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The SU(3)-invariant sector of maximal supergravity in four dimensions with an SO(8) gauging is
uplifted to D ¼ 11 supergravity. In order to do this, the SU(3)-neutral sector of the tensor and duality
hierarchies of the D ¼ 4N ¼ 8 supergravity is first worked out. The consistent D ¼ 11 embedding of the
full, dynamical SU(3) sector is then expressed at the level of the D ¼ 11 metric and three-form gauge field
in terms of theseD ¼ 4 tensors. The redundancies introduced by this approach are eliminated at the level of
the D ¼ 11 four-form field strength by making use of the D ¼ 4 duality hierarchy. Our results encompass
previously known truncations of D ¼ 11 supergravity down to sectors of SO(8) supergravity with
symmetry larger than SU(3), and include new ones. In particular, we obtain a new consistent truncation of
D ¼ 11 supergravity to minimal D ¼ 4 N ¼ 2 gauged supergravity.
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I. INTRODUCTION

Being complicated theories with large field contents,
it proves useful for applications to truncate maximal
gauged supergravities to smaller subsectors that are
invariant under some symmetry group. In this paper,
we will be interested in D ¼ 4 N ¼ 8 supergravity with
an electric SO(8) gauging [1] and one of its most
fruitful sectors: the one invariant under the SU(3)
subgroup of SO(8). This sector preserves N ¼ 2 super-
symmetry and retains, along with the N ¼ 2 gravity
multiplet, a vector multiplet and a hypermultiplet with
an Abelian gauging. The (AdS) vacuum structure in this
sector has been completely charted [2] and the corre-
sponding mass spectra within the full N ¼ 8 theory
determined [3,4]. Holographic duals have been estab-
lished for some of these vacua as distinct superconfor-
mal phases [5,6] of the M2-brane field theory. Other
interesting solutions of, for example, domain wall [7,8],
defect [9], black hole [10] or Euclidean [11] type have
been constructed in this sector that enjoy precise holo-
graphic interpretations [6,12].
The relevance for holography of D ¼ 4 N ¼ 8 SO(8)-

gauged supergravity [1] is intimately linked to the fact
that it can be obtained as a consistent truncation of
D¼11 supergravity [13] on the seven-sphere, S7 [14,15].

Further results on the consistency of the truncation have
been given more recently in [16–26]. The goal of this
paper is to provide the consistent uplift of the SU(3)
sector of SO(8) gauged supergravity into D ¼ 11 by
using the uplifting formulas of [25], thus putting them to
the test. We extend previous results on the consistent
D ¼ 11 embedding of further subsectors contained in the
SU(3) sector [4,27,28], and provide a unified treatment.
We make contact with those previously known consistent
truncations and establish new ones. In particular, we
construct a new consistent embedding of D ¼ 4 N ¼ 2
pure gauged supergravity into D ¼ 11, where the internal
geometry on S7 corresponds to the N ¼ 2 SUð3Þ × Uð1Þ-
invariant solution obtained by Corrado-Pilch-Warner
(CPW) [27].
A systematic approach to the consistent uplift of

D ¼ 4 N ¼ 8 SO(8) supergravity to D ¼ 11 was pro-
posed in [25], similar to the method employed in [29,30]
to uplift D ¼ 4 N ¼ 8 ISO(7) supergravity [31] into type
IIA. This approach relies on the tensor hierachy [32,33]
of maximal four-dimensional supergravity—the extension
of its field content to include the magnetic gauge fields
along with higher rank potentials in representations of
E7ð7Þ. The full D ¼ 11 embedding of the bosonic sector
of SO(8) supergravity can be expressed at the level of the
D ¼ 11 metric and three-form potential in terms of a
subset, dubbed restricted in [25], of the D ¼ 4 tensor
hierarchy that is still N ¼ 8 but only covariant under
SLð8Þ ⊂ E7ð7Þ. The D ¼ 4 tensor hierarchy carries redun-
dant degrees of freedom (d.o.f.) beyond those contained in
the conventional N ¼ 8 Lagrangian, and these are carried
over to the D ¼ 11 embedding. These redundancies
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can be eliminated in D ¼ 4 by imposing suitable duality
relations among the field strengths of the tensor hierarchy
[34]. Expressing the D ¼ 11 embedding at the level of
the four-form field strength and employing these D ¼ 4
dualizations, redundancy-free uplifting formulas are
obtained that contain only the dynamically independent
fields (that is, the metric, the scalars and the electric
vectors) that feature in the conventional D ¼ 4 N ¼ 8
Lagrangian.
Some aspects of the SU(3)-invariant sector of SO(8)-

gauged supergravity are summarized in Sec. II, and the
SU(3)-invariant restricted tensor and duality hierarchies
are constructed. Section III discusses the consistent uplift
of the SU(3)-invariant sector into D ¼ 11 supergravity
following the tensor and duality hierarchy approach.
Contact with the consistent uplift of previously known
subsectors is made and a newD ¼ 11 embedding ofD ¼ 4
N ¼ 2 pure gauged supergravity is established. Section IV
further tests our formalism by recovering known AdS4
solutions in D ¼ 11 from uplift of critical points, and
Sec. V concludes. Some technical details are contained in
the Appendixes. Our conventions for D ¼ 11 and D ¼ 4
N ¼ 8 supergravity are those of [25].

II. THE SU(3)-INVARIANT SECTOR
OF SO(8) SUPERGRAVITY

Let us start by reviewing some aspects of the SU(3)
sector of SO(8)-gauged supergravity. We choose a triangu-
lar, or Iwasawa, parametrization for the [SU(3)-invariant
truncation of the] E7ð7Þ=SUð8Þ coset representative. Since
previous literature often chooses the unitary gauge for the
coset, we believe that our presentation has some intrinsic
value even if the material that is covered (the Lagrangian in
Sec. II A, the further subsectors in II C, and the vacuum
structure in II D) is mostly review. The SU(3)-invariant,
restricted tensor and duality hierarchies worked out in
Sec. II B are new.

A. Field content and Lagrangian

The SU(3)-invariant sector of SO(8)-gauged maximal
four-dimensional supergravity [1] corresponds to an
N ¼ 2 supergravity coupled to a vector and a hyper-
multiplet. In addition to the fields entering these N ¼ 2
multiplets, we wish to consider the SU(3)-singlets in the
(restricted, in the sense of [25]) N ¼ 8 tensor hierarchy
[32,33]. The relevant bosonic matter content thus includes

themetric∶ ds24;

6 scalars∶ φ; χ; ϕ; a; ζ; ζ̃;

2 electric vectors and their magnetic duals∶ A0; A1; Ã0; Ã1;

5 two-form potentials∶ B0; B2; Bab ¼ BðabÞ;

4 three-form potentials∶ C1; Cab ¼ CðabÞ; ð2:1Þ

all of them real. The superscripts on B0, B2 and C1 are just
labels without further meaning. The electric and magnetic
vectors can be collectively denoted AΛ and ÃΛ, with the
index Λ ¼ 0, 1 formally labeling “half” the fundamental
representation of Spð4;RÞ. The indices on Bab andCab take
on two values which, for convenience, are labeled a ¼ 7, 8.
The index a formally labels a doublet of SL(2), but we do
not attach any significance to its position as it can be raised
and lowered with δab. See Appendix A for the embedding
of the SU(3)-invariant fields (2.1) into their parent N ¼ 8
counterparts.
Only the metric, the scalars and the vector fields enter the

conventional Lagrangian. The fields φ, ϕ and a are proper
scalars, while χ, ζ and ζ̃ are pseudoscalars. All of these
parametrize a submanifold

SUð1; 1Þ
Uð1Þ ×

SUð2; 1Þ
SUð2Þ × Uð1Þ ð2:2Þ

of E7ð7Þ=SUð8Þ, where each factor respectively contains the
vector-, ðφ; χÞ, and the hypermultiplet, qu ≡ ðϕ; a; ζ; ζ̃Þ,

u ¼ 1;…; 4, (pseudo)scalars.1 The vectors gauge (electri-
cally, in the usual symplectic frame), the Uð1Þ2, compact
Cartan subgroup of the hypermultiplet isotropy group. In
the Iwasawa parametrization of the scalar manifold (2.2),
the bosonic Lagrangian reads

L ¼ Rvol4 þ
3

2
ðdφÞ2 þ 3

2
e2φðdχÞ2 þ 2ðDϕÞ2

þ 1

2
e4ϕðDaþ 1

2
ðζDζ̃ − ζ̃DζÞÞ2

þ 1

2
e2ϕðDζÞ2 þ 1

2
e2ϕðDζ̃Þ2 þ 1

2
IΛΣHΛ

ð2Þ ∧ �HΣ
ð2Þ

þ 1

2
RΛΣHΛ

ð2Þ ∧ HΣ
ð2Þ − Vvol4; ð2:3Þ

with ðdφÞ2 ≡ dφ ∧ �dφ, etc. The covariant derivatives of
the hyperscalars take on the form

1We will rarely need indices to label the scalars but, when
needed, the local indices will be denoted m ¼ 1;…; 6, on the
entire manifold (2.2), α ¼ 1, 2 on the first factor, and u ¼ 1;…; 4
on the second.

LARIOS, NTOKOS, and VARELA PHYS. REV. D 100, 086021 (2019)

086021-2



Dϕ ¼ dϕ − gA0a; Da ¼ daþ gA0ð1þ e−4ϕðZ2 − Y2ÞÞ;
Dζ ¼ dζ þ gA0e−2ϕðζZ − ζ̃YÞ − 3gA1ζ̃;

Dζ̃ ¼ dζ̃ þ gA0e−2ϕðζ̃Z þ ζYÞ þ 3gA1ζ; ð2:4Þ

where g is the gauge coupling constant. Following [31],
here and throughout we have employed the shorthand
definitions

X ≡ 1þ e2φχ2; Y ≡ 1þ 1

4
e2ϕðζ2 þ ζ̃2Þ; Z≡ e2ϕa:

ð2:5Þ

The covariant derivatives (2.4) correspond to an electric
gauging of the Uð1Þ2 Cartan subgroup of SUð2Þ × Uð1Þ ⊂
SUð2; 1Þ generated by

k0 ¼
1ffiffiffi
2

p ðk½E2� − k½F2�Þ; k1 ¼ −k½H2�; ð2:6Þ

where k½E2�, etc., are SUð2; 1Þ Killing vectors: see (A15)
and (A16) for the explicit expressions for the Killing
vectors of the scalar manifold (2.2) in our parametrization.
The scalar potential V in (2.3) reads

g−2V ¼ −12eφ − 6e−2ϕ−φXYðe4ϕ þ Y2 þ Z2Þ − 12eφðY − 1Þ
�
1þ Y −

3

2
XY

�

þ 6e−2ϕ−φðY − 1Þðe4ϕ þ Y2 þ Z2ÞX2 þ e−3φ
�
1

2
e−4ϕ þ a2 − 1þ 1

2
e4ϕð1þ a2Þ2

þ 1

2
e−4ϕðY − 1Þð1þ 2Z2 − 2e4ϕ þ Yð1þ 2e4ϕ þ 2Z2Þ þ Y2 þ Y3Þ

�
X3; ð2:7Þ

and derives from the following real superpotential (squared)

W2 ¼ 1

32
g2X

h
12e−φ−2ϕðX − 2ÞðY − 2ÞðY2 þ Z2 þ e4ϕÞ þ 36eφY2

þ e−3φ−4ϕX2ðY2 þ Z2 þ e4ϕÞ2 − 16e−3φX2ðY − 1Þ

− 48e−φ−2ϕ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX − 1ÞðY − 1Þ½ðe4ϕ − Y2 þ Z2Þ2 þ 4Y2Z2�

q i
; ð2:8Þ

through the usual formula

1

4
V ¼ 2Gmn∂mW∂nW − 3W2: ð2:9Þ

Here,Gmn,m ¼ 1;…; 6, denotes the nonlinear sigma model metric on (2.2), andGmn its inverse, which can be read off from
the scalar kinetic terms in the Lagrangian (2.3).
Finally, the gauge kinetic matrix is

N ΛΣ ¼ RΛΣ þ iIΛΣ ¼ 1

ð2eφχ þ iÞ

0
B@− e3φ

ðeφχ−iÞ2
3e2φχ
ðeφχ−iÞ

3e2φχ
ðeφχ−iÞ 3ðeφχ2 þ e−φÞ

1
CA; ð2:10Þ

and the (electric) gauge two-form field strengths that appear
in (2.3) are simply

HΛ
ð2Þ ¼ dAΛ; Λ ¼ 0; 1: ð2:11Þ

We have computed the SU(3)-invariant Lagrangian (2.3)
and the quantities that define it using the D ¼ 4 N ¼ 8
embedding tensor formalism [35] (see [36] for a recent
review) with the conventions of [25] for the SO(8) gauging
[1]. The superpotential (2.8) corresponds to one of the

eigenvalues of the N ¼ 8 gravitino mass matrix restricted
to the SU(3)-singlet space. See [4] for the N ¼ 2 special
geometry of the model, in unitary gauge for the scalar coset.
Superpotentials have previously appeared, also in unitary
gauge, in [8,37].

B. Restricted tensor and duality hierarchies

Besides the electric gauge fields that enter the conven-
tional supergravity Lagrangian, one may consider a set
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of other gauge potentials in the so-called tensor hierarchy.
The full N ¼ 8 tensor hierarchy includes all vectors, both
electric and magnetic, along with higher-rank (two-, three-,
and four-form) gauge potentials, in representations of the
duality group of the ungauged theory, E7ð7Þ [32,33]. The
full tensor hierarchy corresponding to theN ¼ 2 subsector
at hand is obtained by retaining the singlets under the
decomposition of those E7ð7Þ representations under SU(3).
Here, we are only interested in a subset of theN ¼ 8 tensor
hierarchy. The reason is that not all E7ð7Þ-covariant fields in
the hierarchy are necessary to describe the full D ¼ 11
embedding of N ¼ 8 SO(8)-gauged supergravity, as
argued in [25]. Only the vectors and some two- and
three-form potentials in representations of the maximal
SLð8;RÞ subgroup of E7ð7Þ are relevant for this purpose.
This subset was dubbed the restricted tensor hierarchy

in [25]. Thus, the tensor fields that we want to consider are
the singlets under SUð3Þ ⊂ SLð8;RÞ of the N ¼ 8
restricted tensor hierarchy. The complete list is given in
(2.1). See Appendix A for further details.
The field strengths of the SU(3)-invariant, restricted

tensor hierarchy fields can be obtained by particularizing
the N ¼ 8 expressions given in [25], with the help of the
expressions contained in Appendix A for their embedding
into their N ¼ 8 counterparts. The electric vector field
strengths have already been given in (2.11), while the
magnetic field strengths are

H̃ð2Þ0 ¼ dÃ0 þ gB0; H̃ð2Þ1 ¼ dÃ1 − 2gB2: ð2:12Þ

The three-form field strengths read, in turn,

H0
ð3Þ ¼ dB0; H2

ð3Þ ¼ dB2;

Hab
ð3Þ ¼ DBab þ 1

4
ð3A0 ∧ dÃ0 þ 3Ã0 ∧ dA0 − A1 ∧ dÃ1 − Ã1 ∧ dA1Þδab

þ 3gC1δab − 4gCab þ 1

2
gCc

cδ
ab; ð2:13Þ

where DBab ¼ dBab þ 2gϵcðaA0 ∧ BbÞ
c. Finally, the four-form field strengths are

H1
ð4Þ ¼ dC1 −

1

3
H1

ð2Þ ∧ B2; Hab
ð4Þ ¼ DCab þ 1

2
H0

ð2Þ ∧ ðϵðacBbÞc þ B0δabÞ; ð2:14Þ

with DCab ¼ dCab þ 2gϵcðaA0 ∧ CbÞ
c.

The field strengths (2.11)–(2.14) are subject to the Bianchi identities

dH0
ð2Þ ¼ 0; dH1

ð2Þ ¼ 0; dH̃ð2Þ0 ¼ gHð3Þ0; dH̃ð2Þ1 ¼ −2gHð3Þ2;

DHab
ð3Þ ¼

�
3

2
H0

ð2Þ ∧ H̃ð2Þ0 −
1

2
H1

ð2Þ ∧ H̃ð2Þ1 þ 3gH1
ð4Þ þ

1

2
gHð4Þcc

�
δab − 4gHab

ð4Þ;

dH0
ð3Þ ¼ 0; dH2

ð3Þ ¼ 0; dH1
ð4Þ ≡ 0; dHab

ð4Þ ≡ 0; ð2:15Þ

where we have defined DHab
ð3Þ ¼ dHab

ð3Þ − 2gϵðacA0 ∧ HbÞc
ð3Þ . These expressions particularize the Bianchi identities (14) of

[25] to the present case.
All of the fields in the restricted tensor hierarchy carry d.o.f., although not independent ones. They are instead subject to a

duality hierarchy [34]. The magnetic two-form field strengths can be written as scalar-dependent combinations of the
electric gauge field strengths and their Hodge duals:

H̃ð2Þ0 ¼
1

X2ð4X − 3Þ ½−e
3φð3X − 2Þ �H0

ð2Þ þ 3eφXðX − 1Þ �H1
ð2Þ

−2e6φχ3H0
ð2Þ þ 3χe2φXð2X − 1ÞH1

ð2Þ�;

H̃ð2Þ1 ¼
1

Xð4X − 3Þ ½3e
φðX − 1Þ �H0

ð2Þ − 3e−φX2 �H1
ð2Þ

þ3χe2φð2X − 1ÞH0
ð2Þ þ 6χX2H1

ð2Þ�: ð2:16Þ

The three-form field strengths are dual to scalar-dependent combinations of derivatives of scalars:
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H0
ð3Þ ¼ − �

�
ðY2 − 2Y þ Z2 þ e4ϕÞ

�
Daþ 1

2
ðζDζ̃ − ζ̃DζÞ

�
þ YðζDζ̃ − ζ̃DζÞ þ 2aDY − 4aYDϕ

�
;

H2
ð3Þ ¼ 3e2ϕ �

�
ðY − 1Þ

�
Daþ 1

2
ðζDζ̃ − ζ̃DζÞ

�
þ 1

2
ðζDζ̃ − ζ̃DζÞ

�
;

H77
ð3Þ ¼ �

�
2Ze2ϕ

�
Daþ 1

2
ðζDζ̃ − ζ̃DζÞ

�
þ 2DY − 4YDϕþ 3ðdφ − e2φχdχÞ

�
;

H78
ð3Þ ¼ �

�
ðY2 − 2Y þ Z2 − e4ϕÞ

�
Daþ 1

2
ðζDζ̃ − ζ̃DζÞ

�
þ YðζDζ̃ − ζ̃DζÞ þ 2aDY − 4aYDϕ

�
;

H88
ð3Þ ¼ − �

�
2Ze2ϕ

�
Daþ 1

2
ðζDζ̃ − ζ̃DζÞ

�
þ 2DY − 4YDϕ − 3ðdφ − e2φχdχÞ

�
: ð2:17Þ

Finally, the four-form field strengths correspond to the following scalar-dependent top forms on four-dimensional
spacetime:

H1
ð4Þ ¼ g½2eφYð3X þ 2Y − 3XYÞ þ e−φ−2ϕXðX þ Y − XYÞðY2 þ Z2 þ e4ϕÞ�vol4;

H77
ð4Þ ¼ −gX½e−3φX2ðY2 − 2Y þ Z2 þ e4ϕÞ þ 6e−φþ2ϕðXY − X − YÞ�vol4;

H78
ð4Þ ¼ −gXZ½e−3φ−2ϕX2ðY2 þ Z2 þ e4ϕÞ þ 6e−φðXY − X − YÞ�vol4;

H88
ð4Þ ¼ −gX½e−3φX2ðY2 − 2Y þ Z2Þ þ 6e−φ−2ϕðXY − X − YÞðY2 þ Z2Þ

þ e−3φ−4ϕX2ðY2 þ Z2Þ2�vol4: ð2:18Þ

The dualizations (2.16)–(2.18) particularize (16) of [25] to
the SU(3)-invariant case.
It can be checked that the scalar potential (2.7) can be

recovered from the dualized four-forms (2.18) via

gð6H1
ð4Þ þH77

ð4Þ þH88
ð4ÞÞ ¼ −2Vvol4: ð2:19Þ

Likewise, the Bianchi identities (2.15) combined with the
dualization conditions (2.16)–(2.18) partially reproduce the
equations of motion that derive from the Lagrangian (2.3).
The list of identities needed to verify this includes the
action of the SLð2;RÞ Killing vector k½H0� in (A15) on the
gauge kinetic matrix (2.10),

∂φN 00 − χ∂χN 00 ¼ 3N 00; ∂φN 11 − χ∂χN 11 ¼ −N 11;

∂φN 01 − χ∂χN 01 ¼ N 01; ð2:20Þ

and the following identities that can be checked to hold for
the dualized three-form field strengths (2.17),

H77
ð3Þ −H88

ð3Þ ¼ −4huvku½H1� �Dqv;

H78
ð3Þ ¼ −

ffiffiffi
2

p
huvðku½E2� þ ku½F2�Þ �Dqv;

H0
ð3Þ ¼ −2huvku0 �Dqv; H2

ð3Þ ¼ huvku1 �Dqv;

ð2:21Þ

and four-form field strengths (2.18) and the potential (2.7),

3gð2H1
ð4Þ −H77

ð4Þ −H88
ð4ÞÞ ¼ −kα½H0�∂αVvol4;

2gðH77
ð4Þ −H88

ð4ÞÞ ¼ −ku½H1�∂uVvol4;

4
ffiffiffi
2

p
gH78

ð4Þ ¼ −ðku½E2� þ ku½F2�Þ∂uVvol4;

ku0∂uV ¼ 0; ku1∂uV ¼ 0: ð2:22Þ

In (2.21) and (2.22), Dqu, u ¼ 1;…; 4, collectively denote
the hypermultiplet covariant derivatives (2.4); k0 and k1
are the hypermultiplet Killing vectors (2.6) along which
the gauging is turned on; k½H0� and k½H1� are other Killing
vectors [see (A15), (A16)] on each factor of the scalar
manifold (2.2); and huv is the metric that can be
read off from the hypermultiplet kinetic terms in the
Lagrangian (2.3).

The last two identities in (2.22) reflect the invariance
of the potential (2.7) under the gauged hypermultiplet
isometries (2.6). These are the only symmetries of the
SU(3)-invariant potential (2.7). The symmetry is enhanced
in the subsectors that we now turn to discuss.

C. Some further subsectors

It is interesting to consider further subsectors contained
in the SU(3)-invariant sector in the notation that we are
using. A natural way to obtain those is to impose invariance
under a subgroup G of SO(8) that contains SU(3). The
relevant tensor hierarchy field strengths and their dual-
ization conditions are obtained by bringing the G-invariant
restrictions specified on a case-by-case basis below to
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(2.11)–(2.14) and (2.16)–(2.18). The field content in each
of these subsectors is summarized for convenience in
Table I.
An obvious yet still interesting sector is attained by

requiring an additional invariance under the Uð1Þ2 with
which SU(3) commutes inside SO(8). The resulting
SUð3Þ × Uð1Þ2-invariant sector throws out the hypermul-
tiplet and sets identifications on the restricted tensor
hierarchy,2

SUð3Þ × Uð1Þ2∶ ϕ ¼ a ¼ ζ ¼ ζ̃ ¼ 0;

B0 ¼ B2 ¼ B78 ¼ 0; B77 ¼ B88;

C78 ¼ 0; C77 ¼ C88: ð2:23Þ

This sector thus reduces to N ¼ 2 supergravity coupled to
a vector multiplet with a Fayet-Iliopoulos gauging, namely,
to the Uð1Þ4-invariant sector (i.e., the gauged STU model)
with all three vector multiplets identified, along with the
relevant tensor hierarchy fields. Inserting (2.23) in (2.3), the
Lagrangian indeed reduces to e.g., (6.28), (6.29) of [28]
with the fields and coupling constants here and there
identified as

eφthere ¼ e−φhereð1þ e2φhereχ2hereÞ; χthereeφthere ¼ χhereeφhere ;

Ãð1Þthere ¼ −A0
here; Að1Þthere ¼ A1

here; gthere ¼ −ghere:

ð2:24Þ

The potential of the SUð3Þ × Uð1Þ2-invariant sector, (2.7)
with (2.23), acquires a symmetry under the compact
generator, k½E0� − k½F0� in the notation of (A15), of the
vector multiplet scalar manifold. The field redefinition in

the first line of (2.24) is a Uð1Þ ⊂ SLð2;RÞ transformation
generated by this Killing vector, followed by a change of
sign of χ.
One may also consider SUð3Þ × Uð1Þ-invariant sec-

tors, with U(1) chosen to be one of the three triality-
inequivalent3 Uð1Þv, Uð1Þs or Uð1Þc factors with which
SU(3) commutes inside SO(8). These invariant sectors are
attained by setting

SUð3Þ × Uð1Þv∶ ζ ¼ ζ̃ ¼ 0; B2 ¼ 0; ð2:25Þ

SUð3Þ × Uð1Þc∶ e−2ϕ ¼ 1 −
1

4
ðζ2 þ ζ̃2Þ; a ¼ 0;

B0 ¼ −
2

3
B2; B78 ¼ 0; B77 ¼ B88;

C78 ¼ 0; C77 ¼ C88; ð2:26Þ
SUð3Þ × Uð1Þs∶ ϕ ¼ a ¼ ζ ¼ ζ̃ ¼ 0;

B0 ¼ B2 ¼ B78 ¼ 0; B77 ¼ B88;

C78 ¼ 0; C77 ¼ C88; ð2:27Þ
while retaining both vectors and their magnetic duals.
Only the SUð3Þ × Uð1Þs-invariant subtruncation is super-
symmetric, and coincides with the SUð3Þ × Uð1Þ2 sector
discussed above—in other words, invariance under
Uð1Þs cannot be enforced on top of SU(3) without also
imposing Uð1Þc invariance, but not the other way around.
The other two subtruncations retain the would-be vector
multiplet and “half” a hypermultiplet: either the scalars ϕ, a
in the SUð3Þ × Uð1Þv sector, or the pseudoscalars ζ, ζ̃ in
the SUð3Þ × Uð1Þc sector, with ϕ a function of the

TABLE I. Number of bosonic tensor hierarchy fields in each subsector.

Sector Scalars Pseudoscalars E&M vectors Two-forms Three-forms

SU(3) 3 3 4 5 4
SUð3Þ × Uð1Þ2 1 1 4 1 2
SUð3Þ × Uð1Þv 3 1 4 4 4
SUð3Þ × Uð1Þc 1 3 4 2 2
SUð3Þ × Uð1Þs 1 1 4 1 2
SOð6Þv 3 0 2 4 4
SUð4Þc 0 3 2 1 1
SUð4Þs 0 0 2 1 1
SOð7Þv 1 0 0 1 2
SOð7Þc 0 1 0 0 1
SOð7Þs 0 0 0 0 1
G2 1 1 0 1 2

2Curiously, B0 and B2 are allowed by group theory to be
nonvanishing, but are set to B0 ¼ B2 ¼ 0 by the duality relations
(2.17) evaluated with the scalar restrictions (2.23). Similar
comments apply to the condition B2 ¼ 0 in (2.25) and B0 ¼
− 2

3
B2 in (2.26).

3Under triality, the representations 8v, 8s, 8c of SO(8) split
under the subgroups SOð7Þv, SOð7Þs, SOð7Þc as in e.g., (C.1)
of [38], with labels ðv;þ;−Þ there denoted ðv; s; cÞ here. We
follow the spectrum conventions of e.g., [39] whereby, at the SO(8)
vacuum, the (graviton, gravitini, vectors, spinors, scalars, pseudo-
scalars) of N ¼ 8 supergravity lie in the ð1; 8s; 28; 56s; 35v; 35cÞ
of SO(8).

LARIOS, NTOKOS, and VARELA PHYS. REV. D 100, 086021 (2019)

086021-6



pseudoscalars in the latter case. The covariant derivatives
(2.4) simplify accordingly. In the SUð3Þ × Uð1Þv sector, ϕ,
a remain charged under A0 and no field is charged under
A1. In the SUð3Þ × Uð1Þc sector the covariant derivatives
reduce to

Dζ ¼ dζ − gðA0 þ 3A1Þζ̃; Dζ̃ ¼ dζ̃ þ gðA0 þ 3A1Þζ;
ð2:28Þ

showing that ζ, ζ̃ become a doublet charged only under the
combined gauge field A0 þ 3A1.

It is possible to further truncate the SUð3Þ × Uð1Þc sector
to a two-scalar model retaining ðφ; ζÞ along with B77 ¼ B88

and C1, C77 ¼ C88 by imposing (2.26) together with χ ¼ 0,
ζ̃ ¼ ζ, A0 ¼ A1 ¼ 0 and B0 ¼ − 2

3
B2 ¼ 0. The Lagrangian

is (2.3) with these identifications and the superpotential
reduces, from (2.8), to

W ¼ 1

2
ffiffiffi
2

p ge−
3
2
φðe2ϕ − 3e2ϕþ2φ − 2Þ; ð2:29Þ

where e2ϕ is shorthand for the expression in terms of ζ ¼ ζ̃
that appears in (2.26). This is the model considered in [27].
The identifications

e−φhere ¼ ρ4there; ζ2here ¼ ζ̃2here ¼ 2tanh2χthere ð2:30Þ

[the second equation implies e2ϕhere ¼ cosh2 χthere on
(2.26)] indeed bring the superpotential (2.29) to (3.9) of
[27], up to normalization.
The SUð3Þ × Uð1Þ-invariant sectors can be further

reduced by imposing a larger SOð6Þ ∼ SUð4Þ symmetry.
The corresponding sectors are obtained by letting

SOð6Þv∶ ζ ¼ ζ̃ ¼ χ ¼ 0; A1 ¼ Ã1 ¼ 0; B2 ¼ 0;

ð2:31Þ

SUð4Þc∶ e−2ϕ ¼ 1 −
1

4
ðζ2 þ ζ̃2Þ; a ¼ 0;

e−2φ ¼ 1 − χ2; A1 ¼ A0 ≡ A;

Ã1 ¼ 3Ã0; B0 ¼ −
2

3
B2; Bab ¼ 0;

C1 ¼ C77 ¼ C88; C78 ¼ 0; ð2:32Þ

SUð4Þs∶ ϕ ¼ a ¼ ζ ¼ ζ̃ ¼ φ ¼ χ ¼ 0;

A1 ¼ −A0; Ã1 ¼ −3Ã0; B0 ¼ 2

3
B2; Bab ¼ 0;

C1 ¼ C77 ¼ C88; C78 ¼ 0: ð2:33Þ

Again, only the SUð4Þs-invariant sector is supersymmetric:
it truncates out the vector multiplet of the SUð3Þ × Uð1Þs
sector, leading to minimal N ¼ 2 gauged supergravity.

Setting all scalars to zero as in (2.33), further setting
consistently B0 ¼ 2

3
B2 ¼ 0, and rescaling for convenience

the metric and the graviphoton as

gμν ≡ 1

4
ḡμν; A1 ¼ −A0 ≡ 1

4
Ā; ð2:34Þ

Eq. (2.3) reduces to the bosonic Lagrangian of pureN ¼ 2
gauged supergravity,

L ¼ R̄vol4 −
1

2
F̄ ∧ �̄ F̄þ6g2vol4; ð2:35Þ

with F̄≡ dĀ. For later reference, we note that the only
tensor hierarchy field strengths that are active in the SUð4Þs
sector are

H1
ð2Þ ¼ −H0

ð2Þ ≡
1

4
F̄; H̃ð2Þ0 ¼ −

1

3
H̃ð2Þ1 ¼

1

4
�̄ F̄;

H1
ð4Þ ¼ H77

ð4Þ ¼ H88
ð4Þ ¼

3

8
gvol4; ð2:36Þ

where the bars refer to the rescaled quantities (2.34). The
other two truncations (2.31), (2.32) are manifestly non-
supersymmetric. Imposing invariance under SOð6Þv selects
the proper scalars φ, ϕ, a along with the gauge field A0,
while invariance under SUð4Þc retains the pseudoscalars χ,
ζ, ζ̃ along with A0 þ A1. In the latter case, the scalars
become functions of the pseudoscalars as indicated
in (2.32).
It was noted in [4] that the SUð4Þc-invariant sector

coincides with a subtruncation, considered in [40], of the
D ¼ 4 N ¼ 2 gauged supergravity obtained upon consis-
tent truncation of M-theory on any (skew-whiffed) Sasaki-
Einstein seven-manifold [41]. Indeed, using (2.32) and
further identifying the pseudoscalars and vectors here and
in [40] as

χhere ¼ hthere; ζhere ¼−
ffiffiffi
3

p
Imχthere; ζ̃here ¼−

ffiffiffi
3

p
Reχthere;

A0
here ¼ A1

here ¼−A1there; ghere ¼−ð2LÞ−1there ð2:37Þ

[which further imply φhere ¼ −2Uthere − Vthere and ϕhere ¼
−3Uthere, with φ, ϕ here subject to (2.32) and U, V there
subject to their (4.1)], the Lagrangian (2.3) here reproduces
(4.3) of [40]. Neither the SOð6Þv nor the SUð4Þc sectors
admit a further truncation to the Einstein-Maxwell, bosonic
Lagrangian (2.35) of minimal N ¼ 2 supergravity.

It is possible to enlarge the symmetry to the three
different SO(7) subgroups of SO(8) by further imposing
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SOð7Þv∶ ζ ¼ ζ̃ ¼ χ ¼ 0; φ ¼ ϕ; a ¼ 0;

A0 ¼ A1 ¼ Ã0 ¼ Ã1 ¼ 0;

B0 ¼ B2 ¼ B78 ¼ 0; B88 ¼ −7B77;

C1 ¼ C77; C78 ¼ 0; ð2:38Þ

SOð7Þc∶ e−2ϕ ¼ 1 −
1

4
ðζ2 þ ζ̃2Þ ¼ 1 − χ2 ¼ e−2φ;

a ¼ 0; A0 ¼ A1 ¼ Ã0 ¼ Ã1 ¼ 0;

B0 ¼ B2 ¼ 0; Bab ¼ 0;

C1 ¼ C77 ¼ C88; C78 ¼ 0; ð2:39Þ

SOð7Þs∶ ϕ ¼ a ¼ ζ ¼ ζ̃ ¼ φ ¼ χ ¼ 0; A0 ¼ −A1 ¼ 0;

B0 ¼ B2 ¼ 0; Bab ¼ 0;

C1 ¼ C77 ¼ C88; C78 ¼ 0: ð2:40Þ

The SOð7Þs truncation gives minimal N ¼ 1 gauged
supergravity while the SOð7Þv and the SOð7Þc sectors
are nonsupersymmetric. They respectively retain one dila-
ton (φ ¼ ϕ) and one axion [χ, together with the identi-
fications (2.39)], along with the relevant tensors in the
hierarchy.
All three SO(7) sectors are contained within the

G2-invariant sector. This corresponds to N ¼ 1 super-
gravity coupled to a chiral multiplet with a scalar manifold
SLð2Þ=SOð2Þ which is diagonally embedded in (2.2) via

G2∶ ϕ ¼ φ; ζ̃ ¼ −2χ; a ¼ ζ ¼ 0;

A0 ¼ A1 ¼ Ã0 ¼ Ã1 ¼ 0;

B0 ¼ B2 ¼ B78 ¼ 0; B88 ¼ −7B77;

C1 ¼ C77; C78 ¼ 0: ð2:41Þ

The Lagrangian in this sector is (2.3) with the identifica-
tions (2.41). It can be cast in canonical N ¼ 1 form, in the
conventions of e.g., Sec. 4.2 of [31], in terms of the
following Kähler potential and holomorphic superpotential

K ¼ −7 logð−iðt − t̄ÞÞ; W ¼ 2gð7t3 þ t7Þ; ð2:42Þ

with t ¼ −χ þ ie−φ. On the identifications (2.41) that
define the G2-invariant sector, the real superpotential
(2.8) becomes related to (2.42) via W2 ¼ eKWW.
All of the above further truncations arise from symmetry

principles, by retaining the fields that are neutral under the
relevant invariance groups. For this reason, the above
truncations can be directly implemented at the level of
the Lagrangian (2.3). In particular, a consistent truncation
to minimal N ¼ 2 supergravity is obtained by retaining
singlets under SUð4Þs, as noted above. We conclude this
section by noting an alternate truncation of the SU(3) sector
to minimal N ¼ 2 supergravity that is inequivalent to the

SUð4Þs-invariant truncation. In fact, this alternative mini-
mal truncation is not driven by symmetry principles in any
obvious way, so we have verified its consistency at the level
of the field equations. First, freeze the scalars to their
vacuum expectation values (vevs) at the SUð3Þ × Uð1Þc-
invariant vacuum (see Sec. II D),

e−2φ ¼ 3; χ ¼ 0; e−2ϕ ¼ 1−
1

4
ðζ2 þ ζ̃2Þ ¼ 2

3
; a ¼ 0:

ð2:43Þ
Second, identify the electric and magnetic vectors as

A0 ¼ −3A1 ≡ 1

2
Ā; Ã0 ¼ −

1

9
Ã1 ≡ 1

6
ffiffiffi
3

p ˜̄A; ð2:44Þ

turn off the two-form potentials, and retain an auxiliary
three-form potential as

B0 ¼ −
2

3
B2 ¼ Bab ¼ 0; C78 ¼ 0; C1 ¼ C77 ¼ C88:

ð2:45Þ
Finally, rescale the metric for convenience:

gμν ≡ 1

3
ffiffiffi
3

p ḡμν: ð2:46Þ

We have verified at the level of the bosonic field equations,
including Einstein, that these identifications define a con-
sistent truncation of the theory (2.3) to minimal N ¼ 2
gauged supergravity (2.35).
The identification of the electric vectors in (2.44) retains

the SUð3Þ × Uð1Þc-invariant vector [see (A17) with (A12)]
that remains massless [see (2.28)] at the N ¼ 2 vacuum
(2.43). For future reference, it is also interesting to keep
track of the field strengths for this truncation. On (2.44),
(2.45), the two-form potential contributions to the magnetic
vector two-form field strengths (2.12) drop out, and the
vector field strengths become

H0 ¼ −3H1 ≡ 1

2
F̄; H̃0 ¼ −

1

9
H̃1 ≡ 1

6
ffiffiffi
3

p ˜̄F ¼ −
1

6
ffiffiffi
3

p �̄ F̄;

ð2:47Þ

with F̄≡ dĀ. The relations here for the magnetic field
strengths are compatible with the vector duality relations
(2.16) evaluated on the scalar vevs (2.43), and the last

equality for the magnetic graviphoton field strength ˜̄F is

fixed by ˜̄F ¼ ∂L=∂F̄, with L as in (2.35). Moving on to the
three-form field strengths, we find that all of them are zero
by bringing (2.44), (2.45) to their definitions (2.13) in terms
of potentials. This was expected, as the three-form field
strengths are dual to combinations (2.17) of (Hodge duals
of) derivatives of scalars, and these have been frozen to
their vevs (2.43). Finally, for the four-form field strengths
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we obtain, from (2.14) with (2.45), H78
ð4Þ ¼ 0, H1

ð4Þ ¼
H77

ð4Þ ¼ H88
ð4Þ ¼ dC1, expressions which are again compat-

ible with the dualization conditions (2.18). Rescaling the
volume form using (2.46), we find

H1
ð4Þ ¼ H77

ð4Þ ¼ H88
ð4Þ ¼

1

2
ffiffiffi
3

p gvol4: ð2:48Þ

D. Vacuum structure

The list of vacua of D ¼ 4 N ¼ 8 supergravity with an
electric SO(8) gauging [1] that preserve at least a subgroup
SU(3) of SO(8) was elucidated in [2]. All of them are AdS.
These vacua arise as extrema of the scalar potential (2.7), in
our conventions, and for convenience we have summarized
them in Table II. The table includes the residual super-
symmetry N and bosonic symmetry G0 for each vacuum,
as well as its location in the scalar space (2.2) in the
parametrization that we are using. The corresponding
cosmological constant, given by (2.7), and the scalar mass
spectrum within the SU(3)-invariant sector is also given.
See [4] for the bosonic spectra within the full N ¼ 8
supergravity. All three supersymmetric points are also
extrema of the superpotential (2.8). On the SO(8) and
the G2 points, the F-terms that derive from the holomorphic
superpotential (2.42) also vanish.
It was argued in [25] that some combinations of the four-

form field strengths of the duality hierarchy ought to vanish
at critical points of the scalar potential, thus yielding
necessary conditions for critical points. In our SU(3)-
invariant case, these conditions read

8H1
ð4Þ − ð6H1

ð4Þ þ δcdHcd
ð4ÞÞ ¼ 0;

8Hab
ð4Þ − ð6H1

ð4Þ þ δcdHcd
ð4ÞÞδab ¼ 0: ð2:49Þ

Using the dualization conditions (2.18), it can be checked
that the relations (2.49) do indeed hold at the critical points
summarized in Table II.

III. D= 11 UPLIFT

We now switch gears and present theD ¼ 11 embedding
of the SU(3)-invariant sector considered in the previous
section. We will use the consistent S7 uplifting formulas
given in [25]. It is a tedious, but otherwise mechanical,
exercise to particularize the general N ¼ 8 uplifting for-
mulas in that reference to the SU(3)-invariant sector at
hand. Section III A contains the D ¼ 11 uplift of the entire
SU(3)-invariant sector while Sec. III B particularizes to
some relevant subsectors and makes contact with previous
literature. Section III C contains a new consistent truncation
of D ¼ 11 supergravity to minimal D ¼ 4 N ¼ 2 gauged
supergravity.

A. Uplift of the SU(3) sector

We first find it useful to present the result in terms of R8

“embedding coordinates” μA, A ¼ 1;…; 8, in the 8v of
SO(8), that define the S7 as the locus

δABμ
AμB ¼ 1 ð3:1Þ

in R8. Under SU(3), the 8v of SO(8) breaks down as
8v → 3þ 3̄þ 1þ 1. In maintaining an explicitly real
notation, it is thus convenient to split R8 ¼ R6 × R2,
and the indices as A ¼ ði; aÞ, with i ¼ 1;…; 6 and
a ¼ 7, 8 respectively labeling the first and second factors.
The D ¼ 11 uplift of the SU(3)-invariant sector utilizes the

tensors δij, J
ð6Þ
ij (real) and Ωð6Þ

ijk (complex) that define the

natural Calabi-Yau structure of R6. See (A6) for our
conventions. Inside R8, these tensors are respectively
invariant under SOð6Þv × SOð2Þ, SUð3Þ × Uð1Þ2 and
SUð3Þ × Uð1Þc, where SO(2) rotates the R2 factor in
R8 ¼ R6 ×R2. Indices on R6 and R2 are raised and
lowered with δij and δab, respectively.
Only the D ¼ 4 metric, the scalars, and the electric

gauge fields in the SU(3)-invariant restricted duality

TABLE II. All critical points ofD ¼ 4N ¼ 8 supergravity with an electric SO(8) gauging with at least SU(3) invariance, reproducing
the results of [2] in our parametrization. For each point we give the residual supersymmetryN and bosonic symmetry G0 within the full
N ¼ 8 theory, their location in the parametrization that we are using, the cosmological constant V0 and the scalar mass spectrum within
the SU(3)-invariant sector. The masses are given in units of the AdS radius, L2 ¼ −6=V0. We have abbreviated Uð3Þc ≡ SUð3Þ × Uð1Þc.
N G0 χ e−φ e−ϕ a ζ ζ̃ g−2V0 L2M2

8 SO(8) 0 1 1 0 0 0 −24 ð−2;−2;−2;−2;−2;−2Þ
2 Uð3Þc 0

ffiffiffi
3

p ffiffi
2
3

q
0

ffiffi
2
3

q ffiffi
2
3

q
−18

ffiffiffi
3

p ð3� ffiffiffiffiffi
17

p
; 2; 2; 2; 0Þ

1 G2 12−1=4 ð25
12
Þ1=4 ð25

12
Þ1=4 0 0 −2 × 12−1=4 − 211=2313=4

55=2
ð4� ffiffiffi

6
p

; −11�
ffiffi
6

p
6

; 0; 0Þ
0 SOð7Þv 0 51=4 51=4 0 0 0 −8 × 53=4 ð6;− 12

5
− 6

5
;− 6

5
;− 6

5
; 0Þ

0 SOð7Þc 1ffiffi
5

p 2ffiffi
5

p 2ffiffi
5

p 0 0 − 2ffiffi
5

p − 25
ffiffi
5

p
2

ð6;− 12
5
− 6

5
;− 6

5
;− 6

5
; 0Þ

0 SUð4Þc 0 1 1ffiffi
2

p 0 1 1 −32 ð6; 6 − 3
4
;− 3

4
; 0; 0Þ
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hierarchy (2.1) enter the D ¼ 11 metric dŝ211. In order to
express the result, it is useful to introduce a symmetric
matrix hab of D ¼ 4 scalars and its inverse as4

h ¼
�
e2ϕ Z

Z e−2ϕðY2 þ Z2Þ

�
;

h−1 ¼ Y−2
�
e−2ϕðY2 þ Z2Þ −Z

−Z e2ϕ

�
; ð3:2Þ

and the following combination of D ¼ 4 scalars and
constrained coordinates μi, μa,

Δ1 ¼ e2φYμiμi þ Xhabμaμb: ð3:3Þ

With these definitions, the embedding into the D ¼ 11
metric reads

dŝ211 ¼ e−φX1=3Δ2=3
1 ½ds24 þ g−2eφΔ−1

1 ðDμiDμi

þ e2φX−1Yðh−1ÞabDμaDμbÞ
þ g−2e3φX−1Y−1ðY − XÞΔ−2

1 ðYJð6Þij μ
iDμj

þ habϵbcμaDμcÞ2�; ð3:4Þ

where ϵab is the totally antisymmetric symbol with two
indices, and the covariant derivatives are defined as

Dμi ¼ dμi − gA1Jð6Þijμj; Dμa ¼ dμa − gA0ϵabμb:

ð3:5Þ

For generic values of the D ¼ 4 scalars, the metric (3.4)
enjoys an SUð3Þ × Uð1Þv isometry.
Moving on to the D ¼ 11 three-form Âð3Þ, all the D ¼ 4

fields in the tensor hierarchy (2.1), except for the metric,
enter its expression. A long calculation yields

Âð3Þ ¼ C1μiμ
i þ Cabμ

aμb −
1

12
g−1½ðBa

a þ 2A1 ∧ Ã1Þδij
þ 4B2Jð6Þij � ∧ μiDμj

þ 1

2
g−1½Bab − A0 ∧ Ã0δab þ B0ϵab� ∧ μaDμb

þ 1

6
g−2Ã1 ∧ Jð6Þij Dμi ∧ Dμj

þ 1

2
g−2Ã0 ∧ ϵabDμa ∧ Dμb þ A; ð3:6Þ

where A is a three-form on the internal S7 that depends on
the D ¼ 4 scalars:

A¼−g−3Δ−1
1

�
1

2
e4φχX−1YJð6Þij μ

iDμj ∧ ϵabDμa ∧Dμb

þ 1

2
χe2φðYJð6Þij μ

iDμjþhabϵbcμaDμcÞ∧ Jð6Þkl Dμk ∧Dμl

−
1

4
e2φðV1ReΩ

ð6Þ
ijk þV2ImΩð6Þ

ijkÞ∧ μiDμj ∧Dμk

þ 1

12
e2ϕXðv1ReΩð6Þ

ijk þv2ImΩð6Þ
ijkÞDμi ∧Dμj ∧Dμk

�
:

ð3:7Þ
Here, we have defined the shorthand functions

v1 ¼ μ7ζ þ μ8e−2ϕðζZ þ ζ̃YÞ;
v2 ¼ μ7ζ̃ − μ8e−2ϕðζY − ζ̃ZÞ; ð3:8Þ

and one-forms

V1 ¼ ðζY − ζ̃ZÞDμ7 þ e2ϕζ̃Dμ8;

V2 ¼ ðζZ þ ζ̃YÞDμ7 − e2ϕζDμ8: ð3:9Þ
The field strength four-form F̂ð4Þ ¼ dÂð3Þ is computed to be

F̂ð4Þ ¼ H1
ð4Þμiμ

i þHab
ð4Þμaμb −

1

12
g−1½Hð3Þaaδij þ 4H2

ð3ÞJ
ð6Þ
ij � ∧ μiDμj

þ 1

2
g−1½Hab

ð3Þ þH0
ð3Þϵ

ab� ∧ μaDμb þ
1

6
g−2H̃ð2Þ1 ∧ Jð6Þij Dμi ∧ Dμj þ 1

2
g−2H̃ð2Þ0 ∧ ϵabDμa ∧ Dμb

þ 1

4
g−2e2φΔ−1

1 ½4χe2φX−1YJð6Þij μ
iDμj ∧ μkDμk

þ e2ϕðv2ReΩð6Þ
ijk − v1ImΩð6Þ

ijkÞμiDμj ∧ Dμk� ∧ H0
ð2Þ

−
1

4
g−2Δ−1

1 ½2χe2φX−1YμkμkðXJð6Þij Dμi ∧ Dμj þ e2φϵabDμa ∧ DμbÞ

− 4χe2φμkDμk ∧ ðYJð6Þij μ
iDμj þ hacϵcbμaDμbÞ

þ e2ϕXðv2ReΩð6Þ
ijk − v1ImΩð6Þ

ijkÞμiDμj ∧ Dμk� ∧ H1
ð2Þ þ dAscalars: ð3:10Þ

4This matrix hab should not be confused with the metric huv on the hypermultiplet scalar manifold.
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In this expression,H1
ð4Þ,H

ab
ð4Þ, etc., turn out to reproduce the

D ¼ 4 four-, three- and magnetic two-form field strengths
(2.12)–(2.13) of the restricted tensor hierarchy (2.1). This
provides a D ¼ 11 crosscheck of the D ¼ 4 calculation of
Sec. II B. The terms that contain the electric two-form field
strengths H0

ð2Þ, H
1
ð2Þ, come from the vector contributions in

the covariant derivatives Dμi and Dμa in (3.7). Finally,
dAscalars contains two types of terms. The first type includes
contributions of covariant derivatives of D ¼ 4 scalars,
wedged with three-forms on the internal S7. The second
type includes internal four-forms with coefficients that
depend on the D ¼ 4 scalars algebraically only. The

presence in Âð3Þ of J
ð6Þ
ij , Ω

ð6Þ
ijk and hab breaks the symmetry

of the full D ¼ 11 configuration to SU(3), in agreement
with the symmetry of the D ¼ 4 model.

The above expressions give the complete embedding
of the SU(3)-invariant, restricted tensor hierarchy (2.1) into
D ¼ 11 supergravity. As such, these expressions contain
redundant D ¼ 4 d.o.f. As argued in [25], these redun-
dancies can be eliminated at the level of the D ¼ 11 four-
form field strength by making use of the D ¼ 4 duality
relations. Indeed, regarding the tensor field strengths in
(3.10) as shorthand for the dualization conditions (2.16)–
(2.18), Eqs. (3.4), (3.10) then express the embedding into
D ¼ 11 supergravity exclusively in terms of the dynami-
cally independent (metric, electric-vector and scalar) d.o.f.
that enter the D ¼ 4 Lagrangian (2.3).

In particular, the Freund-Rubin term [the first two
contributions on the right-handside of (3.10)], can be
simplified by using the identities (2.19), (2.22) that relate
the dualized four-form field strengths (2.18) to the scalar
potential (2.3) and its derivatives:

H1
ð4Þμiμ

i þHab
ð4Þμaμb

¼ −
1

4g
½V þ 1

6
ðμiμi − 3μaμ

aÞkα½H0�∂αV

þ ððμ7Þ2 − ðμ8Þ2Þku½H1�∂uV

þ
ffiffiffi
2

p
μ7μ8ðku½E2� þ ku½F2�Þ∂uV�vol4: ð3:11Þ

At a critical point, the terms in derivatives of the potential
drop out and the Freund-Rubin term becomes proportional
to the AdS4 cosmological constant, in agreement with the
general N ¼ 8 discussion of [25]. See also [24] for a
related discussion. All the Freund-Rubin terms that we
write for the truncations to specific subsectors in Sec. III B
and for the concrete AdS4 solutions in Sec. IV agree with
the generic expression (3.11).

B. Uplift of some further subsectors

The uplifting formulas of Sec. III A simplify by impos-
ing a symmetry enlargement, carried over to D ¼ 11 by
restricting the D ¼ 4 fields as in Sec. II C. Introducing
intrinsic S7 angles by solving the constraint (3.1) is also
facilitated in further subsectors, as some intrinsic angles are
better suited than others to make the relevant symmetry
apparent in D ¼ 11. See Appendix B for some relevant
geometric structures on S7.

1. SU(3) × U(1)2-invariant sector

For the SUð3Þ × Uð1Þ2-invariant sector (2.23), the
embedding formulas for the D ¼ 11 metric, (3.4), and
three-form, (3.6), (3.7), become

dŝ211 ¼ e−φX1=3Δ2=3
1 ds24 þ g−2½X−2=3Δ2=3

1 dα2 þX1=3Δ−1=3
1 cos2 αds2ðCP2Þ

þ e2φX−2=3Δ2=3
1 Δ−1

2 sin2 α cos2 αðDτ− þ σÞ2

þX−2=3Δ2Δ
−4=3
1 ðDψ− þΔ3Δ−1

2 cos2 αðDτ− þ σÞÞ2�; ð3:12Þ

Âð3Þ ¼ C1 cos2 αþ C77 sin2 αþ 1

12
g−1 sin 2αð4B77 þ A1 ∧ Ã1 − 3A0 ∧ Ã0Þ ∧ dα

−
1

6
g−2 sin 2αðÃ1 þ 3Ã0Þ ∧ dα ∧ Dψ−

þ 1

3
g−2 cos αÃ1 ∧ ½cos αJð4Þ − sinαdα ∧ ðDτ− þ σÞ�

þ 1

2
g−3χe2φX−1 sin 2αdα ∧ Dψ− ∧ ðDτ− þ σÞ

− g−3χe2φΔ−1
1 cos4 αðDτ− þ σÞ ∧ Jð4Þ

− g−3χe2φΔ−1
1 cos2 α cos 2αDψ− ∧ Jð4Þ: ð3:13Þ

In these expressions, α, τ−, ψ− are angles on S7 whose relation to the constrained coordinates μA of R8 is given
in Appendix B. The covariant derivatives for the last two are
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Dψ− ¼ dψ− − gA0; Dτ− ¼ dτ− þ gðA0 þ A1Þ: ð3:14Þ
The line element ds2ðCP2Þ and the two-form Jð4Þ respectively correspond to the Fubini-Study metric, normalized so that its
Ricci tensor is six times the metric, and the Kähler form, with potential one-form σ such that dσ ¼ 2Jð4Þ, on the complex
projective plane. Finally, Δ1, Δ2 and Δ3 are the following functions of the S7 angle α and the SUð3Þ × Uð1Þ2-invariant,
D ¼ 4 vector multiplet scalars

Δ1 ¼ Xsin2αþ e2φcos2α;

Δ2 ¼ e2φ½sin4αþ ðe2φ þ 2χ2e2φ þ e−2φX2Þsin2αcos2αþ cos4α�;
Δ3 ¼ ½X2 þ χ2e4φ�sin2αþ e2φcos2α: ð3:15Þ

The function Δ1 here is simply the particularization of (3.3) to the present case.
The four-form field strength corresponding to (3.13) can be computed to be

F̂ð4Þ ¼ 2g½2ðeφcos2αþ e−φXsin2αÞ þ Xe−φ�vol4 þ g−1 sin 2αð�dφ − e2φχ � dχÞ ∧ dα

−
1

6
g−2½sin 2αðH̃1 þ 3H̃0Þ ∧ dα ∧ Dψ− − 2H̃1 ∧ ðcos2αJð4Þ − sin α cos αdα ∧ ðDτ− þ σÞÞ�

þ 1

2
g−2χe2φ½X−1 sin 2αdα ∧ ðH0 ∧ ðDτ− þ σÞ þ ðH0 þH1Þ ∧ Dψ−Þ

− 2Δ−1
1 cos4αðH0 þH1Þ ∧ Jð4Þ þ 2Δ−1

1 cos2α cos 2αH0 ∧ Jð4Þ�

þ g−3
�
1

2
e2φX−2 sin 2α½2χdφ − ðX − 2Þdχ� ∧ dα ∧ Dψ− ∧ ðDτ− þ σÞ

− e2φΔ−2
1 cos4α½2χsin2αdφþ ðe2φcos2α − ðX − 2Þsin2αÞdχ� ∧ ðDτ− þ σÞ ∧ Jð4Þ

− e2φΔ−2
1 cos2α cos 2α½2χsin2αdφþ ðe2φcos2α − ðX − 2Þsin2αÞdχ� ∧ Dψ− ∧ Jð4Þ

þ χe2φX−1 sin 2αdα ∧ Dψ− ∧ Jð4Þ − 2χe2φΔ−1
1 cos4αJð4Þ ∧ Jð4Þ

þ 2e2φχðΔ1 þ XÞΔ−2
1 sinαcos3αdα ∧ ðDτ− þ σÞ ∧ Jð4Þ

þ 1

2
e2φχΔ−2

1 sin 2α½4e2φcos4αþ Xððsin 2αÞ2 þ 2 cos 2αÞ�dα ∧ Dψ− ∧ Jð4Þ
�
: ð3:16Þ

Here, we have explicitly made use of the dualization
conditions (2.17), (2.18) for the three- and four-form
field strengths, particularized to SUð3Þ × Uð1Þ2-invariant
scalars via (2.23). The magnetic two-form field strengths
H̃Λ, Λ ¼ 0, 1, stand for the dualized expressions (2.16).
As noted in Sec. II C, the SUð3Þ × Uð1Þ2-invariant

sector coincides with the gauged STU model with all
three vector multiplets identified. This was embedded in
D ¼ 11 supergravity in [28] (see also [42]), along with
the entire STU model. Our uplifting formulas (3.12),
(3.16), obtained instead from the D ¼ 11 embedding of
the SU(3) sector, are in perfect agreement with (6.22)–
(6.24) of [28]. This can be seen by using the D ¼ 4

redefinitions (2.24), which also imply H̃0here ¼ R̃there and
H̃1here ¼ −Rthere, along with the S7 angle and one-form
identifications

ξthere ¼ αhere þ
π

2
ϕ1there ¼ ψ−here;

ψ there ¼ ψ−here þ τ−here; Bthere ¼ σhere; ð3:17Þ

or, in terms of the ψ , τ defined in Eq. (B1) of
Appendix B, ϕ1there ¼ −ψ , ψ there ¼ τ.

2. SU(4)-invariant sectors

While the deformations inflicted on the internal S7 by
the SU(3)-invariant D ¼ 4 fields are inhomogeneous,
enlarging the symmetry to SUð4Þc and SUð4Þs results in
the deformations becoming homogeneous.
For the SUð4Þc-invariant D ¼ 4 fields (2.32), the

D ¼ 11 embedding formulas (3.4), (3.6), (3.7) simplify to

dŝ211 ¼ e
4
3
ϕþφds24 þ g−2½e−2

3
ϕds2ðCP3þÞ

þ e
4
3
ϕ−2φðηð7Þþ þ gAÞ2�; ð3:18Þ

Âð3Þ ¼ C1 þ 1

2
g−1B0 ∧ ðηð7Þþ þ gAÞ þ g−2Ã0 ∧ Jð7Þþ

− g−3
�
χJð7Þþ ∧ ðηð7Þþ þ gAÞ − 1

2
ζReΩð7Þ

þ

−
1

2
ζ̃ImΩð7Þ

þ

�
; ð3:19Þ
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where ϕ;φ stand for the expressions in terms of χ; ζ; ζ̃ given in (2.32). Here, ds2ðCP3þÞ is the Fubini-Study metric on CP3

normalized so that the Ricci tensor is eight times the metric, and ηð7Þþ , Jð7Þþ ,Ωð7Þ
þ are the homogeneous Sasaki-Einstein forms

on S7 defined in Appendix B. The four-form field strength corresponding to (3.19) reads

F̂ð4Þ ¼ −6ge4ϕþ3φ

�
−1þ χ2 þ 1

3
ðζ2 þ ζ̃2Þ

�
vol4 þ

1

2
g−1e4ϕ � ðζ̃Dζ − ζDζ̃Þ ∧ ðηð7Þþ þ gAÞ

þ g−2ð1 − χ2Þ
1þ 3χ2

h
2χF −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

q
� F

i
∧ Jð7Þþ

− g−3
�
dχ ∧ Jð7Þþ ∧ ðηð7Þþ þ gAÞ − 1

2
Dζ ∧ ReΩð7Þ

þ −
1

2
Dζ̃ ∧ ImΩð7Þ

þ

�

− 2g−3χJð7Þþ ∧ Jð7Þþ − 2g−3ðζ̃ReΩð7Þ
þ − ζImΩð7Þ

þ Þ ∧ ðηð7Þþ þ gAÞ; ð3:20Þ

with, again, ϕ;φ written in terms of χ; ζ; ζ̃ as in
(2.32). As noted in Sec. II C following [4], the SUð4Þc-
invariant sector of SO(8) supergravity coincides with
the model considered in [40]. Using the redefinitions
(2.37) and straightforwardly identifying our Sasaki-
Einstein structure with theirs, our uplifting formu-
las (3.18), (3.20) do indeed match (2.2), (2.3) of [40]
when the identifications of their equation (4.1) are taken
into account.
The SUð4Þs sector coincides with minimal N ¼ 2

gauged supergravity, (2.35). The D ¼ 11 uplift of this
sector can be achieved by bringing the restrictions (2.33)
to the general formulas of Sec. III A or, equivalently,
by further setting φ ¼ χ ¼ 0, A1 ¼ −A0 ≡ 1

4
Ā, and Ã1 ¼

−3Ã0 in the uplifting formulas of Sec. III B 1. Using the
rescaled fields (2.34) and the D ¼ 4 field strengths
(2.36), and combining the resulting expressions in terms
of the Sasaki-Einstein forms Jð7Þ− , ηð7Þ− specified in

Appendix B, the D ¼ 11 uplift of the SUð4Þs sector
can be written as

dŝ211 ¼
1

4
ds̄24 þ g−2ðds2ðCP3

−Þ þ
�
ηð7Þ− þ 1

4
gĀÞ2

�
;

F̂ð4Þ ¼
3

8
gvol4 −

1

4
g−2�̄ F̄ ∧ Jð7Þ− : ð3:21Þ

This coincides with the consistent truncation of D ¼ 11

supergravity down to minimal N ¼ 2 gauged super-
gravity obtained in [43], with straightforward identifica-
tions. An alternate D ¼ 11 embedding of minimal N ¼ 2
supergravity will be given in Sec. III C.

3. G2-invariant sector

The D ¼ 11 embedding formulas of Sec. III A particu-
larized to the G2-invariant sector (2.41) become, in the
relevant set of intrinsic coordinates described in Appendix B,

dŝ211 ¼ e−φX1=3Δ2=3
1 ds24 þ g−2X1=3Δ−1=3

1 ðe2φX−3Δ1dβ2 þ sin2βds2ðS6ÞÞ;
Âð3Þ ¼ C1sin2β þ C88cos2β þ 4g−1 sin β cos βB77 ∧ dβ

þ g−3χΔ−1
1 sin2β½e2φX−1Δ1J ∧ dβ þ X2 sin β cos βReΩþ e2φXsin2βImΩ�; ð3:22Þ

where β is an angle on S7, ds2ðS6Þ is the round metric on S6 normalized so that the Ricci tensor equals five times the metric,
J and Ω are the homogeneous nearly Kähler forms on S6 and the function Δ1 is, from (3.3) with (B22),

Δ1 ¼ Xðe−2φX2cos2β þ e2φsin2βÞ: ð3:23Þ

The associated four-form field strength reads

F̂ð4Þ ¼ −ge−3φX2½½ðX − 2ÞX2 þ e4φð7X − 12Þ�sin2β þ e−4φX2½X3 þ 7e4φðX − 2Þ�cos2β�vol4
− 4g−1 sin β cos βð�dφ − e2φχ � dχÞ ∧ dβ þ g−3e2φX−2sin2βð2χdφ − ðX − 2ÞdχÞ ∧ J ∧ dβ

þ 2g−3χXΔ−2
1 sin3β cos βðΔ1 − 2e2φXsin2βÞdφ ∧ ReΩþ 4g−3χX3Δ−2

1 sin4βcos2βdφ ∧ ImΩ

þ g−3X2Δ−2
1 sin3β cos β½e2φð3X − 2Þsin2β − e−2φX2ðX − 2Þcos2β�dχ ∧ ReΩ

þ g−3X2Δ−2
1 sin4β½e4φsin2β − Xð3X − 4Þcos2β�dχ ∧ ImΩ

EMBEDDING THE SU(3) SECTOR OF SO(8) SUPERGRAVITY … PHYS. REV. D 100, 086021 (2019)

086021-13



þ g−3e−2φχXΔ−2
1 sin4β½e4φð3e4φ þ X2Þsin2β þ X2ð5e4φ − X2Þcos2β�ReΩ ∧ dβ

− 2g−3χX2Δ−2
1 sin3β cos β½ðe4φ þ X2Þsin2β þ 2X2cos2β�ImΩ ∧ dβ

− 2g−3e2φχXΔ−1
1 sin4βJ ∧ J : ð3:24Þ

In order to obtain this expression, we have again made
explicit use of the dualization conditions (2.17), (2.18) for
the three- and four-form field strengths, particularized to
the G2-invariant sector (2.41). The D ¼ 11 uplift of the
various SO(7)-invariant sectors can be straightforwardly
obtained by bringing (2.38)–(2.40) to (3.22)–(3.24). See
[24] for a previousD ¼ 11 uplift of the G2-invariant sector.

C. Minimal N = 2 gauged supergravity
from D= 11

It was noted in Sec. II C that the SUð4Þs sector coincides
with minimal N ¼ 2 gauged supergravity. In Sec. III B 2,
the corresponding D ¼ 11 uplift was obtained and shown
to coincide with the consistent embedding of [43]. It was
also discussed at the end of Sec. II C that the SU(3) sector
admits an alternative truncation to minimal N ¼ 2 super-
gravity, by fixing the scalars to their vevs (2.43) at the
N ¼ 2, SUð3Þ × Uð1Þc-invariant point and selecting the
N ¼ 2 graviphoton as in (2.44). Bringing these D ¼ 4
identifications to the general SU(3)-invariant consistent
uplifting formulas of Sec. III A, we obtain a new embed-
ding of pure N ¼ 2 gauged supergravity into D ¼ 11.

We find it convenient to present the result in local
intrinsic S7 coordinates ψ 0, τ0, α, and in terms of a local
five-dimensional Sasaki-Einstein structure η0, J0 and Ω0.
The former are locally related to the global coordinates ψ ,
τ, α, defined in (B1), that are adapted to the topological

description of S7 as the join of S5 and S1, with α here
identified with that in (B1) and

ψ ¼ ψ 0; τ ¼ τ0 −
1

3
ψ 0: ð3:25Þ

The local five-dimensional Sasaki-Einstein structure forms
η0, J0 and Ω0 are related to their globally defined counter-
parts ηð5Þ, Jð5Þ and Ωð5Þ discussed in Appendix B and the
global coordinate ψ via

η0 ≡ dτ0 þ σ≡ ηð5Þ þ 1

3
dψ ; J0 ≡ Jð5Þ; Ω0 ≡ eiðψþπ

4
ÞΩð5Þ:

ð3:26Þ

The real two-form J0 coincides with the Kähler form on
CP2, σ is a one-form on the latter such that dσ ¼ 2J0 [given
e.g., by (B11)] and the constant phase ei

π
4 in the complex

two-form Ω0 has been chosen for convenience, in order to
simplify the resulting expressions. The primed forms
defined in (3.26) satisfy the Sasaki-Einstein conditions
(B5) and (B6).

Bringing all these definitions, along with the D ¼ 4
restrictions (2.43)–(2.46), to the uplifting formulas (3.4),
(3.6), (3.7), we find a new consistent embedding of
minimal D ¼ 4 N ¼ 2 gauged supergravity (2.35) into
the D ¼ 11 metric and three-form:

dŝ211 ¼
1

3
· 2−2=3ð1þ 2sin2αÞ2=3

�
ds̄24 þ g−2

�
2dα2 þ 6cos2α

1þ 2sin2α
ds2ðCP2Þ

þ 18sin2αcos2α
1þ 8sin4α

η02 þ 1þ 8sin4α
ð1þ 2sin2αÞ2 ðDψ 0 −

3cos2α
1þ 8sin4α

η0Þ2
��

; ð3:27Þ

Âð3Þ ¼ C1 −
1

2
ffiffiffi
3

p g−2 cos α ˜̄A ∧ ½cos αJ0 − sinαdα ∧ η0�

þ 1ffiffiffi
3

p g−3cos2α

�
dα ∧ ImΩ0 þ sin α cos α

1þ 2sin2α
ð2Dψ 0 − 3η0Þ ∧ ReΩ0

�
: ð3:28Þ

These expressions depend explicitly on the dynamical D ¼ 4 metric ds̄24 and graviphoton Ā. The former only features in
dŝ211 but not in Âð3Þ. The latter appears both in dŝ211 and in Âð3Þ, but only through the gauge covariant derivative

Dψ 0 ¼ dψ 0 þ 1

2
gĀ: ð3:29Þ

This singles out ψ 0 as the angle on the localN ¼ 2 “Reeb” direction and thus justifies the primed coordinates (3.25) that we
chose to present the result. Two other D ¼ 4 fields enter the consistent embedding through the three-form (3.28): the

magnetic dual, ˜̄A, of the D ¼ 4 graviphoton, and the auxiliary three-form potential C1.
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The four-form field strength corresponding to Âð3Þ in (3.27) can be computed with the help of (the primed version of) the
Sasaki-Einstein conditions (B5), (B6). We find

F̂ð4Þ ¼
g

2
ffiffiffi
3

p vol4 þ
g−3ffiffiffi
3

p
�
−
cos2αð7 − 10 cos 2αþ cos 4αÞ

ð1þ 2sin2αÞ2 dα ∧ Dψ 0 ∧ ReΩ0

−
6cos4α

ð1þ 2sin2αÞ2 dα ∧ η0 ∧ ReΩ0 þ 6 sin αcos3α
1þ 2sin2α

Dψ 0 ∧ η0 ∧ ImΩ0
�

þ g−2

2
ffiffiffi
3

p
�
2 sinαcos3α
1þ 2sin2α

F̄ ∧ ReΩ0 þ cos α�̄ F̄ ∧ ðcos αJ0 − sin αdα ∧ η0Þ
�
: ð3:30Þ

Again, we have made use of appropriate dualization
conditions, (2.47), (2.48) in this case, to express the result
for the embedding (3.30) into the four-form only in terms of
the independent D ¼ 4 d.o.f. (the metric ds̄24, the grav-
iphoton field strength F̄ ¼ dĀ and its Hodge dual), that
appear in the Lagrangian (2.35).
The truncation (3.27), (3.30) of D ¼ 11 supergravity

down to pure D ¼ 4 N ¼ 2 gauged supergravity (2.35) is
consistent by construction. As a check on our formalism,
we have explicitly verified consistency at the level of the
Bianchi identities and equations of motion for the D ¼ 11
four-form: its field equations are indeed satisfied, provided
the D ¼ 4 Bianchi, dF̄ ¼ 0, and equation of motion,
d�̄ F̄ ¼ 0, of the D ¼ 4 graviphoton are imposed. Some
details can be found in Appendix C. Moreover, these local
uplifting formulas are still valid if, more generally, η0, J0,Ω0
are taken to be the defining forms of any Sasaki-Einstein
five-manifold, and ds2ðCP2Þ is replaced with the metric on
the corresponding local Kähler-Einstein base.

IV. RECOVERING D= 11 AdS4 SOLUTIONS

Setting the scalars to the vevs at each critical point with
at least SU(3) invariance that were recorded in Table II, and
turning off the relevant tensor hierarchy fields, the con-
sistent embedding formulas of Sec. III produce AdS4
solutions of D ¼ 11 supergravity. All these D ¼ 11 sol-
utions are known, so our presentation must necessarily be
brief. Our main motivation to work out these solutions is
rather to test the consistency of the uplifting formulas of
[25] [and their particularization to an explicit, SU(3)-
invariant, subsector]. Except for the more involved D ¼ 11
Einstein equation, we have indeed verified that the
metrics and four-forms that we write below do indeed

solve the eleven-dimensional field equations. Please refer
to Appendix D for details.
We present the solutions in the appropriate intrinsic S7

angles defined in Appendix B. These have already been
employed in Sec. III B to write the consistent D ¼ 11
embedding of various further subsectors. Also, AdS4 is
always taken to be unit radius (so that the Ricci tensor
equals −3 times the metric). As a consequence, the metric
ds2ðAdS4Þ that appears in the expressions below is related
to the metric ds24 that appears in theD ¼ 4 Lagrangian (2.3)
and D ¼ 11 embedding (3.4) by a rescaling

ds24 ¼ −6V−1
0 ds2ðAdS4Þ; ð4:1Þ

where V0 is the cosmological constant at each critical point
given in Table II. The Freund-Rubin term is rescaled
accordingly with respect to (3.11).
Let us first discuss the supersymmetric solutions. The

N ¼ 8, SO(8) point uplifts to the Freund-Rubin solution
[44] for which the internal four-form vanishes and the
internal metric is the round, Einstein metric ds2ðS7Þ, given
in e.g., (B3) or (B17). The N ¼ 2, SUð3Þ × Uð1Þc critical
point uplifts to the D ¼ 11 CPW solution [27]. A local
form of this solution can be obtained from the expressions
in Sec. III C by turning off the D ¼ 4 graviphoton, Ā ¼ 0,
F̄ ¼ 0, and fixing the metric to ds̄24 ¼ g−2ds2ðAdS4Þ. As a
check, we have verified that the solution in R8 embedding
coordinates μA, directly obtained from the formulas in
Sec. III A, perfectly agrees with the CPW solution as given
in [45]. Finally, the N ¼ 1 G2-invariant solution can be
written, using the results and the notation of Sec. III B 3,
in terms of the homogeneous nearly Kähler structure of the
S6 inside S7 as

dŝ211 ¼ g−2
�
25

12

�
1=6

ð2þ cos 2βÞ2=3
�
5

24
ds2ðAdS4Þ þ

1

3
dβ2 þ sin2β

2þ cos 2β
ds2ðS6Þ

�
;

F̂ð4Þ ¼
1

8

�
25

12

�
5=4

g−3volðAdS4Þ þ
ffiffiffi
2

p
g−3sin2β

31=4ð2þ cos 2βÞ2 ½
ffiffiffi
3

p
sin2βReΩ ∧ dβ

− sin β cos βð5þ cos 2βÞImΩ ∧ dβ − sin2βð2þ cos 2βÞJ ∧ J �; ð4:2Þ

with internal three-form potential
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A ¼ sin2β

33=4
ffiffiffi
2

p
g3ð2þ cos 2βÞ ½3 sin β cos βReΩþ

ffiffiffi
3

p
sin2βImΩþ ð2þ cos 2βÞJ ∧ dβ�: ð4:3Þ

This solution was first obtained by de Wit, Nicolai and Warner [15].
Turning to the nonsupersymmetric solutions, the SO(7) critical points can again be uplifted using the results and

conventions of Sec. III B 3. The SOð7Þv solution uplifts to a solution first written by de Wit and Nicolai [46]. In our
conventions, we get

dŝ211 ¼ 5−5=6g−2ð3þ 2 cos 2βÞ2=3
�
3

4
ds2ðAdS4Þ þ dβ2 þ 5sin2β

3þ 2 cos 2β
ds2ðS6Þ

�
;

F̂ð4Þ ¼
9

8
· 5−3=4g−3volðAdS4Þ; ð4:4Þ

while the SOð7Þc point uplifts to Englert’s solution [47]

dŝ211 ¼ g−2
�
4

5

�
1=3

�
3

10
ds2ðAdS4Þ þ ds2ðS7Þ

�
;

F̂ð4Þ ¼
18

25
ffiffiffi
5

p
g3

volðAdS4Þ þ
4sin4βffiffiffi

5
p

g3

�
ReΩ ∧ dβ − cot βImΩ ∧ dβ −

1

2
J ∧ J

�
; ð4:5Þ

with internal three-form

A ¼ sin2β

2
ffiffiffi
5

p
g3

½2sin2βImΩþ 2J ∧ dβ þ sin 2βReΩ�: ð4:6Þ

In the SOð7Þc solution, ds2ðS7Þ is, as always, the round,
SO(8)-invariant metric. It should be understood in
this context as the sine-cone form (B23). Since
SOð7Þc ⊃ SUð4Þc, this solution can also be reobtained
from the SUð4Þc-invariant truncation of Sec. III B 2 and
written in terms of the homogeneous Sasaki-Einstein
structure on S7. The D ¼ 11 metric is the same appearing
in (4.5) with ds2ðS7Þ now understood as the Hopf fibration
(B17), and the four-form is given by

F̂ð4Þ ¼
18

25
ffiffiffi
5

p
g3

volðAdS4Þ

þ 2ffiffiffi
5

p
g3

½2ReΩð7Þ
þ ∧ ηð7Þþ − Jð7Þþ ∧ Jð7Þþ �; ð4:7Þ

with internal three-form

A ¼ −
1ffiffiffi
5

p
g3

½Jð7Þþ ∧ ηð7Þþ þ ImΩð7Þ
þ �: ð4:8Þ

The metric in (4.5) and four-form (4.7) for the SOð7Þc
solution coincide with (3.11) of [40] upon using
the redefinitions (2.37), and making an appropriate
choice for the phase of the complex scalar χthere ≡
− 1ffiffi

3
p ðζ̃here þ iζhereÞ, which is unfixed at the critical point.

We obtain perfect agreement with [40] upon shifting that
phase by π.

Finally, the SUð4Þc-invariant point gives rise to the
Pope-Warner solution [48] in eleven dimensions. Using
the results of Sec. III B 2, this solution can also be written
in terms of the homogeneous Sasaki-Einstein structure
on S7 as

dŝ211 ¼
1

21=3g2

�
3

8
ds2ðAdS4Þþds2ðCP3þÞþ 2ηð7Þþ ⊗ ηð7Þþ

�
;

F̂ð4Þ ¼
9

32g3
volðAdS4Þ−

2

g3
½ReΩð7Þ

þ ∧ ηð7Þþ − ImΩð7Þ
þ ∧ ηð7Þþ �;

ð4:9Þ

where the internal three-form potential is now

A ¼ 1

2
g−3½ReΩð7Þ

þ þ ImΩð7Þ
þ �: ð4:10Þ

We again find agreement with [40]: (4.9) coincides with
(3.8) of that reference when the identifications (2.37) are
taken into account and the phase of χthere ≡ − 1ffiffi

3
p ðζ̃hereþ

iζhereÞ, which is again unfixed at the critical point, is shifted
by π

4
.

V. DISCUSSION

The main goal of this paper was to test the formulas of
[25] for the consistent truncation [14] of D ¼ 11 super-
gravity [13] on S7 down to D ¼ 4 N ¼ 8 SO(8)-gauged
supergravity [1]. We have done so by particularizing these
formulas to the SU(3)-invariant sector of the D ¼ 4 super-
gravity, using an explicit parametrization. When further
restricted appropriately, our results correctly reproduce
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previously known consistent embeddings of sectors that
preserve symmetries larger than SU(3). Our formalism thus
extends previous literature and provides a unified D ¼ 11
embedding of the full SU(3)-invariant sector of SO(8)
supergravity including all dynamical (bosonic) fields. It
does so systematically, by using the restricted tensor
hierarchy approach of [25].
As another crosscheck on the formulas of [25], we have

rederived the known AdS4 solutions of D ¼ 11 super-
gravity that arise upon consistent uplift of the critical points
of SO(8) supergravity with at least SU(3) symmetry [2].
Again, we have found perfect agreement with the existing
literature. As a further test, we have checked that the
D ¼ 11 field equations are indeed verified on these AdS4
solutions. Moreover, we have done this in a unified way for
all of them; please refer to Appendix D for the details. This
should again be regarded as a stringent test on the
consistency of our formalism. Although we have not
explicitly verified the D ¼ 11 Einstein equation due to
its more involved structure, we have reproduced known
solutions, like the ones presented in [40], for which the
Einstein equation has been verified.
We have also obtained new embeddings of minimal

D ¼ 4 N ¼ 2 gauged supergravity both into its parent
D ¼ 4N ¼ 8 SO(8)-gauged supergravity and intoD ¼ 11
supergravity. A previously known embedding is obtained
by fixing the scalars to their vevs at the SO(8) point and
then selecting the graviphoton Ā as an appropriate combi-
nation of the two SU(3)-invariant vectors AΛ,Λ ¼ 0, 1. The
resulting D ¼ 11 consistent uplift coincides with a pre-
viously known one, constructed in Sec. 2 of [43], that is in
fact valid for any Sasaki-Einstein seven-manifold. The
consistency of this truncation, at least within D ¼ 4
theories, is guaranteed by symmetry principles. This is
because this embedding of minimal N ¼ 2 supergravity
into N ¼ 8 coincides with the SUð4Þs-invariant sector of
the latter.

More interestingly, we have shown N ¼ 8 SO(8) super-
gravity to admit an alternative truncation to minimalN ¼ 2
supergravity by similarly fixing the scalars to their vevs at,
now, Warner’s N ¼ 2 SUð3Þ × Uð1Þc point [2] and again
selecting the graviphoton Ā appropriately. Although this
alternative truncation is not driven by any apparent sym-
metry principle, it is nevertheless consistent. We have
explicitly verified this at the level of the D ¼ 4 equations
of motion that follow from the Lagrangian (2.3), including
Einstein. Using our formalism, we have then uplifted this
minimal N ¼ 2 supergravity to D ¼ 11 in Sec. III C.
Again, we have explicitly verified the consistency of the
D ¼ 11 embedding; see Appendix C. Thus, we have
constructed the consistent truncation of D ¼ 11 super-
gravity on the N ¼ 2 AdS4 solution of CPW [27] down to
minimal D ¼ 4 N ¼ 2 gauged supergravity, predicted to
exist by the general conjecture of [43].

ACKNOWLEDGMENTS

P. N. would like to thank IFT-Madrid for hospitality
during the final stages of this project. G. L. is supported by
an FPI-UAM predoctoral fellowship. P. N. and O. V. are
supported by the NSF Grant No. PHY-1720364. G. L. and
O. V. are partially supported by Grants No. SEV-2016-
0597, No. FPA2015-65480-P and No. PGC2018-095976-
B-C21 from Ministerio de Ciencia, Innovación y
Universidades/Agencia Estatal de Investigación/Fonds
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APPENDIX A: DETAILS ON THE SU(3) SECTOR

Let tAB, tABCD, with A ¼ 1;…; 8 indices in the funda-
mental of SLð8;RÞ, be the E7ð7Þ generators in the SLð8;RÞ
basis, in the conventions of Appendix C of [31]. The
SOð8Þ ⊂ SLð8;RÞ ⊂ E7ð7Þ subgroup is generated by
TAB ≡ 2t½ACδB�C. The generators of SUð3Þ ⊂ SOð8Þ can
then be taken to be λ̃α, α ¼ 1;…; 8, defined as

λ̃1 ¼ T14 − T23; λ̃2 ¼ −T13 − T24; λ̃3 ¼ T12 − T34; λ̃4 ¼ T16 − T25;

λ̃5 ¼ −T15 − T26; λ̃6 ¼ T36 − T45; λ̃7 ¼ −T35 − T46; λ̃8 ¼
1ffiffiffi
3

p ðT12 þ T34 − 2T56Þ: ðA1Þ

These generators indeed close into the SU(3) commutation relations

½λ̃α; λ̃β� ¼ 2fαβγλ̃γ; ðA2Þ
with fαβγ ¼ f½αβγ� Gell-Mann’s structure constants,

f123 ¼ 1; f147 ¼ f165 ¼ f246 ¼ f257 ¼ f345 ¼ f376 ¼
1

2
; f458 ¼ f678 ¼

ffiffiffi
3

p

2
: ðA3Þ

Inside E7ð7Þ, the SU(3) generated by (A1) commutes with SLð2;RÞ × SUð2; 1Þ, with the first factor generated by

H0 ¼ −
1

2
ðtii − 3taaÞ; E0 ¼ 3Jð6Þijϵabtijab; F0 ¼

3

2
Jð6ÞijJð6Þkhtijkh; ðA4Þ
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and the second factor by

H1 ¼ −t77 þ t88; H2 ¼ Jð6Þij tij;

E11 ¼ −
ffiffiffi
2

p
ImΩð6Þijktijk8; E12 ¼ −

ffiffiffi
2

p
ReΩð6Þijktijk8; E2 ¼ −

ffiffiffi
2

p
t87;

F11 ¼
ffiffiffi
2

p
ReΩð6Þijktijk7; F12 ¼ −

ffiffiffi
2

p
ImΩð6Þijktijk7; F2 ¼ −

ffiffiffi
2

p
t78: ðA5Þ

These are the numerator groups in the scalar manifold (2.2). In (A4) and (A5) we have split the indices as A ¼ ði; aÞ, with
i ¼ 1;…; 6 in the fundamental of SOð6Þv and a ¼ 7, 8, by effectively identifying the fundamental of SLð8;RÞ with the 8v
of SO(8). We have employed the SU(3)-invariant Calabi-Yau (1,1) and (3,0) forms

Jð6Þ ¼ e12 þ e34 þ e56; Ωð6Þ ¼ ðe1 þ ie2Þ ∧ ðe3 þ ie4Þ ∧ ðe5 þ ie6Þ; ðA6Þ

on R6 ⊂ R8, with e12 ≡ dx1 ∧ dx2, etc., and xi the R6 Cartesian coordinates. We have also introduced the
Levi-Civita tensor ϵab in the R2 ⊂ R8 plane spanned by the 7,8 directions. Indices i, j and a, b are raised and
lowered with δij and δab. The generators (A4) and (A5) indeed commute with each other and respectively close into the
SLð2;RÞ,

½H0; E0� ¼ 2E0; ½H0; F0� ¼ −2F0; ½E0; F0� ¼ H0; ðA7Þ

and SUð2; 1Þ commutation relations,

½H1; H2� ¼ 0;

½H1; E1i� ¼ E1i; ½H2; E1i� ¼ −3ϵijE1j; ½H1; E2� ¼ 2E2; ½H2; E2� ¼ 0;

½H1; F1i� ¼ −E1i; ½H2; F1i� ¼ −3ϵijF1j; ½H1; F2� ¼ −2F2; ½H2; F2� ¼ 0;

½E11; E12� ¼ −
ffiffiffi
2

p
E2; ½E1i; E2� ¼ 0; ½F11; F12� ¼

ffiffiffi
2

p
E2; ½F1i; F2� ¼ 0;

½E1i; F1j� ¼ δijH1 þ ϵijH2; ½E1i; F2� ¼
ffiffiffi
2

p
ϵijF1j; ½E2; F1i� ¼

ffiffiffi
2

p
ϵijE1j; ½E2; F2� ¼ 2H1; ðA8Þ

with, here and only here, i ¼ 1, 2. The generators of the maximal compact subgroup of SUð2; 1Þ are

K0 ≡ E2 − F2 −
ffiffiffi
2

p

3
H2; K1 ≡ 1ffiffiffi

8
p ðE11 − F11Þ; K2 ≡ 1ffiffiffi

8
p ðE12 − F12Þ; K3 ≡ −

1

4
ffiffiffi
2

p ðE2 − F2Þ −
1

4
H2;

ðA9Þ

and close into the SUð2Þ × Uð1Þ commutation relations

½K0; Kx� ¼ 0; ½Kx; Ky� ¼ ϵxyzKz; x ¼ 1; 2; 3: ðA10Þ

It is also interesting to note that the three different U(1)’s with which SU(3) commutes inside the SO(8) subgroups SOð6Þv,
SUð4Þc and SUð4Þs are respectively generated by

Uð1Þv∶ − Jð6Þij tij; ðA11Þ

Uð1Þc∶ − Jð6Þij tij þ 3ϵb
atab; ðA12Þ

Uð1Þs∶ − λJð6Þij tij þ 3ϵb
atab; with λ ∈ R; λ ≠ 1: ðA13Þ

With these details, the SU(3)-invariant bosonic field content and its interactions described in Sec. II can be constructed
from the parent N ¼ 8 supergravity. Per the analysis above, the SU(3)-invariant scalar manifold is (2.2). A coset
representative is
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V ¼ e−χE0e−
1
2
φH0e

1ffiffi
2

p ðaE2−ζE11−ζ̃E12Þe−ϕH1 ; ðA14Þ

and the quadratic scalar matrix that enters the bosonic Lagrangian is M ¼ VVT. The metric on (2.2) that determines the
scalar kinetic terms in the Lagrangian (2.3) is then reproduced through − 1

48
DM ∧ �DM−1. For reference, the SLð2;RÞ ×

SUð2; 1Þ Killing vectors of this metric, normalized to obey the commutation relations (A7), (A8), are

k½H0� ¼ 2∂φ − 2χ∂χ ; k½E0� ¼ ∂χ ; k½F0� ¼ 2χ∂φ þ ðe−2φ − χ2Þ∂χ ; ðA15Þ

and

k½H1� ¼ ∂ϕ − 2a∂a − ζ∂ζ − ζ̃∂ ζ̃; k½H2� ¼ 3ζ̃∂ζ − 3ζ∂ ζ̃;

k½E11� ¼
1ffiffiffi
2

p ðζ̃∂a − 2∂ζÞ; k½E12� ¼
1ffiffiffi
2

p ðζ∂a þ 2∂ ζ̃Þ; k½E2� ¼
ffiffiffi
2

p ∂a;

k½F2� ¼
ffiffiffi
2

p
ða∂ϕ − e−4ϕðZ2 − Y2Þ∂a − ðaζ − e−2ϕζ̃YÞ∂ζ − e−2ϕðζ̃Z þ ζYÞ∂ ζ̃Þ;

k½F11� ¼
1ffiffiffi
2

p
�
−ζ∂ϕ þ ðaζ − e−2ϕζ̃YÞ∂a −

1

2
ð4e−2ϕ − ζ2 þ 3ζ̃2Þ∂ζ þ 2ðaþ ζζ̃Þ∂ ζ̃

�
;

k½F12� ¼
1ffiffiffi
2

p
�
ζ̃∂ϕ − ðaζ̃ þ e−2ϕζYÞ∂a þ 2ða − ζζ̃Þ∂ζ þ

1

2
ð4e−2ϕ þ 3ζ2 − ζ̃2Þ∂ ζ̃

�
: ðA16Þ

Moving on, we need to specify how the SU(3)-invariant
tensor fields in (2.1) are embedded into their N ¼ 8

counterparts. Recall that the restricted N ¼ 8 tensor
hierarchy contains 280 electric vectors AAB, 28 magnetic
vectors ÃAB, 63 two-forms BA

B and 36 three-forms CAB, in
representations of SLð8;RÞ [25]. In order to determine the
embedding of the SU(3)-invariant vectors AΛ, ÃΛ, Λ ¼ 0,
1, into their N ¼ 8 counterparts, we note that SU(3)
commutes inside SOð8Þ ⊂ E7ð7Þ with the Uð1Þ2 generated,
in the notation of (A5), by ðE2 − F2Þ and H2 or, equiv-
alently, by K0 and K3 defined in (A9). These are the Cartan
generators of the maximal compact subgroup SUð2Þ ×
Uð1Þ of the hypermultiplet scalar manifold. Splitting again
the N ¼ 8 index as below (A5), A ¼ ði; aÞ, and fixing the
normalizations for convenience we have the following
embedding into the N ¼ 8 vectors:

Aij ¼ A1Jð6Þij; Aab ¼ ϵabA0; Ãij ¼
1

3
Ã1Jð6Þij;

Ãab ¼ Ã0ϵab: ðA17Þ

Similarly, for the two-form potentials we define

Bi
j ¼ −

1

12
Ba

aδi
j þ 1

3
B2Jð6Þji ; Ba

b ¼ 1

2
Ba

b −
1

2
B0ϵa

b;

ðA18Þ

and for the three-form potentials,

Cij ¼ C1δij; Cab ¼ Cab: ðA19Þ

The field strengths and couplings brought to Sec. II can be
obtained by inserting these expressions into the N ¼ 8
equations given in [25]. For example, the gauge covariant
derivative acting on the scalars reduce to D ¼ dþ
1ffiffi
2

p gðk½E2� − k½F2�ÞA0 − gk½H2�A1, and this in turn repro-

duces (2.4) upon use of the relevant Killing vectors
in (A16).

APPENDIX B: INTRINSIC COORDINATES AND
GEOMETRIC STRUCTURES ON S7

There are various sets of intrinsic coordinates that prove
useful in our context, each of them adapted to different
geometric structures on S7. The expressions below have
been used to particularize the general SU(3)-invariant
consistent embedding formulas of Sec. III A to the further
subsectors of Sec. III B and the AdS4 solutions of Sec. IV.

1. S7 as the join of S1 and a Sasaki-Einstein S5

The first set of coordinates solves the constraint (3.1) by
splitting μA, A ¼ 1;…; 8, as

μi ¼ cos αμ̃i; i ¼ 1;…; 6; μ7 ¼ sin α cosψ ;

μ8 ¼ sinα sinψ ; ðB1Þ

with 0 ≤ α ≤ π=2, 0 ≤ ψ < 2π, and μ̃i, i ¼ 1;…; 6, defin-
ing in turn an S5, i.e., subject to the constraint δijμ̃iμ̃j ¼ 1.
The intrinsic coordinates (B1) are adapted to the topologi-
cal description of S7 as the join of S5 and S1, for which the
round, Einstein, SO(8)-invariant metric,
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ds2ðS7Þ ¼ δABdμAdμB; ðB2Þ

on S7 displays only a manifest SOð6Þv × SOð2Þ symmetry,

ds2ðS7Þ ¼ dα2 þ cos2 αds2ðS5Þ þ sin2 αdψ2; ðB3Þ

with ds2ðS5Þ ¼ δijdμ̃idμ̃j the round, Einstein metric on S5

normalized so that the Ricci tensor equals four times the
metric. This S5 comes naturally equipped with the Sasaki-
Einstein structure (ηð5Þ, Jð5Þ, Ωð5Þ) endowed upon it from
the Calabi-Yau forms Jð6Þ, Ωð6Þ, (A6), on the R6 factor of
R8 ¼ R6 ×R2 in which S5 is embedded,

ηð5Þ ¼ Jð6Þij μ̃
idμ̃j; Jð5Þ ¼ 1

2
Jð6Þij dμ̃

i ∧ dμ̃j;

Ωð5Þ ¼ 1

2
Ωð6Þ

ijkμ̃
idμ̃j ∧ dμ̃k: ðB4Þ

These satisfy

Jð5Þ ∧ Ωð5Þ ¼ 0;

1

2
Jð5Þ ∧ Jð5Þ ∧ ηð5Þ ¼ 1

4
Ωð5Þ ∧ Ω̄ð5Þ ∧ ηð5Þ ¼ volðS5Þ;

ðB5Þ

and

dηð5Þ ¼ 2Jð5Þ; dΩð5Þ ¼ 3iηð5Þ ∧ Ωð5Þ: ðB6Þ

It is also useful to relate the Calabi-Yau forms Jð6Þ and Ωð6Þ

written in terms of constrained R8 coordinates μA ¼
ðμi; μaÞ, i ¼ 1;…; 6, a ¼ 7, 8, to the intrinsic S7 coordinate
α in (B1) and Sasaki-Einstein forms (B4):

Jð6Þij μ
idμj ¼ cos2αηð5Þ;

1

2
Jð6Þij dμ

i ∧ dμj ¼ cos2αJð5Þ − sin α cos αdα ∧ ηð5Þ;

1

2
Ωð6Þ

ijkμ
idμj ∧ dμk ¼ cos3αΩð5Þ;

1

6
Ωð6Þ

ijkdμ
i ∧ dμj ∧ dμk ¼ icos3αΩð5Þ ∧ ηð5Þ

− sinαcos2αdα ∧ Ωð5Þ: ðB7Þ

The round metric ds2ðS5Þ in (B3) naturally adapts itself
to the Sasaki-Einstein structure (B4) when written as

ds2ðS5Þ ¼ ds2ðCP2Þ þ ðdτ þ σÞ2; ðB8Þ

with ds2ðCP2Þ the Fubini-Study metric on the complex
projective plane, normalized so that the Ricci tensor equals
six times the metric, 0 ≤ τ < 2π an angle on the S5 Hopf
fiber, and σ a one-form on CP2 such that dσ ¼ 2Jð4Þ with

Jð4Þ the Kähler form on CP2, so that ηð5Þ ≡ dτ þ σ and
Jð5Þ ≡ Jð4Þ. For completeness, we note that ds2ðCP2Þ can
be written in terms of complex projective coordinates ξi,
i ¼ 1, 2, as

ds2ðCP2Þ ¼ dξ̄idξi

1þ ξ̄kξ
k −

ðξ̄idξiÞðξjdξ̄jÞ
ð1þ ξ̄kξ

kÞ2 ; ðB9Þ

by introducing complex coordinates on R6 ¼ C3 through

μ̃1 þ iμ̃2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ̄iξ

i
p eiτξ1; μ̃3 þ iμ̃4 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ̄iξ
i

p eiτξ2;

μ̃5 þ iμ̃6 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ̄iξ

i
p eiτ: ðB10Þ

In these coordinates, the one-form σ in (B8) reads

σ ¼ i
2

ξidξ̄i − ξ̄idξi

1þ ξ̄kξ
k : ðB11Þ

2. S7 with its homogeneous Sasaki-Einstein structure

A second set of intrinsic coordinates on S7 can be
chosen that adapt themselves to its two natural, homo-
geneous seven-dimensional Sasaki-Einstein structures. These

descend on S7 from the Calabi-Yau forms Jð8Þ� , Ωð8Þ
� on R8,

Jð8Þ� ¼ Jð6Þ � e78 ¼ e12 þ e34 þ e56 � e78;

Ωð8Þ
� ¼ Ωð6Þ ∧ ðe7 � ie8Þ ¼ ðe1 þ ie2Þ ∧ ðe3 þ ie4Þ

∧ ðe5 þ ie6Þ ∧ ðe7 � ie8Þ; ðB12Þ

that are invariant under SUð4Þc for theþ sign and SUð4Þs for
the − sign. In terms of the constrained coordinates μA,
A ¼ 1;…; 8, that define S7 as the locus (3.1) in R8, the
Sasaki-Einstein structure forms induced on S7 are

ηð7Þ� ¼ Jð8Þ�ABμ
AdμB; Jð7Þ� ¼ 1

2
Jð8Þ�ABdμ

A ∧ dμB;

Ωð7Þ
� ¼ 1

6
Ωð8Þ

�ABCDμ
AdμB ∧ dμC ∧ dμD: ðB13Þ

These are subject to

Jð7Þ� ∧ Ωð7Þ
� ¼ 0;

Jð7Þ� ∧ Jð7Þ� ∧ Jð7Þ� ∧ ηð7Þ� ¼ 3i
4
Ωð7Þ

� ∧ Ω̄ð7Þ
� ∧ ηð7Þ�

¼ ∓6volðS7Þ; ðB14Þ

and

dηð7Þ� ¼ 2Jð7Þ� ; dΩð7Þ
� ¼ 4iηð7Þ� ∧ Ωð7Þ

� : ðB15Þ
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The seven-dimensional Sasaki-Einstein structure (B13) is
related to its five-dimensional counterpart (B4) and the angles
(B1) through

ηð7Þ� ¼ cos2αηð5Þ � sin2αdψ ;

Jð7Þ� ¼ cos2αJð5Þ � sin α cosαdα ∧ ðdψ ∓ ηð5ÞÞ;
Ωð7Þ

� ¼ e�iψcos2α½dα� i cosα sin αðdψ ∓ ηð5ÞÞ� ∧ Ωð5Þ:

ðB16Þ

The round metric on S7 adapted to seven-dimensional
Sasaki-Einstein structure reads, similarly to (B8),

ds2ðS7Þ ¼ ds2ðCP3
�Þ þ ðdψ� þ σ�Þ2; ðB17Þ

where ds2ðCP3
�Þ is the Fubini-Study metric, normalized so

that the Ricci tensor equals eight times the metric. The �
refers to two different embeddings of CP3 into S7, with
isometry group SUð4Þc ⊂ SOð8Þ for the þ sign and
SUð4Þs ⊂ SOð8Þ for the − sign. The angles ψ� have

period 2π and the one-forms σ� in (B17) obey dσ� ¼
2Jð7Þ� so that ηð7Þ� ≡ dψ� þ σ�. It is also useful to make
manifest the CP2 that resides inside CP3

�, which is
equipped with the complex projective coordinates ξi,
i ¼ 1, 2, that appear in (B10) and the metric (B9). This
can be achieved by writing

μ1 þ iμ2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ̄iξ

i
p cos αeiðψ�þτ�Þξ1;

μ3 þ iμ4 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ̄iξ

i
p cos αeiðψ�þτ�Þξ2;

μ5 þ iμ6 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ̄iξ

i
p cos αeiðψ�þτ�Þ;

μ7 þ iμ8 ¼ sinαe�iψ� ; ðB18Þ

where τ� are angles of period 2π. The metrics ds2ðCP3
�Þ

and one-forms σ� inside the round S7 metric (B17) can be
written in terms of the coordinates (B18) as

ds2ðCP3
�Þ ¼ dα2 þ cos2αds2ðCP2Þ

þ cos2αsin2αðdτ� þ σÞ2; ðB19Þ

and

σ� ¼ cos2 αðdτ� þ σÞ; ðB20Þ

with ds2ðCP2Þ and σ respectively given by (B9) and (B11).
The round S7 metrics (B3) with (B8) and (B17) with (B19)
are of course diffeomorphic: they are brought into each
other by the change of coordinates

ψ ¼ �ψ�; τ ¼ τ� þ ψ�: ðB21Þ

3. S7 as the sine-cone over a nearly Kähler S6

A third and final set of intrinsic angles on S7 is better
suited to describe the solutions with at least G2 symmetry.
First split the μA, A ¼ 1;…; 8, as μA ¼ ðμI; μ8Þ, with
I ¼ 1;…; 7, and then let

μI ¼ sin βν̃I; μ8 ¼ cos β; ðB22Þ

where 0 ≤ β ≤ π, and ν̃I , I ¼ 1;…; 7, define an S6 through
the constraint δIJ ν̃I ν̃J ¼ 1. In these coordinates, the round
metric (B2) takes on the local sine-cone form

ds2ðS7Þ ¼ dβ2 þ sin2βds2ðS6Þ; ðB23Þ

where ds2ðS6Þ ¼ δIJdν̃Idν̃J is the round, Einstein metric on
S6 normalized so that the Ricci tensor equals five times the
metric. This S6 is naturally endowed with the homogeneous
nearly Kähler structure5 ðJ ;ΩÞ inherited from the closed
associative and co-associative forms,

ψ ¼ e127 þ e347 þ e567 þ e135 − e146 − e236 − e245;

ðB24Þ

ψ̃ ¼ e1234 þ e1256 þ e3456 þ e1367 þ e1457 þ e2357 − e2467;

ðB25Þ

on the R7 factor of R8 ¼ R7 ×R in which S6 is embedded:

J ¼ 1

2
ψ IJK ν̃

Idν̃J ∧ dν̃K;

Ω ¼ 1

6
ðψJKL − iψ̃ IJKLν̃

IÞdν̃J ∧ dν̃K ∧ dν̃L: ðB26Þ

The nearly Kähler forms are subject to

J ∧ Ω ¼ 0; Ω ∧ Ω̄ ¼ −
4i
3
J ∧ J ∧ J ¼ −8ivolðS6Þ;

ðB27Þ
and

dJ ¼ 3ReΩ; dImΩ ¼ −2J ∧ J : ðB28Þ

It is also useful to note the following relations between the
associative and co-associative forms ψ , ψ̃ written in con-
strained R8 coordinates μA ¼ ðμI; μ8Þ, the S7 coordinate β
in (B22), and the nearly Kähler forms (B26):

5The typography we use for the nearly Kähler forms on S6

differentiates them from the Calabi-Yau forms (A6) on R6. For
that reason, we omit labels ð6Þ for the former. Similarly, we omit
labels ð7Þ for the associative and co-associative forms on R7.
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1

2
ψ IJKμ

IdμJ ∧ dμK ∧ dμ8 ¼ −sin4βJ ∧ dβ;

1

6
ψ IJKdμI ∧ dμJ ∧ dμK ¼ sin3βReΩþ sin2β cos βJ ∧ dβ;

1

6
ψ̃ IJKLμ

IdμJ ∧ dμK ∧ dμL ¼ −sin4βImΩ;

1

24
ψ̃ IJKLdμI ∧ dμJ ∧ dμK ∧ dμL ¼ 1

2
sin4βJ ∧ J þ sin3β cos βImΩ ∧ dβ: ðB29Þ

Finally, the following relations hold between the associative and co-associative forms on R8 ¼ R7 ×R and the Calabi-Yau
forms R8 ¼ R6 ×R2:

1

2
ψ IJKμ

IdμJ ∧ dμK ¼ Jð6Þij μidμj ∧ dμ7 þ 1

2
ðJð6Þjk μ

7 þ ReΩð6Þ
ijkμ

iÞdμj ∧ dμk;

1

6
ψ IJKdμI ∧ dμJ ∧ dμK ¼ 1

6
ReΩð6Þ

ijkdμ
i ∧ dμj ∧ dμk þ 1

2
Jð6Þij dμ

i ∧ dμj ∧ dμ7;

1

6
ψ̃ IJKLμ

IdμJ ∧ dμK ∧ dμL ¼ −
1

6
ImΩð6Þ

ijkμ
7dμi ∧ dμj ∧ dμk þ 1

2
Jð6Þij J

ð6Þ
kl μ

idμj ∧ dμk ∧ dμl

þ 1

2
ImΩð6Þ

ijkμ
idμj ∧ dμk ∧ dμ7: ðB30Þ

These expressions come handy to derive the G2-invariant
consistent uplifting formulas of Sec. III B 3 from the
general expressions of Sec. III A. They are also useful to
rewrite the solutions (4.2)–(4.6) with at least G2 symmetry
in the form (D1)–(D7), in order to verify that they satisfy
the equations of motion.

APPENDIX C: CONSISTENCY OF THE MINIMAL
N = 2 TRUNCATION

We have explicitly verified at the level of the D ¼ 4
field equations that the restrictions (2.43)–(2.48) define a
consistent truncation of the SU(3)-invariant theory (2.3)
to minimal N ¼ 2 gauged supergravity (2.35). In turn,
the consistency of the D ¼ 11 embedding of the entire
SU(3) sector described in Sec. III A guarantees the
consistency of the new uplift of minimal N ¼ 2 super-
gravity given in Sec. III C. We have nevertheless checked
consistency explicitly at the level of the Bianchi identity

and the equation of motion of the D ¼ 11 four-form
F̂ð4Þ ¼ dÂð3Þ,

dF̂ð4Þ ¼ 0; d�̂F̂ð4Þ þ
1

2
F̂ð4Þ ∧ F̂ð4Þ ¼ 0: ðC1Þ

The configuration (3.27), (3.30) does solve the D ¼ 11
field equations (C1) provided the Bianchi identity and the
Maxwell equation for the D ¼ 4 graviphoton,

dF̄ ¼ 0; d�̄ F̄ ¼ 0; ðC2Þ
are imposed.
It is straightforward to see that the D ¼ 11 Bianchi

identity is satisfied. Hitting (3.30) with the differential
operator we obtain, after using (C1) and the algebraic and
differential conditions for the local five-dimensional
Sasaki-Einstein structure (3.26) [that is, (B5), (B6) written
for the primed forms η0, J0 and Ω0],

dF̂ð4Þ ¼
g−3ffiffiffi
3

p
�
cos2αð7 − 10 cos 2αþ cos 4αÞ

ð1þ 2sin2αÞ2 dα ∧
�
g
2
F̄ ∧ ReΩ0 þ 3Dψ 0 ∧ ImΩ0 ∧ η0

�

þ 6∂α

�
sin αcos3α
1þ 2sin2α

�
dα ∧ Dψ 0 ∧ η0 ∧ ImΩ0 þ g

3 sin αcos3α
1þ 2sin2α

F̄ ∧ η0 ∧ ImΩ0
�

þ g−2

2
ffiffiffi
3

p
�
2∂α

�
sin αcos3α
1þ 2sin2α

�
dα ∧ F̄ ∧ ReΩ0 −

6 sinαcos3α
1þ 2sin2α

F̄ ∧ ImΩ0 ∧ η0
�
: ðC3Þ

Terms with the same form dependence cancel each other, thus leading to dF̂ð4Þ ¼ 0.
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Moving on to the equation of motion, we find it useful for the calculation to introduce the obvious frame that can be read
off from (3.27),

êα ¼ ð1þ 2sin2αÞ1=3
21=3

ffiffiffi
3

p ēα; with ēα a vierbein for ds̄24;

êp ¼ 21=6 cos α

gð1þ 2sin2αÞ1=6 e
p; with ep a vierbein for ds2ðCP2Þ;

ê8 ¼ 21=6ð1þ 2sin2αÞ1=3ffiffiffi
3

p
g

dα;

ê9 ¼ 21=6
ffiffiffi
3

p
sinα cos αð1þ 2sin2αÞ1=3
gð1þ 8sin4αÞ1=2 η0;

ê10 ¼ ð1þ 8sin4αÞ1=2
21=3

ffiffiffi
3

p
gð1þ 2sin2αÞ2=3

�
Dψ 0 −

3cos2α
1þ 8sin4α

η0
�
; ðC4Þ

with α ¼ 0, 1, 2, 3 and p ¼ 4, 5, 6, 7. Using this frame, the Hodge dual of F̂ð4Þ reads

�̂F̂ð4Þ ¼ −
33=2 cos4 α

g3ð1þ 2 sin2 αÞ2 ê
8910 ∧ J0 ∧ J0 −

ð1þ 2 sin2 αÞ2=3 cos2 α
21=6 · 33=2g

vol4 ∧ ê8 ∧ ImΩ0

þ cos2 αð7 − 10 cos 2αþ cos 4αÞ
27=6 · 33=2gð1þ 2 sin2 αÞ1=3ð1þ 8 sin4 αÞ1=2 vol4 ∧ ê9 ∧ ReΩ0

−
cos3 αð7 − 10 cos 2αþ cos 4αÞ

33=2 · 25=3g sin αð1þ 2 sin2 αÞ4=3ð1þ 8 sin4 αÞ1=2 vol4 ∧ ê10 ∧ ReΩ0

þ sinα cos3 αffiffiffi
3

p
g2ð1þ 2 sin2 αÞ �̄ F̄ ∧ ê8910 ∧ ReΩ0 −

cos2 α

2
ffiffiffi
3

p
g2

F̄ ∧ ê8910 ∧ J0

þ ð1þ 8 sin4 αÞ1=2 cos4 α
25=3 · 31=2g4ð1þ 2 sin2 αÞ4=3 F̄ ∧ ê10 ∧ J0 ∧ J0; ðC5Þ

where ê8910 ¼ ê8 ∧ ê9 ∧ ê10. Computing the differential of
(C5) with the help of the Sasaki-Einstein conditions
satisfied by η0, J0 and Ω0, as well as F̂ð4Þ ∧ F̂ð4Þ from
(3.30) and putting everything together, we find that the
D ¼ 11 equation of motion in (C1) is indeed satisfied on
the D ¼ 4 field equations (C2).

APPENDIX D: D= 11 EQUATIONS OF MOTION
ON THE AdS4 SOLUTIONS

The AdS4 solutions that we brought to Sec. IV of the
main text are obtained from the consistent uplifting for-
mulas of Sec. III A by turning off the relevant tensor
hierarchy fields, fixing the D ¼ 4 scalars to the vevs
recorded in Table II, and fixing the R8 embedding
coordinates μA, A ¼ 1;…; 8, in terms of various sets of
intrinsic angles on S7 discussed in Appendix B. The
particular choice of intrinsic coordinates for each solution
was made on a case-by-case basis, as specific sets of
coordinates are more suitable than others to highlight the
specific symmetry of a solution. While this is obviously the

best approach for the sake of presentation, it is definitely
inconvenient to check the D ¼ 11 equations of motion, as
one would also need to proceed on a case-by-case basis for
each solution.
In order to check that the D ¼ 11 equations of motion

hold it is more convenient to proceed differently. First,
leave the D ¼ 4 scalars as temporarily unfixed constants,
and make a choice of intrinsic S7 coordinates (regardless of
whether they would be well adapted to specific sectors). For
this purpose, we have chosen the intrinsic coordinates (B1).
The D ¼ 11 metric and four-form then get expanded in
terms of the global five-dimensional Sasaki-Einstein struc-
ture ηð5Þ, Jð5Þ, Ωð5Þ specified in Appendix B, with coef-
ficients that depend on the D ¼ 4 scalars along with the S7

angles α and ψ . Second, plug these expressions into the
D ¼ 11 field equations (C1) and obtain, with the help of
the Sasaki-Einstein relations (B5), (B6), the set of equa-
tions that the coefficients must obey for the D ¼ 11
equations to hold. Finally, verify that these equations are
satisfied when the D ¼ 4 scalars are fixed to the critical
points recorded in Table II.
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Proceeding this way, we find that the D ¼ 11 metric (3.4) can be written in terms of the intrinsic angles (B1) as

dŝ211 ¼ Δ−1ds24 þ ds27;

ds27 ¼ G5dα2 þ G7dψ2 þ 2G6dαdψ þG4ds2ðCP2Þ þ ðG3 þ G4Þðηð5ÞÞ2 − 2ðG1dαþ G2dψÞηð5Þ; ðD1Þ

where both the warp factor,

Δ−1 ≡ e−φX1=3Δ2=3
1 ; ðD2Þ

given by Δ1 in (3.3) with (B1), and the coefficients of the internal metric ds27 depend on the S7 angles α, ψ and the D ¼ 4

scalars:

G1 ¼
Δ2

g2

�
−
1

2
e−2ϕ sinαcos3αðX − YÞð2ae4ϕ cos 2ψ − sin 2ψð−Y2 − Z2 þ e4ϕÞÞ

�
;

G2 ¼
Δ2

g2
½e−2ϕsin2αcos2αðX − YÞðae4ϕ sin 2ψ þ sin2ψðY2 þ Z2Þ þ e4ϕcos2ψÞ�;

G3 ¼
Δ2

g2
½Ycos4αðY − XÞ�;

G4 ¼
Δ2

g2
½X2sin2αcos2αe−2ðφþϕÞðae4ϕ sin 2ψ þ sin2ψðY2 þ Z2Þ þ e4ϕcos2ψÞ þ XYcos4α�;

G5 ¼
Δ2

g2

�
XYsin2αcos2α −

1

64
sin2ð2αÞðe2ϕðζ2 þ ζ̃2Þ þ 4Þðe2ϕðζ2 þ ζ̃2Þ − 4e2φχ2Þ

þ X2sin4αe−2ðφþϕÞðae4ϕ sin 2ψ þ sin2ψðY2 þ Z2Þ þ e4ϕcos2ψÞ
þ e−4ϕcos2α½−2ae4ϕ sinψ cosψ þ cos2ψðY2 þ Z2Þ þ e4ϕsin2ψ �

× ½sin2αðae4ϕ sin 2ψ þ sin2ψðY2 þ Z2Þ þ e4ϕcos2ψÞ þ cos2αe2ðφþϕÞ�
�
;

G6 ¼
Δ2

g2
½e−4ϕ sin α cos αð−ae4ϕ cos 2ψ þ sinψ cosψð−Y2 − Z2 þ e4ϕÞÞ�

× ½sin2αðae4ϕ sin 2ψ þ sin2ψðY2 þ Z2Þ þ e4ϕcos2ψÞ þ cos2αe2ðφþϕÞ�;

G7 ¼
Δ2

g2
½e−4ϕsin2αðae4ϕ sin 2ψ þ sin2ψðY2 þ Z2Þ þ e4ϕcos2ψÞ�

× ½sin2αðae4ϕ sin 2ψ þ sin2ψðY2 þ Z2Þ þ e4ϕcos2ψÞ þ cos2αe2ðφþϕÞ�: ðD3Þ

Turning off the D ¼ 4 tensor hierarchy fields (except for the local three-form CFR ≡ C1 ¼ C77 ¼ C88 whose role is
merely to serve as a local potential for the Freund-Rubin term) in the three form (3.6), its pull-back on S7 induced by (B1)
reads

Âð3Þ ¼ ðL2dαþ L3dψÞ ∧ Jð5Þ þ ðL4dαþ L5dψÞ ∧ ReΩð5Þ þ ðL6dαþ L7dψÞ ∧ ImΩð5Þ

þ ðL8ImΩð5Þ þ L9ReΩð5Þ þ L10Jð5ÞÞ ∧ ηð5Þ þ L1dα ∧ dψ ∧ ηð5Þ þ CFR: ðD4Þ

The coefficients here are given by
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L1 ¼
Δ3

8g

�
1

2
χ sin αcos2αe−φ−4ϕ

�
½sin α sin 2αðX − YÞe2ðφþϕÞðe2φχ2 − Y þ 1Þðae4ϕ sin 2ψ þ sin2ψðY2 þ Z2Þ þ e4ϕcos2ψÞ

− 2ðX2sin2αðae4ϕ sin 2ψ þ sin2ψðY2 þ Z2Þ þ e4ϕcos2ψÞ þ Y2cos2αe2ðφþϕÞÞ
× ðcos αe2ðφþϕÞ þ sin α tan αðsin2ψðY2 þ Z2Þ þ Ze2ϕ sin 2ψ þ e4ϕcos2ψÞÞ�;

L2 ¼
Δ3

g3
½−χe−φ−4ϕX sinαcos3αðsinψ cosψð−Y2 − Z2 þ e4ϕÞ − Ze2ϕ cos 2ψÞ�

× ½Xsin2αðae4ϕ sin 2ψ þ sin2ψðY2 þ Z2Þ þ e4ϕcos2ψÞ þ Ycos2αe2ðφþϕÞ�;

L3 ¼ −
tan α sinψðY2 þ Z2 þ 2Ze2ϕ cotψ þ e4ϕcot2ψÞ
Ze2ϕ cos 2ψ − sinψ cosψð−Y2 − Z2 þ e4ϕÞ L2;

L4 ¼
Δ3

g3

�
1

2
Xcos2αe−3φ−2ϕ

�
½Xsin2αðae4ϕ sin 2ψ þ sin2ψðY2 þ Z2Þ þ e4ϕcos2ψÞ þ Ycos2αe2ðφþϕÞ�

× ½Xsin2αðζe2ϕ cosψ þ sinψðζ̃Y þ ζZÞÞ þ e2φcos2αðζ̃e2ϕ sinψ þ cosψðζY − ζ̃ZÞÞ�;

L5 ¼ −
e2ϕðζ̃e2ϕ cosψ þ sinψðζ̃Z − ζYÞÞ

χðsin 2ψð−Y2 − Z2 þ e4ϕÞ − 2Ze2ϕ cos 2ψÞL2;

L6 ¼
2

sin 2α

�
e−2φXsin2αþ cos2αðcosψðζ̃Y þ ζZÞ − ζe2ϕ sinψÞ

ζ̃e2ϕ cosψ þ sinψðζ̃Z − ζYÞ

�
L5;

L7 ¼ −
ζe2ϕ cosψ þ ζ̃Y sinψ þ ζZ sinψ

ζ̃e2ϕ cosψ − ζY sinψ þ ζ̃Z sinψ
L5;

L8 ¼ −e−2φXL7;

L9 ¼ −e−2φXL5;

L10 ¼
Δ3

g3
ð−eφχYcos2αÞ½X2sin2αcos2αe−2ðφþϕÞðae4ϕ sin 2ψ þ sin2ψðY2 þ Z2Þ þ e4ϕcos2ψÞ þ XYcos4α�: ðD5Þ

Finally, the D ¼ 11 four-form F̂ð4Þ ¼ dÂð3Þ is

F̂ð4Þ ¼ Uvol4 þ dα ∧ dψ ∧ ðf1Jð5Þ þ f2ReΩð5Þ þ f3ImΩð5ÞÞ þ f10Jð5Þ ∧ Jð5Þ

þ ½ðf4dαþ f5dψÞ ∧ ReΩð5Þ þ ðf6dαþ f7dψÞ ∧ ImΩð5Þ þ ðf8dαþ f9dψÞ ∧ Jð5Þ� ∧ ηð5Þ; ðD6Þ

where the Freund Rubin term is given by Uvol4 ¼ H1
ð4Þμiμ

i þHab
ð4Þμaμb evaluated on (B1) and on the D ¼ 4 dualization

conditions (2.18). The functional coefficients in (D6) can be written in terms of the coefficients (D5) of the three
form (D4) as

f1 ¼ 2L1 þ ∂αL3 − ∂ψL2; f6 ¼ 3L4 þ ∂αL8;

f2 ¼ ∂αL5 − ∂ψL4; f7 ¼ 3L5 þ ∂ψL8;

f3 ¼ ∂αL7 − ∂ψL6; f8 ¼ ∂αL10;

f4 ¼ −3L6 þ ∂αL9; f9 ¼ ∂ψL10;

f5 ¼ −3L7 þ ∂ψL9; f10 ¼ 2L10: ðD7Þ

The Bianchi identity dF̂ð4Þ ¼ 0 amounts to verifying the following relations:

3f3 þ ∂αf5 − ∂ψf4 ¼ 0; −3f2 þ ∂αf7 − ∂ψf6 ¼ 0;

∂αf10 − 2f8 ¼ 0; ∂αf9 − ∂ψf8 ¼ 0; ∂ψf10 − 2f9 ¼ 0: ðD8Þ

Of course, these conditions are automatically satisfied by construction for all values of the D ¼ 4 scalars upon using (D7).
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We next compute the Hodge dual of the F̂ð4Þ given in (D6) with respect to the D ¼ 11 metric (D1). We obtain

�̂F̂ð4Þ ¼ Δ2vol7 þ Δ−2vol4 ∧ ½ðp1dαþ p2dψÞ ∧ Jð5Þ þ ðp4dαþ p5dψÞ ∧ ReΩð5Þ þ ðp7dαþ p8dψÞ ∧ ImΩð5Þ

þ ðp6ReΩð5Þ þ p9ImΩð5Þ þ p3Jð5ÞÞ ∧ ηð5Þ þ p10dα ∧ dψ ∧ ηð5Þ�; ðD9Þ
with coefficients

p1 ¼
1

Δ2GV
½f1G1 − f9G5 þ f8G6�; p6 ¼

1

Δ2GV
½f5G1 − f4G2 − f2ðG3 þ G4Þ�;

p2 ¼
1

Δ2GV
½f1G2 − f9G6 þ f8G7�; p7 ¼

1

Δ2GV
½f3G1 − f7G5 þ f6G6�;

p3 ¼
1

Δ2GV
½f9G1 − f8G2 − f1ðG3 þG4Þ�; p8 ¼

1

Δ2GV
½f3G2 − f7G6 þ f6G7�;

p4 ¼
1

Δ2GV
½f2G1 − f5G5 þ f4G6�; p9 ¼

1

Δ2GV
½f7G1 − f6G2 − f3ðG3 þ G4Þ�;

p5 ¼
1

Δ2GV
½f2G2 − f5G6 þ f4G7�; p10 ¼ −2

GVG2
4

Δ2
f10: ðD10Þ

Here,

GV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−G7G2

1 þ 2G2G6G1 −G3G2
6 −G4G2

6 − G2
2G5 þ G3G5G7 þ G4G5G7

q
ðD11Þ

is related to the volume element corresponding to the internal metric ds27 in (D1). With these definitions, the equation of
motion in (C1) for the D ¼ 11 four-form becomes equivalent to the following conditions:

Uf1 þ ∂αp2 − ∂ψp1 þ 2p10 ¼ 0; Uf6 þ ∂αp9 þ 3p4 ¼ 0;

Uf2 þ ∂αp5 − ∂ψp4 ¼ 0; Uf7 þ ∂ψp9 þ 3p5 ¼ 0;

Uf3 þ ∂αp8 − ∂ψp7 ¼ 0; Uf8 þ ∂αp3 ¼ 0;

Uf4 þ ∂αp6 − 3p7 ¼ 0; Uf9 þ ∂ψp3 ¼ 0;

Uf5 þ ∂ψp6 − 3p8 ¼ 0; Uf10 þ 2p3 ¼ 0: ðD12Þ

We have verified that equations (D12) hold when theD ¼ 4 scalars are evaluated at any of the critical points collected in
Table II. We have also checked that all the metric and four-forms for the explicit AdS4 solutions written in Sec. IV can be
brought to the form (D1)–(D7), with the help of the relations given in Appendix B. Thus, the explicit AdS4 configurations of
Sec. IV do indeed solve the D ¼ 11 field equations (C1).

[1] B. de Wit and H. Nicolai, N ¼ 8 supergravity, Nucl. Phys.
B208, 323 (1982).

[2] N. Warner, Some new extrema of the scalar potential of
gauged N ¼ 8 supergravity, Phys. Lett. 128B, 169 (1983).

[3] H. Nicolai and N. P. Warner, The SUð3Þ × Uð1Þ invariant
breaking of gauged N ¼ 8 supergravity, Nucl. Phys. B259,
412 (1985).

[4] N. Bobev, N. Halmagyi, K. Pilch, and N. P. Warner, Super-
gravity instabilities of nonsupersymmetric quantum critical
points, Classical Quantum Gravity 27, 235013 (2010).

[5] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena,
N ¼ 6 superconformal Chern-Simons-matter theories,
M2-branes and their gravity duals, J. High Energy Phys.
10 (2008) 091.

[6] M. Benna, I. Klebanov, T. Klose, and M. Smedback,
Superconformal Chern-Simons theories and AdS4=CFT3

correspondence, J. High Energy Phys. 09 (2008) 072.
[7] C.-h. Ahn and K. Woo, Supersymmetric domain wall and

RG flow from 4-dimensional gauged N ¼ 8 supergravity,
Nucl. Phys. B599, 83 (2001).

LARIOS, NTOKOS, and VARELA PHYS. REV. D 100, 086021 (2019)

086021-26

https://doi.org/10.1016/0550-3213(82)90120-1
https://doi.org/10.1016/0550-3213(82)90120-1
https://doi.org/10.1016/0370-2693(83)90383-0
https://doi.org/10.1016/0550-3213(85)90643-1
https://doi.org/10.1016/0550-3213(85)90643-1
https://doi.org/10.1088/0264-9381/27/23/235013
https://doi.org/10.1088/1126-6708/2008/10/091
https://doi.org/10.1088/1126-6708/2008/10/091
https://doi.org/10.1088/1126-6708/2008/09/072
https://doi.org/10.1016/S0550-3213(01)00008-6


[8] N. Bobev, N. Halmagyi, K. Pilch, and N. P. Warner,
Holographic, N ¼ 1 supersymmetric RG flows on M2
branes, J. High Energy Phys. 09 (2009) 043.

[9] N. Bobev, K. Pilch, and N. P. Warner, Supersymmetric janus
solutions in four dimensions, J. High Energy Phys. 06
(2014) 058.

[10] N. Bobev, V. S. Min, and K. Pilch, Mass-deformed ABJM
and black holes in AdS4, J. High Energy Phys. 03 (2018)
050.

[11] N. Bobev, V. S. Min, K. Pilch, and F. Rosso, Mass
deformations of the ABJM theory: The holographic free
energy, J. High Energy Phys. 03 (2019) 130.

[12] D. Z. Freedman and S. S. Pufu, The holography of
F-maximization, J. High Energy Phys. 03 (2014) 135.

[13] E. Cremmer, B. Julia, and J. Scherk, Supergravity theory in
eleven dimensions, Phys. Lett. 76B, 409 (1978).

[14] B. de Wit and H. Nicolai, The consistency of the S7

truncation in D ¼ 11 supergravity, Nucl. Phys. B281,
211 (1987).

[15] B. de Wit, H. Nicolai, and N. P. Warner, The embedding
of gauged N ¼ 8 supergravity into d ¼ 11 supergravity,
Nucl. Phys. B255, 29 (1985).

[16] H. Nicolai and K. Pilch, Consistent truncation of d ¼ 11

supergravity on AdS4 × S7, J. High Energy Phys. 03 (2012)
099.

[17] B. de Wit and H. Nicolai, Deformations of gauged SO(8)
supergravity and supergravity in eleven dimensions, J. High
Energy Phys. 05 (2013) 077.

[18] H. Godazgar, M. Godazgar, and H. Nicolai, Testing the
nonlinear flux ansatz for maximal supergravity, Phys. Rev.
D 87, 085038 (2013).

[19] H. Godazgar, M. Godazgar, and H. Nicolai, Generalized
geometry from the ground up, J. High Energy Phys. 02
(2014) 075.

[20] H. Godazgar, M. Godazgar, and H. Nicolai, Nonlinear
Kaluza-Klein theory for dual fields, Phys. Rev. D 88,
125002 (2013).

[21] K. Lee, C. Strickland-Constable, and D. Waldram, Spheres,
generalized parallelisability and consistent truncations,
Fortschr. Phys. 65, 1700048 (2017).

[22] H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai, and H.
Samtleben, Supersymmetric E7ð7Þ exceptional field theory,
J. High Energy Phys. 09 (2014) 044.

[23] O. Hohm and H. Samtleben, Consistent Kaluza-Klein
truncations via exceptional field theory, J. High Energy
Phys. 01 (2015) 131.

[24] H. Godazgar, M. Godazgar, O. Krüger, and H. Nicolai,
Consistent 4-form fluxes for maximal supergravity, J. High
Energy Phys. 10 (2015) 169.

[25] O. Varela, Complete D ¼ 11 embedding of SO(8) super-
gravity, Phys. Rev. D 97, 045010 (2018).

[26] O. Krüger, Non-linear uplift Ansätze for the internal metric
and the four-form field-strength of maximal supergravity, J.
High Energy Phys. 05 (2016) 145.

[27] R. Corrado, K. Pilch, and N. P. Warner, An N ¼ 2 super-
symmetric membrane flow, Nucl. Phys. B629, 74 (2002).

[28] A. Azizi, H. Godazgar, M. Godazgar, and C. N. Pope,
Embedding of gauged STU supergravity in eleven dimen-
sions, Phys. Rev. D 94, 066003 (2016).

[29] A. Guarino and O. Varela, Consistent N ¼ 8 truncation of
massive IIA on S6, J. High Energy Phys. 12 (2015) 020.

[30] A. Guarino, D. L. Jafferis, and O. Varela, String Origin of
Dyonic N ¼ 8 Supergravity and its Simple Chern-Simons
Duals, Phys. Rev. Lett. 115, 091601 (2015).

[31] A. Guarino and O. Varela, Dyonic ISO(7) supergravity and
the duality hierarchy, J. High Energy Phys. 02 (2016) 079.

[32] B. de Wit, H. Nicolai, and H. Samtleben, Gauged super-
gravities, tensor hierarchies, and M-theory, J. High Energy
Phys. 02 (2008) 044.

[33] B. de Wit and H. Samtleben, The end of the p-form
hierarchy, J. High Energy Phys. 08 (2008) 015.

[34] E. A. Bergshoeff, J. Hartong, O. Hohm, M. Huebscher, and
T. Ortin, Gauge theories, duality relations and the tensor
hierarchy, J. High Energy Phys. 04 (2009) 123.

[35] B. de Wit, H. Samtleben, and M. Trigiante, The maximal
D ¼ 4 supergravities, J. High Energy Phys. 06 (2007) 049.

[36] M. Trigiante, Gauged supergravities, Phys. Rep. 680, 1
(2017).

[37] C. Ahn and K. Woo, Are there any new vacua of gauged
N ¼ 8 supergravity in four dimensions?, Int. J. Mod. Phys.
A 25, 1819 (2010).

[38] Y. Pang, J. Rong, and O. Varela, Spectrum universality
properties of holographic Chern-Simons theories, J. High
Energy Phys. 01 (2018) 061.

[39] I. Klebanov, T. Klose, and A. Murugan, AdS4=CFT3

squashed, stretched and warped, J. High Energy Phys. 03
(2009) 140.

[40] J. P. Gauntlett, J. Sonner, and T. Wiseman, Quantum
criticality and holographic superconductors in M-theory,
J. High Energy Phys. 02 (2010) 060.

[41] J. P. Gauntlett, S. Kim, O. Varela, and D. Waldram, Con-
sistent supersymmetric Kaluza-Klein truncations with mas-
sive modes, J. High Energy Phys. 04 (2009) 102.

[42] M. Cvetic, M. J. Duff, P. Hoxha, J. T. Liu, H. Lu, J. X. Lu, R.
Martinez-Acosta, C. N. Pope, H. Sati, and T. A. Tran,
Embedding AdS black holes in ten dimensions and eleven
dimensions, Nucl. Phys. B558, 96 (1999).

[43] J. P. Gauntlett and O. Varela, Consistent Kaluza-Klein
reductions for general supersymmetric AdS solutions, Phys.
Rev. D 76, 126007 (2007).

[44] P. G. Freund and M. A. Rubin, Dynamics of dimensional
reduction, Phys. Lett. 97B, 233 (1980).

[45] I. R. Klebanov, S. S. Pufu, and F. D. Rocha, The squashed,
stretched, and warped gets perturbed, J. High Energy Phys.
06 (2009) 019.

[46] B. de Wit and H. Nicolai, A new SO(7) invariant solution of
d ¼ 11 supergravity, Phys. Lett. 148B, 60 (1984).

[47] F. Englert, Spontaneous compactification of eleven-
dimensional supergravity, Phys. Lett. 119B, 339 (1982).

[48] C. Pope and N. Warner, An SU(4) invariant compactifica-
tion of d ¼ 11 supergravity on a stretched seven sphere,
Phys. Lett. 150B, 352 (1985).

EMBEDDING THE SU(3) SECTOR OF SO(8) SUPERGRAVITY … PHYS. REV. D 100, 086021 (2019)

086021-27

https://doi.org/10.1088/1126-6708/2009/09/043
https://doi.org/10.1007/JHEP06(2014)058
https://doi.org/10.1007/JHEP06(2014)058
https://doi.org/10.1007/JHEP03(2018)050
https://doi.org/10.1007/JHEP03(2018)050
https://doi.org/10.1007/JHEP03(2019)130
https://doi.org/10.1007/JHEP03(2014)135
https://doi.org/10.1016/0370-2693(78)90894-8
https://doi.org/10.1016/0550-3213(87)90253-7
https://doi.org/10.1016/0550-3213(87)90253-7
https://doi.org/10.1016/0550-3213(85)90128-2
https://doi.org/10.1007/JHEP03(2012)099
https://doi.org/10.1007/JHEP03(2012)099
https://doi.org/10.1007/JHEP05(2013)077
https://doi.org/10.1007/JHEP05(2013)077
https://doi.org/10.1103/PhysRevD.87.085038
https://doi.org/10.1103/PhysRevD.87.085038
https://doi.org/10.1007/JHEP02(2014)075
https://doi.org/10.1007/JHEP02(2014)075
https://doi.org/10.1103/PhysRevD.88.125002
https://doi.org/10.1103/PhysRevD.88.125002
https://doi.org/10.1002/prop.201700048
https://doi.org/10.1007/JHEP09(2014)044
https://doi.org/10.1007/JHEP01(2015)131
https://doi.org/10.1007/JHEP01(2015)131
https://doi.org/10.1007/JHEP10(2015)169
https://doi.org/10.1007/JHEP10(2015)169
https://doi.org/10.1103/PhysRevD.97.045010
https://doi.org/10.1007/JHEP05(2016)145
https://doi.org/10.1007/JHEP05(2016)145
https://doi.org/10.1016/S0550-3213(02)00134-7
https://doi.org/10.1103/PhysRevD.94.066003
https://doi.org/10.1007/JHEP12(2015)020
https://doi.org/10.1103/PhysRevLett.115.091601
https://doi.org/10.1007/JHEP02(2016)079
https://doi.org/10.1088/1126-6708/2008/02/044
https://doi.org/10.1088/1126-6708/2008/02/044
https://doi.org/10.1088/1126-6708/2008/08/015
https://doi.org/10.1088/1126-6708/2009/04/123
https://doi.org/10.1088/1126-6708/2007/06/049
https://doi.org/10.1016/j.physrep.2017.03.001
https://doi.org/10.1016/j.physrep.2017.03.001
https://doi.org/10.1142/S0217751X10048251
https://doi.org/10.1142/S0217751X10048251
https://doi.org/10.1007/JHEP01(2018)061
https://doi.org/10.1007/JHEP01(2018)061
https://doi.org/10.1088/1126-6708/2009/03/140
https://doi.org/10.1088/1126-6708/2009/03/140
https://doi.org/10.1007/JHEP02(2010)060
https://doi.org/10.1088/1126-6708/2009/04/102
https://doi.org/10.1016/S0550-3213(99)00419-8
https://doi.org/10.1103/PhysRevD.76.126007
https://doi.org/10.1103/PhysRevD.76.126007
https://doi.org/10.1016/0370-2693(80)90590-0
https://doi.org/10.1088/1126-6708/2009/06/019
https://doi.org/10.1088/1126-6708/2009/06/019
https://doi.org/10.1016/0370-2693(84)91611-3
https://doi.org/10.1016/0370-2693(82)90684-0
https://doi.org/10.1016/0370-2693(85)90992-X

