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1 Introduction

For holographic conformal field theories (CFTs), the spectrum of single-trace operators with
scaling dimension of order one, at strong coupling and large N , is mapped to the spectrum
of Kaluza-Klein (KK) perturbations about their dual anti-de Sitter (AdS) solutions of
string or M-theory [1–3]. The KK spectrum of Type IIB supergravity on the background
AdS5 × S5 [4], relevant to N = 4 super-Yang-Mills, was computed in [5]. The face-value
calculation of [5] entails complicated field redefinitions, a demanding linearisation of the
type IIB equations of motion, an involved expansion of the linearised fields in scalar, spinor
and vector spherical S5 harmonics and, finally, a diagonalisation of the resulting mass
matrices. In this particular case with maximal (super)symmetry, all fields turn out to fill
out short supermultiplets of the four-dimensional maximally supersymmetric conformal
algebra. For this reason, both the algebraic structure of the spectrum and the physical
masses of all fields are actually dictated by group theory [6]. A similar remark applies to
the KK spectrum [7–9] of the maximally (super)symmetric D = 11 Freund-Rubin solution
AdS4 × S7 [10], dual to ABJM [11].

For AdS/CFT dual pairs with less (super)symmetry, group theory still determines the
algebraic structure of the spectrum, namely, the possible supermultiplets in given repre-
sentations of the residual symmetry group that are present in the spectrum. Typically,
these spectra still contain short multiplets, whose conformal dimensions are again fixed by
representation theory. But, unlike in the maximally supersymmetric cases, long multiplets
will usually be contained in the spectra as well. For these multiplets, group theory only
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requires that a unitarity bound be respected but, other than this, has no power to predict
the actual value of their dimensions. Thus, for AdS solutions with less than maximal su-
persymmetry, there is no alternative to computing the long KK spectrum other than direct
calculation. For homogeneous Freund-Rubin-type solutions, this problem can be attacked
using coset space technology [12–15]. More generally, though, coset methods will not be
available for AdS solutions with inhomogeneous internal geometries of relatively small sym-
metry, supported by fluxes and warp factors. If the direct calculation of the spectrum [5]
of the maximally supersymmetric background AdS5 × S5 [4] was so demanding, the cal-
culation of KK spectra about inhomogeneous AdS solutions with less (super)symmetry is
downright prohibitive with the traditional methods of [5].

Recently, a powerful alternative to the techniques of [5] for the calculation of KK
spectra about certain AdS solutions of string or M-theory has been put forward [16, 17]
based on Exceptional Field Theories (ExFTs) [18–20] (see [21] for a review). Like their
Exceptional Generalised Geometry cousins [22, 23], these correspond to reformulations of
the D = 10 and D = 11 supergravities where the exceptional symmetries of the lower-
dimensional maximal supergravities, e.g. E7(7) for D = 4 which is fixed henceforth, are
explicitly realised. This is done at the expense of reducing the manifest D = 10 or D = 11
local Lorentz covariance to only a manifest D = 4 local Lorentz covariance. Even if, due to
the latter feature, the ExFTs superficially look four-dimensional, they still are fully-fledged
higher-dimensional theories. For this reason, not only the AdS solutions of the higher-
dimensional theories can be recovered as solutions of ExFT, but also the full towers of KK
perturbations about these AdS solutions are contained within ExFT as well.

The reason why ExFT methods to compute KK spectra [16, 17] have an edge over
the traditional approach [5] is essentially two-fold. On the one hand, the complicated field
redefinitions needed prior to linearisation are already built-in (at the full non-linear level,
in fact) into ExFT. On the other hand, all fields need to be expanded only in scalar har-
monics of the ordinary internal manifold. Unlike the method of [5], though, the ExFT
technology [16, 17] comes with a regime of applicability which hinges also on two assump-
tions. Namely, that the relevant AdS solutions have an associated consistent truncation to
lower-dimensional maximal gauged supergravity, and that the internal space in the ordinary
D = 10 or D = 11 sense, must be topologically spherical. These are not severe limitations,
since the class of AdS solutions of this type still comes in cornucopious abundance [24–27].
Furthermore, having fixed an allowed lower-dimensional gauging, the same set of spherical
harmonics on the associated round sphere is valid to compute the KK spectra about any
other AdS solution that uplifts from the same gauging, even if the round sphere is not a
(supersymmetric) solution itself.

Within their validity regime, these ExFT techniques [16] certainly outperform the
standard methods of [5]. One must nevertheless linearise the field equations of ExFT
which, for certain fields, particularly the internal scalar fields, is still a rather involved
task. Unlike the scalars’, the linearisation of the ExFT vector and graviton equations of
motion is significantly more manageable. Fortunately, for AdS solutions with sufficiently
high supersymmetry, N ≥ 2 in D = 4, an explicit calculation of the spectrum of KK scalars
(and spin 1/2 fermions) is not necessary and can be indirectly inferred from the vector and
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graviton spectra, and from group theory. The reason, for N = 2, is that the only scalars
and fermions that belong to OSp(4|2) multiplets which do not contain gravitons or vectors,
must necessarily belong to short hypermultiplets. And, for these, their dimensions are fixed
by the R-charges, similarly to the maximally supersymmetric cases discussed above. The
situation is even more restrictive for N = 3, for which already the vector multiplets are
necessarily short. In these N ≥ 2 cases, the complete supersymmetric KK spectra are thus
fixed by group theory together with the graviton and vector spectra. With this in mind,
section 2 presents a derivation of the KK vector mass matrix from ExFT. An alternative,
though equivalent, form of the KK vector mass matrix can be found in [17].

In this paper, I will compute the complete supersymmetric KK spectrum about the
supersymmetric AdS4 solutions of D = 11 [28] and massive type IIA supergravity [29] that
uplift from D = 4 N = 8 supergravity with specific gaugings. More concretely, I will focus
on the D = 11 N = 2 AdS4 solution found by Corrado, Pilch and Warner (CPW) [30]. For
this solution, the OSp(4|2) supermultiplet structure of the spectrum was elucidated in [31],
the graviton spectrum was computed in [32] using specific methods for spin-2 (see [33]),
and the complete spectrum has been recently given in [17]. In section 3, I compute the
spectrum of vectors and allocate them in supermultiplets, finding agreement with [17]. I
will also characterise the complete supersymmetric KK spectrum about two specific AdS4
solutions of massive IIA supergravity with N = 2 [34] and N = 3 [35, 36] supersymmetry.
The graviton spectra for these solutions was respectively computed in [37] and [38]. By the
previous arguments, all that is left to determine the complete supersymmetric KK spectra
is an analysis of their OSp(4|2) or OSp(4|3) supermultiplet structure and the calculation
of the KK vector spectra. These items are addressed in section 4. Section 5 concludes, and
some appendices contain useful supplementary material.

2 KK vector mass matrix from ExFT

The starting point for the present analysis is the E7(7) ExFT [20] reformulation of D = 11
supergravity [28], and its deformation thereof [39] suitable to accommodate massive type
IIA supergravity [29]. Both theories, [20] and [39], can be treated simultaneously for the
purposes of this analysis, and both of them will be collectively referred to as ExFT. Let
AMµ (x, Y ) be the gauge fields present in the theory, and FMµν (x, Y ) their field strengths.
These depend on both the external, xµ, µ = 0, 1, 2, 3, and the internal, YM , M = 1, . . . , 56,
ExFT coordinates. The curved index M labels the fundamental representation of E7(7),
and the gauge field, as well as any other field in the theory, is subject to the relevant section
constraints. These will not be explicitly needed. The objective of this section is to linearise
the field equations of AMµ (x, Y ) and find the mass matrix for the KK vectors about the
class of AdS4 backgrounds of D = 11 supergravity and massive IIA supergravity that uplift
from the D = 4 N = 8 gaugings to be specified momentarily.

2.1 Preliminaries

The ExFT (pseudo-)Lagrangian involves AMµ or FMµν in four instances [20, 39]: the Einstein-
Hilbert term for the external metric gµν(x, Y ), the topological term for FMµν , the kinetic
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term for FMµν and the kinetic term the internal scalar metricMMN (x, Y ). Neither the first
nor the second terms are expected to contribute to the vector mass matrix: the Einstein-
Hilbert term contains the couplings of the metric to the vectors and should be partially
responsible for Higgsing the KK gravitons. The topological terms for FMµν in the ExFT
(pseudo-)Lagrangian can be eliminated on-shell in favour of the gauge equations of motion
and, for that reason, can also be disregarded. Thus, one is led to focus on the gauge kinetic
terms and the scalar kinetic terms of the Lagrangian [20]:

LExFT vectors = −1
8 eMMN FMµν FNµν + 1

48 eDµMMN DµMMN . (2.1)

Here, e ≡
√
|det gµν |, external indices are raised with the inverse metric gµν , and MMN

is the matrix inverse toMMN . The covariant derivative ofMMN is [20, 39]

DµMMN = ∂µMMN −AKµ ∂KMMN − 24 ∂KALµ PKLP (MMN)P − 2AKµ FK(M
LMN)L ,

(2.2)
and similarly for DµMMN . In (2.2), the projector onto the adjoint of E7(7) has been
introduced as

PMN
P
Q ≡ (tα)NM (tα)QP , (2.3)

with (tα)NM the E7(7) generators. The E7(7) adjoint index α = 1, . . . , 133, is raised in (2.3)
and elsewhere with the inverse, καβ , of the Cartan-Killing form καβ = (tα)MN (tβ)NM .
Finally, FMN

P in (2.2) is a deformation [39] of the original ExFT formulation of [20]. For
D = 11 configurations, FMN

P = 0, and for type IIA, FMN
P encodes a magnetic gauging

contribution from the Romans mass: see [39] for the details.
I would like to further restrict the problem to the specific configurations of ExFT that

give rise to a D = 4 N = 8 gauged supergravity upon consistent truncation. On top of
this configuration, D = 4 KK vector perturbations will also be kept. The concrete D = 4
N = 8 gaugings that I will consider will be the SO(8) gauging [40] and the dyonic [41–43]
ISO(7) gauging [44]. Both of these indeed arise after consistent truncation of D = 11 and
massive IIA supergravity on S7 [45] and S6 [34, 46], respectively. Under these assumptions,
the external and internal ExFT metrics gµν andMMN are set to [47–50]

gµν(x, Y ) = ρ(Y )−2 gµν(x) , MMN (x, Y ) = U(M
M (Y )UN)

N (Y )MMN (x) . (2.4)

Here, gµν and MMN respectively correspond to the D = 4 N = 8 metric and E7(7)/SU(8)
scalar matrix. The Y -dependent function ρ and the generalised Scherk-Schwarz twist ma-
trix UMN are needed in (2.4) for consistency. Their explicit expressions will not be needed.
All that will be necessary to know from them is that they must obey the (generalised
parallelisability) relations [48–51]

∂N (U−1)MN − 3ρ−1(U−1)MN∂N ρ = 0 ,

7ρ−1
(
(U−1)MP (U−1)NQ ∂P UQK

)
912

+ FMN
K = ΘM

α(tα)NK , (2.5)

which ensure the consistency of the ExFT truncation to D = 4 N = 8 gauged supergravity
with (constant, x- and Y -independent) embedding tensor ΘM

α. In (2.5), ()912 denotes
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projection to the 912 representation of E7(7). The indices M = 1, . . . , 56 are flat, funda-
mental E7(7) indices, as pertains to strictly D = 4 quantities. Quantities with curved and
flat E7(7) indices are related through the twist matrix UMN and its inverse.

When the dictionary that relates ExFT to D = 11 or D = 10 supergravities [49, 50] is
employed, the expressions (2.4), together with those for the remaining ExFT fields, give rise
to the explicit embedding of D = 4 N = 8 supergravity in the higher-dimensional theories.
The scalar potentials of the SO(8) [40] and ISO(7) [44] D = 4 gaugings of interest attain
AdS4 vacua, and these correspondingly uplift to D = 11, 10. On top of the D = 4 N = 8
supergravity fields, I would also like to extract the infinite tower of D = 4 KK vector
perturbations about any of these AdS4 vacua. A useful parametrisation for the infinite
tower of KK vector pertubations is AMΛ

µ (x) [16, 17], in terms of a combined direct-product
index MΛ. Here, M is a flat index in the 56 of E7(7), and the index

Λ =
(
1, A1 , {A1A2} , . . . , {A1 . . . An} , . . .

)
or Λ =

(
1, I1 , {I1I2} , . . . , {I1 . . . In} , . . .

)
,

(2.6)
ranges on the infinite-dimensional, reducible representations

⊕∞n=0 [n, 0, 0, 0] of SO(8) or ⊕∞k=0 [k, 0, 0] of SO(7) , (2.7)

for AdS4 solutions that uplift from the D = 4 SO(8) or ISO(7) gaugings, respectively,
regardless or their actual residual symmetry G ⊂ SO(8) or G ⊂ SO(7). The curly brackets
in (2.6) denote traceless symmetrisation, while A1 = 1, . . . , 8 and I1 = 1, . . . , 7 here and
elsewhere denote fundamental indices of SO(8) (in the 8v) and SO(7) (in the 7).

The KK gauge fields AMΛ
µ (x) and their linearised field strengths FMΣ

µν (x)=2 ∂[µA
MΣ
ν] (x)

are embedded into their ExFT counterparts AMµ (x, Y ) and FMµν (x, Y ) = 2 ∂[µAMν] (x, Y )+. . .
(the latter linearised as well for the present purposes) through [16, 17]

AMµ = ρ−1(U−1)NMANΛ
µ YΛ , FMµν = ρ−1(U−1)NMFNΛ

µν YΛ . (2.8)

Here, YΛ denotes the infinite tower of scalar spherical harmonics on the round S7 or S6

spheres. These lie in the representations of SO(8) or SO(7) indicated in (2.7). The explicit
expressions of YΛ in terms of S7 or S6 coordinates will not be needed: suffice it to note
that the action of the Scherk-Schwarz twist matrix on these is given by [16, 17]

ρ−1 (U−1)NM∂M YΛ = −(TN )Λ
Σ YΣ . (2.9)

The (constant, x- and Y -independent) matrices (TN )Λ
Σ correspond to the generators of

SO(8) or SO(7) in the infinite-dimensional, reducible representations (2.7), normalised as

[TM , TN ] = −XMN
P TP , with XMN

P ≡ ΘM
α (tα)NP . (2.10)

2.2 The KK vector mass matrix

Equipped with the definitions introduced in section 2.1, the goal is now to linearise the
ExFT vector equations of motion or, equivalently, to retain the quadratic terms in the
action (2.1), in order to read off the mass matrix for the KK vectors AMΛ

µ .
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The action (2.1) is already manifestly quadratic in the ExFT gauge fields AMµ and
in their linearised field strengths FMµν (x) = 2 ∂[µAMν] (x, Y ) + . . . . Inserting (2.4) and the
left-most relation in (2.8) into the covariant derivative (2.2), some calculation allows one
to compute

DµMMN = U(M
M UN)

N
[
∂µMMN−2AKΣ

µ

(
ΘK

α δΛ
Σ−12 (tα)KL (TL)Σ

Λ
)

(tα)(M
PMN)PYΛ

]
,

(2.11)
and similarly for DµMMN . In order to reach this result, the consistent truncation condi-
tions (2.5) and the action (2.9) on the spherical harmonics need to be used. The explicit
form for the projector to the 912 representation of E7(7), which can be found in e.g. [52],
is also needed. All the dependences on the internal coordinates Y brought by ρ and UMN

through (2.4), (2.8), (2.11) drop out at the level of the ExFT field equations [49]. The
only dependences on the internal ExFT coordinates are brought into the Lagrangian (2.1)
through a quadratic combination YΛ YΣ of spherical harmonics. Under the integral sign at
the level of the action, this dependence simply becomes δΛΣ by virtue of the orthogonality
of the spherical harmonics.

Putting all these contributions together, and considering similar contributions from
the kinetic terms for FMµν , the action (2.1) yields

LKK vectors = −1
8 eMMN δΛΣ F

MΛ
µν FµνNΣ + 1

4 e (N 2)MΛ,NΣA
MΛ
µ AµNΣ . (2.12)

Here, e ≡
√
|det gµν |, external indices are raised with the D = 4 inverse metric gµν , and

(N 2)MΛ,NΣ is the symmetrisation in the combined index MΛ,

(N 2)MΛ,NΣ ≡
1
2 (Ñ 2)(M |(Λ|,|N)|Σ) + 1

2 (Ñ 2)[M |[Λ|,|N ]|Σ] (2.13)

of the quantity

(Ñ 2)MΛ,NΣ ≡
1
3 δΩΩ′

(
ΘM

α δΩ
Λ − 12 (tα)MP (TP )Λ

Ω
)(

ΘN
β δΩ′

Σ − 12 (tβ)NQ (TQ)Σ
Ω′)

×(tα)(R
T MS)T (tβ)U (RMS)U . (2.14)

The matrix MMN here is the inverse of the D = 4 N = 8 scalar matrix MMN .
The KK vector mass matrix (M2)MΛ

NΣ is finally obtained by canonically normalising
the kinetic term in (2.12), as usual. The result is thus

(M2)MΛ
NΣ = (N 2)MΛ,PΩM

PN δΩΣ , (2.15)

with (N 2)MΛ,PΩM
PN given by (2.13), (2.14). A KK vector mass matrix for the AdS5

solutions of type IIB that consistently uplift on S5 [48, 53, 54] from the D = 5 N = 8
SO(6) gauging [55] was derived from E6(6) ExFT [19] in [16]. Equation (2.15) extends
that result to the KK vector mass matrix for D = 11 or massive IIA AdS4 solutions that
respectively uplift on S7 [45] or S6 [34, 46] from the SO(8) [40] or dyonic ISO(7) [44]
gaugings of D = 4 N = 8 supergravity. An alternative form of the D = 4 KK vector mass
matrix (2.15) is given in [17].
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The infinite-dimensional KK vector mass matrix (M2)MΛ
NΣ in (2.15) is block diago-

nal, with blocks of dimension (56 ·dim [n, 0, 0, 0])×(56 ·dim [n, 0, 0, 0]) or (56 ·dim [k, 0, 0])×
(56 · dim [k, 0, 0]) at SO(8) KK level n = 0, 1, . . . or SO(7) KK level k = 0, 1, . . . . At zero-
th KK level, the contributions from the generators TM must be disregarded, and (2.15)
reduces to the vector mass matrix of D = 4 N = 8 gauged supergravity: see e.g. (4.85)
of [56]. More generally, the fact that (2.15) is block diagonal implies that it can be conve-
niently diagonalised KK level by KK level, something that does not always happen for the
KK mass matrices of other AdS4 solutions outside of the class we are considering [15, 57].
It is thus enough to diagonalise each separate block individually and, for KK levels n ≥ 1,
k ≥ 1, consider the (electric) SO(8) or SO(7) generators, TM =

(
TAB , T AB ≡ 0

)
in the

symmetric traceless representation [n, 0, 0, 0] or [k, 0, 0]: see appendix A for further details.
The mass matrix (2.15) contains spurious eigenvalues that must be removed from the

physical spectrum. At SO(8) KK level n = 0, 1, 2, . . . (and similarly for SO(7)), (M2)MΛ
NΣ

always has 28 · dim [n, 0, 0, 0] unphysical zero eigenvalues, corresponding to the dual, mag-
netic KK vectors. The electric vector eigenvalues that Higgs the KK gravitons are unphys-
ical as well. For the D = 11 solutions, the 28 ·dim [n, 0, 0, 0] electric vectors at level n come
in the SO(8) representations

[0, 1, 0, 0]× [n, 0, 0, 0] −→ [n, 0, 0, 0] + [n, 1, 0, 0] + [n− 1, 0, 1, 1] + [n− 2, 1, 0, 0] , (2.16)

or their branchings under G ⊂ SO(8) for AdS4 solutions with residual symmetry group G.
In the massive IIA case, the (21 + 7) · dim [k, 0, 0] electric vector eigenvalues come instead
in the SO(7) representations

([0, 1, 0] + [1, 0, 0])× [k, 0, 0] −→ [k, 0, 0] + [k, 1, 0] + [k − 1, 0, 2] + [k − 2, 1, 0]
+[k + 1, 0, 0] + [k − 1, 1, 0] + [k − 1, 0, 0] , (2.17)

possibly branched out again under G ⊂ SO(7) for solutions with symmetry G. The repre-
sentations with negative Dynkin labels must be disregarded in (2.16), (2.17), as they are
actually not present. The underlined symmetric traceless representations are not present
either for n = k = 0 and, for n > 1, k > 1, must still be disregarded as they contain
the unphysical eigenvalues corresponding to the vectors eaten (together with additional
scalars) by the [n, 0, 0, 0] or [k, 0, 0] massive KK gravitons. These unphysical eigenvalues
are not typically zero.

Only the eigenvalues of the mass matrix (2.15) that come in the representations not
underlined in (2.16), (2.17), or their branchings thereof under G ⊂ SO(8) or G ⊂ SO(7)
for solutions with symmetry G, furnish the physical spectrum of KK vectors. The only
physical zero eigenvalues of (M2)MΛ

NΣ occur at KK level n = 0 with degeneracy dim G,
corresponding to the massless KK vectors in the adjoint of G ⊂ SO(8), and similarly for the
ISO(7) gauging. All other vectors at KK level zero and higher are massive. See appendix A
for further details on the mass matrix (2.15), and for the KK vector spectra of selected
AdS4 solutions of D = 11 and massive type IIA supergravity.
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3 The complete KK spectrum of the N = 2 CPW solution

Four-dimensional N = 8 SO(8) gauged supergravity has an N = 2, SU(3)×U(1)-invariant
critical point [58], which uplifts on S7 to the CPW AdS4 solution of D = 11 supergravity
with the same (super)symmetry [30]. The complete spectrum of the CPW solution is now
known and, for that reason, this presentation will be brief. A more detailed analysis for
the analogue N = 2 solution of massive type IIA [34] will be discussed in section 4.

The KK spectra for all fields at KK level n = 0 has long been known [59], due to the
fact that this level agrees, when the non-linear interactions within it are restored, with
D = 4 N = 8 SO(8) supergravity. More recently, the KK level n = 1 spectrum was
computed in [16] using ExFT techniques, and extended to higher levels in [17]. The full
KK graviton spectrum is known [32], as is the generic structure of the entire KK spectrum
in representations of OSp(4|2) × SU(3) [31]. Here, I recover the complete spectrum of
this solution [17, 31] by putting together the group theory analysis of [31], the graviton
spectrum of [32], and the present calculation of the vector spectrum.

The KK vector spectrum for the CPW solution is presented for the first three KK
levels, n = 0, 1, 2, in the entry labelled as N = 2 U(3) in table 14 of appendix A. Firstly,
the multiplicities shown in the table are compatible with the OSp(4|2)×SU(3) group theory
of [31]. Secondly, all individual vectors that enter short graviton, short gravitino and short
vector multiplets do indeed have their masses fixed by the conformal dimension of those
multiplets as given in [31]. Thirdly, there exist vector masses in the tables compatible with
those predicted by the KK graviton analysis of [32]. The remaining individual vectors must
arrange themselves in long gravitino and long vector multiplets. From table 14, together
with the analysis of [31], one deduces that short and long gravitino and vector multiplets
occurring at KK level n with SU(3)×U(1) charges [p, q]y0 must have scaling dimensions:

Short and long gravitino mult. : E0 = 1
2 +

√
7
2 + 1

2n(n+ 6)− 4
3C2(p, q) + 1

2y
2
0 , (3.1)

Short and long vector mult. : E0 = 1
2 +

√
17
4 + 1

2n(n+ 6)− 4
3C2(p, q) + 1

2y
2
0 , (3.2)

in agreement with [17]. Here,

C2(p, q) ≡ 1
3p

2 + 1
3q

2 + 1
3pq + p+ q , (3.3)

is the eigenvalue of the SU(3) quadratic Casimir operator. The data in table 14 are enough
to infer the results (3.1), (3.2) for all KK level n. A further calculation of the n = 3 KK
vector masses using (2.15) is in agreement with these. Further, when the SU(3) × U(1)
quantum numbers are restricted accordingly, (3.1), (3.2) reproduce the scaling dimensions
of the short gravitino and vector multiplets given in [31].

To summarise, the complete KK spectrum of the CPW solution contains the long and
short OSp(4|2)× SU(3) multiplets specified in [31]. The dimension of the short multiplets,
including the hypermultiplets, was given in that reference. The spectrum of (long and
short) graviton mutliplets was given in [32], and the spectrum of (long and short) gravitino
and vector multiplets [17] is reproduced by (3.1) and (3.2) above. In the short cases, these
correctly reduce to [31].
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4 Complete KK spectra of AdS4 solutions of type IIA

Similar steps lead one to obtain the complete KK spectrum about the N = 2 and N = 3
AdS4 solutions of massive type IIA supergravity [34–36] that uplift from ISO(7) supergrav-
ity [34, 60]. For these solutions, the spectrum at KK level k = 0 [44, 60] and the graviton
spectrum at all levels [37, 38] are completely known. Here, I will give the complete super-
multiplet structure and the scaling dimensions at all KK levels.

4.1 Putative SO(7) structure of the KK spectra

The massive type IIA AdS4 solutions that uplift from ISO(7) supergravity have topolog-
ically S6 internal spaces, equipped with G-invariant metrics for certain subgroups G of
SO(7). The spectrum for each solution should thus branch from SO(7) representations
down to G representations. Similarly to the SO(8) gauging case [7], these putative SO(7)
representations arise by tensoring the N = 8 supergravity multiplet, herewith identified
at the linearised level with KK level k = 0, with the symmetric traceless representation
[k, 0, 0] of SO(7). Higgsing must also be taken into account: each massive graviton in a
given SO(7) representation must eat a vector and a (pseudo)scalar in the same represen-
tation, which thereby disappear from the physical spectrum; each massive gravitino must
eat a spin 1/2 field; and each massive vector must eat a (pseudo)scalar.

This exercise was carried out for the vectors in equation (2.17). More generally, table 1
summarises the result for all the fields. The scalars and pseudoscalars in the table are
respectively denoted 0+ and 0−. The KK level k = 0 represented on the left table is
actually 7 scalars short of being the D = 4 N = 8 supergravity multiplet. These scalars
disappear from the spectrum, as they are Stückelberg and are eaten by the 7 vectors shown
in the k = 0 table. The latter always become massive at any AdS4 vacuum. In turn, the
massless vectors that gauge the residual symmetry G always branch from the 21 vectors
present at k = 0.

The KK spectra about all the AdS4 solutions in this class can be argued to have the
SO(7) structure specified in table 1, even if dyonic ISO(7) supergravity does not have
an N = 8 SO(7)-invariant solution. From a bulk perspective, this SO(7) structure is in
agreement with the ExFT approach of section 2. From the boundary point of view, an
argument similar to that put forward [31] for the CPW solution [30] can be made. The AdS4
solutions under consideration of massive type IIA supergravity are dual to superconformal
infrared fixed points of maximally supersymmetric three-dimensional Yang-Mills [61, 62].
Despite its lack of conformal symmetry, and thus lack of a dual AdS4 solution, the latter
does have SO(7) R-symmetry. This SO(7) symmetry is thus inherited by all the infrared
fixed points, necessarily branched out into representations of their corresponding flavour
groups G. See [62] for the holographic interpretation of the k = 0 SO(7)-covariant fields in
table 1.

4.2 Spectrum of the N = 2 solution

As has been just discussed, the KK spectrum of AdS4 solutions with symmetry G ⊂ SO(7)
comes in the representations of G that arise by branching the SO(7) representations in
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spin SO(7) irrep SO(7) Dynkin labels
2 1 [0, 0, 0]
3
2 8 [0, 0, 1]
1 21 + 7 [0, 1, 0] + [1, 0, 0]
1
2 48 + 8 [1, 0, 1] + [0, 0, 1]
0+ 27 + 1 [2, 0, 0] + [0, 0, 0]
0− 35 [0, 0, 2]

spin SO(7) Dynkin labels
2 [k, 0, 0]
3
2 [k, 0, 1] + [k − 1, 0, 1]
1 [k, 1, 0] + [k − 1, 0, 2] + [k − 2, 1, 0] + [k + 1, 0, 0] + [k − 1, 1, 0] + [k − 1, 0, 0]
1
2 [k + 1, 0, 1] + [k − 1, 1, 1] + [k − 2, 1, 1] + [k − 2, 0, 1] + [k, 0, 1] + [k − 1, 0, 1]
0+ [k + 2, 0, 0] + [k, 0, 0] + [k − 2, 2, 0] + [k − 2, 0, 0]
0− [k, 0, 2] + [k − 1, 1, 0] + [k − 2, 0, 2]

Table 1. States in SO(7) representations at KK level k = 0 (left) and k = 0, 1, 2, . . . (right) that
compose the KK towers for AdS4 solutions of massive IIA that uplift from ISO(7) supergravity.
Representations with negative Dynkin labels are absent. For a solution with residual symmetry
G ⊂ SO(7), the spectrum organises itself in the representation of G that branch from these SO(7)
representations.

table 1. If, in addition, the solution preserves N supersymmetries, the spectrum must also
arrange itself into OSp(4|N ) supermultiplets.

Let us go through the details for the N = 2 SU(3) × U(1)-invariant solution [34].
At fixed KK level k, the SO(7) representations in table 1 for fields of each spin must be
branched out under SU(3) × U(1) ⊂ SO(7). The U(1) factor in the residual symmetry
group corresponds to the R-symmetry and thus belongs to OSp(4|2). The spectrum must
thus be arranged in OSp(4|2)× SU(3) representations: at fixed KK level, fields of different
spin and U(1) R-charge but the same SU(3) Dynkin labels [p, q] must be allocated into
OSp(4|2) supermultiplets. The tables in appendix A of [31] come in very handy to carry
out this exercise. I follow their notation for the OSp(4|2) supermultiplets, only with a
subindex 2 attached in order to emphasise that these are N = 2. This allocation into
OSp(4|2) supermultiplets proceeds from higher maximum spins to lower, as follows.

Firstly, the spin s = 2 states are assigned to short, SGRAV2 (or massless, MGRAV2,
for k = 0), or long, LGRAV2, graviton multiplets. Then, fields of lower spins in the same
SU(3) representations are used to complete these supermultiplets. Secondly, The s = 3/2
fields that were left unassigned to SGRAV2 or LGRAV2 multiplets are then ascribed to
short, SGINO2 or long, LGINO2, gravitino multiplets. Again, fields of lower spin with the
same Dynkin labels [p, q] are then used to fill out these multiplets. Thirdly, the s = 1 fields
that still remain unassigned to the previous supermultiplets are allocated into short, SVEC2
(or massless, MVEC2, for k = 0), or long, LVEC2, vector multiplets. Spin 1/2 fermions and
scalars are then used to complete these supermultiplets. Finally, the remaining s = 1/2
fermions and scalars are assigned to hypermultiplets, HYP2.

The resulting multiplet structure is the following. At KK level k = 0, this analysis
was already carried out in [37], and here I simply import the results summarised in table 3
therein. There is one real MGRAV2 and one real MVEC2, which are respectively a singlet
and an 80 of SU(3) × U(1). The former corresponds to the N = 2 pure supergravity
multiplet and the latter contains the massless gauge fields in the adjoint of the residual
symmetry group SU(3). Also at KK level k = 0 there is one SGINO2 and one HYP2, both
of them complex, together with their complex conjugates. KK level k = 0 is completed
with a real SU(3)-singlet1 LVEC2. At each KK level starting at k ≥ 1, there exists one, and

1Consistent truncations of massive type IIA supergravity down to some of these D = 4 multiplets are
known at the full non-linear level. A non-linear consistent truncation to the MGRAV2 was shown to exist
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SGRAV2 : [k, 0]− 2k
3

+ [0, k]+ 2k
3

, E0 = 2k
3 + 2

SGINO2 : [k, 1]− 2k+1
3

+ [1, k]+ 2k+1
3

, E0 = 2k
3 + 11

6

SVEC2 : [k + 1, 1]− 2k
3

+ [1, k + 1]+ 2k
3

, E0 = 2k
3 + 1

HYP2 : [k + 2, 0]− 2
3 (k+2) + [0, k + 2]+ 2

3 (k+2) , E0 = 2k
3 + 4

3

Table 2. The OSp(4|2) short spectrum at KK level k = 0, 1, . . . for the N = 2 type IIA solution,
in [p, q]y0 representations of SU(3) × U(1). For k = 0, there is only one [0, 0]0 graviton and only
one [1, 1]0 vector multiplets, both of them massless.

[0, 0] [0, 1] [0, 2]
MGRAV2 (2)0 conj. to [1, 0] conj. to [2, 0]

LVEC2
(

1
2 +

√
17
2

)
0

[1, 0] [1, 1]
SGINO2

(
11
6

)
+ 1

3
MVEC2 (1)0

[2, 0]
HYP2

(
4
3

)
− 4

3

Table 3. N = 2 supermultiplets at KK level k = 0.

only one, complex short OSp(4|2) multiplet, and its complex conjugate, of each possible
type, with SU(3) × U(1) charges [p, q]y0 fixed in terms of k. The list of short multiplets
present in the spectrum is shown in table 2. For completeness, the table also shows for
each multiplet its scaling dimension E0. For short multiplets, this is fixed in terms of the
R-charge y0 (see e.g. appendix A of [31]). All other multiplets are long. For example,
there is a couple of infinite towers of long graviton multiplets with SU(3)×U(1) quantum
numbers [p, q]y0 given by

LGRAV2 :
k−1⊕
`=0

⊕̀
p=0

[p, `− p] 2
3 (`−2p) ⊕

k−1⊕
p=1

[p, k − p] 2
3 (k−2p) , (4.1)

with the first tower present for all k ≥ 1 and the second kicking in at k ≥ 2. The
OSp(4|2) × SU(3) structure of the KK spectrum up to level k = 3 is summarised in
tables 3–6.

With the spectrum allocated into OSp(4|2) × SU(3) representations, the conformal
dimension E0 for each multiplet remains to be given for the long multiplets. Unlike for the
short ones, E0 is not fixed by group theory in terms of the R-charge y0, and is only required
to obey a unitarity bound. Thus, E0 needs to be computed independently in these cases.

in [63], in agreement with the general arguments of [64, 65]. A similar result holds [66] for the CPW
solution. When non-linear interactions are restored, the MGRAV2 and MVEC2 furnish the SU(3)-invariant
sector [44] of D = 4 N = 8 ISO(7) supergravity. This was explicitly embedded in type IIA in [67]. Of
course, the entire KK level k = 0 arises upon non-linear consistent truncation [34, 46] on S6, similarly to
the D = 11 on S7 case [45].
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[0, 0] [0, 1] [0, 2] [0, 3]
LGRAV2 (3)0 conj. to [1, 0] conj. to [2, 0] conj. to [3, 0]

LVEC2
(

1
2 +

√
33
2

)
0

[1, 0] [1, 1] [1, 2]
SGRAV2

(
8
3

)
− 2

3
SGINO2

(
5
2

)
±1

conj. to [2, 1]

LGINO2
(

1
2 + 2

√
13

3

)
+ 1

3
LVEC2

(
1
2 +

√
17
2

)
0

LVEC2
(

1
2 +

√
241
6

)
− 2

3

[2, 0] [2, 1]
LGINO2

(
1
2 + 2

√
7

3

)
− 1

3
SVEC2

(
5
3

)
− 2

3

[3, 0]
HYP2 (2)−2

Table 4. N = 2 supermultiplets at KK level k = 1.

[0, 0] [0, 1] [0, 2] [0, 3] [0, 4]
LGRAV2

(
1
2 +

√
417
6

)
0

conj. to [1, 0] conj. to [2, 0] conj. to [3, 0] conj. to [4, 0]

LVEC2 2×
(

1
2 +

√
489
6

)
0

[1, 0] [1, 1] [1, 2] [1, 3]
LGRAV2

(
11
3

)
− 2

3
LGRAV2

(
1
2 +

√
273
6

)
0

LGINO2 2×
(

23
6

)
1
3

LGINO2
(

1
2 + 2

√
21

3

)
±1

conj. to [2, 1] conj. to [3, 1]

LVEC2
(

1
2 +

√
433
6

)
− 2

3
LVEC2 2×

(
1
2 +

√
345
6

)
0

[2, 0] [2, 1] [2, 2]
SGRAV2

(
10
3

)
− 4

3
SGINO2

(
19
6

)
− 5

3
LVEC2

(
1
2 +

√
105
6

)
0

LGINO2
(

1
2 + 2

√
19

3

)
− 1

3
LGINO2

(
1
2 + 2

√
13

3

)
+ 1

3

LVEC2
(

11
3

)
− 4

3
LVEC2

(
1
2 +

√
241
6

)
− 2

3

LVEC2
(

1
2 +

√
337
6

)
+ 2

3

[3, 0] [3, 1]
LGINO2

(
1
2 + 4

√
3

3

)
−1

SVEC2
(

7
3

)
− 4

3

[4, 0]
HYP2

(
8
3

)
− 8

3

Table 5. N = 2 supermultiplets at KK level k = 2.

By an argument similar to that made in section 3 for CPW, the knowledge of the graviton
spectrum [37], together with the above group theory analysis and the individual KK vector
spectra computed in section 2, is enough to reconstruct the entire, complete KK spectrum
and all possible values of E0.
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[0
,0

]
[0
,1

]
[0
,2

]
[0
,3

]
[0
,4

]
[0
,5

]
LG

R
AV

2
( 1 2

+
√

73 2

) 0
co
nj
.t
o

[1
,0

]
co
nj
.t
o

[2
,0

]
co
nj
.t
o

[3
,0

]
co
nj
.t
o

[4
,0

]
co
nj
.t
o

[5
,0

]

LV
EC

2
2
×

(5
) 0

[1
,0

]
[1
,1

]
[1
,2

]
[1
,3

]
[1
,4

]
LG

R
AV

2
( 1 2

+
√

60
1

6

) −
2 3

LG
R
AV

2
( 1 2

+
√

57 2

) 0
co
nj
.t
o

[2
,1

]
co
nj
.t
o

[3
,1

]
co
nj
.t
o

[4
,1

]

LG
IN

O
2

2
×
( 1 2

+
4√

10 3

) +
1 3

LG
IN

O
2

2
×
( 9 2) ±

1

LV
EC

2
2
×
( 1 2

+
√

67
3

6

) −
2 3

LV
EC

2
2
×
( 1 2

+
√

65 2

) 0

[2
,0

]
[2
,1

]
[2
,2

]
[2
,3

]
LG

R
AV

2
( 13 3

) −
4 3

LG
R
AV

2
( 1 2

+
√

40
9

6

) −
2 3

LG
IN

O
2
( 1 2

+
2√

21 3

) ±
1

co
nj
.t
o

[3
,2

]

LG
IN

O
2

2
×
( 1 2

+
2√

34 3

) −
1 3

LG
IN

O
2
( 1 2

+
4√

7
3

) +
1 3
,( 1 2

+
2√

31 3

) −
5 3

LV
EC

2
( 1 2

+
√

34
5

6

) 0

LV
EC

2
( 1 2

+
√

60
1

6

) −
4 3
,( 1 2

+
√

57
7

6

) +
2 3

LV
EC

2
2
×
( 1 2

+
√

48
1

6

) −
2 3
,( 1 2

+
√

50
5

6

) +
4 3

[3
,0

]
[3
,1

]
[3
,2

]
SG

R
AV

2
(4

) −
2

SG
IN

O
2
( 23 6

) −
7 3

LV
EC

2
( 1 2

+
√

19
3

6

) −
2 3

LG
IN

O
2
( 1 2

+
2√

3) −
1

LG
IN

O
2
( 1 2

+
2√

19 3

) −
1 3

LV
EC

2
( 1 2

+
√

57 2

) −
2,

(4
) 0

LV
EC

2
( 11 3

) −
4 3

[4
,0

]
[4
,1

]
LG

IN
O

2
( 1 2

+
2√

19 3

) −
5 3

SV
EC

2
(3

) −
2

[5
,0

]
H
Y
P 2

( 10 3

) −
10 3

Table 6. N = 2 supermultiplets at KK level k = 3.
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The KK vector spectrum for the N = 2 solution, computed from the mass ma-
trix (2.15), is presented for the first three KK levels, k = 0, 1, 2, in the entry labelled
as N = 2 U(3) in table 15 of appendix A. Firstly, the multiplicities shown in the table are
compatible with the OSp(4|2)× SU(3) group theory just described. Secondly, all individ-
ual vectors that enter short multiplets do indeed have their masses fixed by the conformal
dimension of those multiplets as follows from table 2. Thirdly, there exist vector masses in
the tables compatible with those predicted by the KK graviton analysis of [37]: these are
the spin-1 states that accompany the spin-2 states into long and short graviton multiplets.
The remaining individual vectors must arrange themselves in long gravitino and long vector
multiplets. From the data in the table, one deduces that short or long gravitino and vector
multiplets occurring at KK level k with SU(3) × U(1) charges [p, q]y0 must have scaling
dimensions:

Short and long graviton mult. : E0 = 1
2 +

√
9
4 + 2

3k(k + 5)− 4
3 C2(p, q) + 1

2y
2
0 , (4.2)

Short and long gravitino mult. : E0 = 1
2 +

√
7
2 + 2

3k(k + 5)− 4
3 C2(p, q) + 1

2y
2
0 , (4.3)

Short and long vector mult. : E0 = 1
2 +

√
17
4 + 2

3k(k + 5)− 4
3 C2(p, q) + 1

2y
2
0 , (4.4)

with C2(p, q) given in (3.3). The dimension E0 in (4.2) for graviton multiplets has been
imported from (3.1) of [37] with nthere = khere, `there = phere + qhere and y0here = 2

3(`there −
2pthere). The dimensions (4.3), (4.4) for gravitino and vector multiplets have been deduced
from table 15 and successfully cross-checked at level k = 3. Further, when the SU(3)×U(1)
quantum numbers [p, q]y0 are restricted in terms of k as in table 2, the dimensions (4.2)–
(4.4) correctly reproduce the short multiplet dimensions given in that table. At this stage,
the dimensions of all short and long multiplets that occur in the spectrum have been
identified.

Tables 3–6 above show the OSp(4|2)× SU(3) representations present in the spectrum
at KK levels k = 0, 1, 2. At fixed KK level, OSp(4|2) supermultiplets with the same SU(3)
Dynkin labels [p, q] are grouped up in the same cell. The scaling dimension E0 of each
supermultiplet, computed via (4.2)–(4.4) and table 2, and its R-charge y0, computed with
group theory as described above, are shown as a label (E0)y0 next to each entry. A label
2 × (E0)y0 indicates that there are two such multiplets. States in SU(3) representations
with [p, q] quantum numbers such that q > p appear in the tables as “conjugate to [q, p]”
representations; these have their R-charges negated. For example, in table 3 at k = 0 there
is a [0, 1] SGINO2 with (E0)y0 =

(
11
6

)
− 1

3
. The format of these tables has been kindly

borrowed from [31].
The spectrum of KK scalars can be deduced from the above results. Table 7 lists

all the scalars with scaling dimensions ∆ less than or equal to 3. The table includes the
analytical value of ∆ together with a convenient numerical approximation. Also shown in
the table is the KK level k at which each scalar appears, as well as its SU(3)×U(1) charges
[p, q]r. The OSp(4|2) supermultiplet with dimension and R-charge (E0)y0 , at the same KK
level k and with the same SU(3) charges [p, q], that contains each scalar is also shown. The
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∆ k SU(3)×U(1) N = 2 supermultiplet
1 1.00 0 [1, 1]0 MVEC2 (1)0
4
3 1.33 0 [2, 0]− 4

3
+ c.c. HYP2

(
4
3

)
− 4

3
+ c.c.

5
3 1.67 1 [2, 1]− 2

3
+ c.c. SVEC2

(
5
3

)
− 2

3
+ c.c.

2 2.00 0 [1, 1]0 MVEC2 (1)0
2 2.00 1 [3, 0]−2 + c.c. HYP2 (2)−2 + c.c.
1
2 +

√
105
6 2.21 2 [2, 2]0 LVEC2

(
1
2 +

√
105
6

)
0

7
3 2.33 0 [1, 0]− 2

3
+ c.c. SGINO2

(
11
6

)
1
3

+ c.c.

7
3 2.33 0 [2, 0] 2

3
+ c.c. HYP2

(
4
3

)
− 4

3
+ c.c.

7
3 2.33 2 [3, 1]− 4

3
+ c.c. SVEC2

(
7
3

)
− 4

3
+ c.c.

1
2 +

√
17
2 2.56 0 [0, 0]0 LVEC2

(
1
2 +

√
17
2

)
0

1
2 +

√
17
2 2.56 1 [1, 1]0 LVEC2

(
1
2 +

√
17
2

)
0

8
3 2.67 1 [2, 1]− 2

3
+ c.c. SVEC2

(
5
3

)
− 2

3
+ c.c.

8
3 2.67 1 [2, 1]+ 4

3
+ c.c. SVEC2

(
5
3

)
− 2

3
+ c.c.

8
3 2.67 2 [4, 0]− 8

3
+ c.c. HYP2

(
8
3

)
− 8

3
+ c.c.

1 + 2
√

7
3 2.76 1 [2, 0]− 4

3
+ c.c. LGINO2

(
1
2 + 2

√
7

3

)
− 1

3

1 + 2
√

7
3 2.76 1 [2, 0]+ 2

3
+ c.c. LGINO2

(
1
2 + 2

√
7

3

)
− 1

3

1
2 +

√
193
6 2.81 3 [3, 2]− 2

3
LVEC2

(
1
2 +

√
193
6

)
− 2

3

3 3.00 1 [1, 1]0 SGINO2
(

5
2

)
−1

3 3.00 1 [1, 1]0 SGINO2
(

5
2

)
+1

3 3.00 1 [3, 0]0 + c.c. HYP2 (2)−2 + c.c.
3 3.00 3 [4, 1]−2 SVEC2 (3)−2

Table 7. All KK scalars with dimension ∆ ≤ 3 around the N = 2 AdS4 type IIA solution.

tables in appendix A of [31] are useful to derive ∆ and r from E0 and y0. These will only
match if the scalar is the superconformal primary of the multiplet. The scalars in table 7
are dual to relevant (∆ < 3) or classically marginal (∆ = 3) operators in the dual field
theory. All scalars with ∆ ≤ 3 turn out to arise at KK levels k = 0, 1, 2, 3. Each of these
KK levels contain scalars dual to irrelevant (∆ > 3) operators as well. At KK levels k ≥ 4,
all scalars are dual to irrelevant operators.
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4.3 Spectrum of the N = 3 solution

The KK spectrum of the N = 3 AdS4 solution of [35, 36] can be obtained similarly. The
residual symmetry group of this solution is the SO(4) ≡ SO(3)R × SO(3)F subgroup of
SO(7) defined through the embedding chain [60]

SO(7) ⊃ SO(3)′ × SO(4)′ ≡ SO(3)′ × SO(3)left × SO(3)right ⊃ SO(3)R × SO(3)F . (4.5)

Here, SO(3)F ≡ SO(3)right is the right-handed component of SO(4)′, and SO(3)R is the
diagonal subgroup of SO(3)′×SO(3)left. The group SO(3)R is the R-symmetry and is thus
contained within OSp(4|3), while SO(3)F is the flavour group of the dual field theory. The
KK spectrum about this solution thus comes in OSp(4|3) × SO(3)F representations. The
representations of SO(3)R × SO(3)F given below are labelled (j, h), in terms of the spins
j = 0, 1

2 , 1,
3
2 , 2, . . . and h = 0, 1

2 , 1,
3
2 , 2, . . . of SO(3)R and SO(3)F , such that the spin j

representation of SO(3)R is (2j + 1)-dimensional, and similarly for SO(3)F . I follow [14]
in referring to the R-symmetry SO(3)R spin j as isospin.

At fixed KK level k, the SO(7) representations in table 1 for fields of each physical spin
must be branched out under (4.5). Fields of different physical spin and SO(3)R isospin j but
the same SO(3)F flavour spin h must be allocated into the same OSp(4|3) supermultiplets.
These supermultiplets have been summarised for convenience in appendix B (with the
isospin denoted therein as j0). The allocation proceeds from higher maximum physical
spins to lower spins, similar to the N = 2 case discussed in detail in section 4.2. In the
present N = 3 case, the process terminates by allocating the individual vectors that did
not enter graviton or gravitino multiplets into vector multiplets, as there are no N = 3
hypermultiplets. Further, the N = 3 vector multiplets are necessarily short.

The resulting multiplet structure is the following. At KK level k = 0 (given already
in [60]), there is one MGRAV3 and one MVEC3, which are respectively a singlet and a (1, 1)
of SO(3)R × SO(3)F . The former corresponds to the N = 3 pure supergravity multiplet.
This contains the massless graviton, the N = 3 massless gravitini and the massless R-
symmetry graviphotons which lie in the adjoint of SO(3)R and are singlets under SO(3)F .
The MVEC3 multiplet contains the massless R-symmetry-singlet vectors, in the adjoint
of SO(3)F , that gauge the residual flavour group. There is also a

(
1
2 ,

1
2

)
SGINO3 and a

singlet2 LGINO3. At each KK level starting at k ≥ 1, there exists one, and only one,
short OSp(4|3) multiplet of each possible type. The list of short multiplets present in the
spectrum is given in table 8. For completeness, the table also shows for each multiplet its
scaling dimension E0. This is fixed in terms of the isospin j as reviewed in appendix B.
All other multiplets are long. The OSp(4|3)×SO(3)F structure of the KK spectrum up to
level k = 3 is summarised in tables 9–12 below. All multiplets are real.

Now that the spectrum has been arranged into OSp(4|3)×SO(3)F representations, the
conformal dimension E0 of the long multiplets remains to be given. Like in the previous
cases, the knowledge of the graviton spectrum [38], together with the above group theory

2Nonlinear consistent truncations to theories containing some of these multiplets are known. The con-
sistent truncation predicted by [64, 65] to the pure N = 3 gravity multiplet, MGRAV3, was constructed
in [63]. A truncation that retains the singlet MGRAV3 and the LGINO3 was described in [62, 68].
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SGRAV3 : (k, 0) , E0 = k + 3
2

SGINO3 :
(
k+1

2 , k+1
2

)
, E0 = k+3

2

SVEC3 :
(
k+2

2 , k+2
2

)
, E0 = k+2

2

Table 8. The OSp(4|3) short spectrum at KK level k = 0, 1, . . . for the N = 3 type IIA solution,
in (j, h) representations of SO(3)R × SO(3)F . For k = 0, the short graviton and vector multiplets
become massless.

and the individual KK vector spectra computed from the mass matrix (2.15), is enough
to reconstruct the entire, complete KK spectrum and all possible values of E0. The KK
vector spectrum for the N = 3 solution is presented for the first three KK levels, k = 0, 1, 2,
in the entry labelled as N = 3 SO(4) in table 15 of appendix A. Firstly, the multiplicities
shown in the table are compatible with the OSp(4|3)×SO(3)F group theory just described.
Secondly, all individual vectors that enter short multiplets do indeed have their masses
fixed by the conformal dimension of those multiplets as follows from table 8. Thirdly,
there exist vector masses in the tables compatible with those predicted by the KK graviton
analysis of [38]. The remaining individual vectors must arrange themselves in long gravitino
multiplets. From the data in the table, one deduces that short and long graviton and
gravitino multiplets occurring at KK level k with SO(3)R × SO(3)F charges (j, h) must
have scaling dimensions:

Short and long graviton mult. : E0 =
√

9
4 + 1

2k(k + 5) + 1
2 j(j + 1)− 3

2 h(h+ 1), (4.6)

Short and long gravitino mult. : E0 =
√

3 + 1
2k(k + 5) + 1

2 j(j + 1)− 3
2 h(h+ 1). (4.7)

The dimension E0 in (4.6) corresponds, up to straightforward notational changes, to the
expression given in appendix B of [37] for the graviton multiplet dimensions [38]. The
dimension (4.7) for short and long gravitino multiplets has been deduced from table 15
and successfully cross-checked at level k = 3. Further, when the SO(3)R × SO(3)F quan-
tum numbers (j, h) are restricted in terms of the KK level k as in table 8, the dimen-
sions (4.6), (4.7) correctly reproduce the short multiplet dimensions given in that table.

Tables 9–12 below summarise the OSp(4|3) × SO(3)F representations present in the
spectrum up to KK level k = 3. For each OSp(4|3) supermultiplet at fixed SO(3)F quantum
number h, its conformal dimension and SO(3)R isospin are indicated with a label (E0)j
next to each entry. Labels of the form 2×(E0)j indicate that there are two such multiplets.

The spectrum of KK scalars about the N = 3 solution follows from the above results.
Table 13 compiles all the scalars with conformal dimension ∆ ≤ 3. For each scalar, the
analytical value of ∆, together with a convenient numerical approximation, is shown. The
table also specifies the KK level k and SO(3)R × SO(3)F quantum numbers (r, h) of each
scalar, together with the OSp(4|3) supermultiplet where it belongs. The supermultiplets
are labelled with their dimension and isospin (E0)j (which may or may not coincide with
those, ∆ and r, for each scalar), and arise at the same KK level k and have the same flavour
charge h than the scalars they contain. The OSp(4|3) representation contents tabulated in
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∆ k SO(3)R × SO(3)F N = 3 supermultiplet
1 1.00 0 (1, 1) MVEC3 (1)1
3
2 1.50 0

(
1
2 ,

1
2

)
SGINO3

(
3
2

)
1
2

3
2 1.50 1

(
3
2 ,

3
2

)
SVEC3

(
3
2

)
3
2√

3 1.73 0 (0, 0) LGINO3
(√

3
)

0√
3 1.73 1 (0, 1) LGINO3

(√
3
)

0
2 2.00 0 (1, 1) MVEC3 (1)1
2 2.00 1 (1, 1) SGINO3 (2)1
2 2.00 2 (2, 2) SVEC3 (2)2√

19
2 2.18 2

(
1
2 ,

3
2

)
LGINO3

(√
19
2

)
1
2√

21
2 2.29 1

(
1
2 ,

1
2

)
LGINO3

(√
21
2

)
1
2

5
2 2.50 0

(
3
2 ,

1
2

)
SGINO3

(
3
2

)
1
2

5
2 2.50 0

(
1
2 ,

1
2

)
SGINO3

(
3
2

)
1
2

5
2 2.50 1

(
3
2 ,

3
2

)
SVEC3

(
3
2

)
3
2

5
2 2.50 1

(
1
2 ,

3
2

)
SVEC3

(
3
2

)
3
2

5
2 2.50 2

(
3
2 ,

3
2

)
SGINO3

(
5
2

)
3
2

5
2 2.50 3

(
5
2 ,

5
2

)
SVEC3

(
5
2

)
5
2

1
2 + 3

√
2

2 2.62 1
(

3
2 ,

1
2

)
LGRAV3

(
3
√

2
2

)
1
2

1
2 + 3

√
2

2 2.62 1
(

1
2 ,

1
2

)
LGRAV3

(
3
√

2
2

)
1
2√

7 2.64 1 (1, 0) LGINO3
(√

7
)

1√
7 2.64 3 (1, 2) LGINO3

(√
7
)

1

1 +
√

3 2.73 0 (2, 0) LGINO3
(√

3
)

0

1 +
√

3 2.73 0 (0, 0) LGINO3
(√

3
)

0

1 +
√

3 2.73 1 (2, 1) LGINO3
(√

3
)

0

1 +
√

3 2.73 1 (0, 1) LGINO3
(√

3
)

0

2
√

2 2.83 2 2× (1, 1) LGINO3 2×
(
2
√

2
)

1

3 3.00 1 (1, 0) SGRAV3
(

5
2

)
1

3 3.00 1 (0, 0) SGRAV3
(

5
2

)
1

3 3.00 1 (2, 1) SGINO3 (2)1
3 3.00 1 2× (1, 1) SGINO3 (2)1
3 3.00 2 (2, 2) SVEC3 (2)2
3 3.00 2 (1, 2) SVEC3 (2)2
3 3.00 2 (0, 2) SVEC3 (2)2
3 3.00 3 (2, 2) SGINO3 (3)2
3 3.00 4 (3, 3) SVEC3 (3)3

Table 13. All KK scalars with dimension ∆ ≤ 3 around the N = 3 AdS4 type IIA solution.
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appendix B are useful to determine the scalar charges and dimensions reported in table 13.
All scalars dual to relevant and classically marginal operators of the dual field theory arise
at levels k ≤ 4. Each of these KK levels also contain scalars dual to irrelevant operators.
All scalars at KK levels k ≥ 5 are dual to irrelevant operators.

5 Discussion

In this paper, I have derived the KK vector mass matrix of a class of AdS4 solutions of
D = 11 supergravity and massive type IIA supergravity from E7(7) ExFT [18, 20, 39],
following [16]. Then, I have used these and previous partial results [31, 32, 37, 38] to
determine the complete supersymmetric KK spectrum of some N = 2 and N = 3 solutions
in this class. The N = 2 AdS4 CPW solution in D = 11 [30] is dual to an N = 2
Chern-Simons CFT with gauge group U(N) × U(N). This CFT is defined on a stack of
M2-branes, and arises as the infrared fixed point of a superpotential mass deformation [31]
of ABJM [11]. The N = 2 and N = 3 CFTs dual to the AdS4 solutions [34–36] of massive
type IIA arise instead as superconformal fixed points of the D2-brane field theory, three-
dimensional N = 8 SU(N) super-Yang Mills, augmented with Chern-Simons terms [61, 62].
These CFTs have been described in [34].

The present results determine the complete spectrum of single-trace operators with
dimension of order one for these CFTs, in the strong coupling regime and at large N .
See [69–71] for some results on the large-N spectrum of operators with dimensions that
scale with N raised to various powers, for some of these CFTs. The N = 2 CFTs discussed
above are intrinsically strongly coupled. In contrast, the N = 3 CFT admits a weakly
coupled limit which has been investigated in [72, 73]. The spectrum of operators of the
N = 3 CFT that lie in short representations of OSp(4|3) has been computed at weak
coupling and large N directly from the field theory [73]. This short spectrum can be
expected to be subject to non-renormalisation theorems and, for this reason, both its
structure in terms of OSp(4|3) × SO(3)F representations and the conformal dimensions
E0 of these operators must remain unaltered at strong coupling. Satisfactorily, the bulk
calculation of the short spectrum at strong coupling found in table 8 perfectly matches the
short spectrum reported at weak coupling in table 15 of [73].

The analysis in this paper determines, in particular, the spectrum of relevant and
classically marginal operators of these CFTs. For example, the N = 2 CFT dual to
the massive type IIA AdS4 solution [34] contains SU(N)-adjoint hypermultiplets Za, a =
1, 2, 3, in the fundamental of the SU(3) flavour group. The theory has a superpotential,
W ∼ tr εabcZa[Zb,Zc], analogous to that of four-dimensional N = 4 super-Yang-Mills
written out in N = 1 language. Tables 2 and 3 (see also table 5 of [62]) show the existence
of 6 hypermultiplets trZ(aZb), which arise at KK level k = 0. These are superpotential
mass terms, thus relevant in agreement with table 7, that can be added to the N = 2
theory to generate renormalisation group (RG) flow [72]. Being generated by a k = 0
deformation, this flow can be holographically built in gauged supergravity [62] in analogy
with similar mass deformation flows of N = 4 super-Yang-Mills [74] and ABJM [30, 75].
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Tables 2 and 4 also show the existence of 10 hypermultiplets of the form trZ(aZbZc)

at KK level k = 1 in the spectrum of the N = 2 CFT with AdS4 dual in massive IIA.
These cubic terms can again be added to the superpotential to generate deformations
that have direct analogues in four-dimensional N = 4 super-Yang Mills and ABJM. In
the ABJM case, this cubic superpotential deformation is relevant [69, 76] (see also [57])
and generates RG flow. In the present massive type IIA case, the cubic deformation
is instead classically marginal according to tables 2, 4 and 7. This is exactly like the
analogue N = 1 deformation of N = 4 super-Yang-Mills. As is well known, out of the
classically marginal N = 1 deformations of N = 4 super-Yang-Mills, only the so-called
β- and cubic deformations are exactly marginal. It would be interesting to determine the
exactly marginal deformations in the N = 2 massive IIA case, and engineer their gravity
duals following [77, 78]. The exactly marginal deformations of the N = 3 theory that
preserve N = 2 have been determined in [73] at weak coupling. These are expected to be
non-renormalised, and should thus be also included in table 13 above.

On a different note, it was discussed in [37, 79] that the KK graviton mass matrix
for the D = 11 and massive type IIA AdS4 solutions that uplift from SO(8) and ISO(7)
supergravity displays some universality behaviour. Specifically, the graviton traces match
for solutions in both gaugings with the same residual (super)symmetry, at fixed SO(8) KK
level n and combined SO(7) KK levels k = 0, 1, . . . , n (in order to trace over the same
number of states, through [n, 0, 0, 0] → ⊕nk=0[k, 0, 0]). I have checked that the same holds
for the KK vector mass matrix (2.15) with (2.13), (2.14). However, the traces now involve
the unphysical states that are eaten by massive gravitons, discussed in section 2.2. Thus,
these mass matrix traces carry no physical significance. Matchings still occur for some
solutions when tracing over physical states only. For example, the vector mass matrix
trace taken over physical states for the SO(7)v and SO(7)c AdS4 solutions of D = 11
supergravity match. Also, while they do not share the same symmetry, there is a similar
match tracing over physical KK vectors states for the N = 0 G2 and N = 3 SO(4) AdS4
solutions in massive IIA. These solutions have the same cosmological constant [44], and
the KK graviton traces also match [37].

The SO(8) and ISO(7) gaugings considered in this paper also have interesting N = 1,
or even non-supersymmetric, AdS4 solutions. In these cases with low or no supersymmetry,
the KK scalar spectra is not implied by the KK graviton and vector spectra, and will need
to be computed independently. The scalar spectrum of some D = 11 and type IIB AdS
solutions have already been computed using ExFT techniques in [16, 80].
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A KK vector spectra of selected AdS4 solutions

This paper follows the conventions for D = 11 [28] and D = 4 N = 8 SO(8) [40] super-
gravity specified in [81]. The conventions for massive IIA [29] and D = 4 N = 8 ISO(7)
supergravity are spelled out in [46] and [44], respectively. The generic conventions for
D = 4 N = 8 gauged supergravity [82], including the E7(7) generators, are those of [46].

The KK vector mass matrix (M2)MΛ
NΣ, (2.15) with (2.13), (2.14), for the type of

AdS4 solutions of D = 11 and type IIA under consideration depends exclusively on data
of D = 4 N = 8 supergravity, as well as on the SO(8) or SO(7) generators. The latter are
left as footprints of the topological S7 and S6 that these solutions feature as their internal
spaces. All the tensors that enter (2.15) are constant, except for the matrix MMN (and
its inverse MMN ), which is quadratic, M = VVT, in the E7(7)/SU(8) coset representative
V(ϕ) that contains the D = 4 N = 8 scalars ϕ. When evaluated at a critical point of
the D = 4 N = 8 potential V , ϕ∗ such that ∂V (ϕ∗) = 0, the matrices MMN (ϕ∗) and
MMN (ϕ∗) also become constant, of course, though still solution-dependent.

The differences between D = 11 and type IIA solutions are introduced in (2.15) by
the embedding tensor ΘM

α and the generators (TM )Λ
Σ. For both D = 4 N = 8 gaug-

ings considered, the embedding tensor can be specified as follows. Introducing indices
A = 1, . . . , 8, in the fundamental, 8, of SL(8) (and in the 8v of SO(8), as in (2.6)) the
non-vanishing components of the embedding tensor ΘM

α =
(
ΘM

C
D,ΘM

CDEF ≡ 0
)
are

ΘM
C
D =

(
ΘAB

C
D,ΘABC

D

)
, where [41]

ΘAB
C
D = 2 δC[AθB]D , ΘABC

D = 2 δ[A
D ξ

B]C , (A.1)

with

SO(8) gauging : θAB = δAB , ξAB = 0 , (A.2)
ISO(7) gauging : θAB = diag (1, 1, 1, 1, 1, 1, 1, 0) , ξAB = (0, 0, 0, 0, 0, 0, 0, 1) . (A.3)

As for the tensors (TM )Λ
Σ =

(
(TAB)Λ

Σ, (T AB)Λ
Σ ≡ 0

)
, depending on how they are defined

they encode the SO(8) or SO(7) generators in the infinite-dimensional, reducible represen-
tations (2.7). As discussed in section 2.2, the mass matrix (2.15) is block diagonal, and
can be diagonalised KK level by KK level. This implies that each individual block can be
treated independently. One can then focus on the generators in just the symmetric trace-
less representations of SO(8) and SO(7). More concretely, breaking out the Λ, Σ indices
as in (2.6), one has

SO(8) : (TAB)C1...Cn
D1...Dn = n (TAB){C1

{D1δD2
C2
. . . δ

Dn}
Cn} , (A.4)

SO(7) : (TAB)K1...Kk

L1...Lk = k (TAB){K1
{L1δL2

K2
. . . δ

Lk}
Kk} . (A.5)

In (A.4), (TAB)CD ≡ 2δD[AθB]C , with θAB given in (A.2), are the 28 generators of SO(8)
in the fundamental representation. In (A.5), the tensor (TAB)KL ≡ 2δL[AθB]K is defined
using θAB in (A.3), with the index splitting A = (I, 8), I = 1, . . . , 7. It contains the 21
generators (TIJ)KL of SO(7), together with (TI8)KL = 0.
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I have used these formulae to compute the first few levels of the KK vector spectrum
of some AdS4 solutions of D = 11 and massive IIA supergravity that uplift from critical
points of the corresponding D = 4 N = 8 supergravities. The KK vector spectra of all
the D = 10, 11 solutions in this class can be computed using this technology, even if the
solutions are only known as critical points of the D = 4 supergravity and the higher-
dimensional uplift is not explicitly known. The latest word on the classification of critical
points of D = 4 N = 8 SO(8) supergravity is [26]. For D = 4 N = 8 ISO(7) supergravity,
the latest classification of critical points can be found in [27], although the latter should
admit improvements from the machine learning methods employed in [26].

For definiteness, I have focused on the D = 11 solutions that preserve at least an SU(3)
subgroup of SO(8), following the conventions of [83]. TheD = 4 critical points in this sector
were classified in [58], and their D = 11 uplift is also known [10, 30, 84–87]. The entire KK
spectrum of the N = 8 SO(8)-invariant solution [10] has long been known [7–9], and my
results reproduce their KK vector spectrum. For the N = 2 SU(3)×U(1) solution [30, 58],
the spectrum for all KK fields at levels n = 0 [59] and n = 1 [16] is known, along with the
entire KK graviton spectrum [32]. My results for the KK vectors again agree with [16, 59]
and extend them to higher KK levels. The KK graviton spectra of the other solutions has
been computed in [79], and the KK vector spectra reported below are new. The results are
summarised for levels n = 0, 1, 2 in table 14. In the table, the mass M2 eigenvalues have
been normalised to the corresponding AdS4 radius squared, L2 = −6/V , where V < 0 is
the cosmological constant of that point. The eigenvalues are given as (M2L2)(p), where p
is a positive integer that denotes the multiplicity. Recall that the scaling dimension ∆ of
a vector of mass M2L2 is given by

(∆− 1)(∆− 2) = M2L2 . (A.6)

This formula has been used throughout to convert the KK vector mass eigenvalues to the
conformal dimensions reported in the main text. For completeness, recall that for gravitons
and scalars the analogue relation is

∆(∆− 3) = M2L2 . (A.7)

Turning to massive IIA, I have again focused for concreteness on the solutions that
preserve the SU(3) subgroup of SO(7). These solutions were classified as critical points of
D = 4 N = 8 ISO(7) supergravity in [44]. The latter reference also contains the spectrum
for all bosonic fields at KK level k = 0. Due to its particular interest, I have also looked
at the N = 3 solution with SO(4) residual symmetry, which lies outside of this class. This
solution was first found as a critical point of the D = 4 supergravity in [60], where the
k = 0 KK spectrum was also determined. The type IIA uplift of all these solutions is
known [34–36, 67]. The KK spectrum of gravitons at all levels is also known [37, 38]. The
present results reproduce the vector spectrum at k = 0 level and extend them to higher
KK levels. The results for levels k = 0, 1, 2 are summarised in table 15. The format is the
same as table 14.
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B N = 3 supermultiplets

The state content of the supermultiplets of OSp(4|2) has been conveniently tabulated in
appendix A of [31]. These tables are very useful to allocate the spectrum of the N = 2
AdS4 solution discussed in section 4.2 into OSp(4|2) supermultiplets. For OSp(4|3), similar
tables do not seem to be available in the literature: reference [14] tabulates the field content
for representations of integer isospin only. In the spectrum of the N = 3 AdS4 solution of
section 4.3, multiplets of both integer and half-integer isospin arise. In this appendix, the
state content of the OSp(4|3) representations that appear in the spectrum of this solution
are presented for convenience in tables 16–37 below.

The unitary representations of OSp(4|3) are characterised by three quantum numbers:
the Dynkin labels of the superconformal primary under the bosonic subalgebra SO(3, 2)×
SO(3)R. These are the SO(3, 2) spin s0 and energy E0, and the Dynkin label j0 (usually
referred to as isospin) of the R-symmetry group SO(3)R. In the main text, I have denoted
the isospin simply by j. Alternatively, the superconformal primary spin s0 can be traded
by the maximum SO(3, 2) spin smax present in the multiplet. This is the convention that
I will use, thereby labelling OSp(4|3) multiplets with (smax, E0, j0). Using this convention,
the multiplets can be given names according to the value of smax: one can thus speak of
graviton, gravitino, or vector multiplets, if smax = 2, smax = 3

2 , or smax = 1. There are no
hypermultiplets (which would have smax = 1

2).
As for the range of the quantum numbers, in supergravity applications one only needs

to consider the above three values of smax. I use conventions in which the isospin is a
non-negative half-integer: j0 = 0, 1

2 , 1,
3
2 , 2,

5
2 , 3, . . . , so that the isospin j0 representation

of SO(3)R is (2j0 + 1)-dimensional. Finally, E0 is a real number subject to the unitarity
bound E0 ≥ j0 + 3

2 if smax = 2, or E0 ≥ j0 + 1 if smax = 3
2 , or to the equality E0 = j0

if smax = 1. In the first two cases, if the bound is saturated the multiplets are short (or
massless), and long otherwise. Vector multiplets are always short (or massless).

To summarise, there are seven types of OSp(4|3) supermultiplets that may arise in
supergravity applications:

1. massless graviton multiplet (MGRAV3), with s0 = 1
2 , j0 = 0, E0 = j0 + 3

2 = 3
2 ;

2. short graviton multiplet (SGRAV3), with s0 = 1
2 , j0 ≥

1
2 , E0 = j0 + 3

2 ;

3. long graviton multiplet (LGRAV3), with s0 = 1
2 , j0 ≥ 0, E0 > j0 + 3

2 ;

4. short gravitino multiplet (SGINO3), with s0 = 0, j0 ≥ 1
2 , E0 = j0 + 1;

5. long gravitino multiplet (LGINO3), with s0 = 0, j0 ≥ 0, E0 > j0 + 1;

6. massless vector multiplet (MVEC3), with s0 = 0, j0 = 1, E0 = j0 = 1; and

7. short vector multiplet (SVEC3), with s0 = 0, j0 ≥ 3
2 , E0 = j0.

A massless gravitino multiplet exists, but it cannot arise in supergravity spectra as its
presence would indicate an enhancement N > 3 of supersymmetry. A subindex 3 has been
attached to the above acronyms in order to emphasise that they are N = 3.

– 26 –



J
H
E
P
0
4
(
2
0
2
1
)
2
8
3

The state content of these OSp(4|3) supermultiplets is most conveniently described
in terms of OSp(4|2) supermultiplets. Denoting by MGRAV3(E0, j0), etc., the N = 3
supermultiplets with energy E0 and isospin j0, and by MGRAV2(E0, y0), etc., the N =
2 supermultiplets with energy E0 and R-charge y0, as given in appendix A of [31], the
OSp(4|2) content of the OSp(4|3) graviton multiplets is given by [14, 73]

MGRAV3

(
3
2 , 0
)

= MGRAV2(2, 0)⊕MGINO2

(
1
2 , 0
)
,

SGRAV3

(
2, 1

2

)
= SGRAV2

(
5
2 ,−

1
2

)
⊕SGRAV2

(
5
2 ,

1
2

)
⊕SGINO2

(
2,−1

2

)
⊕SGINO2

(
2, 1

2

)
,

SGRAV3 (E0, j0) = SGRAV2

(
E0+1

2 ,−j0

)
⊕SGRAV2

(
E0+1

2 , j0

)

⊕
j0−1⊕

y0=−(j0−1)

LGRAV2

(
E0+1

2 , y0

)
⊕ SGINO2(E0,−j0)⊕SGINO2(E0, j0)

⊕
j0−1⊕

y0=−(j0−1)

LGINO2(E0, y0) , for j0 ≥ 1, E0 = j0+3
2 ,

LGRAV3 (E0, j0) =
j0⊕

y0=−j0

LGRAV2

(
E0+1

2 , y0

)
⊕

j0⊕
y0=−j0

LGINO2(E0+1, y0)

⊕
j0⊕

y0=−j0

LGINO2(E0, y0)⊕
j0⊕

y0=−j0

LVEC2

(
E0+1

2 , y0

)
,

for j0 ≥ 0, E0 > j0+3
2 . (B.1)

An N = 2 massless gravitino multiplet (MGINO2) was not tabulated in [31], but its state
content can be easily inferred. The OSp(4|2) content of the OSp(4|3) gravitino multiplets
is given by [14, 73]

SGINO3

(
3
2 ,

1
2

)
= SGINO2

(
2,−1

2

)
⊕SGINO2

(
2, 1

2

)
⊕SVEC2

(
3
2 ,−

1
2

)
⊕SVEC2

(
3
2 ,

1
2

)
,

SGINO3 (E0, j0) = SGINO2

(
E0+1

2 ,−j0

)
⊕SGINO2

(
E0+1

2 , j0

)

⊕
j0−1⊕

y0=−(j0−1)

LGINO2

(
E0+1

2 , y0

)
⊕ SVEC2(E0,−j0)⊕SVEC2(E0, j0)

⊕
j0−1⊕

y0=−(j0−1)

LVEC2(E0, y0) , for j0 ≥
3
2 , E0 = j0+1,

LGINO3 (E0, j0) =
j0⊕

y0=−j0

LGINO2

(
E0+1

2 , y0

)
⊕

j0⊕
y0=−j0

LVEC2(E0+1, y0)

⊕
j0⊕

y0=−j0

LVEC2(E0, y0) , for j0 ≥ 0, E0 > j0+1 . (B.2)
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Finally, the OSp(4|2) content of the OSp(4|3) vector multiplets is given by [14, 73]

MVEC3 (1, 1) = MVEC2(1, 0)⊕HYP2(1,−1)⊕HYP2(1, 1) ,

SVEC3

(3
2 ,

3
2

)
= SVEC2

(3
2 ,−

1
2

)
⊕ SVEC2

(3
2 ,

1
2

)
⊕HYP2

(3
2 ,−

3
2

)
⊕HYP2

(3
2 ,

3
2

)
,

SVEC3 (E0, j0) = SVEC2(E0,−(j0 − 1))⊕ SVEC2(E0, j0 − 1)

⊕
j0−2⊕

y0=−(j0−2)
LVEC2(E0, y0)⊕HYP2(E0,−j0)⊕HYP2(E0, j0) ,

for j0 ≥ 2, E0 = j0 . (B.3)

The state content of the OSp(4|3) supermultiplets in items 1–7 above can be worked
out from (B.1)–(B.3), using the N = 2 tables in appendix A of [31]. The result is presented
in tables 16–37 below. These tables are useful to work out the N = 3 spectrum discussed
in section 4.3. Tables 17 and 19 for the SGRAV3 with j0 = 1

2 and j0 = 3
2 are the only

tables not needed for that purpose (according to table 8, the short graviton spectrum
for the N = 3 AdS4 solution comes in representations of integer isospin only), but are
also presented for completeness and general reference. The tables for supermultiplets with
integer isospin agree with [14] (except for table 35 for the MVEC3, which corrects a typo in
their table 5 with J0 = 1 therein). Unlike forN = 2, where the state content of the OSp(4|2)
supermultiplets is independent of the R-charge y0, in the N = 3 case, supermultiplets of
the same type (e.g. LGRAV3’s) with different isospin j0 may have different state contents.
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