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The SU(3)-invariant sector of maximal supergravity in four dimensions with an SO(8) gauging is
uplifted to D = 11 supergravity. In order to do this, the SU(3)-neutral sector of the tensor and duality
hierarchies of the D = 4 A/ = 8 supergravity is first worked out. The consistent D = 11 embedding of the
full, dynamical SU(3) sector is then expressed at the level of the D = 11 metric and three-form gauge field
in terms of these D = 4 tensors. The redundancies introduced by this approach are eliminated at the level of
the D = 11 four-form field strength by making use of the D = 4 duality hierarchy. Our results encompass
previously known truncations of D = 11 supergravity down to sectors of SO(8) supergravity with
symmetry larger than SU(3), and include new ones. In particular, we obtain a new consistent truncation of
D = 11 supergravity to minimal D = 4 A/ = 2 gauged supergravity.
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I. INTRODUCTION

Being complicated theories with large field contents,
it proves useful for applications to truncate maximal
gauged supergravities to smaller subsectors that are
invariant under some symmetry group. In this paper,
we will be interested in D =4 N = 8 supergravity with
an electric SO(8) gauging [1] and one of its most
fruitful sectors: the one invariant under the SU(3)
subgroup of SO(8). This sector preserves N = 2 super-
symmetry and retains, along with the A =2 gravity
multiplet, a vector multiplet and a hypermultiplet with
an Abelian gauging. The (AdS) vacuum structure in this
sector has been completely charted [2] and the corre-
sponding mass spectra within the full A’ =8 theory
determined [3,4]. Holographic duals have been estab-
lished for some of these vacua as distinct superconfor-
mal phases [5,6] of the M2-brane field theory. Other
interesting solutions of, for example, domain wall [7,8],
defect [9], black hole [10] or Euclidean [11] type have
been constructed in this sector that enjoy precise holo-
graphic interpretations [6,12].

The relevance for holography of D =4 N = 8 SO(8)-
gauged supergravity [1] is intimately linked to the fact
that it can be obtained as a consistent truncation of
D =11 supergravity [13] on the seven-sphere, 7 [14,15].
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Further results on the consistency of the truncation have
been given more recently in [16-26]. The goal of this
paper is to provide the consistent uplift of the SU(3)
sector of SO(8) gauged supergravity into D = 11 by
using the uplifting formulas of [25], thus putting them to
the test. We extend previous results on the consistent
D = 11 embedding of further subsectors contained in the
SU(3) sector [4,27,28], and provide a unified treatment.
We make contact with those previously known consistent
truncations and establish new ones. In particular, we
construct a new consistent embedding of D =4 N =2
pure gauged supergravity into D = 11, where the internal
geometry on S7 corresponds to the NV = 2 SU(3) x U(1)-
invariant solution obtained by Corrado-Pilch-Warner
(CPW) [27].

A systematic approach to the consistent uplift of
D =4 N =8 SO(8) supergravity to D =11 was pro-
posed in [25], similar to the method employed in [29,30]
to uplift D = 4 N' = 8 ISO(7) supergravity [31] into type
IIA. This approach relies on the tensor hierachy [32,33]
of maximal four-dimensional supergravity—the extension
of its field content to include the magnetic gauge fields
along with higher rank potentials in representations of
E;(7). The full D = 11 embedding of the bosonic sector
of SO(8) supergravity can be expressed at the level of the
D =11 metric and three-form potential in terms of a
subset, dubbed restricted in [25], of the D = 4 tensor
hierarchy that is still N'=28 but only covariant under
SL(8) C E;(7). The D = 4 tensor hierarchy carries redun-
dant degrees of freedom (d.o.f.) beyond those contained in
the conventional N = 8 Lagrangian, and these are carried
over to the D =11 embedding. These redundancies
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can be eliminated in D =4 by imposing suitable duality
relations among the field strengths of the tensor hierarchy
[34]. Expressing the D = 11 embedding at the level of
the four-form field strength and employing these D = 4
dualizations, redundancy-free uplifting formulas are
obtained that contain only the dynamically independent
fields (that is, the metric, the scalars and the electric
vectors) that feature in the conventional D =4 N =8
Lagrangian.

Some aspects of the SU(3)-invariant sector of SO(8)-
gauged supergravity are summarized in Sec. I, and the
SU(3)-invariant restricted tensor and duality hierarchies
are constructed. Section III discusses the consistent uplift
of the SU(3)-invariant sector into D = 11 supergravity
following the tensor and duality hierarchy approach.
Contact with the consistent uplift of previously known
subsectors is made and a new D = 11 embedding of D = 4
N = 2 pure gauged supergravity is established. Section IV
further tests our formalism by recovering known AdS,
solutions in D = 11 from uplift of critical points, and
Sec. V concludes. Some technical details are contained in
the Appendixes. Our conventions for D = 11 and D =4
N = 8 supergravity are those of [25].
|

II. THE SU(3)-INVARIANT SECTOR
OF SO(8) SUPERGRAVITY

Let us start by reviewing some aspects of the SU(3)
sector of SO(8)-gauged supergravity. We choose a triangu-
lar, or Iwasawa, parametrization for the [SU(3)-invariant
truncation of the] E;(7)/SU(8) coset representative. Since
previous literature often chooses the unitary gauge for the
coset, we believe that our presentation has some intrinsic
value even if the material that is covered (the Lagrangian in
Sec. IT A, the further subsectors in II C, and the vacuum
structure in I D) is mostly review. The SU(3)-invariant,
restricted tensor and duality hierarchies worked out in
Sec. II B are new.

A. Field content and Lagrangian

The SU(3)-invariant sector of SO(8)-gauged maximal
four-dimensional supergravity [1] corresponds to an
N =2 supergravity coupled to a vector and a hyper-
multiplet. In addition to the fields entering these N =2
multiplets, we wish to consider the SU(3)-singlets in the
(restricted, in the sense of [25]) N = 8 tensor hierarchy
[32,33]. The relevant bosonic matter content thus includes

the metric: ds7,

6scalars: ¢, y, ¢, a,

¢ <

2 electric vectors and their magnetic duals: A°, A', A,, A,

5 two-form potentials: B°, B2,

4 three-form potentials: C!,

all of them real. The superscripts on B°, B> and C! are just
labels without further meaning. The electric and magnetic
vectors can be collectively denoted A and A,, with the
index A =0, 1 formally labeling “half” the fundamental
representation of Sp(4, R). The indices on B*’ and C%” take
on two values which, for convenience, are labeled a = 7, 8.
The index a formally labels a doublet of SL(2), but we do
not attach any significance to its position as it can be raised
and lowered with ,,. See Appendix A for the embedding
of the SU(3)-invariant fields (2.1) into their parent N = 8
counterparts.

Only the metric, the scalars and the vector fields enter the
conventional Lagrangian. The fields ¢, ¢ and a are proper
scalars, while y, { and 5 are pseudoscalars. All of these
parametrize a submanifold

SU(LL1)  SU(2,1)
U(l) SU@)x u(l)

(2.2)

of Ey(7)/ SU(8), where each factor respectively contains the
vector-, (¢,y), and the hypermultiplet, ¢" = (¢, a,(, 5)

B — B(ab)’
Cc* = Clab), (2.1)
[
u=1,....,4, (pseudo)scalars." The vectors gauge (electri-

cally, in the usual symplectic frame), the U(1)?, compact
Cartan subgroup of the hypermultiplet isotropy group. In
the Iwasawa parametrization of the scalar manifold (2.2),
the bosonic Lagrangian reads

£= Rvoly + (dg)? +3 e(dyg? + 2(Dg)?

1 1 L.
+5 e (Da+5(¢DE - EDE))?
1 1 - 1
+5 e?(D¢)* + 3 e*(DE)* + EIAEH(AZ) A *Hp,
1
+§RAZHE\2) A Hé) — VV014, (23)

with (dg)? = dg A *dg, etc. The covariant derivatives of
the hyperscalars take on the form

'We will rarely need indices to label the scalars but, when
needed, the local indices will be denoted m =1, ..., 6, on the
entire manifold (2.2), a = 1, 2 on the first factor,and u = 1, ..., 4
on the second.
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D¢p = dep — gAa, Da = da+ gA°(1 + e=*(Z% — Y?)),
D¢ = d + gA%e™?((Z - {Y) = 3gA',

D¢ =dl + gA%eP(ZZ + CY) +39A'¢, (2.4)

where ¢ is the gauge coupling constant. Following [31],
here and throughout we have employed the shorthand
definitions

1 ~
X=1+e¥y2 Y=1 —|—Zez¢(é'2 +8), Z=eYa.

(2.5)
|

The covariant derivatives (2.4) correspond to an electric
gauging of the U(1)? Cartan subgroup of SU(2) x U(1) C
SU(2, 1) generated by

ko = — (K[E3] — k[F3)).

7 ky = —k[H,],

(2.6)

where k[E,], etc., are SU(2, 1) Killing vectors: see (A15)

and (A16) for the explicit expressions for the Killing

vectors of the scalar manifold (2.2) in our parametrization.
The scalar potential V in (2.3) reads

3
g2V = —12¢? — 67 2070XY (e* + Y2 + Z2) — 12¢7(Y — 1) <1 +Y - 5XY)

1 1
+6e72070(Y —1)(e* + Y2 + Z2)X? + e3¢ [5 e+ a -1+ 5e“4’(1 + a?)?

1
+ Ee—‘“ﬁ(Y —1)(1+2Z%=2e% +Y(1 +2e% +27%) + Y? + Y3)}X3, (2.7)
and derives from the following real superpotential (squared)
1
W? = ﬁgZX [IZe‘V"Z‘/’(X =2)(Y =2)(Y? + Z% + €*) 4 36e?Y?
+ e 30X (Y + Z2 + )2 — 16e737X%(Y — 1)
- 486“/"2¢\/(X -DH(Y =D -Y*+27°)?*+ 4Y222]} , (2.8)
through the usual formula
1
2 vV =2G"9,,Wo,W — 3W?2, (2.9)
Here, G,,,, m = 1, ..., 6, denotes the nonlinear sigma model metric on (2.2), and G"" its inverse, which can be read off from
the scalar kinetic terms in the Lagrangian (2.3).
Finally, the gauge kinetic matrix is
| e 3¢y
. (e?y—i)? (e?y=i)
Nag=Rps +iZps = 50— , (2.10)
(2e?y + i) (35;/—)(1') 3(e?y2 + e7?)

and the (electric) gauge two-form field strengths that appear
in (2.3) are simply

HY = dAM,

5 A=0,1.

(2.11)

We have computed the SU(3)-invariant Lagrangian (2.3)
and the quantities that define it using the D =4 N =8
embedding tensor formalism [35] (see [36] for a recent
review) with the conventions of [25] for the SO(8) gauging
[1]. The superpotential (2.8) corresponds to one of the

|
eigenvalues of the A/ = 8 gravitino mass matrix restricted
to the SU(3)-singlet space. See [4] for the N = 2 special
geometry of the model, in unitary gauge for the scalar coset.
Superpotentials have previously appeared, also in unitary
gauge, in [8,37].

B. Restricted tensor and duality hierarchies

Besides the electric gauge fields that enter the conven-
tional supergravity Lagrangian, one may consider a set
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of other gauge potentials in the so-called tensor hierarchy.
The full N' = 8 tensor hierarchy includes all vectors, both
electric and magnetic, along with higher-rank (two-, three-,
and four-form) gauge potentials, in representations of the
duality group of the ungauged theory, E;7) [32,33]. The
full tensor hierarchy corresponding to the A = 2 subsector
at hand is obtained by retaining the singlets under the
decomposition of those E;(7) representations under SU(3).
Here, we are only interested in a subset of the N' = 8 tensor
hierarchy. The reason is that not all E;(7)-covariant fields in
the hierarchy are necessary to describe the full D =11
embedding of N =8 SO(8)-gauged supergravity, as
argued in [25]. Only the vectors and some two- and

in [25]. Thus, the tensor fields that we want to consider are
the singlets under SU(3) c SL(8,R) of the N =38
restricted tensor hierarchy. The complete list is given in
(2.1). See Appendix A for further details.

The field strengths of the SU(3)-invariant, restricted
tensor hierarchy fields can be obtained by particularizing
the A/ = 8 expressions given in [25], with the help of the
expressions contained in Appendix A for their embedding
into their V' = 8 counterparts. The electric vector field
strengths have already been given in (2.11), while the
magnetic field strengths are

F] _ Ji 0 7 _Ji _ 2
three-form potentials in representations of the maximal Hyp = dAo+ 9B, Hay =dA, —2g8%  (2.12)
SL(8,R) subgroup of E;(7) are relevant for this purpose.

This subset was dubbed the restricted tensor hierarchy  The three-form field strengths read, in turn,
J
0 _ gpo 2 _gp2
H(3>—dB , H(3>—dB ,
1 ~ ~ - s
H@b) = DB + Z(3A0 A dAy+3Ag A dA® — AV A dA| — A A dA)SP
1
+3gC'8% — 4gCab + EgCCC(S“b, (2.13)
where DB = dB® + 2ge““A° A BY) . Finally, the four-form field strengths are
1 1
I 1 _ — gl 2 ab __ ab | _ g0 (a pb)c 0 sab
H(4)—dC 3H(2)/\B , H(4)—DC +2H<2)/\(e B?¢ 4 BY5), (2.14)
with DC = dC® 4 2ge“(@A0 A CP),.
The field strengths (2.11)—(2.14) are subject to the Bianchi identities
dH(()z) = 0, dH(lz) = 0, dﬁ](z)o = gH<3)0, di{(z)] = —2gH(3)2,
3 . 1 . 1
ab __ 0 1 c ab ab
0 _ 2 _ 1 — ab —
dH(3> =0, dH(3) =0, dH(4) =0, dH(4) =0, (2.15)

b)c

where we have defined DH% = dH?sh) —2gel? AO A H )

®B)
[25] to the present case.

. These expressions particularize the Bianchi identities (14) of

All of the fields in the restricted tensor hierarchy carry d.o.f., although not independent ones. They are instead subject to a
duality hierarchy [34]. The magnetic two-form field strengths can be written as scalar-dependent combinations of the

electric gauge field strengths and their Hodge duals:

i 1
@07 X2(4x = 3)

[~e*(3X = 2) x HY,

+3e?X(X — 1)« H!

) @)

=2 H)) + 3’ X(2X — 1)H, |,

Hon = yax =3y

+37e* (2X — 1)HY, + 6yX2H, .

[Be?(X —1) % H?

—3e X%« H!

) @

L (2.16)

The three-form field strengths are dual to scalar-dependent combinations of derivatives of scalars:
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Hfy = —x [(Yz —2Y + 72 + &) <Da + % (¢D¢ - &)g)) +Y(¢DE - D) + 2aDY — 4aYD¢] ,

Hpy) =3¢ x [<Y 1) (Da +%(CDZ— ZDC)) +%<CDZ - ED@],

Hj) = [2Ze2¢ (Da + % (¢D¢ - Em)) +2DY —4YD¢ + 3(dg — e2<”)(d;()] ,

Hg) = % [(Y2 —2Y + 7% - &*) (Da + % (¢DE - ZD§)> + Y(¢DE - EDC) + 2aDY — 4aYD¢} ,

H =—x [2ze2¢ (Da + % (¢DE - ZDg)) +2DY —4YD¢p — 3(dep — ez"’;(d;()] )

(2.17)

Finally, the four-form field strengths correspond to the following scalar-dependent top forms on four-dimensional

spacetime:

1
Hy

= g2e?Y(3X 4+ 2Y = 3XY) + e "X (X + Y — XY)(Y? + Z2 + &*)]vol,,

H!] = —gX[eX*(Y> = 2Y + Z? + &%) + 67972/ (XY — X — Y)|voly,

)

HS = —gXZ[e73720X2(Y?* + Z% + €*) + 6% (XY — X — Y)]voly,

)

H3 = —gX[e9X?(Y? =2Y + Z%) + 6472 (XY = X - Y)(Y? + Z?)

4)
+ e X2 (Y2 4 22)]voll,.

The dualizations (2.16)—(2.18) particularize (16) of [25] to
the SU(3)-invariant case.

It can be checked that the scalar potential (2.7) can be
recovered from the dualized four-forms (2.18) via

g(6H!

@ TH + H3) = —2Vvol,.

) ) (2.19)
Likewise, the Bianchi identities (2.15) combined with the
dualization conditions (2.16)—(2.18) partially reproduce the
equations of motion that derive from the Lagrangian (2.3).
The list of identities needed to verify this includes the
action of the SL(2, R) Killing vector k[H) in (A15) on the
gauge kinetic matrix (2.10),

8(,)/\/00 —)(axNoo = 3N,
8(/)/\/01 —)(8)(/\/01 = Not

8(/,J\/'11 _Za;(Nll =-Ni.
(2.20)

and the following identities that can be checked to hold for
the dualized three-form field strengths (2.17),

H}) = HE) = —4hy, K [H1] < Dg’,
HTS = —V/2h,,(K[Ey) + K*[F3)) + Dg",
H(()3) = —2h,,k§ * Dq", Hé) = h, k" x Dq",
(2.21)

and four-form field strengths (2.18) and the potential (2.7),

(2.18)
[
39(2H!,) — HI}) — HY) = ~k“[H,],Vvol,.
ZQ(HZZ) - H?jf)) = —k"[H]0,Vvoly,
4V2gH S = —(K'[Ey] + k*[F])d,Vvoly,
kLd,V =0,  k'9,V=0.  (2.22)

In (2.21) and (2.22), Dg", u = 1, ..., 4, collectively denote
the hypermultiplet covariant derivatives (2.4); ky, and k,
are the hypermultiplet Killing vectors (2.6) along which
the gauging is turned on; k[H,| and k[H ] are other Killing
vectors [see (Al5), (A16)] on each factor of the scalar
manifold (2.2); and #h,, is the metric that can be
read off from the hypermultiplet kinetic terms in the
Lagrangian (2.3).

The last two identities in (2.22) reflect the invariance
of the potential (2.7) under the gauged hypermultiplet
isometries (2.6). These are the only symmetries of the
SU(3)-invariant potential (2.7). The symmetry is enhanced
in the subsectors that we now turn to discuss.

C. Some further subsectors

It is interesting to consider further subsectors contained
in the SU(3)-invariant sector in the notation that we are
using. A natural way to obtain those is to impose invariance
under a subgroup G of SO(8) that contains SU(3). The
relevant tensor hierarchy field strengths and their dual-
ization conditions are obtained by bringing the G-invariant
restrictions specified on a case-by-case basis below to

086021-5
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TABLE I. Number of bosonic tensor hierarchy fields in each subsector.
Sector Scalars Pseudoscalars E&M vectors Two-forms Three-forms
SU(3) 3 3 4 5 4
U(3) x U(1)? 1 1 4 1 2
SU(S) Uu(l), 3 1 4 4 4
U(3) x U(1), 1 3 4 2 2
SU(3) U(l), 1 1 4 1 2
SO(6), 3 0 2 4 4
SU4), 0 3 2 1 1
SU(4), 0 0 2 1 1
SO(7), 1 0 0 1 2
SO(7), 0 1 0 0 1
SO(7), 0 0 0 0 1
G, 1 1 0 1 2

(2.11)—(2.14) and (2.16)—(2.18). The field content in each
of these subsectors is summarized for convenience in
Table I.

An obvious yet still interesting sector is attained by
requiring an additional invariance under the U(1)? with
which SU(3) commutes inside SO(8). The resulting
SU(3) x U(1)*-invariant sector throws out the hypermul-
tiplet and sets identifications on the restricted tensor
hierarchy,2

SUB) x U2 gp=a == =0,
BO _ BZ B78 — O B77 — BSS
=0, (7 =c™. (2.23)

This sector thus reduces to N/ = 2 supergravity coupled to
a vector multiplet with a Fayet-Iliopoulos gauging, namely,
to the U(1)*-invariant sector (i.e., the gauged STU model)
with all three vector multiplets identified, along with the
relevant tensor hierarchy fields. Inserting (2.23) in (2.3), the
Lagrangian indeed reduces to e.g., (6.28), (6.29) of [28]
with the fields and coupling constants here and there
identified as

e(ﬂlhere — e_(ﬂhere ( 1 _|_ ezwhere/l/ﬁcre ) s Xtheree(/’lhere — ){heree(/}here s

_ 0 _
A(l)therc - Ahere’ A(l)there Ythere — ~Yhere-

(2.24)

— Al
- Ahere ’

The potential of the SU(3) x U(1)?-invariant sector, (2.7)
with (2.23), acquires a symmetry under the compact
generator, k[Ey| — k[F,] in the notation of (A15), of the
vector multiplet scalar manifold. The field redefinition in

Cunously, BY and B? are allowed by group theory to be
nonvanishing, but are set to B = B> = 0 by the duality relations
(2.17) evaluated with the scalar restrictions (2.23). Similar
comments apply to the condition B> =0 in (2.25) and B° =
—%Bz in (2.26).

the first line of (2.24) is a U(1) € SL(2, R) transformation
generated by this Killing vector, followed by a change of
sign of y.

One may also consider SU(3) x U(1)-invariant sec-
tors, with U(1) chosen to be one of the three triality-
inequivalent’ U(1),, U(1), or U(1), factors with which
SU(3) commutes inside SO(8). These invariant sectors are
attained by setting

SUB)xU(1),: ¢=¢(=0, B>=0, (2.25)
SU(3) x U(1),.: e—2f/’:1—%(§2+52), a=0,
BY — —%BZ, B =0, B = B%,
ct=0, C7=cC", (2.26)
SUB)xU(l),: p=a=¢(=C=0,
BO B2 B78 _ 0 B77 — 388,
=0, C7=CH, (2.27)

while retaining both vectors and their magnetic duals.
Only the SU(3) x U(1),-invariant subtruncation is super-
symmetric, and coincides with the SU(3) x U(1)? sector
discussed above—in other words, invariance under
U(1), cannot be enforced on top of SU(3) without also
imposing U(1), invariance, but not the other way around.
The other two subtruncations retain the would-be vector
multiplet and “half” a hypermultiplet: either the scalars ¢, a
in the SU(3) x U(1), sector, or the pseudoscalars ¢, ¢ in
the SU(3) x U(1),. sector, with ¢ a function of the

c

*Under triality, the representations 8,, 8,, 8. of SO(8) split
under the subgroups SO(7),, SO(7),, SO(7), as in e.g., (C.1)
of [38], with labels (v, +,—) there denoted (v,s,c) here. We
follow the spectrum conventions of e.g., [39] whereby, at the SO(8)
vacuum, the (graviton, gravitini, vectors, spinors, scalars, pseudo-
scalars) of N' = 8 supergravity lie in the (1, 8, 28, 56, 35,, 35,)
of SO(8).
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pseudoscalars in the latter case. The covariant derivatives
(2.4) simplify accordingly. In the SU(3) x U(1), sector, ¢,
a remain charged under A° and no field is charged under
A'. In the SU(3) x U(1), sector the covariant derivatives
reduce to

D¢ =di —g(A°+3AN,, D¢ =di + g(A° +3AY)¢,

(2.28)

showing that ¢, ¢ become a doublet charged only under the
combined gauge field A® + 3A!.

It is possible to further truncate the SU(3) x U(1),. sector
to a two-scalar model retaining (¢, {) along with B’ = B%8
and C!, C"7 = C® by imposing (2.26) together with y = 0,
£=¢ A"=A"=0and B° = —2B? = 0. The Lagrangian
is (2.3) with these identifications and the superpotential
reduces, from (2.8), to

w ge‘%‘/’(ez‘/’ — 3eXt20 ), (2.29)

1
= _2\/5
where ¢2? is shorthand for the expression in terms of { = ¢
that appears in (2.26). This is the model considered in [27].
The identifications

e~ Phere

=P ?here’ Z:}21ere = Ctzlere = Ztanhz)( there (230)
[the second equation implies e*#ne = cosh? yypee ON
(2.26)] indeed bring the superpotential (2.29) to (3.9) of
[27], up to normalization.

The SU(3) x U(1)-invariant sectors can be further
reduced by imposing a larger SO(6) ~ SU(4) symmetry.
The corresponding sectors are obtained by letting

SO(6),: (¢ =¢=x=0, A=A, =0, B2=0,
(2.31)
SU@): e =1-3 @+ D), a=0,
e =1—y2, Al =AY =4,

A, =34, BY = —%BZ, B =0,

C' =" =%, Cc’® =0, (2.32)
SU@4),: p=a=(=C=p=x=0,

Al =-A% A, =-34, B'= %BZ, B =0,

C' =7 =™, Cc’® =0. (2.33)

Again, only the SU(4)-invariant sector is supersymmetric:
it truncates out the vector multiplet of the SU(3) x U(1),
sector, leading to minimal N =2 gauged supergravity.

Setting all scalars to zero as in (2.33), further setting
consistently BY = %BZ = 0, and rescaling for convenience
the metric and the graviphoton as

1.
g Al =-A'= ZA, (2.34)

Eq. (2.3) reduces to the bosonic Lagrangian of pure N' = 2
gauged supergravity,

N 1_ _ _
L= RV014 — EF A X F+692V014, (235)

with F = dA. For later reference, we note that the only
tensor hierarchy field strengths that are active in the SU(4),
sector are

| o 1. 1 1.
Hpy=-Hp=7F. Hpeo=-3Hop = *F,
3
H{, = H[) = H}}) = g9vols, (2.36)

where the bars refer to the rescaled quantities (2.34). The
other two truncations (2.31), (2.32) are manifestly non-
supersymmetric. Imposing invariance under SO(6),, selects
the proper scalars ¢, ¢, a along with the gauge field A°,
while invariance under SU(4), retains the pseudoscalars y,
e along with A + A'. In the latter case, the scalars
become functions of the pseudoscalars as indicated
in (2.32).

It was noted in [4] that the SU(4).-invariant sector
coincides with a subtruncation, considered in [40], of the
D =4 N =2 gauged supergravity obtained upon consis-
tent truncation of M-theory on any (skew-whiffed) Sasaki-
Einstein seven-manifold [41]. Indeed, using (2.32) and
further identifying the pseudoscalars and vectors here and
in [40] as

Xhere = hther&w ghere = —\/§Im)( there» Zhere = _\/gRe)( there»
Ao = Abere = _Altherw Ghere = _(2L)E1Lre (237)

here here —

[which further imply @pere = —2Uipere = Vinere a0d @pere =
—3Uheres With @, ¢ here subject to (2.32) and U, V there
subject to their (4.1)], the Lagrangian (2.3) here reproduces
(4.3) of [40]. Neither the SO(6), nor the SU(4), sectors
admit a further truncation to the Einstein-Maxwell, bosonic
Lagrangian (2.35) of minimal N = 2 supergravity.

It is possible to enlarge the symmetry to the three
different SO(7) subgroups of SO(8) by further imposing
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SO(7),: {=C=x=0, @=¢.a=0,
A=Al =A4A,=A, =0,
BO — BZ — B78 =0 BSS — _7B77
cl=c", (M=o, (2.38)
1 -
SO(7),: e =1 —Z(Cz + ) =1—-y*=e2,
a=0, AC=A'=A,=A, =0,
BO — B2 =0, Bab =0,
C'=C" =" C =0, (2.39)
SON);:p=a=(=C=p=x=0, A"=-Al=0,
30—32: , Bab_o,
C'=(C" =%, C®=0 (2.40)
The SO(7), truncation gives minimal N =1 gauged

supergravity while the SO(7), and the SO(7), sectors
are nonsupersymmetric. They respectively retain one dila-
ton (¢ = ¢) and one axion [y, together with the identi-
fications (2.39)], along with the relevant tensors in the
hierarchy.

All three SO(7) sectors are contained within the
G,-invariant sector. This corresponds to N =1 super-
gravity coupled to a chiral multiplet with a scalar manifold
SL(2)/SO(2) which is diagonally embedded in (2.2) via

G2:¢:(p’ é‘:—ZZ’ a:CZOv
A0:A1:A0:A1:0,
30232 :B78 =0 BSS :—7B77

c'=C", C® =0. (2.41)
The Lagrangian in this sector is (2.3) with the identifica-
tions (2.41). It can be cast in canonical AV = 1 form, in the
conventions of e.g., Sec. 4.2 of [31], in terms of the
following Kihler potential and holomorphic superpotential
K = —Tlog(—i(t - 1)), W=29(78 +17), (2.42)
with t = —y +ie”®. On the identifications (2.41) that
define the G,-invariant sector, the real superpotential
(2.8) becomes related to (2.42) via W? = KWW,

All of the above further truncations arise from symmetry
principles, by retaining the fields that are neutral under the
relevant invariance groups. For this reason, the above
truncations can be directly implemented at the level of
the Lagrangian (2.3). In particular, a consistent truncation
to minimal N = 2 supergravity is obtained by retaining
singlets under SU(4),, as noted above. We conclude this
section by noting an alternate truncation of the SU(3) sector
to minimal N = 2 supergravity that is inequivalent to the

SU(4),-invariant truncation. In fact, this alternative mini-
mal truncation is not driven by symmetry principles in any
obvious way, so we have verified its consistency at the level
of the field equations. First, freeze the scalars to their
vacuum expectation values (vevs) at the SU(3) x U(1),-
invariant vacuum (see Sec. II D),

1 - 2
=3 x=0 HW=1-72(C+)=3. a=0.

3
(2.43)

Second, identify the electric and magnetic vectors as

63

turn off the two-form potentials, and retain an auxiliary
three-form potential as

1 =

- - 1~
AO = —3A1 = EA, AO = —§A1 (244)

2

BO — —§B2 — Bab — 0’ C78 — 0’ Cl — C77 — C88.

(2.45)

Finally, rescale the metric for convenience:

1
= =0 2.46
u 3\/§gﬂ ( )

We have verified at the level of the bosonic field equations,
including Einstein, that these identifications define a con-
sistent truncation of the theory (2.3) to minimal N =2
gauged supergravity (2.35).

The identification of the electric vectors in (2.44) retains
the SU(3) x U(1)_-invariant vector [see (A17) with (A12)]
that remains massless [see (2.28)] at the N/ = 2 vacuum
(2.43). For future reference, it is also interesting to keep
track of the field strengths for this truncation. On (2.44),
(2.45), the two-form potential contributions to the magnetic
vector two-form field strengths (2.12) drop out, and the
vector field strengths become

1
6v3

1
6v3
(2.47)

i

| R . _
HO:—3HIE§F, Hy=--H, %F,

O —

with F = dA. The relations here for the magnetic field
strengths are compatible with the vector duality relations
(2.16) evaluated on the scalar vevs (2.43), and the last
equality for the magnetic graviphoton field strength F is
fixed by F = 9L/OF, with £ as in (2.35). Moving on to the
three-form field strengths, we find that all of them are zero
by bringing (2.44), (2.45) to their definitions (2.13) in terms
of potentials. This was expected, as the three-form field
strengths are dual to combinations (2.17) of (Hodge duals
of) derivatives of scalars, and these have been frozen to
their vevs (2.43). Finally, for the four-form field strengths
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TABLEII.

All critical points of D = 4 N = 8 supergravity with an electric SO(8) gauging with at least SU(3) invariance, reproducing

the results of [2] in our parametrization. For each point we give the residual supersymmetry A" and bosonic symmetry G, within the full
N = 8 theory, their location in the parametrization that we are using, the cosmological constant V|, and the scalar mass spectrum within
the SU(3)-invariant sector. The masses are given in units of the AdS radius, L?> = —6/V,,. We have abbreviated U(3), = SU(3) x U(1),..

N Gy e’ e? a ¢ ¢ g2V, L>M?

8 SO(8) 0 1 1 0 0 0 24 (-2,-2,-2,-2,-2,-2)
2 UE3). 0 V3 \/g 0 \/§ \/% -18V3 (3+117.2.2,2,0)
LG @M @M 0 0 A B gy Gt g )
0 SO(7), (1) 512/4 512/4 0 0 02 8 % 53/4 ( ’_i_%_g’_%o)
0 SO(7). 7 7 7 0 0 -5 —257\@ (6,—%—-5,-%,-5.,0)
0 SU®4), 0 1 % 0 1 1 -32 (6.6-2.-2.0.0)

we obtain, from (2.14) with (2.45), HZE) =0, H!

4)
HZZ) = H?% = dC', expressions which are again compat-

ible with the dualization conditions (2.18). Rescaling the
volume form using (2.46), we find

:H77:H88: 1

Hl
4) @9 V3

b (2.48)

gm4 .

D. Vacuum structure

The list of vacua of D = 4 N = 8 supergravity with an
electric SO(8) gauging [1] that preserve at least a subgroup
SU(3) of SO(8) was elucidated in [2]. All of them are AdS.
These vacua arise as extrema of the scalar potential (2.7), in
our conventions, and for convenience we have summarized
them in Table II. The table includes the residual super-
symmetry N and bosonic symmetry G, for each vacuum,
as well as its location in the scalar space (2.2) in the
parametrization that we are using. The corresponding
cosmological constant, given by (2.7), and the scalar mass
spectrum within the SU(3)-invariant sector is also given.
See [4] for the bosonic spectra within the full AV =8
supergravity. All three supersymmetric points are also
extrema of the superpotential (2.8). On the SO(8) and
the G, points, the F-terms that derive from the holomorphic
superpotential (2.42) also vanish.

It was argued in [25] that some combinations of the four-
form field strengths of the duality hierarchy ought to vanish
at critical points of the scalar potential, thus yielding
necessary conditions for critical points. In our SU(3)-
invariant case, these conditions read

8H|, — (6H |y + 8.4H{3)) =0,

— (6H!, + 8.4H )5 = 0.

SH{! (2.49)

)
Using the dualization conditions (2.18), it can be checked
that the relations (2.49) do indeed hold at the critical points
summarized in Table II.

III. D=11 UPLIFT

We now switch gears and present the D = 11 embedding
of the SU(3)-invariant sector considered in the previous
section. We will use the consistent S7 uplifting formulas
given in [25]. It is a tedious, but otherwise mechanical,
exercise to particularize the general N' = 8 uplifting for-
mulas in that reference to the SU(3)-invariant sector at
hand. Section III A contains the D = 11 uplift of the entire
SU(3)-invariant sector while Sec. III B particularizes to
some relevant subsectors and makes contact with previous
literature. Section III C contains a new consistent truncation
of D = 11 supergravity to minimal D = 4 N = 2 gauged
supergravity.

A. Uplift of the SU(3) sector

We first find it useful to present the result in terms of R3
“embedding coordinates” p*, A=1,...,8, in the 8, of
SO(8), that define the S7 as the locus

Sapiu® =1 (3.1)
in R®. Under SU(3), the 8, of SO(8) breaks down as
8, >3+3+1+1. In maintaining an explicitly real
notation, it is thus convenient to split R® = R® x R2,
and the indices as A = (i,a), with i=1,...,6 and
a =7, 8 respectively labeling the first and second factors.
The D = 11 uplift of the SU(3)-invariant sector utilizes the
ijs J Sf) (real) and ngz (complex) that define the
natural Calabi-Yau structure of R®. See (A6) for our
conventions. Inside RS, these tensors are respectively
invariant under SO(6), x SO(2), SU(3) x U(1)?> and
SU(3) x U(1),, where SO(2) rotates the R? factor in
R® = R® x R, Indices on R® and R? are raised and
lowered with §;; and 5, respectively.

Only the D =4 metric, the scalars, and the electric
gauge fields in the SU(3)-invariant restricted duality

tensors &
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hierarchy (2.1) enter the D = 11 metric d$%,. In order to
express the result, it is useful to introduce a symmetric
matrix h,, of D = 4 scalars and its inverse as*

e VA
h= :
< 4 e‘z‘/’(Yz—l—Zz))

R ( (Y2 + 22) —z>

, Iy (3.2)

and the following combination of D =4 scalars and
constrained coordinates y', u®,

Ay = *Ypp' + Xhopuu”. (3.3)

With these definitions, the embedding into the D = 11
metric reads

A2, = e X'3AY3[ds2 + g2 AT (D Dyt
+ 20X 1Y (h7Y) ,, DuDub)
+ g 20XT Y (Y — X)AP(YI D W Dy

+ hape” D)), (3.4)

where €’ is the totally antisymmetric symbol with two
indices, and the covariant derivatives are defined as

Dyt = du' — gA'J iy, Dp = du® — gA%ty

(3.5)

For generic values of the D = 4 scalars, the metric (3.4)
enjoys an SU(3) x U(1), isometry.

Moving on to the D = 11 three-form A( 3y, allthe D =4
fields in the tensor hierarchy (2.1), except for the metric,
enter its expression. A long calculation yields

A

Fyy = H( 4) Hilt! +H( yHakb —
1

1
+ 59_1 [H?gb) + H(()a)eab] N paDpy + 69_2

1 o
97N [y XY D A D

1
lzg_l [H(3)aa5ij + 4H2

+ 2 (0,ReQl) — v, ImQU) ) Dy A Dy A HY,

3)

~

. 1 ~
A = Clupl + Coppu® — Eg_l (B, + 24" A Ay)6y;

6 . .
+4BI) A Dy

1 -
+ Eg_l [Bab - AO AN A05ab + BOGab] VAN ﬂaD,ub

1 - ‘ .
+ g g7Ar A JODui A D

1 -
+3 G 2Ag A €Dt A Dub + A, (3.6)

where A is a three-form on the internal S7 that depends on
the D = 4 scalars:

1 o
A=—g A7 et YIS U Dp A€y Du A Dy

1 L
—I—E)(ez"’(YJl(-jﬁ-),u’Du/ + hape®uDu,) A J](S)D/lk A Dyl

1

—Ze ?(V, Rte(j,Z + VZIle( ,Z) AU Dl A Du*

1 .
+ 15X (0, ReQS) + v,ImQL%)) Dy A Dy A Dyt

(3.7)
Here, we have defined the shorthand functions
vy = sl +pse P ((Z + L),
vy = i — pge™ (LY = £2), (3.8)
and one-forms
Vi = (Y - L2)Du’ + XDyt
= ((Z +Y)Du’ — e ¢Dyb. (3.9)

The field strength four-form # @) = dA@) is computed to be

I A uiDp

T 6 i i 1 —2 7 a
Hy A Jgj)D/" ADW +5g *H o A €apDu® A Dp®

1 . .
- Zg_zAfl [2)(62"’X_1Y/4k/,tk(XJl(~f)D/¢’ A Dyl + e*¢,,Du® A Dub)

— 4y Dyt A (YT WD + heopu Dyt

+ esz’x(szlejk Ay

— UIII’I]Q( ) iD//tj A D/lk} A HEZ) + dAscalarS'

(3.10)

“This matrix h,, should not be confused with the metric %,, on the hypermultiplet scalar manifold.
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In this expression, H E 4 H “f , etc., turn out to reproduce the
D = 4 four-, three- and magnetic two-form field strengths
(2.12)—(2.13) of the restricted tensor hierarchy (2.1). This
provides a D = 11 crosscheck of the D = 4 calculation of
Sec. II B. The terms that contain the electric two-form field
strengths H' (()2), H (12), come from the vector contributions in

the covariant derivatives Dy’ and Du® in (3.7). Finally,
dA.q1ars cONtains two types of terms. The first type includes
contributions of covariant derivatives of D = 4 scalars,
wedged with three-forms on the internal S’. The second
type includes internal four-forms with coefficients that
depend on the D =4 scalars algebraically only. The

presence in A(3) of J 5;’) , Ql(;’,z and h,;, breaks the symmetry
of the full D = 11 configuration to SU(3), in agreement
with the symmetry of the D = 4 model.

The above expressions give the complete embedding
of the SU(3)-invariant, restricted tensor hierarchy (2.1) into
D = 11 supergravity. As such, these expressions contain
redundant D =4 d.o.f. As argued in [25], these redun-
dancies can be eliminated at the level of the D = 11 four-
form field strength by making use of the D =4 duality
relations. Indeed, regarding the tensor field strengths in
(3.10) as shorthand for the dualization conditions (2.16)—
(2.18), Egs. (3.4), (3.10) then express the embedding into
D = 11 supergravity exclusively in terms of the dynami-
cally independent (metric, electric-vector and scalar) d.o.f.
that enter the D = 4 Lagrangian (2.3).

In particular, the Freund-Rubin term [the first two
contributions on the right-handside of (3.10)], can be
simplified by using the identities (2.19), (2.22) that relate
the dualized four-form field strengths (2.18) to the scalar
potential (2.3) and its derivatives:
|

Hiypip' + H papty

= o Vg = o]0,V
() = (S PRH D,V

+ V2u B (k" [Ey] + k[F5])D, V]voly. (3.11)
At a critical point, the terms in derivatives of the potential
drop out and the Freund-Rubin term becomes proportional
to the AdS, cosmological constant, in agreement with the
general A/ = 8 discussion of [25]. See also [24] for a
related discussion. All the Freund-Rubin terms that we
write for the truncations to specific subsectors in Sec. III B
and for the concrete AdS, solutions in Sec. IV agree with
the generic expression (3.11).

B. Uplift of some further subsectors

The uplifting formulas of Sec. III A simplify by impos-
ing a symmetry enlargement, carried over to D = 11 by
restricting the D =4 fields as in Sec. II C. Introducing
intrinsic S7 angles by solving the constraint (3.1) is also
facilitated in further subsectors, as some intrinsic angles are
better suited than others to make the relevant symmetry
apparent in D = 11. See Appendix B for some relevant
geometric structures on S”.

1. SU(3) x U(1)>?-invariant sector

For the SU(3) x U(1)*-invariant sector (2.23), the
embedding formulas for the D = 11 metric, (3.4), and
three-form, (3.6), (3.7), become

st = e X3 ds? + g2 X2 AT do + X' B AT cos? ads? (CP?)

+ 2 X 23N A sin? acos? a(Dr_ + 6)>

+ X2BAAT (Dy_ + AyA7! cos? a(De_ + 0))?],

(3.12)

~ 1 ~ ~
Ag) = C cos’a+ Cyy sinza—l—ﬁg" sin2a(4B7; + A' A A} —=3A° A Ap) A da

1 - -
- gg_z sin2a(A; + 34y) A da A Dy _

1 -
+ gg‘z cosaA; A [cosaJ ) —sinada A (D7_ + o))

1
+ 3 g 3ye** X~ sin2ada A Dy_ A (D1_+ o)

— g3 ye*? A7  cos* a(Dr_ + o) A JW

— g73ye*? A7! cos® acos 2aDy_ A JW.

(3.13)

In these expressions, a, 7_, w_ are angles on S’ whose relation to the constrained coordinates y* of R® is given

in Appendix B. The covariant derivatives for the last two are
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Dy_ = dy_ — gA°, Dr_ =dr_ + g(A° + A"). (3.14)

The line element ds*(CP?) and the two-form J (4) respectively correspond to the Fubini-Study metric, normalized so that its
Ricci tensor is six times the metric, and the Kihler form, with potential one-form o such that do = 2J*, on the complex
projective plane. Finally, A;, A, and Aj are the following functions of the S7 angle  and the SU(3) x U(1)?-invariant,

D = 4 vector multiplet scalars

A, = Xsin’a + e*?cos’a,

A, = e*?[sin*a + (% + 2x%e” + 72 X?)sin*acos’a + cos*al,

Az = [X? + y2e*]sin’a + e**cos’a.

(3.15)

The function A; here is simply the particularization of (3.3) to the present case.
The four-form field strength corresponding to (3.13) can be computed to be

Fl4) = 2g[2(e’cos’a + e~ Xsin’a) + Xe~?]vol, + g~' sin2a(xdp — ey * dy) A da

1 - ~ -
- gg‘z[sin 2a(H| +3Hy) A da A Dy_ —2H, A (cos’aJ® —sinacosada A (Dz_ + 06))]

1
+ 59_2)(624”[X‘1 sin2ada A (H° A (Dz_+0) + (H° + H') A Dy_)

—2A7 cos*a(H® + H') A J® 2A7!cos’acos 2aH A J#]

1
+ g‘3{§ e X2 sin2a[2ydg — (X —2)dy] A da A Dy_ A (Dz_ + 0)

— X AT2cos*a2ysin’adg + (e*’cos’a — (X — 2)sin’a)dy] A (Dz_+6) A JW
— ¥ A7%cos’a cos 2a[2ysin*adg + (e*#cos’a — (X — 2)sin’a)dy] A Dy_ A J©&
+ ye?* X~ sin2ada A Dy_ A JW —2ye?? AT cos*aJ @ A JE)

+2e*y (A, + X)A7? sinacos’ada A (Dr_ + o) A JW

1
+5 Xy AT sin 2a[4e*cos*a + X ((sin 2a)? + 2 cos 2a)|da A Dy_ A J©&) }

Here, we have explicitly made use of the dualization
conditions (2.17), (2.18) for the three- and four-form
field strengths, particularized to SU(3) x U(1)?-invariant
scalars via (2.23). The magnetic two-form field strengths
H,, A =0, 1, stand for the dualized expressions (2.16).

As noted in Sec. IIC, the SU(3) x U(1)?-invariant
sector coincides with the gauged STU model with all
three vector multiplets identified. This was embedded in
D = 11 supergravity in [28] (see also [42]), along with
the entire STU model. Our uplifting formulas (3.12),
(3.16), obtained instead from the D = 11 embedding of
the SU(3) sector, are in perfect agreement with (6.22)—
(6.24) of [28]. This can be seen by using the D =4
redefinitions (2.24), which also imply Hypee = Ripere and
H pere = —Ripere, along with the S7 angle and one-form
identifications

T
Eihere = Ohere T §¢lthere = ¥ _here>

(3.17)

Wihere = ¥ —here T T—here> B there = Ohere>

(3.16)

[
or, in terms of the w, 7 defined in Eq. (B1) of
Appendix B, ¢1there = Y, Yihere — 7.

2. SU(4)-invariant sectors

While the deformations inflicted on the internal S7 by
the SU(3)-invariant D =4 fields are inhomogeneous,
enlarging the symmetry to SU(4), and SU(4), results in
the deformations becoming homogeneous.

For the SU(4).-invariant D =4 fields (2.32), the
D = 11 embedding formulas (3.4), (3.6), (3.7) simplify to

d§}) = et0ds} + g2 eds*(CPY)

+ 20yl + gAY, (3.18)
~ 1 ~
Agy = C' 4297 B A (0] + 94) + g72A0 A IV
1
-9 [)(Jf) A @) + gA) —ECReﬂf)
! me? 1
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where ¢, ¢ stand for the expressions in terms of y, £,  given in (2.32). Here, ds*(CP3) is the Fubini-Study metric on cp3

7

normalized so that the Ricci tensor is eight times the metric, and ng), J EZ), Q. are the homogeneous Sasaki-Einstein forms
on S7 defined in Appendix B. The four-form field strength corresponding to (3.19) reads

A

1, 1 . .
Fla) = —6get™30 {—1 AR (S Cz)] voly 597 ¢" « (EDZ = D7) A (0! + gA)

-2 2
g (1—)()[ b } (7)
+———L | 2¢F — /1 - F| A
1 4 3y? d a I+

- g_3

207350V AT =267 (EReQV) — cimQ) A (1) + 9A),

with, again, ¢,¢ written in terms of y,l,C as in
(2.32). As noted in Sec. IIC following [4], the SU(4),-
invariant sector of SO(8) supergravity coincides with
the model considered in [40]. Using the redefinitions
(2.37) and straightforwardly identifying our Sasaki-
Einstein structure with theirs, our uplifting formu-
las (3.18), (3.20) do indeed match (2.2), (2.3) of [40]
when the identifications of their equation (4.1) are taken
into account.

The SU(4), sector coincides with minimal N =2
gauged supergravity, (2.35). The D = 11 uplift of this
sector can be achieved by bringing the restrictions (2.33)
to the general formulas of Sec. III A or, equivalently,
by further setting ¢ =y =0, A' = -A° =14, and A, =
—3A, in the uplifting formulas of Sec. III B 1. Using the
rescaled fields (2.34) and the D =4 field strengths
(2.36), and combining the resulting expressions in terms
of the Sasaki-Einstein forms J), 57) specified in

|

i .
dy A JT A @7 + gA) - DA ReQ”) — SDEA ImQSZ)]

(3.20)

Appendix B, the D = 11 uplift of the SU(4), sector
can be written as

1 L
dsty = 7 ds} + g(ds*(CP2) + (11(_7) + ZgA)2>’

. 3 1 ;
F4y == gvol, — Zg_zi FAJO. (3.21)

8
This coincides with the consistent truncation of D = 11
supergravity down to minimal N =2 gauged super-
gravity obtained in [43], with straightforward identifica-
tions. An alternate D = 11 embedding of minimal N = 2
supergravity will be given in Sec. III C.

3. G,-invariant sector

The D = 11 embedding formulas of Sec. III A particu-
larized to the G,-invariant sector (2.41) become, in the
relevant set of intrinsic coordinates described in Appendix B,

d§?, = e X'BA3ds? + g2 X' BATP (20 X3 dp? + sin?fds>(SP)),
Ag) = Cysin’B + Cggeos?f + 4g7" sin fcos pB; A df

+ g3y AT sin?Ble?? XA\ T A dp + X2 sin ffcos fReQ + > Xsin?flme2),

(3.22)

where f3 is an angle on S7, ds?(S°) is the round metric on S® normalized so that the Ricci tensor equals five times the metric,
J and Q are the homogeneous nearly Kihler forms on S® and the function A, is, from (3.3) with (B22),

Ay = X(e 22 X%cos? B + e**sin’p).

The associated four-form field strength reads

(3.23)

Flay = —geX?[[(X = 2)X? + € (7X — 12)]sin’f + e 47 X?[X? + 7' (X — 2)]cos?f]vol,
—d4g7"sinBcos f(xdp — >y x dy) A dB + g 322X 2sin’B(2ydp — (X —2)dy) A T A dp
+ 27y XATsin®fcos (A — 2e** Xsin?B)dp A ReQ + 473y X3 AT2sin* feos? fdp A TmQ2

+ g3 X2 A2 sin’ B cos Ble?? (3X — 2)sinf —

e 2 X%(X — 2)cos?fldy A ReQ

+ g3 X2 AT sin? Ble??sin? B — X (3X — 4)cos*fldy A TmQ
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+ g3 e 2y X AT sin?Ble? (3e* + X2)sin’B + X% (5e* — X?)cos’ f|ReR A df
= 2973 X2 AT sin B cos B(e* + X?)sinB + 2X%cos?S|Im2 A dp

— 29732y XA sin* BT A T

In order to obtain this expression, we have again made
explicit use of the dualization conditions (2.17), (2.18) for
the three- and four-form field strengths, particularized to
the G,-invariant sector (2.41). The D = 11 uplift of the
various SO(7)-invariant sectors can be straightforwardly
obtained by bringing (2.38)-(2.40) to (3.22)—(3.24). See
[24] for a previous D = 11 uplift of the G,-invariant sector.

C. Minimal A =2 gauged supergravity
from D=11

It was noted in Sec. II C that the SU(4), sector coincides
with minimal A/ = 2 gauged supergravity. In Sec. III B 2,
the corresponding D = 11 uplift was obtained and shown
to coincide with the consistent embedding of [43]. It was
also discussed at the end of Sec. II C that the SU(3) sector
admits an alternative truncation to minimal A/ = 2 super-
gravity, by fixing the scalars to their vevs (2.43) at the
N =2, SU(3) x U(1),-invariant point and selecting the
N =2 graviphoton as in (2.44). Bringing these D =4
identifications to the general SU(3)-invariant consistent
uplifting formulas of Sec. III A, we obtain a new embed-
ding of pure N = 2 gauged supergravity into D = 11.

We find it convenient to present the result in local
intrinsic 7 coordinates v/, 7/, @, and in terms of a local
five-dimensional Sasaki-Einstein structure #/, J' and €.
The former are locally related to the global coordinates v,
7, a, defined in (B1), that are adapted to the topological
|

1
ds?, = 3 2723(1 + 2sin’a)?/3 [dfi + g7 {2‘1"’2 +

(3.24)

description of S7 as the join of S and S!, with a here
identified with that in (B1) and

(3.25)

The local five-dimensional Sasaki-Einstein structure forms
7', J' and ' are related to their globally defined counter-
parts ), J©) and QO) discussed in Appendix B and the
global coordinate y via

W=dil +o=n" + %dl//, J=J0, Q= Qb
(3.26)

The real two-form J' coincides with the Kihler form on
CP?, 5 is a one-form on the latter such that do = 2J’ [given
e.g., by (B11)] and the constant phase ¢’ in the complex
two-form €' has been chosen for convenience, in order to
simplify the resulting expressions. The primed forms
defined in (3.26) satisfy the Sasaki-Einstein conditions
(B5) and (B6).

Bringing all these definitions, along with the D =4
restrictions (2.43)—(2.46), to the uplifting formulas (3.4),
(3.6), (3.7), we find a new consistent embedding of
minimal D =4 AN =2 gauged supergravity (2.35) into
the D = 11 metric and three-form:

6cosa

"~ ds*(CP?
1 + 2sin%a s )

18sin’acos’a 1 + 8sin*a 3cosla
Dy ———— )|, 3.27
1+ 8sin*a T (1 +2sin2a)2( v 1+851n4an) ” (3.27)
~ 1 ~
Ay =C'———¢g%2cosaA A [cosaJ —sinada A 1
3) ek [ il
1 sin @ cos a
— g 3coslalda ATmQ + ————" " 2Dy’ — 317) A ReQ|. 3.28
T 59 cos’a|da A Tm, T 2sine 2PV —31) A Re (3.28)

These expressions depend explicitly on the dynamical D = 4 metric d53 and graviphoton A. The former only features in
ds$?, but not in 14(3). The latter appears both in d§7, and in 4(3), but only through the gauge covariant derivative

1 -
Dy' =dy' + EgA. (3.29)

This singles out y’ as the angle on the local N = 2 “Reeb” direction and thus justifies the primed coordinates (3.25) that we
chose to present the result. Two other D = 4 fields enter the consistent embedding through the three-form (3.28): the

magnetic dual, A, of the D = 4 graviphoton, and the auxiliary three-form potential C'.
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The four-form field strength corresponding to A
Sasaki-Einstein conditions (B5), (B6). We find

—_vol, + %=

) in (3.27) can be computed with the help of (the primed version of) the

£ g~ [ cos’a(7 - 10cos 2a + cos 4a)
(1 + 2sin’a)?

EREVA

6costa
(1 + 2sin’a)?

g2 {2 sin acos

+2\/_ 1 + 2sin’a

Sa -

Again, we have made use of appropriate dualization
conditions, (2.47), (2.48) in this case, to express the result
for the embedding (3.30) into the four-form only in terms of
the independent D = 4 d.o.f. (the metric d5j, the grav-
iphoton field strength F = dA and its Hodge dual), that
appear in the Lagrangian (2.35).

The truncation (3.27), (3.30) of D = 11 supergravity
down to pure D = 4 N = 2 gauged supergravity (2.35) is
consistent by construction. As a check on our formalism,
we have explicitly verified consistency at the level of the
Bianchi identities and equations of motion for the D = 11
four-form: its field equations are indeed satisfied, provided
the D =4 Bianchi, dF =0, and equation of motion,
d<F = 0, of the D = 4 graviphoton are imposed. Some
details can be found in Appendix C. Moreover, these local
uplifting formulas are still valid if, more generally, %', J', &'
are taken to be the defining forms of any Sasaki-Einstein
five-manifold, and ds*(CP?) is replaced with the metric on
the corresponding local Kihler-Einstein base.

IV. RECOVERING D =11 AdS, SOLUTIONS

Setting the scalars to the vevs at each critical point with
at least SU(3) invariance that were recorded in Table II, and
turning off the relevant tensor hierarchy fields, the con-
sistent embedding formulas of Sec. III produce AdS,
solutions of D = 11 supergravity. All these D = 11 sol-
utions are known, so our presentation must necessarily be
brief. Our main motivation to work out these solutions is
rather to test the consistency of the uplifting formulas of
[25] [and their particularization to an explicit, SU(3)-
invariant, subsector]. Except for the more involved D = 11
Einstein equation, we have indeed verified that the
metrics and four-forms that we write below do indeed

|

A ) 25 1/6 2/3 5 N 1 )
dsi; =g T (2 4 cos2p)*/: ﬂds (AdS4)+§dﬁ +

V29 3sin’p

da A’ A ReQ +

F AReQ +cosax F A (cosa]' —sinada A1) |.

da A Dy’ A ReQ

6 sin acos’a

—————— Dy’ A ATmQ/
1+ 2sinZq 0 AT ]

(3.30)

|
solve the eleven-dimensional field equations. Please refer
to Appendix D for details.

We present the solutions in the appropriate intrinsic S’
angles defined in Appendix B. These have already been
employed in Sec. III B to write the consistent D = 11
embedding of various further subsectors. Also, AdS, is
always taken to be unit radius (so that the Ricci tensor
equals —3 times the metric). As a consequence, the metric
ds*(AdS,) that appears in the expressions below is related
to the metric ds? that appears in the D = 4 Lagrangian (2.3)
and D = 11 embedding (3.4) by a rescaling

dsi = -6V ds*(AdS,), (4.1)
where V| is the cosmological constant at each critical point
given in Table II. The Freund-Rubin term is rescaled
accordingly with respect to (3.11).

Let us first discuss the supersymmetric solutions. The
N =38, SO(8) point uplifts to the Freund-Rubin solution
[44] for which the internal four-form vanishes and the
internal metric is the round, Einstein metric ds*(S7), given
in e.g., (B3) or (B17). The N/ = 2, SU(3) x U(1), critical
point uplifts to the D = 11 CPW solution [27]. A local
form of this solution can be obtained from the expressions
in Sec. III C by turning off the D = 4 graviphoton, A = 0,
F = 0, and fixing the metric to d57 = g~2ds*(AdS,). As a
check, we have verified that the solution in R® embedding
coordinates y?, directly obtained from the formulas in
Sec. III A, perfectly agrees with the CPW solution as given
in [45]. Finally, the N' =1 G,-invariant solution can be
written, using the results and the notation of Sec. III B 3,
in terms of the homogeneous nearly Kéhler structure of the
S inside S7 as

sin?f3

d2 6 ,
7T cos2p )

N 1 /25\5/4
F(4) = g <E> g_3V01(AdS4) +

with internal three-form potential

31/4(2 + cos 2)?
—sinfcos B(5 + cos 28)ImQ2 A df — sin?(2 + cos28) T A T,

[V/3sin2fReR A df

(4.2)
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A sin?f
33/4/29° (2 + cos 23)

3 sin f cos fRe2 + /3sin®fImR + (2 4 cos28)T A dp).

(4.3)

This solution was first obtained by de Wit, Nicolai and Warner [15].
Turning to the nonsupersymmetric solutions, the SO(7) critical points can again be uplifted using the results and

conventions of Sec. Il B 3. The SO(7)
conventions, we get

v

solution uplifts to a solution first written by de Wit and Nicolai [46]. In our

R e 3 5sin’f
ds?, = 573/%g72(3 +2cos 23)*/3 L—‘dsz(Ad&;) +dp + mdsZ(sﬁ) ,

. 9
F(4> = g . 5_3/49_3V01(Ad54), (44)

while the SO(7),. point uplifts to Englert’s solution [47]
A\13T3

ds}, =g <§> Edsz(AdSU + ds2(S7)} ,

) 18 4sin’ [ 1

Fy = ——==vVol(AdS,) + —=— |[ReQ2 A df —cotpImQ N df — =T N T |, 4.5

with internal three-form

_ sin?p
2V54°

In the SO(7), solution, ds*(S7) is, as always, the round,
SO(8)-invariant metric. It should be understood in
this context as the sine-cone form (B23). Since
SO(7), D SU(4),, this solution can also be reobtained
from the SU(4) -invariant truncation of Sec. III B2 and
written in terms of the homogeneous Sasaki-Einstein
structure on 7. The D = 11 metric is the same appearing
in (4.5) with ds?(S”) now understood as the Hopf fibration
(B17), and the four-form is given by

A [2sin’AImQ + 27 A dff + sin2pReQ]. (4.6)

. 18
F .,y = ———vol(AdS
W 2554 (AdS4)
2 M) o D _ 4D )
+ 2ReQ)’ A -JV AT, 4.7
NS [ + Ay + vl (4.7)
with internal three-form
L oo 0 )

A=-— J. A +ImQ’|. 4.8
NG Iy Amy + ] (4.8)

The metric in (4.5) and four-form (4.7) for the SO(7).
solution coincide with (3.11) of [40] upon using
the redefinitions (2.37), and making an appropriate
choice for the phase of the complex scalar yyoe =
— % (Zhere + ihere)> Which is unfixed at the critical point.
We obtain perfect agreement with [40] upon shifting that
phase by .

|

Finally, the SU(4).-invariant point gives rise to the
Pope-Warner solution [48] in eleven dimensions. Using
the results of Sec. III B 2, this solution can also be written
in terms of the homogeneous Sasaki-Einstein structure
on §7 as

3
2 ds?(AdS,) + ds?(CPY) + 20 @ 47|,

1
2
dsy, 22 (8

N

9 2
Fuay= @vol(AdSO -5 ReQ@!” Ayl —ImQ" A",
(4.9)

where the internal three-form potential is now

1
A=3g7 ReQ! + 1mQ]. (4.10)
We again find agreement with [40]: (4.9) coincides with
(3.8) of that reference when the identifications (2.37) are
taken into account and the phase of yyee = _\/Lg(zhere"'

ihere ), Which is again unfixed at the critical point, is shifted
by %

V. DISCUSSION

The main goal of this paper was to test the formulas of
[25] for the consistent truncation [14] of D = 11 super-
gravity [13] on §7 down to D =4 N = 8 SO(8)-gauged
supergravity [1]. We have done so by particularizing these
formulas to the SU(3)-invariant sector of the D = 4 super-
gravity, using an explicit parametrization. When further
restricted appropriately, our results correctly reproduce
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previously known consistent embeddings of sectors that
preserve symmetries larger than SU(3). Our formalism thus
extends previous literature and provides a unified D = 11
embedding of the full SU(3)-invariant sector of SO(8)
supergravity including all dynamical (bosonic) fields. It
does so systematically, by using the restricted tensor
hierarchy approach of [25].

As another crosscheck on the formulas of [25], we have
rederived the known AdS, solutions of D =11 super-
gravity that arise upon consistent uplift of the critical points
of SO(8) supergravity with at least SU(3) symmetry [2].
Again, we have found perfect agreement with the existing
literature. As a further test, we have checked that the
D =11 field equations are indeed verified on these AdS,
solutions. Moreover, we have done this in a unified way for
all of them; please refer to Appendix D for the details. This
should again be regarded as a stringent test on the
consistency of our formalism. Although we have not
explicitly verified the D = 11 Einstein equation due to
its more involved structure, we have reproduced known
solutions, like the ones presented in [40], for which the
Einstein equation has been verified.

We have also obtained new embeddings of minimal
D =4 N =2 gauged supergravity both into its parent
D = 4 N = 8 SO(8)-gauged supergravity and into D = 11
supergravity. A previously known embedding is obtained
by fixing the scalars to their vevs at the SO(8) point and
then selecting the graviphoton A as an appropriate combi-
nation of the two SU(3)-invariant vectors A*, A = 0, 1. The
resulting D = 11 consistent uplift coincides with a pre-
viously known one, constructed in Sec. 2 of [43], that is in
fact valid for any Sasaki-Einstein seven-manifold. The
consistency of this truncation, at least within D =4
theories, is guaranteed by symmetry principles. This is
because this embedding of minimal N = 2 supergravity
into N = 8 coincides with the SU(4)-invariant sector of
the latter.

|

More interestingly, we have shown N = 8 SO(8) super-
gravity to admit an alternative truncation to minimal " = 2
supergravity by similarly fixing the scalars to their vevs at,
now, Warner’s ' = 2 SU(3) x U(1), point [2] and again
selecting the graviphoton A appropriately. Although this
alternative truncation is not driven by any apparent sym-
metry principle, it is nevertheless consistent. We have
explicitly verified this at the level of the D = 4 equations
of motion that follow from the Lagrangian (2.3), including
Einstein. Using our formalism, we have then uplifted this
minimal A =2 supergravity to D =11 in Sec. IIC.
Again, we have explicitly verified the consistency of the
D =11 embedding; see Appendix C. Thus, we have
constructed the consistent truncation of D = 11 super-
gravity on the A = 2 AdS, solution of CPW [27] down to
minimal D =4 N = 2 gauged supergravity, predicted to
exist by the general conjecture of [43].
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APPENDIX A: DETAILS ON THE SU(3) SECTOR

Let 42, typcp, with A =1, ..., 8 indices in the funda-
mental of SL(8, R), be the E;(7) generators in the SL(8, R)
basis, in the conventions of Appendix C of [31]. The
SO(8) C SL(8,R) C Ey(7y subgroup is generated by
Typ = 21,“6p)c. The generators of SU(3) C SO(8) can
then be taken to be ;Ia, a=1,...,8, defined as

Ih=Ty-Tyn  h=-Ty-Tu  L=Tp-Tu  A=Te-Tx
As = =T5 = T, A6 = T35 — Tus, Ay = T35 — Ty, g = \%(le + T34 — 2T 55). (A1)
These generators indeed close into the SU(3) commutation relations
s Ag) = 2f ap Ay (A2)
with fu5, = flap) Gell-Mann’s structure constants,
fis =1, f147:f165:f246:f257:f345:f376:%7 f458:f678:\/7§- (A3)

Inside E;(7), the SU(3) generated by (Al) commutes with SL(2,R) x SU

1, . .
Hy = _E(lil =31,%), Ey = 3J(6)U€uhtijaha

—

2,1), with the first factor generated by

3 .
Fo= EJ O JOkh (Ad)
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and the second factor by

Hy = —t;" +15%, H, = Jﬁ‘ﬁ)ifij,

Ej = —V2ImQ©) ks, e Ej, = —V2ReQO)ik1, 0 E, = —V2tg7,

Fll — \/ERCQ<6)ijkl‘ijk7, F12 - —\/EImQ(@’jktUm, F2 - —\/§t78. (AS)
These are the numerator groups in the scalar manifold (2.2). In (A4) and (A5) we have split the indices as A = (i, a), with

i = 1,...,6in the fundamental of SO(6), and a = 7, 8, by effectively identifying the fundamental of SL(8, R) with the 8,
of SO(8). We have employed the SU(3)-invariant Calabi-Yau (1,1) and (3,0) forms

JO) = 12 4 ¢34 4 56 QO = (¢! +ie?) A (&3 +ie*) A (& + ied), (A6)
on R Cc R8, with e!2=dx! A dx? etc, and x' the R® Cartesian coordinates. We have also introduced the
Levi-Civita tensor €,, in the R?> C R® plane spanned by the 7,8 directions. Indices i, j and a, b are raised and
lowered with §;; and 6,;,. The generators (A4) and (AS) indeed commute with each other and respectively close into the
SL(2,R),

[Ho. Eo] = 2E,. [Ho. Fo] = =2F), [Eo. Fo| = Hy, (A7)

and SU(2, 1) commutation relations,

[H,. Hy|] =0,

[H.Ey] = Ey;, [Hy. Eyi] = =3¢€;,E);, [H). E;| = 2E,, [H,. E5] =0,

[H\,F\;| = —E\;, [Ha, Fj] = =3¢;;Fy;, [H\, F)] = =2F,, [H,, F,] =0,

[E11 Epp] = \/_E27 [Eyi, Eo] =0, [Fi1. Fia] = V2E;, [F1i. Fa] =0,

[Evi, Fyj] = 6;;H, + €;;H>, E i, Fy) = V2e;,F ), [Ey. Frj] = V2¢,E;, [E>, Fr] =2H,, (A8)

with, here and only here, i = 1, 2. The generators of the maximal compact subgroup of SU(2, 1) are

Ko Er—F - 2H, K= (g, -F) = Ep-Fn),  Ki=—— _(E,-Fy)—'m
0= 452 2 3 2 = \/— 11 11/ = f 12 12)» 3= 4\/5 2 2 4 2
(A9)
and close into the SU(2) x U(1) commutation relations
Ko, K] =0, [Kx,Ky] =€y, K, x=12,3. (A10)

It is also interesting to note that the three different U(1)’s with which SU(3) commutes inside the SO(8) subgroups SO(6),,
SU(4), and SU(4), are respectively generated by

u(),: =7y, (Al1)
U(1),: =% +3¢,%,", (A12)
U(1),: =7 +3¢,%,0, with 1€R,  A#1. (A13)

With these details, the SU(3)-invariant bosonic field content and its interactions described in Sec. II can be constructed
from the parent A/ = 8 supergravity. Per the analysis above, the SU(3)-invariant scalar manifold is (2.2). A coset
representative is

086021-18



EMBEDDING THE SU(3) SECTOR OF SO(8) SUPERGRAVITY ...

PHYS. REV. D 100, 086021 (2019)

o —Eo y—YoH, ;5(aEr—CE~LEn) —pH
V_e)(OeZ(p Oe\/i 2 1 lze¢l’

(Al14)

and the quadratic scalar matrix that enters the bosonic Lagrangian is M = VVT. The metric on (2.2) that determines the
scalar kinetic terms in the Lagrangian (2.3) is then reproduced through — ﬁ DM A *DM™". For reference, the SL(2, R) x
SU(2, 1) Killing vectors of this metric, normalized to obey the commutation relations (A7), (A8), are

k[Ho) =20, —2r0,.  k[E)|=0,.  k[Fy| =29, + (e —x*),. (A15)
and
k[H{] = 04 —2a0, — (0, =0z, k[H,] =380, — 30;.
1. 1

k[Ell} :ﬁ(gaa—zag), k[El2] :ﬁ(Caa+2aZ)1 k[Ez] = \/iaas
k[F,] = \/E(a&,, —e (72 -Y?)0, - (al - e‘2¢fY)8§ —e (7 + {Y)0p),
HFu] =5 (-€0 + (a6 = E1)0, = 3 (462 = 2+ 3200, + 2a-+ D)2 ).
k[F i) = % (&% — (a +e7¢Y)0, +2(a = £0)O, + % (46727 +3¢> — Zz)ag> : (Al16)

Moving on, we need to specify how the SU(3)-invariant
tensor fields in (2.1) are embedded into their N =8
counterparts. Recall that the restricted N = 8 tensor
hierarchy contains 28’ electric vectors A%%, 28 magnetic
vectors A, , 63 two-forms 8,2 and 36 three-forms CA2, in
representations of SL(8, R) [25]. In order to determine the
embedding of the SU(3)-invariant vectors A, A A A =0,
1, into their N/ =8 counterparts, we note that SU(3)
commutes inside SO(8) C E;(7) with the U(1)? generated,
in the notation of (A5), by (E, — F,) and H, or, equiv-
alently, by K° and K> defined in (A9). These are the Cartan
generators of the maximal compact subgroup SU(2) x
U(1) of the hypermultiplet scalar manifold. Splitting again
the A/ = 8 index as below (A5), A = (i, a), and fixing the
normalizations for convenience we have the following
embedding into the N = 8 vectors:

. . ~ 1-
AT = ALJOU, AT = A0 Ay = 2 A (g
-’zlab = A0€ab- (A17)
Similarly, for the two-form potentials we define
. 1 o1 ; 1 1
J=__RBag.j _BZ (6)] b:_Bb__BO b
Bl 12 a 51 + 3 J[ ’ Ba 2 a 2 €a ’
(A18)
and for the three-form potentials,
Ci = C'sY, Ccb = Cb, (A19)

|

The field strengths and couplings brought to Sec. II can be
obtained by inserting these expressions into the N =8
equations given in [25]. For example, the gauge covariant
derivative acting on the scalars reduce to D =d+
%g(k[Ez] — k[F,])A° — gk[H,]A", and this in turn repro-
duces (2.4) upon use of the relevant Killing vectors
in (A16).

APPENDIX B: INTRINSIC COORDINATES AND
GEOMETRIC STRUCTURES ON §7

There are various sets of intrinsic coordinates that prove
useful in our context, each of them adapted to different
geometric structures on S7. The expressions below have
been used to particularize the general SU(3)-invariant
consistent embedding formulas of Sec. III A to the further
subsectors of Sec. III B and the AdS, solutions of Sec. IV.

1. §7 as the join of S! and a Sasaki-Einstein S°

The first set of coordinates solves the constraint (3.1) by
splitting 4, A =1,...,8, as

i=1,...,6, ' =sinacosy,

(B1)

u' = cosaji,

ud = sinasiny,

with0 <a <7/2,0 <y <2z, and ji', i = 1, ...,6, defin-
ing in turn an $°, i.e., subject to the constraint 5, ;i'fi/ = 1.
The intrinsic coordinates (B1) are adapted to the topologi-
cal description of 7 as the join of S and S!, for which the
round, Einstein, SO(8)-invariant metric,
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ds*(S7) = Sapdu’ du®, (B2)

on S’ displays only a manifest SO(6), x SO(2) symmetry,

ds*(S7) = da* + cos? ads*(S°) + sin ady?,  (B3)
with ds*(S°) = 6,;dji'dji’ the round, Einstein metric on $°
normalized so that the Ricci tensor equals four times the
metric. This $° comes naturally equipped with the Sasaki-
Einstein structure (%), J©), Q©)) endowed upon it from
the Calabi-Yau forms J(©, Q©), (A6), on the R® factor of
R3 = R® x R? in which S° is embedded,

7 =19 5iapi,

1 o
5) — (6) 7~ ~
i JO =30, i A dp,

U s
Q) = 3 l(-j,z,u dii A dii*. (B4)
These satisfy

JO A QB =0,
% TO A JO A g = %gm A QO A g = vol(S9),

(BS)

and

dan®® =2J0), Q) =3ig® A QB (B6)

It is also useful to relate the Calabi-Yau forms J© and Q(©
written in terms of constrained R® coordinates u* =
(W', u*),i=1,...,6,a = 17,8, to the intrinsic S” coordinate
a in (B1) and Sasaki-Einstein forms (B4):

I widpl = cos’an’™,
1 i i
EJS?)d/«U A dp = cos’aJ®) —sinacosada A ),
1 o
QUi A dpt = cos?aQl,
1 o
_Q<.6)d,u’ A dpl A dy* = icos?aQB) A7)

6 ijk

— sinacos’ada A Q). (B7)

The round metric ds*(S°) in (B3) naturally adapts itself
to the Sasaki-Einstein structure (B4) when written as

ds*(S°) = ds*(CP?) + (dt + 0)*, (BS)

with ds*(CP?) the Fubini-Study metric on the complex

projective plane, normalized so that the Ricci tensor equals

six times the metric, 0 < 7 < 27 an angle on the S° Hopf

fiber, and & a one-form on CP? such that do = 2J® with

J® the Kihler form on CP2, so that #® = dr + ¢ and
J©®) = J®)_ For completeness, we note that ds?(CP?) can
be written in terms of complex projective coordinates &,
i=1,2,as
ds?(CP?) = deid - —
1+ 8¢

(E:de") (£ dE;)
(1+&&)? 7

(B9)

by introducing complex coordinates on R® = C? through

1 : 1 A
~1 e~ it £l ~3 i~ it g2
i +ip —e'"E, P H it = ——=e"T¢",
1+&¢ V1+&¢&
1 .
B+ it = ——=e"". (B10)

In these coordinates, the one-form ¢ in (B8) reads

_igdE; = &d¢’
o=5 Tr e (B11)

2. S7 with its homogeneous Sasaki-Einstein structure

A second set of intrinsic coordinates on S’ can be
chosen that adapt themselves to its two natural, homo-
geneous seven-dimensional Sasaki-Einstein structures. These

descend on S’ from the Calabi-Yau forms J 9, Q(f) on RS,

Jf) = J6) £ o8 — 12 4 o34 | p56 4 T8
Q(f) =QO A (e £ie®) = (el +ie?) A (€3 + ie)

A (€3 +ieb) A (e £ied), (B12)
that are invariant under SU(4),. for the + sign and SU(4), for
the — sign. In terms of the constrained coordinates u”,
A=1,...,8, that define S7 as the locus (3.1) in RS, the
Sasaki-Einstein structure forms induced on 7 are

8 I s
O B, 1D =t

Q) = éQfABCD/"Ad/‘B A dp€ A dpP. (B13)
These are subject to
7O nal ~o
JOAID AT Aq]) = %Q(j AQY A gl
= F6vol(S7), (B14)
and
dp] =217, a0l =4 A0, (B15)
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The seven-dimensional Sasaki-Einstein structure (B13) is
related to its five-dimensional counterpart (B4) and the angles
(B1) through

11(;) = cosZan®® =+ sinZady,

J(;) = cos’aJ®) £ sinacosada A (dy F 7)),
Q) = e*vcos’alda + i cosasina(dy F 75))] A QO
(B16)

The round metric on S’ adapted to seven-dimensional
Sasaki-Finstein structure reads, similarly to (B8),
ds?(S") = ds*(CP3) + (dy- + 02 ). (BI7)

where ds?(CP?.) is the Fubini-Study metric, normalized so
that the Ricci tensor equals eight times the metric. The +
refers to two different embeddings of CP? into S7, with
isometry group SU(4). € SO(8) for the + sign and
SU(4), ¢ SO(8) for the — sign. The angles w. have

period 27 and the one-forms o, in (B17) obey doy =

2-](3 so that ng) =dy, + o,. It is also useful to make

manifest the CP? that resides inside CP3, which is
equipped with the complex projective coordinates &,
i =1, 2, that appear in (B10) and the metric (B9). This
can be achieved by writing

ﬂl + ['u2 — %COS ae[(l//i+1i)fl’
VI1I+E&E

”3 + i//t4 — %COS aei(wi+ri)§2,
VItEE

/,LS + lﬂ6 = 1 -COS (xei(l//i+7i)’

V1&g
u + iud = sinaeTV+, (B13)

where 7. are angles of period 2z. The metrics ds*(CP3)
and one-forms o inside the round S7 metric (B17) can be
written in terms of the coordinates (B18) as

ds*(CP3) = da? + cos’ads®(CP?)

+ cos?asin’a(dry, +0)?,  (B19)

and

6. = cos® a(dr, + o), (B20)
with ds?(CP?) and o respectively given by (B9) and (B11).
The round S7 metrics (B3) with (B8) and (B17) with (B19)
are of course diffeomorphic: they are brought into each
other by the change of coordinates

W=ty T=TL Y. (B21)

3. 87 as the sine-cone over a nearly Kihler S°
A third and final set of intrinsic angles on S is better
suited to describe the solutions with at least G, symmetry.
First split the p#, A=1,...,8, as p* = (u',ud), with
I=1,...,7, and then let

(B22)

ul = sinpit, ut = cos g,

where 0 < f < 7, and o, 1=1,....7, define an S° through
the constraint §;;,7/Z/ = 1. In these coordinates, the round
metric (B2) takes on the local sine-cone form

ds*(S7) = dp?* + sin’Bds>(S°), (B23)

where ds?(S®) = &;;di' di” is the round, Einstein metric on
S® normalized so that the Ricci tensor equals five times the
metric. This S is naturally endowed with the homogeneous
nearly Kihler structure’ (.7, £2) inherited from the closed
associative and co-associative forms,

W= 6127 + 6347 + 6567 + 6135 _ 6146 _ 6236 _ 6245

’

(B24)

- 1234, 12 34 13 14 23 24
= el P4 4 1256 4 356 | 1367 o 1457 4 2357 _ p2467

(B25)
on the R7 factor of R® = R7 x R in which S° is embedded:

1
J = EW[/KﬂIdINJJ VAN dl?K,
1
Q= 6 (Wikr — Wpgrd")dv’ A diX A dit.

The nearly Kihler forms are subject to

(B26)

T ANR=0, .Q/\.Q:—é%ij/\j/\J:—Sivol(Sﬁ),
(B27)

and

dJ = 3Re2, dimQ =-27 ANJ. (B28)
It is also useful to note the following relations between the
associative and co-associative forms y, { written in con-
strained R® coordinates y* = (u!, u®), the S7 coordinate 8

in (B22), and the nearly Kéhler forms (B26):

The typography we use for the nearly Kihler forms on S°
differentiates them from the Calabi-Yau forms (A6) on R®. For
that reason, we omit labels (© for the former. Similarly, we omit
labels (7) for the associative and co-associative forms on R”.
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1
2

wrpdu! A du® A dut = —sin*BT A dp,

1
EWHKd// Adp’ A du® = sin’pReQ + sin®fcos BT A dp,

6

1
ﬁl//IJKLdMI A du! A dpk A dpt =

1
Esin“ﬁj A J + sin®Bcos fImQ A dp.

1
— kil dp’ A du® A dut = —sin® fimQ,

(B29)

Finally, the following relations hold between the associative and co-associative forms on R® = R’ x R and the Calabi-Yau

forms R® = R® x R2:

2

6 6 i
6)
6 6 i

2

These expressions come handy to derive the G,-invariant
consistent uplifting formulas of Sec. IIIB3 from the
general expressions of Sec. III A. They are also useful to
rewrite the solutions (4.2)—(4.6) with at least G, symmetry
in the form (D1)—(D7), in order to verify that they satisfy
the equations of motion.

APPENDIX C: CONSISTENCY OF THE MINIMAL
N =2 TRUNCATION

We have explicitly verified at the level of the D =4
field equations that the restrictions (2.43)—(2.48) define a
consistent truncation of the SU(3)-invariant theory (2.3)
to minimal N =2 gauged supergravity (2.35). In turn,
the consistency of the D = 11 embedding of the entire
SU@3) sector described in Sec. III A guarantees the
consistency of the new uplift of minimal N = 2 super-
gravity given in Sec. III C. We have nevertheless checked
consistency explicitly at the level of the Bianchi identity
|

dF @) =

1 1 . .
Cyxdu! A du! A dpK = —ReQSdui A dyd A dyt +
1 1 . . 1

— ki d’ A du® A dut = ——ImQ(-k,Lﬂd,u’ Adul A dpf 4+ =17

1 oo
+ —ImQE?,zy’dM/ Aduf A dy.

V3
+ 60, (

-2

(1 + 2sin’a)?
sin acos?

1 + 2sin%a

a

1 + 2sina

+
2V/3

g3 [cosza(7 — 10 cos 2a + cos 4a)

>da/\D1///\11’/\ImQ’+g

g [28{, (sin acos3a) do A F A RS — 6 sin acos

Sk dp’ A duK =T pidp A i’ + 5 (W7 + ReQS ! A i,

ij

| )
Ejz(j>d/‘l Adul A dy’,
5 5]6-)J,(3),u"d,uj A dp* A dy!

(B30)

[
and the equation of motion of the D =11 four-form
Fuyy=dAg),

(C1)

The configuration (3.27), (3.30) does solve the D = 11
field equations (C1) provided the Bianchi identity and the
Maxwell equation for the D =4 graviphoton,

dF =0, dxF =0, (C2)
are imposed.

It is straightforward to see that the D = 11 Bianchi
identity is satisfied. Hitting (3.30) with the differential
operator we obtain, after using (C1) and the algebraic and
differential conditions for the local five-dimensional
Sasaki-Einstein structure (3.26) [that is, (B5), (B6) written
for the primed forms #/, J' and Q'],

da A (gF A ReQ' + 3Dy’ A ImQ' A 11/)

3 sin acos?

1 + 2sin%a
3

N 7 A ImQ’]

YF A ImQ A n’] : (C3)

1 + 2sin%a

Terms with the same form dependence cancel each other, thus leading to dF @ = 0.
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Moving on to the equation of motion, we find it useful for the calculation to introduce the obvious frame that can be read

off from (3.27),

(1 + 2sin%a)!/3

ér=-——""— 2 &% with &%a vierbein for ds},

2133
21/6cos a
oL e,
g(1 + 2sin’q)'/6
2]/6 1 2sin2 1/3
5 27°(1 4 2sin’a) Ja

= Vig ,

or =

P with

eP a vierbein for ds*(CP?),

o 2/6\/3sinacos a(l + 2sin’a)'/? /
e f—

g(1 + 8sin*q)'/?

10 (1 + 8sin*a)!/?

2
_ Dy — %05 @ )
71/3 \/§g(1 + 2sin2a)2/3 1 + 8sin*a

’

with a =0, 1, 2,3 and p =4, 5, 6, 7. Using this frame, the Hodge dual of F(4) reads

332 cost a

S, — > s a
@ g (1 + 2sin? a)?

cos? a(7 — 10 cos 2a + cos 4a)

e8910 A J A g —

_|_

3

cos” a(7 — 10 cos 2a + cos 4a)

27/6.33/2g(1 + 2sin® @)'/3(1 + 8 sin* a)!/2

- 33/2.258gsina(1 + 2sin? a)*3(1 + 8sin* )12

sina cos® a
V33 (1 + 2sin’ a)
(1+ 8sin*a)!/? cos* a
2573 324 (1 1 2 5in? @) ¥/3

where é8910 = &8 A &% A ¢'°. Computing the differential of

(C5) with the help of the Sasaki-Einstein conditions
satisfied by #/, J' and ', as well as F @ A F (4) from
(3.30) and putting everything together, we find that the
D = 11 equation of motion in (C1) is indeed satisfied on
the D = 4 field equations (C2).

APPENDIX D: D=11 EQUATIONS OF MOTION
ON THE AdS,; SOLUTIONS

The AdS, solutions that we brought to Sec. IV of the
main text are obtained from the consistent uplifting for-
mulas of Sec. III A by turning off the relevant tensor
hierarchy fields, fixing the D =4 scalars to the vevs
recorded in Table II, and fixing the R® embedding
coordinates y*, A =1,...,8, in terms of various sets of
intrinsic angles on S’ discussed in Appendix B. The
particular choice of intrinsic coordinates for each solution
was made on a case-by-case basis, as specific sets of
coordinates are more suitable than others to highlight the
specific symmetry of a solution. While this is obviously the

wF A 65910 A ReQY —

(C4)
(14 2sin’a)?3cos’a— ¢
voly A é% A ImQY
21/6 . 33/2g 4
vol, A é° A ReQ
vol, A é10 A ReQY
cos’ a FoAe%10 A g
2V3g
FAONT AT, (C5)

best approach for the sake of presentation, it is definitely
inconvenient to check the D = 11 equations of motion, as
one would also need to proceed on a case-by-case basis for
each solution.

In order to check that the D = 11 equations of motion
hold it is more convenient to proceed differently. First,
leave the D = 4 scalars as temporarily unfixed constants,
and make a choice of intrinsic S7 coordinates (regardless of
whether they would be well adapted to specific sectors). For
this purpose, we have chosen the intrinsic coordinates (B1).
The D = 11 metric and four-form then get expanded in
terms of the global five-dimensional Sasaki-Einstein struc-
ture 7%, J©), QO) specified in Appendix B, with coef-
ficients that depend on the D = 4 scalars along with the S’
angles a and y. Second, plug these expressions into the
D = 11 field equations (C1) and obtain, with the help of
the Sasaki-Finstein relations (BS5), (B6), the set of equa-
tions that the coefficients must obey for the D =11
equations to hold. Finally, verify that these equations are
satisfied when the D = 4 scalars are fixed to the critical
points recorded in Table II.
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Proceeding this way, we find that the D = 11 metric (3.4) can be written in terms of the intrinsic angles (B1) as

ds?, = A~'ds3 + ds3,
ds3 = Gsda® + Gqdy? + 2Ggdady + G4ds*(CP?) + (Gs + G4)(™))? = 2(Gda + Gody)n®), (D1)

where both the warp factor,
A=l = e X130, (D2)

given by A, in (3.3) with (B1), and the coefficients of the internal metric ds? depend on the S7 angles a, y and the D = 4
scalars:

AT 1
G =— —Ee‘z‘/’ sin acos’a(X — Y)(2ae* cos 2y — sin 2y (Y2 — Z2 + %)) |,
g
A2
G, = — [e7sin*acos’a(X — Y)(ae*? sin 2y + sin*y (Y? + Z?) + ¢*/cos?y)],
g

AZ
Gy = — [Yeos*a(Y — X)),
g

A2
G, = — [X?sin®acos’ae™2 %) (ae? sin 2y + sin’y (Y2 + Z2) + e*cos’y) + XYcos*al,
g

A? 1 . .
Gs =— {XYsinzacosza - 6—4sin2(2a)(e2¢(§2 + &)+ 4) (2 (L2 + 22) — de?y?)
g
+ X?sin*ae™2# ) (ae*? sin 2y + sin’y (Y2 + Z2) + e*Pcos’y)
+ e~ cos’a[—2ae*? siny cosy + cosPy (Y2 + Z2) + e*sin’y/]

x [sin’a(ae*? sin 2y + sin?y (Y? + Z2) + e*?cos®y) + coszaez("”‘/’)]},
2

A
Ge = — [e™* sinacos a(—ae*? cos 2y + siny cosy(—Y?* — Z2 + *7))]
g

x [sin?a(ae* sin 2y + sin®y (Y2 + Z2) 4 e*?cos?y) + cos?ae?# 7)),
A2

G7 = — [e™*sin’a(ae*? sin 2y + sin®y (Y2 + Z%) + e*Pcos?y)]
g

x [sin’a(ae*® sin 2y + sin?y (Y2 + Z2) + e*Pcos’y) + cos?ae?# 7). (D3)

Turning off the D = 4 tensor hierarchy fields (except for the local three-form Cpgr = C! = C”7 = C® whose role is

merely to serve as a local potential for the Freund-Rubin term) in the three form (3.6), its pull-back on S’ induced by (B1)
reads

A = (Lyda + Lydy) AJ® + (Lyda + Lsdy) A ReQ®) + (Lgda + Lydy) A ImQ©)
+ (LgImQ®) 4 LyReQ®) + Lo JO)) A ) + Lida A dy A g®) + Cy. (D4)

The coefficients here are given by
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A3 /1
L; = — ( =ysinacos’ae?~* | [sin asin 2a(X — V)2 ? ) (274 — Y + 1)(ae*? sin 2y + sin’y(Y? 4 Z2) + e*Pcos’y
8g \2
g
—2(X?sina(ae*® sin 2y + sin®y (Y? + Z%) + e*’cos’y) + Y2cos?ae??+9))

x (cos ae®?*?) + sin artan a(sin?y (Y? + Z2) + Ze? sin 2y + e*Pcos?y))].
A3

Ly = — [—ye ™" X sinacos®a(siny cos y(—Y? — Z% 4 &*?) — Ze*? cos 2y)]
g

x [Xsin?a(ae*? sin 2y + sin?y (Y2 + Z2) + e*?cos’y) + Ycos’ae?#+9)],
tan asiny (Y2 + Z% + 2Ze*? coty + e*cot’y)
Ze?? cos 2y — siny cosy (=Y? — 7% + %)

L3 == 25
A (1 2, ,—30-2 DA 20 V2 L 72) 1 ol 2,2
Ly=— EXcos ae372¢ | [Xsin’a(ae*? sin 2y + sin®y (Y2 + Z2) + e*?cos’y) + Ycos?ae? @ +9)]
g

x [Xsina(Le*? cosy + siny (CY + £Z)) + e*?cos’a(Ee®® siny + cosy (CY — EZ))],

L. e (Ze* cosy + siny (EZ - CY)) .
YT y(sin2p(—Y2 = 22 4+ &) —2Ze cos2y)

o= 2 (e‘z‘/’Xsinza N coszfx(cos w(CY +'Z_,’Z) - £e?? sin w)) .
sin 2a Ce?* cosy + siny(EZ - LY)
L - _€€2¢ cosy + CY siny + E:ZSim//L
Ce?? cosy — LY siny + CZsiny
Ly = —e20XL,,
Lo = —e20XLs,
L= A (—e?yYcos?a)[X?sin’acos’ae2#) (ae*? sin 2y + sin’y (Y? + Z2) + e*cos’y) + XYcos*al. (D5)

g3

~

Finally, the D = 11 four-form F @) =dApg) is

Fgy=Uvoly +da A dy A (f1JO + f,ReQO) + f3ImQO)) + f10JO) A JO)
+ [(fada + fsdy) A ReQ®) + (feda + frdw) A ImQE) + (fyda + fody) A TS| Ay, (D6)

where the Freund Rubin term is given by Uvol, = H %4)u,-,ui +H ‘(‘f) Uiy, evaluated on (B1) and on the D = 4 dualization

conditions (2.18). The functional coefficients in (D6) can be written in terms of the coefficients (D5) of the three
form (D4) as

f1=2L,+9,Lz— 8V,L2, fe=3Ly+ 0,Lg,

f2=0,Ls =0y Ly, f7=3Ls+0,Lg

f3=04L7 — 0, Le. fs = 0qL1.

fa==3L¢+ 0yLo, fo =0,L,

fs=-3L; +0,Ly, Sf10 =2L. (D7)

The Bianchi identity dF 4) = 0 amounts to verifying the following relations:

3f3+ O0ufs — 0y fa =0, =3f2+0uf7—0,f6 =0,
a01]010_2f8 =0, aaf9_ay/f8 =0, al//f10_2f9 =0. (DS)

Of course, these conditions are automatically satisfied by construction for all values of the D = 4 scalars upon using (D7).
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We next compute the Hodge dual of the F 4) given in (D6) with respect to the D = 11 metric (D1). We obtain

¥*>

F4y = A>voly + A2voly A [(pida+ pydy) AJ® + (pyda + psdy) A ReQ®) + (prda+ pgdy) A ImQL)

+ (peReQ®) + polmQ®) + p3JON) A 'S + pyoda A dy A )], (DY)
with coefficients
P1= Az;GV[flGl — f9oGs + f3Gél, Ps = AZLGV [fsG1 = f4Gy — f2(G3 + Gy)],
P2:A2;Gv[f1Gz—f9G6+f8G7]7 P7:A2;Gv[f3G1—f7G5 + f6Gé),
P3 _A%Gv[ngl - [3G2 — f1(G3 + Gy)], Ds _AzLGV[J%Gz = f71Ges + f6G1l,
ps = Az;GV[fZGl — f5Gs + f4Gél, Py A%GV [f1G1 = f6G2 = f3(G3 + Gy)],
Ps :A%Gv[szz—sts + f4G7]. P = —ZGZ?iflo- (D10)
Here,
Gy = \/—G7G% +26,G4Gy — G3G2 — G4G? — G3Gs + G3G5Gr + G4GsGy (D11)

is related to the volume element corresponding to the internal metric ds3 in (D1). With these definitions, the equation of
motion in (CI) for the D = 11 four-form becomes equivalent to the following conditions:

Ufy+ 0yps—0ypi +2p1o=
Ufy + 0yps — Oy ps =

Ufs + 0yps — 0y p7 =

Ufy+ Oups —3p71 =

Ufs+ 0yps —3pg =

0,
0,
0,
0,
0,

Ufe+ 0ypy+3ps =0,
Uf7+al,,p9+3p5 207

Ufs+ 0ap3 =0,
Uf9+8u,p3 :0,
Ufio+2p3=0. (D12)

We have verified that equations (D12) hold when the D = 4 scalars are evaluated at any of the critical points collected in
Table II. We have also checked that all the metric and four-forms for the explicit AdS, solutions written in Sec. IV can be
brought to the form (D1)—(D7), with the help of the relations given in Appendix B. Thus, the explicit AdS, configurations of

Sec. IV do indeed solve the D = 11 field equations (C1).
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