the constant of

C§SU(3)XU(1)) CéSU(‘g)XU(l)) can take

integration = 1 without loss of generality. Then
values in a compact range, parameterising a continuous family of solutions whose
UV is given by the D2-brane geometry. In the field theory side there is a continuous
deformation of the SYM Lagrangian that makes the theory flow to a CS-matter the-

ory with SU(3) x U(1) symmetry. At one of the boundaries of this allowed range of
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SUBUM) the UV description of the domain-wall is dominated by the

values for Cé
Go fixed point described above. In this case, as it corresponds to a UV description
of the fixed point (p — 00), only positive modes (and therefore regular in the UV)

are active around the G solution [14].

e Finally, [14] also considers domain-walls where the IR endpoint of the solution is
given by the N = 1, SU(3) fixed pOth, with ASU(S),l = ASU(?)),Q =1- \/6 The
linearized BPS equations imply a matrix of coefficients

V3 ﬁi
4 4\@
V3 5
L,8UB) _ 4 4v/2 (B.3)
Ia —3(4+3V6)+(3v10+4v15)i _ 5(2v2-3)—V5(9-2V6)i :
16 16
—3(4+3V6)+(3v10+4v15)i _ 5(2v2-/3) —V5(9-2V6)i
16 16

which preserves SU(3) symmetry since the perturbation maintains z; = 29 and z3 =
z4. By using the arbitrary radial shift of equation (2.19) one can set the constant of
C§SU(3)) 3))

integration = 1 without loss of generality. Then GSU( can take values in a
compact range, parameterising a continuous family of solutions whose UV is given by
the D2-brane geometry, i.e., in the field theory side there is a continuous deformation
of the SYM Lagrangian that makes the theory flow to a CS-matter theory with
Sg&?gg))symmetry. At one of the limits of this set of allowed values for the constant
G

described above, with only positive modes turned on, as it corresponds to a regular

the UV description of the domain-wall is dominated by the Go fixed point
UV description.

C Symmetries along the GY flow

Both N'= 2 and N/ = 3 SCFTs connected by the GY flow can be regarded as different CS-
matter phases of the D2-brane field theory: three-dimensional N' =8 SYM. Accordingly,
the symmetry groups, summarised in table 4, at both endpoints and along the flow should
be regarded as subgroups of the N' =8 SYM R-symmetry group, SO(7).

The SU(3) x U(1),, global symmetry of the UV SCFT is embedded into SO(7) through

SO(7) 5 SO(6) D SU(3) x U(1),. (C.1)

The 7 real scalars X and 8 Majorana fermions x“ of N’ = 8 SYM accordingly branch as

S0(6) SU3)xU(1),, —

7 6+1 (3.2 +3,2) + 1o, (C.2)
_ SU®3)xU(1) _

8 =% 444 —— (3:+1-1)+ (3.1 +141). (C.3)

The triplets here correspond to the bosonic, Z%, and fermionic, x®, on-shell components of
the N/ = 2 SCFT chirals ®*, a = 1,2, 3, via complexification of X',..., X% and x!,..., x5.
The singlets correspond to the real auxiliary scalar, ¢ ~ (X7)2, and to the complex gaugino,
A~ x7+ix8, of the N = 2 vector multiplet. Interestingly, the group theory branching (C.2)
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fixes the U(1)y, R-symmetry of Z¢ as R(Z%) = —%, in agreement with the independent
field theory result (3.7). For reasons to be explained below, we use conventions where the
conformal dimension A and the R-charge R for the lower components of short OSp(2|4)
hypermultiplets are related via

A=-R, (C.4)

rather than with the more familiar + sign. Also, X7 comes out R-neutral under the
branching (C.2), consistent with the field theory result tr (X7)? ~ tr Z*Z,, see section 3.2.
Finally, the branching (C.3) correctly reproduces the UV field theory R-charge assignment
of +% for the fermions x®. This follows independently in the field theory by writing out
the superfield

Pt = Z% + 20 + F° (C.5)
in components and assigning R-charge R(0%) = —1 in agreement with the sign conven-
tion (C.4). Incidentally, the usual dimension assignment [0°] = —3 leads to A(x®) = I, so

that the fermion mass terms tr y(%y?) have dimension % in agreement with the supergravity

result of table 5. As noted in the text, the dimension % for Z% leads to dimension % for
the condensates tr Z(*Z but does not fix the dimension of the real SU(3)-traceless mass
terms tr (Z%Z, — traces).

The superpotential mass deformation in (3.13) that triggers the GY flow breaks the
UV global symmetry SU(3) x U(1)y down to SO(3)g x U(1)q. Here, SO(3)r ~ SU(2) is the
subgroup of SU(3) such that 3 — 2+ 1, with Z¢, a = 1,2, the doublet and Z3 the singlet.
This SO(3)g is the flavour symmetry group along the flow. The R-symmetry U(1)4 along
the flow is the subgroup of SU(3) x U(1), that leads to the R-charge assignments (3.15)
(with opposite sign in our conventions, as in (C.4)) along the flow. In order to determine
how U(1)q is embedded in SU(3) x U(1)y, assume that U(1)q = pU(1); + qU(1)y, where
U(1), commutes with SO(3)r inside SU(3) and p, ¢ are constants to be determined. Under

SU(3) x U(1)y D SO(3)r x U(1), x U(1)y D SO(3)r x U(1)q, (C.6)

the chiral bosons Z% and fermions y® branch as

SO(3)R X U(1)7 xU(1)y, SOB)RxU(l)g
—) .
3. 24-5 + Ly 230tz (O
SOB)R X U(1)r xU(1)y SO(3)g XxU(1)g
4, . |
% 2.5 T ey 2ipta T il (©8)

The branching (C.7) reproduces the R-charge assignments (3.15) with the sign conventions

of (C.4) for
1 2 1
sp-3¢=—3( _ 1 ~_
P—*aQ—l- Cg
—p—3q —1} 3 (G9)

Thus, U(1)4 is a proper mixture of U(1), and U(1)y, as advertised in section 3.1. Ten-
soring the branchings (C.7), (C.8) reproduces the charge assignments in table 5 for the
supergravity fields under SO(3)r x U(1); x U(1)y and SO(3)r x U(1)q with p,q in (C.9).

In the N’ = 3 SCFT fixed point, the surviving bosons, Z%, and fermions, x%, a = 1,2,
transform as doublets under the SO(3)gr ~ SU(2) IR flavour symmetry. These are also
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charged under the R-symmetry U(1)q: from (C.7)-(C.9), R(Z%) = —3 and R(x*) = 3.
These R-charge assignments are consistent with these fields being components of a super-
field %, as in (C.5) with now a = 1,2. In the IR fixed point, the R-symmetry is in fact
enlarged to a full SO(3)q, consistent with N' = 3 supersymmetry. Thus, we still need to
show that the U(1)q subgroup of the UV global symmetry group SU(3) x U(1), defined
via (C.6)—(C.9) is also a subgroup of the full SO(3)q R-symmetry group of the IR.

In order to show this, we resort to the embedding of both UV and IR global symmetries
into the common SO(7) R-symmetry of the parent N'=8 SYM theory. On the one hand,
further branching (C.1) via (C.6) by combining (C.2), (C.3) with (C.7), (C.8), the N' =8
SYM bosons and fermions X!, x4 can be checked to split as

7 OB (24 +10) + (20 + 1) + 1o, (C.10)
g SR, (25 419+ 1)+ (211 + 1o+ 1) (C.11)

On the other hand, the global IR symmetry SO(3)q x SO(3)g is embedded into SO(7) via
SO(7) D SO(3)" x SO(4)" = SO(3)" x SO(3)1, x SO(3)r D SO(3)q x SOB)r, (C.12)

with SO(3)g the right-handed component of SO(4)" and SO(3)q the diagonal of SO(3)" x
SO(3)y, hence the labels employed in the main text. Under (C.12), the N'= 8 SYM bosons
and fermions branch as

SO(3)' xSO(3), xSO(3) R, (1,2,2)+(3,1,1) w) (2,2)+(3,1), (C.13)
g OO0 (2,2,1)4(2,1,2) T (2,2) 43,1+ (L1). (C14)

Further splitting these under the Cartan of SO(3)q4, we finally find the branchings
7T — (2% +27%)+(11+10+171), (0.15)
8 — (2%+2_%)+(11+10+1_1)+10, (C.lﬁ)

into representations of SO(3)r and the U(1) Cartan of SO(3)q. The branchings (C.15),
(C.16) coincide with (C.10), (C.11). This proves that the U(1)q subgroup of the UV
symmetry group SU(3) x U(1),, defined via (C.6)—(C.9) is indeed the Cartan subgroup of
the SO(3)q R-symmetry group of the IR.

We conclude with a justification of our unusual sign choice in the shortening rela-
tion (C.4) that relates the conformal dimension and the R-charge of OSp(4/|2) hypermulti-
plets. The reason is that, with this sign convention, the IR R-charge assignments for the
mass deformed [17-19] ABJM chirals transverse to the M2-branes (see (3.16) of [47]),

1
M2 : R(Z*) = +3,a=1,23, R(ZY) = +1, (C.17)
and the R-symmetry assignments in our case, given by equation (C.2),
2
D2 : R(Z%) = -3, 0=123, R(X") =0, (C.18)

are related by an SO(8) triality rotation. See [38] for the details.
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D Ten-dimensional geometries

D.1 IIA uplift of the D = 4 SO(3)gr-invariant sector

Here we present the uplift the four-dimensional flows to massive IIA supergravity. In order
to do this, we use the formulae of [4, 5] for the consistent truncation of massive type IIA
down to D = 4 N = 8 dyonically gauged ISO(7) supergravity [6], and particularise them
to the eight-scalar sector defined in section 2. We find it convenient to pack the scalars ¢q,
¢2, ¢3 and the pseudoscalars byq, boo, b3z into the 3 x 3 matrices

m = diag (e*‘/%l, e*\/%?, e*ﬁ‘%) , b = diag (bn, boa, b33) i (D.1)

Whenever needed, the individual components of these matrices will be denoted m;; and
bi;, following the notation of [15] with the index conventions of [48]. In fact, the uplifting
formulae below take on the exact same form for the entire N' = 4, SO(3)g-invariant scalar
sector [15] of ISO(7) supergravity, when m and b in (D.1) are replaced with the general
SO(3)g-invariant expressions given in [15].
We will give the uplifting formulae in S embedding coordinates pu!, I = 1,...,7,
subject to the constraint
Srypipn =1. (D.2)

It is convenient to split the index I = (i,a), with i = 1,2,3 and a = 4,5, 6, 7 respectively
labelling the fundamental representations of the SO(3)" and SO(4)" subgroups of SO(7)
defined in equation (C.12). The S® embedding coordinates thus split as u! = (u?,v).
Sometimes we will suppress the indices on these and will write g and v, in line with the
notation employed for the D = 4 fields. Incidentally, the S® coordinates v should not be
confused with the D = 4 coset representative given in (2.9) of [15].

It is helpful to introduce the following functions of the D = 4 scalars and the S°
embedding coordinates:

A = eV2(@1+02+3) ¢+ 75 (d1+¢2+6s) T

prmp+ e v, (D.3)

and
2
Ay = e_¢+\/§(¢1+¢2+¢3) (1 + eQSDXQ) |:/J'T <m + 1bTb> “:|
2
+ e [1 + %tr(bTbm’I) + é[ur(bTbnfl)]2 — étr(bTbmflebmfl)

i é eV2(91+92463) (o b)Q] (v v)?

N 1
+ |:€\/§(¢1+¢2+¢3) |:2+62<px2 + Qtr(bTbm—l)]

1 1
— \ﬁ PV 2AP1+2403) x det b} {,uT (m + 2bTb> ,u] viv. (D.4)
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With these definitions, the uplift of the D = 4 metric, ds?, and scalars into the D = 10
Einstein-frame metric reads

53y = AYBAY* (dsh + g2 Ay 1 ds?) (D.5)
where

dsg = My; dp' dp? + My dp' v dv + MY dp; (vJ;_dv) + MY (vJ;_dv) (vJ;_dv)
+ M dv)? + PdvTdv. (D.6)

Here, J;_, @ = 1,2,3, is the triplet of constant antiself-dual two-forms introduced in ap-
pendix A of [15] (with indices a there replaced with 7 here), and the quantities M;;, etc.,
depend on the D = 4 scalars and the S% embedding coordinates p, v. Specifically, they
are given by the lengthy expressions:
1 _
M;; = |:HT <m—|— 2bTb> gt e’ 75 (b1tdates) T v} (m1)
1
+3 "™ (b1 b) e, (A1, — eV201402408) ')

1
b @O0 AT (BT) (6B
X <A1mﬁm - eﬁ(¢1+¢2+¢3) Mygr Mms HTMS>
1 ot J501toaten)
4

1 1

X [(bTbbTb)ij — (b"b); tr(d ) + 5[m(bTb)]%ij - 5tr(bTb b'b) %} vy

+

1 _
— g [1 — 2€2¢X2 + 2 (bTb)kh (m 1)kh] ui,uj s

) S a _ 1
M — _ (m_l)lh Ejfdf bkh bén Iun + \/§X€<P+\/§(¢1+¢2+¢3)62h£ b]h <m€n + 2(bTb)gn> Mn

1 3 s
Al—l XeSOJr \@(¢1+¢2+¢3)qu ezhf M (bTb)Zp Hqunup

V2
1 . A o
-1 eV2(b1+¢2+3) jikm & pa T BP b, (bTb)M //
« <mmn . Al—l e\/§(¢1+¢2+¢3) Moty Mins ,uhﬂs> 7

. 1. .
M — -3 bl by [(m™ )R 4 AT o201V 2(p1+p2+¢3) pF ]

+ i e\/§(¢>1+¢2+¢3) Al_l (@,

G i 6]) z]k ePar bk bh bm bn

X <A1mrk - eﬁ(¢l+¢2+¢3) Miyps Mt ,U/S:U’t>

_ A %(dﬁ +p2+¢3) bz

2\f

1
M; = ~1 [1 + 26292 2\/§ew+ ($1+¢2t¢3) x det b] Lhi s

1 Ej qurbk b qMrs 15,
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M= 1280 2 (6Tbm )

P = #tuEditoton) (1+e*x?) [HT <m + ;bTb> u] + [1 + %tr(bTbm_l) vy
(D.7)

Indices ¢ and % here are raised and lowered with d;; and d;;, respectively. We have verified
that these expressions reproduce the known uplifts of AdS fixed points, see appendix D.2.

We have also computed the embedding of the model of section 2 (and, in fact, of the
full SO(3)g-invariant scalar sector [15] of ISO(7) supergravity) into the type ITA dilaton
and Ramond-Ramond one-form. The consistent embedding into the dilaton reads

b = AYIASY? (D.8)

in terms of the quantities introduced in (D.3), (D.4). The uplift of the scalars into the
Ramond-Ramond one-form is given by

A 1, . 1 o
An=-39 eI ag dpy + 59 LeV201t02+03) ATL ek (570) 0 il 1 dpsg

1 € i7
L= g_l X e<p+\/§(¢1+¢>2+¢>3) Afl sz Iuj (VTJi_I/)
V2
1

+ 1 gil 6\/5(¢1+¢2+¢3) Al_l eijfc Eijk bii bij My ,l/ (VTJE I/) N (Dg)

where a;; = —aj; are the SO(3)r-invariant D = 4 Stiickelberg scalars introduced in [15].
Note that these enter neither the IIA metric (D.5) nor the dilaton (D.8). We have verified
that, when evaluated at the N’ =2 and N = 3 critical points, equations (D.8) and (D.9)
reproduce the corresponding expressions for the dilaton and Ramond-Ramond one-form
given in [4, 11, 13], by making use of the S embedding coordinates (D.10), (D.12) below.

The expressions for the B-field and the Ramond-Ramond three-form are left as
an exercise.

D.2 Geometric realisation of the GY flow symmetries

It is useful to introduce local coordinates on the deformed S% geometries to track how the
different symmetries worked out in appendix C act geometrically along the entire GY flow,
including the endpoint geometries.

When evaluated at the N/ = 2 SU(3) x U(1)-invariant UV fixed point, the internal
metric ds3 = A;l ds? in (D.5) reduces to equation (5.1) of the main text, upon choosing
the S5 embedding coordinates u! = (uf,v?) as

pl +ip? =sina cos€e? 13 =cosa, (D.10)

| D

3 (2UFT+e)

[NCRISaY

. : : . . . . i _
v+ iv? = —sina sin € cos VP +ivt = —sina sin € sin - ez2¥T79)
with

0<a<m, 0<¢<2r, 0<7<2nm, ogggg, 0<f<m, 0<¢<2r.
(D.11)
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The first four of these angles appear explicitly in the metric (5.1), while the last two
parametrise CP', with

42(CPY) = (@6 +sn”6d6?), o = cosfdo. (D.12)

As discussed in the text, the metric inside of the brackets on the second line of (5.1) is
simply the Fubini-Study metric on CP?. Its isometry is thus SU(3). With the parametri-
sation (D.10), only an SU(2) ~ SO(3)r symmetry, acting on the CP! subspace, along with
the U(1), generated by 0;, is manifest. In these coordinates, SO(3)g is generated by the
Killing vectors

Ry = —singdy — cos ¢ cot 0y, Ry = cos ¢ 0p —sin¢ cot 60y, R3=0,. (D.13)
These close into the Lie algebra
[Ri, Rj] = —€ij" Ry, (D.14)

with the normalisation of (A.6) of [15]. In addition to these flavour symmetries, the geom-
etry (5.1) is also invariant under the U(1), generated by 0y. This U(1), corresponds the
R-symmetry of the dual UV N = 2 field theory.

At the N = 3 fixed point, it is convenient to choose a parametrisation that is better
adapted to the symmetries of the solution. We have verified that the internal metric
ds? = A;'ds2 for the N = 3 SO(4) fixed point, (5.4), can be recovered from (D.5)
by evaluating the latter at the corresponding D = 4 scalars vevs and selecting the S
embedding coordinates as

pt=cos B, v'4iv?=—sing cos

N D

e3(W'=9) . P +ivt = —sinfsin g W' +e)

(D.15)
Here, ji*, i = 1,2,3 define a round S? through Syt =1,and 0 < B < 7,0< ¢ <27
The angles 6, ¢ in (D.15) are the same that appear in (D.10). Together with ¢/, these
now parametrise an S3, with 1)’ the coordinate along the Hopf fibre. The right-invariant
one-forms on this S are

pt = cosv)' df — siny)’ sinfdo,
p? =siny’ df + cost)’ sinfdo, (D.16)
p* = —(dy/ — cosOdg),

and obey the Maurer-Cartan equations
i Lo Gk
dp' = —5¢€ kP’ NP~ (D.17)

Equations (D.17) are the dual, differential form version of the commutation rela-
tions (D.14). Indeed, the group SO(3)r generated by (D.13) is also a symmetry of the
geometry (5.4). In the IR N = 3 field theory, this SO(3)r corresponds to the flavour
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symmetry. In addition, the solution (5.4) possesses an SO(3)q R-symmetry. To see how
this acts, it is convenient to introduce further coordinates 6, ¢ on the S? fibres by letting

Al =sinf cos g, [ = sinf sin g, [ = cos®. (D.18)

The R-symmetry group SO(3)q is diagonally embedded into the SO(3)" that rotates ji,
and the left-invariant SO(3)r, that acts on the S® parametrised by 6, ¢,v’. After some
calculation, we find that SO(3)q is generated by the vectors

Dy = siné@;%—cos& cotéad;—kcosq//@g — cscf siny’ Oy — cot 0 sine)’ Gy
Dy = —coséag—l-sindg cot9~8q;+sinw’89 + csc B siny’ 9, + cot b cosw’8¢/,

D3 =—0;— 0y . (D.19)

These can indeed be checked to be Killing vectors of the N' = 3 metric (5.4), and to close
on the SO(3)4 commutation relations,

[Di, Dj] = €i" Dy, (D.20)

normalised as in appendix A of [15].

At intermediate energies along the GY flow, only an SO(3)r x U(1)q symmetry is
preserved. This SO(3)gr is generated by the Killing vectors (D.13) that act on the CP!
factor of both the UV, (5.1), and IR, (5.4), geometries. The U(1)4 is the Cartan subgroup
of the SO(3)q IR R-symmetry: it is, thus, generated by D3 in (D.19). From this equation,
it is apparent that U(1)q is the diagonal combination of the azimuthal U(1) that acts on
the S? parametrised by /i, and the U(1), that acts on the Hopf fibre of the S® base
of the IR geometry. It is also interesting to determine how U(1)q is embedded into the
U(1)y x U(1); symmetry the UV geometry (5.1). In order to elucidate this, we simply
keep track of the diffeomorphism that relates the different coordinates in which the UV
and IR geometries are expressed. Comparing the expressions for the S® embedding coor-
dinates (D.10) to (D.15), (D.18), and recalling that 6, ¢ in both expressions are the same,
we deduce

cosa=cosf cosf, sinasiné=sinf, =06, T=1' —2. (D.21)

Therefore

1
D3 = ) (30y+20;). (D.22)
This matches (C.9) up to a rescaling of the 7 coordinate.
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