VOLUME 51 JOURNAL OF PHYSICAL OCEANOGRAPHY JuLY 2021

Distinct Controls on the Strength of the Abyssal Overturning Circulation: Channel versus
Basin Dynamics

CHIUNG-YIN CHANG" AND MALTE F. JANSEN"
@ Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois

(Manuscript received 23 December 2020, in final form 8 March 2021)

ABSTRACT: Although the reconfiguration of the abyssal overturning circulation has been argued to be a salient feature of
Earth’s past climate changes, our understanding of the physical mechanisms controlling its strength remains limited. In
particular, existing scaling theories disagree on the relative importance of the dynamics in the Southern Ocean versus the
dynamics in the basins to the north. In this study, we systematically investigate these theories and compare them with a set of
numerical simulations generated from an ocean general circulation model with idealized geometry, designed to capture only
the basic ingredients considered by the theories. It is shown that the disagreement between existing theories can be partially
explained by the fact that the overturning strengths measured in the channel and in the basin scale distinctly with the
external parameters, including surface buoyancy loss, diapycnal diffusivity, wind stress, and eddy diffusivity. The over-
turning in the reentrant channel, which represents the Southern Ocean, is found to be sensitive to all these parameters, in
addition to a strong dependence on bottom topography. By contrast, the basin overturning varies with the integrated surface
buoyancy loss rate and diapycnal diffusivity but is mostly unaffected by winds and channel topography. The simulated
parameter dependence of the basin overturning can be described by a scaling theory that is based only on basin dynamics.
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1. Introduction

The abyssal ocean is a large reservoir of heat and carbon for
the climate system, and the abyssal overturning circulation has
often been hypothesized to be a key player that has modulated
climate feedbacks during past climate changes (e.g., Adkins
2013, and references therein). Despite its importance, the
mechanisms that govern these changes in the abyssal over-
turning circulation remain poorly understood.

The classic theoretical picture for the abyssal overturning
circulation, still found in textbooks, is built on the early work
by Stommel and Munk. Stommel (1961) proposed a two-box
model to illustrate the role of temperature and salinity forcing
on the overturning circulation, although ocean dynamics and
mixing processes that are crucial to return the deep water to the
surface are treated implicitly. Munk (1966) and Munk and
Wunsch (1998) focused on the buoyancy budget of the abyssal
upwelling, assuming it to be uniform throughout the basin
and constrained by the balance between vertical advec-
tion and turbulent diapycnal diffusion. Stommel and Arons
(1959) investigated the horizontal structure of the abyssal
circulation, based on the vorticity dynamics in a closed basin,
but the rate of deep water formation must be prescribed in
their theory.

The modern literature on the abyssal overturning circulation
has come to a general agreement that the minimum conceptual
model to represent its dynamics should account for not only a
basin but also a circumpolar channel representing the Southern
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Ocean (e.g., Toggweiler and Samuels 1995; Ito and Marshall
2008; Nikurashin and Vallis 2011; Shakespeare and Hogg 2012;
Stewart et al. 2014). This view accounts for the fact that a large
amount of deep water upwells to the surface in the Southern
Ocean. The Southern Ocean circulation is driven by Ekman
pumping and suction, which highlights the potential role of
wind stress forcing, in addition to the buoyancy forcing and
turbulent mixing considered in the classical models (Lumpkin
and Speer 2007; Marshall and Speer 2012; Talley 2013, and
references therein).

Building upon these findings, recent theories for the dy-
namics of the abyssal overturning circulation have put the most
emphasis on the roles of wind stress and baroclinic eddies in the
Southern Ocean (Ito and Marshall 2008; Nikurashin and Vallis
2011; Mashayek et al. 2015). In these theories, it is implicitly
assumed that the dynamics in the basin are not essential to
constraining the circulation, although the thermodynamics
in the basin are relevant. Specifically, Nikurashin and Vallis
(2011) developed a scaling theory that matches the wind- and
eddy-driven circulation derived from the momentum budget
in the Southern Ocean, to a basin that is effectively a one-
dimensional advective—diffusive model as envisioned in Munk
(1966). Mashayek et al. (2015) suggested improvements by
pointing out the necessity of horizontal advection in maintaining
the buoyancy budget in the abyssal boundary layer, but the re-
sulting scaling relations do not change fundamentally, as will be
discussed below. In both studies, the proposed scaling relations
are compared with three-dimensional numerical simulations
with an idealized model geometry that consists of a basin and a
channel. The simulations confirm the theoretical predictions,
indicating that the basin dynamics may indeed be unimportant.

On the other hand, there are scaling theories that focus on
the dynamics in the basin, while not explicitly considering the
momentum budget in the Southern Ocean (Kamenkovich and
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Goodman 2000; Jansen and Nadeau 2016, hereinafter JN16).
The argument of JN16 is motivated by a need to better un-
derstand the circulation impact of a changing surface buoyancy
loss around Antarctica (e.g., Shin et al. 2003; Shakespeare and
Hogg 2012; Stewart et al. 2014; Ferrari et al. 2014; Watson et al.
2015; Sun et al. 2016). None of the previously discussed channel-
based scaling theories (Ito and Marshall 2008; Nikurashin and
Vallis 2011; Mashayek et al. 2015) predict the effect on the
circulation of changes in the surface buoyancy loss, and JN16
argued that to do so one cannot avoid discussing basin dynamics.
‘While not a closed theory, they accordingly derived a scaling re-
lation that is substantially different from the theories considering
the channel dynamics and points toward the important role of the
net surface buoyancy loss in the region of bottom water formation.
They also confirmed that their scaling is generally supported by
their numerical simulations. However, an apparent discrepancy
exists between JN16’s theory, which focuses on basin dynamics,
and the other existing theories, which focus on channel dynamics.

This study aims to explain this discrepancy by testing the
theories and their assumptions with the help of numerical
simulations of an idealized model. To ensure that these simula-
tions consist of the essential physics only, we employ a model
configuration that is purposely chosen to eliminate complexities
that are not taken into account in any of the theories. Taking
advantage of this simplicity, we then examine the changes in the
abyssal circulation with various parameters and compare the re-
sults with the scaling theories. We primarily focus on assessing the
theoretical predictions for the overturning strength of the abyssal
circulation, as its changes appear to be more robustly defined than
other potentially interesting aspects of circulation changes.

The rest of the paper is organized in the following way. The
existing theories are formally introduced in section 2, and an
extension to close the scaling of JN16 is proposed. Section 3
describes the setup of our model simulations, the parameter
range explored, and the details of the diagnostics performed.
Section 4 then compares the existing theories with the simu-
lations. In section 5, we investigate the extent to which the
results are modified in the presence of bottom topography in
the channel. Section 6 summarizes our findings and concludes
with some questions for future work.

2. Existing theories for overturning strength
a. Decomposition of the residual streamfunction

The strength of the abyssal overturning circulation will be
measured by the residual streamfunction, ¥(y, z), which is in
turn defined as the isopycnal streamfunction, ¥i(y, b), re-
mapped from buoyancy (b) coordinates to depth (z) coordi-
nates. The theories we examine in this study are derived from
(and compared with) idealized models that do not resolve
mesoscale eddies. The Gent-McWilliams (GM) scheme is adop-
ted in these models to parameterize the meridional transport
by mesoscale eddies, vM = —9.(Kdyz|p) with K being the
GM diffusivity (Gent and McWilliams 1990). Since resolved
transient eddies are generally negligible in coarse-resolution
simulations that employ the GM parameterization, the total

meridional transport can be approximated as v*°® ~ gy + M,
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with the overbar denoting a time average. We therefore com-
pute the isopycnal streamfunction as

b _

«Iﬁ(y,b)=—J %(ﬁ-i—ﬁGM)a—zdxdb. )
b ob

To obtain the residual streamfunction in depth-latitude space,

we remap the isopycnal streamfunction at a given b = b to its

mean isopycnal depth z =[z(b)], with the bracket denoting

the zonal mean (e.g., Young 2012). Accordingly, we can then

obtain the residual streamfunction as

V(y,2) =V (y,b(2)). )

An example of the isopycnal and corresponding residual
streamfunction is shown in Fig. 1, which we will describe later
on in further detail.

To derive a theory for the residual streamfunction, it is useful
to decompose it into several components that represent different
physical processes. The specific decomposition adopted here is

V(y,2) =V (y,2) + My, 2) + (. 2), 3)

where WEY is the Eulerian mean streamfunction, ¥M is the
GM streamfunction that represents the parameterized trans-
port by transient mesoscale eddies, and WST is the stationary
eddy streamfunction due to any zonal asymmetry of the flow.
Unlike the residual streamfunction, the Eulerian mean stream-
function, and the GM streamfunction, are defined by zonally in-
tegrating the meridional transport at fixed depth:

WUy, 7) = J:Jﬁdx dz and 4)

POM(y, 7) = JZ_HJEGM dxdz. 5)

The standing eddy contribution is then defined as the difference
between the zonally integrated transport at fixed buoyancy and
transport integrated at fixed depth: ¥ST(y, z) = ¥(y, z) —
(PEY(y, z) + ¥OM(y, 2)). A summary of the different stream-
function notations and their definitions is provided in Table 1 for
easy reference. These different streamfunction notations will be
repeatedly brought up in the discussion, since Eq. (3) is the
starting point of the existing theories for the abyssal overturning
strength, as will be explained in the following.

b. Scaling relations based on channel dynamics

We first consider the existing scaling theories that are based on
the dynamics in the channel and summarized in Table 2: Ito and
Marshall (2008), Nikurashin and Vallis (2011), and Mashayek et al.
(2015) (hereinafter collectively referred to as INM). Although the
specific derivations in INM differ somewhat, the resulting scaling
relations are similar, and will be rederived here. One challenge for
the derivation of a scaling theory based on Eq. (3) is that, although
the residual circulation is approximately constant along isopycnals
below the surface layer in the channel if diabatic transformations
are small, the individual terms on the rhs of Eq. (3) generally vary
substantially. Averaging Eq. (3) meridionally along isopycnals
in the channel alleviates this issue, while allowing us to relate the
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FIG. 1. Overturning circulation in the control simulation: (left) ¥'(y, b) with the black line indicating the max-
imum surface density for a given latitude; (right) W(y, z) with black lines indicating the zonally averaged depth of a
given isopycnal. For illustration purposes, buoyancy values have here been translated into potential densities o,
using 8 = —g "' pydb, with g = 9.81 ms~2, py = 10° kgm™>, and an arbitrary offset chosen such as to roughly match
observed potential densities. The circle indicates the location of W, the maximum streamfunction evaluated at
19°S; the plus indicates the location of ¥, the maximum streamfunction evaluated at 49°S.

components of the streamfunction to the surface boundary condi-
tions and the stratification in the basin to the north.

Specifically, we consider the isopycnal average along a given
isopycnal path b between the outcrop latitude yo, where the
isopycnal intersects with the bottom of the surface layer (de-
fined here as the minimum buoyancy at the uppermost model
level), and the northern end of the channel yc = 49°S; that is,

J‘yc V(y,b)dy

(=2 (6)
c
where Ic = yc — yo. Averaging Eq. (3) then yields
(W) = (PEY) + (W) + (W), (7

Given the definition of vgy and assuming K to be constant, we
can approximate the GM streamfunction as

omy _ K [ealz]
(WM, CL -

w(y)dy~—KS.W,
b

©)
(o]
with w(y) being the zonal width of the channel at latitude y.
Neglecting variations in w(y), we approximate w(y) ~ W,
where W is the characteristic zonal width of the channel. S¢c =
hclle > 0 is the magnitude of the averaged slope of the iso-
pycnal b in the channel, with 4 > 0 the difference between the
depths of b at yc and yo. If we assume that the Eulerian mean
circulation in the channel is solely set by the wind-induced
Ekman transport, we can approximate it as

@y = [ Zwora=~(Zw. O

¢ Jy,pf
with 7 the wind stress, p the reference density, and f the
Coriolis parameter. Following INM, we first neglect the effect
of zonal asymmetry and (WST) in which case Eq. (7) becomes

r
(¥) <pf>W KS . W. (10)
Equation (10) highlights the two external parameters, the wind
stress strength 7 and the GM diffusivity K, which characterize
the two most important dynamical processes that control the
overturning in the channel.

Equation (10) also depends on the channel-averaged iso-
pycnal slope S¢, which remains to be constrained. Slope S¢ is
controlled by the surface boundary conditions and the stratifi-
cation in the basin to the north, which in turn can be related to
the basin buoyancy budget. Specifically, although INM adopted
different assumptions for the specifics of the basin buoyancy
budget, they all assumed an advective—diffusive balance, and, for
scaling purposes, they can all be cast in the general form,

/

V~—k-W,

; (1)

where « is the vertical diapycnal diffusivity, / and /4 are hori-
zontal and vertical length scales, with & characterizing the

TABLE 1. A summary of the notation used for different stream-
function components and overturning strengths.

Notation Defined in
pi Isopycnal streamfunction Section 2a
v Residual streamfunction Section 2a
pEU Eulerian mean streamfunction Section 2a
PoM GM streamfunction Section 2a
PST Stationary eddy streamfunction Section 2a
() Residual streamfunction averaged in the  Section 2b
channel

Vg Max residual streamfunction at 19°S Section 3¢
(within the basin)

Ve Max residual streamfunction at 49°S Section 3¢

(channel-basin interface)
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TABLE 2. Summary of abyssal-cell scaling theories based on the dynamics in the channel. We note that Mashayek et al. (2015)
proposed a second scaling to apply above the abyssal boundary layer, which depends on the e-folding depth scale of diapycnal diffusivity.
This scaling is not included here because we are not considering the effect of a vertically varying diffusivity. As defined in the main text, « is
the diapycnal diffusivity, K is the GM diffusivity, W is the width of the channel, 7 is the strength of wind stress, p is the reference density,

and fis the Coriolis parameter. The dimensionless factor d encapsulates differing assumptions among these existing scaling theories

(see the text).

Proposed scaling Description Equivalent d
Ito and Marshall (2008) ¥~ —vVkKaW Eq. (17) therein; applies to the limit where |[¥#FY| « [¥M| d=a
(a is the ratio of isopycnal slope s and zo/Lapr; 2o is the
characteristic depth scale of stratification; Lapy is the
meridional distance between the channel-basin interface and
the latitude where the isopycnal incrops)
Nikurashin and Vallis (2011) Ly /7 ! Eq. (2.24) therein; applies to the limit where |¥| < |¥FY| ~ |T5M| _ L
¥~kK (=) W d=+=
LC pf C
Lz Eq. (2.32) therein; applies to the limit where [ W] <« [WFV |« [#M|
¥~ — [ kK—W
Lc
(Lp is the meridional length of the basin; L¢ is the meridional
length of the channel)
Mashayek et al. (2015) LasL Eq. (13) therein; applies to the limit where [¥EY |« |[¥M _ LapL
¥~ —, kK- w d=
LC LC
The general form 7\ 7! Eq. (16) herein; applies to the limit where |¥| < [WEV| ~ |¥CM
¥~ kKd <—> w
ef
W~ —VkKdW Eg. (18) herein; applies to the limit where |¥FV|< [¥CM|

(d is the ratio of channel-averaged isopycnal slope and an aspect
ratio characterizing the basin advective—diffusive balance)

vertical stratification and /W being the area of diffusive up-
welling. Equation (11) suggests that ¥ within the basin is
controlled by an aspect ratio, 4/, while the overturning in the
channel is controlled by a different aspect ratio S¢ = h¢/lcin
Eq. (10). None of the variables, i, Ic, h, and [, are necessarily
known a priori and different assumptions are made in the
different theories. Nevertheless, we can generally rewrite
Eq. (11) as

W~ —kSldW, (12)

with d = S¢/(h/l) = hcl/(hlc) > 0 a dimensionless factor. The ¥
in Eq. (12) is most directly related to the transport into the
basin, that is, the streamfunction evaluated at the channel-
basin interface (i.e., y = yc). Assuming that this quantity is
well approximated by (V) evaluated at the same buoyancy
(an approximation that holds perfectly if the circulation is
adiabatic in the channel), we can simultaneously solve Egs.
(10) and (12) to get !

¥ = (7) m¥<—<%> - <%>2 + 4KKd) . (13)

! We have omitted the positive solution because it corresponds
toh <0.

Equation (13) is a generalized expression for ¥ in the channel
and now becomes a function of three external parameters, 7, k,
and K, as well as the unknown parameter d.

The scaling relations derived by INM can be obtained by
considering two specific limits of Eq. (13). To illustrate these
limit cases, we can rewrite Eq. (13) as

Y~

HZ)a-vive), (14)

2 \pf

where

4kKd
2

r
<pf >
is a positive-definite nondimensional parameter [that is analog
to Eq. (16) in Ito and Marshall (2008) and Eq. (2.23) in

Nikurashin and Vallis (2011)], and we note that {(r(pf) ") <0.
In the limit ¢ < 1, Eq. (14) implies a scaling:

e=

(15)

\If~KKd<L>71W. (16)

ef

Equation (16) is identical to one of the scaling relations derived
by Nikurashin and Vallis (2011) (with additional assumptions
on d to recover their specific definition described in Table 2),
and this limit case is equivalent to assuming
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(PEY) ~ — (M) 17)

in Eq. (10); that is, the residual circulation is small relative to
the wind- and eddy-driven circulations. On the other hand, if
we consider the limit & > 1in Eq. (14), we obtain an alternative
scaling,

W~ —/kKdW,

which represents the common form of the scaling relations
derived in INM (again with additional assumptions on d de-
scribed in Table 2). The limit case considered in Eq. (18) is
equivalent to assuming that the wind-driven circulation is
negligible and thus

(18)

() ~ (). (19)

Therefore, the two scaling predictions, Egs. (16) and (18), can
be regarded as applying to two different limits for the dominant
balance in Eq. (10) [or more generally Eq. (7)].

It is important to note that for these scaling predictions to be
closed, one has to further assume d to be relatively insensitive
to the external parameters. Only then is W solely a function of
k, K, and (depending on the considered limit case) 7, as sug-
gested by INM, who made different assumptions to constrain
d = Scl/(hll) = hcl/(hic). For a thorough comparison between
INM, we have listed the implied assumption for d for each
scaling theory in Table 2. As will be shown below, d, as defined
here, is found to vary with various external parameters in our
simulations, which turns out to be a major limiting factor for
the predictive skill of these theories.

c¢. Scaling relations based on basin dynamics

Unlike INM, the scaling relation for ¥ derived by JN16 does
not consider the dynamics in the channel but rather focuses on the
dynamics in the basin. In the channel ¥“™ is of leading-order
importance in Eq. (3), due to the sloping isopycnals. For the basin,
JN16 instead assumed that the isopycnals can be regarded as
mostly horizontal so that ™ is small relative to W=V, Retaining
the assumption of a negligible contribution by the stationary eddy
streamfunction, i.e., W5, Eq. (3) in the basin is then reduced to

W~ PEY, (20)

The Ekman transport can also be assumed to be negligible in
the abyssal basin so that the circulation is in geostrophic bal-
ance. Thermal wind balance then suggests

PEU
f h_ﬁ ~Ab,, (21)
that is, the Eulerian mean streamfunction is determined by a
depth scale h,, characterizing the vertical scale over which WEY
increases from zero to its maximum value, and the zonal
buoyancy contrast across the basin Ab,. The subscript x here is
used to denote the scales relating to the thermal wind scaling.

Combining Egs. (20) and (21) with the basin thermody-
namic scaling, Eq. (11), and defining a dimensionless factor,
dy = h,/h, as the ratio of the two depth scales therein, one
derives
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7 22)

- (KzlezAbxd%> 1/3.
Equation (22) is not a closed expression because /, Ab,, and d;
are left to be determined. Applying Eq. (22) to the abyssal
boundary layer (ABL), JN16 assume / to be the meridional ex-
tent of the ABL and to scale with the basin length (Lg) and
diagnosed Ab, as the meridional buoyancy contrast averaged
over the ABL from the simulations. [While it is the zonal
buoyancy contrast that is of relevance in the thermal wind bal-
ance in Eq. (21), JN16 assumed the zonal and meridional
buoyancy contrasts in the ABL to scale with one another]. With
these working definitions and assuming d; to be constant, they
found that Eq. (22) explains the sensitivity of the basin stream-
function maximum in their simulations to the surface buoyancy
loss integrated over the Southern Ocean deep water formation
region, B (cf. their Fig. 9). Since B does not directly appear in
Eq. (22), the sensitivity to B is captured implicitly by the change
of Ab, with B.

To explicitly express Eq. (22) in terms of B, we need to
eliminate Ab, in Eq. (22) with another scaling relating Ab, and
B. More readily, the buoyancy flux can be related to the bulk
buoyancy contrast across the abyssal cell,

Ab,=B, V' ~BY¥!, (23)
where Bp is the net meridional buoyancy transport by the
abyssal cell at the latitude where W is evaluated. Assuming that
the net buoyancy gain by the abyssal cell south of this latitude is
relatively small (or amounts to an approximately constant
fraction of B), we expect By to be proportional to the surface
buoyancy loss in the bottom water formation region, B.
Introducing another dimensionless factor, d, = Ab,/Abg, we
can then combine Egs. (22) and (23) to get

B3f 1/4
Aby~ (it 24
b <K212W2d§d2> and (24)
1/4
BRPW2dd
qf~<7“ ; 12) : (5)

which now directly predict the bulk buoyancy contrast and the
streamfunction’s dependence on B. Equation (25) is a closed
expression for the strength of the overturning if the length scale
1, as well as the dimensionless factors d; and d», can be assumed
constant.

While JN16 did not explicitly test Eq. (25), their simulations
are seen to nicely follow Eq. (25). In JN16’s Fig. 9, the simu-
lated streamfunction maximum varies between 2.5 and 4 Sv
over a factor-of-6 change in the prescribed buoyancy loss rate,
giving a power-law scaling « B%2° which is almost indistin-
guishable from the prediction of Eq. (25) that ¥ o« B"* and
therefore numerically supports the scaling argument.

From the above derivations, it becomes clear that the basin-
based scaling, Eq. (25), predicts a very different parameter
dependence from the channel-based scalings in Eqs. (16) and
(18), and indeed is derived from very different dynamics.
To better understand how the two sets of theories may be
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reconciled, we conduct a set of idealized model simulations,
which are described in the next section.

3. Model and diagnostics
a. Model configuration

We run our numerical simulations using the hydrostatic
Boussinesq version of the Massachusetts Institute of Technology
General Circulation Model (Marshall et al. 1997). The model
geometry and resolution are as in JN16. That is, we have a
basin spanning from 0° to 60°E and from 69°N to 48°S.
Attached on its south side is a zonally periodic channel ex-
tending to 69°S. The horizontal resolution is one degree. The
full depth of the model is H = 4km, modeled with 28 levels
with varying vertical resolution.

We use a linear equation of state, with a single buoyancy
variable, b, which can be interpreted only in a relative sense.
Throughout the domain, we apply a spatially uniform vertical
diapycnal diffusivity k = 6 X 107> m?s~!. For the parameter-
ized mesoscale eddy transport, we use the GM parameteriza-
tion with the transfer coefficient chosen as K = 700 m*s ™.

Our boundary conditions are designed with the intention to
omit the processes not central to the existing theoretical ar-
guments and to simulate only the abyssal overturning cell. For
the bathymetry, we first consider a flat bottom boundary. The
effects of bottom topography will then be discussed in section 5
separately. For the wind stress, we choose the simple form

0 for y>y.
() = - ,
T, sin (77 %) for y=y.

where yc = 49°S and yg = 69°S are the latitudes of the channel-

basin interface and the southern end of the channel, respectively.

This ensures the wind stress is maximized with its magnitude 7o =

02Nm 2 at the midchannel and vanishes at the channel-basin

interface, thus effectively eliminating any direct effect of the

continent on the wind-driven circulation in the channel.
Surface buoyancy forcing F, is applied as

R(b—by) for y>y.
F,(y)= 0 for y, <y=y..
BIA, for y=y,

In the basin, we use a restoring boundary condition with the
restoring strength, R, equivalent to an adjustment time scale of
3 months for the 50-m-deep top model layer, and a constant
reference buoyancy, bg. This results in surface fluxes over the
basin being close to horizontally uniform in the simulations. In
the channel, we prescribe buoyancy forcing only south of a
prescribed latitude, which we interpret as the effective sea ice
line, y; = 60°S. South of the sea ice line, we prescribe an inte-
grated surface buoyancy loss, B, uniformly distributed over the
enclosed area, A; (between yg and y;), which amounts to a surface
buoyancy loss rate per unit area, B/A; = 2 X 10"°m?s >, North of
y; = 60°S in the channel, we impose a no-flux boundary condition,
which effectively eliminates the presence of an upper (clockwise)
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overturning cell, which does not appear in the theories discussed
in section 2. The choice to exclude the upper cell therefore aligns
with our intention to include only the essential processes that
enter in the existing theories, and is consistent with the approach
taken by Nikurashin and Vallis (2011) and Mashayek et al. (2015).

To study the parameter dependence predicted by the theo-
ries discussed in section 2, we perform a set of sensitivity
simulations. We vary one of the following parameters at a time,
with their control values as described above: the prescribed
surface buoyancy loss B, the diapycnal diffusivity «, the lati-
tude extent of the prescribed buoyancy loss (§; = y; — ys; with
fixed B), the magnitude of the prescribed wind stress 7, and the
GM diffusivity K. We integrate each simulation to a statisti-
cally steady state, and all diagnostics are computed using the
model output from the last 50 years.

b. Overturning circulation in the control simulation

The meridional overturning circulation in our control sim-
ulation, measured via the isopycnal streamfunction, ¥i(y, b)
[defined in Eq. (1)], and the residual streamfunction, ¥(y, z)
[defined in Eq. (2)], is shown in Fig. 1. A single well-defined
anticlockwise overturning circulation is seen, which is an ide-
alized representation of the abyssal overturning cell. The sur-
face water, exposed to the prescribed buoyancy loss in the
southern part of the channel, sinks along the sloping isopycnals
in the channel until reaching the bottom of the ocean near the
channel-basin interface. This ““ Antarctic Bottom Water” flows
northward into the basin, forming the lower branch of the cell
in the basin, and upwells within the basin where it encounters
diapycnal diffusion and gains buoyancy as the abyssal stratifi-
cation decreases toward and vanishes at the bottom, i.e.,
d,(kd.b) > 0. The upwelled water then moves southward in the
upper branch of the cell at middepth and is divided into two
routes. In one route the water loses buoyancy via diapycnal
mixing due to the bottom-intensified stratification near the
southern end of the basin, i.e., 9.(kd.p) < 0, and thus re-
circulates back into the abyssal basin. In the other route, the
water continues to upwell along the isopycnals in the channel
back to the surface and closes the overturning loop.

c¢. Diagnostic metrics for the overturning strength

Because of the recirculation near the channel-basin inter-
face, the global maximum ¥ (in terms of the absolute value) is
seen to locate within the southern part of the basin in our
simulations. Such an appearance of the maximum stream-
function within the basin can also be seen in other idealized
model simulations (e.g., JN16; Jones and Abernathey 2019) as
well as in an ocean state estimate (e.g., Cessi 2019). IN16 apply
their scaling relations to explain this streamfunction maximum
in the southern part of the basin. On the other hand, as
discussed in section 2, the scaling theories of INM are better
interpreted as explaining ¥ in the channel or at the channel-
basin interface. To account for the difference between JN16
and INM and to compare the model results with both theories,
we explicitly consider two diagnostic metrics, with one mea-
suring the overturning strength within the basin and the other
measuring the overturning strength within the channel (Fig. 1).
The characteristic basin overturning strength, ¥, is evaluated
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FIG. 2. The overturning strength in the basin (Wp; circles) and in the channel (¥ ¢; plus signs) as a function of the external parameters:
(left) the rate of surface buoyancy loss B, (left center) diapycnal diffusivity , (center) the latitudinal extent of surface buoyancy loss §;,
(right center) the strength of the wind stress 7, and (right) the GM diffusivity K.

as the maximum V¥ at 19°S (i.e., the latitude of the global
maximum in the control simulation). The characteristic chan-
nel overturning strength, W, is evaluated as the maximum ¥ at
49°S (i.e., the latitude of the channel-basin interface).

The diagnosed ¥ and ¥ are shown as a function of the
external parameters in Fig. 2. It is clearly seen that ¥z and W,
representing the different measures of the overturning strength
in the basin and in the channel, respectively, differ substantially
in their dependence on the external parameters. This implies
that JN16 and INM in fact consider the overturning strengths
in different parts of the abyssal cell, which may partially ex-
plain the apparent contradiction in the scaling theories they
proposed. In the next section, we test the scaling theories for
VY, and ¥p separately to illustrate the distinct dynamics
controlling them.

4. Theory-simulation comparison
a. Overturning strength in the channel

We first examine the extent to which ¥, the maximum ¥
evaluated at the channel-basin interface, can be predicted by
the scaling theories of INM that are based on the channel dy-
namics, i.e., Egs. (16) and (18). Recall that these two scaling
relations are obtained by considering two approximations,
Eqgs. (17) and (19), respectively. Since they characterize the
relative importance of the different components in Eq. (7),
we start by comparing these terms to decide which limit case
better describes our simulations. We first confirm that W ~is indeed
qualitatively similar to the isopycnally averaged streamfunction in
the channel, i.e., ¥¢ ~ (¥) (Fig. 3). The decomposition of (¥)
into (WEY) and (WM) according to Eq. (7) is then shown in

10! 10! 101 10! 10!
5!
B° 67 + +
_— + +
S + + +
2 £ £ it tE £y :
= + ¥ + * + +
I 100 100] + 100 1 100 1 + 100 1
+ ++ Kl
+
Kl
+ W
+ (¥)
101 100 100 10! 5 10 15 20 00 01 02 03 102 103
B (10%m?s~3) K (1075m2s71) 61 (deg) To (Nm~2) K (m2s71)

FIG. 3. As in Fig. 2, but for W (black) and (W) (the isopycnal average computed in the channel; magenta); (W) is evaluated at the same
buoyancy as ¥, i.e., the buoyancy at which the circulation at the channel-basin interface obtains its maximum. The lines indicate the power-
law scaling predicted by Eq. (16). Notice that the x axis is linear in the fourth panel, because we are including a case with zero wind stress.
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FIG. 4. Decomposition of the channel-averaged streamfunction (¥), based on Eq. (7). Notice that the sign of all streamfunction com-
ponents is reversed, and (¥5T) is not shown because it is virtually zero in all cases.

Fig. 4. In general, we find the dominant balance to be between
(¥EY) and (M), The two substantially cancel each other and
result in a relatively small (V). Therefore, we expect that (V) is
better predicted by Eq. (16) than Eq. (18).

Equation (16) does qualitatively explain the increase of (V)
with increasing «, increasing K, and decreasing 7, but it gen-
erally fails to predict the correct power-law dependence on
these external parameters (Fig. 3). In some cases, such as when
o decreases to zero and (WEY) vanishes, the failure of Eq. (16)
can be partially attributed to the breakdown of the approxi-
mation in Eq. (17), such that the fit may be improved by con-
sidering the generalized solution, Eq. (13).

However, we find that perhaps the most fundamental limi-
tation in the channel scaling theories is that the dimensionless
factor d = (S¢)/(h/l) in Eq. (13) also varies with the external
parameters. In Fig. 5, we plot S¢ (the numerator of d) against
h/l (the denominator of d), with all quantities diagnosed from
the simulations. It is found that 4/l shows substantial parameter
dependence, while S¢ varies comparatively little (presumably
due to geometrical constraints). As a result, the ratio, d, varies
systematically with «, 7o, and K. Although less strongly, d also
depends on B and §;, which indeed is essential to explain the
dependence of (V) on B and &;, which do not appear explicitly
in Eq. (13). A quantitative improvement on the existing the-
ories therefore requires a theory for how d depends on the
external parameters, which remains missing.

b. Overturning strength in the basin

We now consider the overturning circulation in the basin
W, which we find to be more readily explained by the theo-
retical prediction than the channel circulation discussed above.
The scaling prediction for the residual streamfunction in the
basin is described by Eq. (25), which suggests that ¥ scales as
B2 This predicted parameter dependence is seen to agree
with most of our simulations (Fig. 6). For our varying B cases,

we see a B'* dependence; for our varying 8, but fixed B cases,
we see no dependence on §;. In addition, we see that ¥z scales
as k' but stays approximately constant when 7, is varied. If
B and « are varied together, the predicted B"*x"* dependence
also remains valid (not shown). These results all provide sup-
porting evidence for Eq. (25). An apparent exception appears
when K is large. In this limit, changes in the GM stream-
function in the basin become nonnegligible, such that Eq. (20)
as an underlying assumption behind Eq. (25) no longer holds.
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FIG. 5. Evaluating changes in d = Sc/(h/l): Sc = hcllc is plotted
against /L. The latter is calculated as i/l = —«W(¥) ™! such that
Eq. (11) holds perfectly. All values are normalized by the corre-
sponding values in the control simulation.

Unauthenticated | Downloaded 06/28/21 01:48 PM UTC



JuLy 2021 CHANG AND JANSEN 2081
10! 10! 10! 10!
1/4
B 60 1 °
(o] —
ce (@)
o Oe 00 O 0 o O O 00O 900 Y
—~ o~ ® e0 0 o 4 ® oeeoo oo ©
& °
> K
I 100 100 A 100 100
O W
e uhv
10-1 100 100 10! 5 10 15 20 00 01 02 03 102 10°
B (10%*m?*s~3) K (1075m2s71) 61 (deg) To (Nm~2) K (m2s71)

FIG. 6. As in Fig. 2, but for ¥ (the maximum residual streamfunction evaluated at 19°S) and W5V (the maximum Eulerian mean
streamfunction evaluated at 19°S). The lines indicate the power-law scaling predicted by Eq. (25).

This interpretation is supported by the increasing differ-
ences between the maximum residual streamfunction, ¥p,
and the maximum Eulerian mean streamfunction \IIEU,
shown in Fig. 6.

The above analysis focuses on the maximum value of the
residual streamfunction, ¥, but the same scaling argument
also has skill in predicting the vertical profile in buoyancy
space. In Fig. 7, we plot the simulated profiles of ¥ evaluated
at 19°S as a function of the buoyancy difference, Ab = b —
bp, where bg is the buoyancy where the streamfunction
obtains its maximum value (i.e., ¥'). The streamfunction
on the x axis is normalized according to the predicted
maximum in Eq. (25) and the buoyancy difference on the y
axis is normalized according to the predicted buoyancy

contrast in Eq. (24). Figure 7 shows that, except for the
simulations with large K, the results collapse reasonably
well on each other. While some nonnegligible deviations
exist, the scaling argument therefore provides a useful de-
scription for not only the maximum value but also the
overall shape of ¥ (b).

We caution, however, that there are in fact some subtle-
ties in the derivation of Eq. (25), which may put into ques-
tion the generality of this scaling relation. Specifically,
although Eq. (25) successfully predicts the parameter de-
pendence of the basin overturning strength in our simula-
tions, the dimensionless factors d; and d,, in Eq. (25) do
exhibit nontrivial sensitivity to the external parameters (see
the appendix). However, d2d, stays mostly unchanged within

K
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FIG. 7. Profiles of W(b) evaluated at 19°S and plotted against Ab = b — bg, with b being the buoyancy where W(b) obtains its maximum.
Both ¥ and Ab are rescaled to account for the predicted stretching and amplifying effect due to the parameter changes. Specifically, Ab is
normalized by (B/B,)**(k/k,)”"? according to Eq. (24), and ¥ is normalized by (B/B,)"*(x/k,)""* according to Eq. (25). The subscript r

denotes the value obtained in the control simulation.
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FIG. 8. Model setup and control-case results for the simulations with bottom topography: (left) the ocean depth
and (right) W(y, z), with black lines indicating the zonally averaged depth of a given isopycnal in the control
simulation. The dashed line indicates the bottom of the surface layer, defined as the mean depth of the isopycnal
corresponding to the maximum surface density at a given latitude.

the parameter range we explored, allowing Eq. (25) to be a
useful predictor.

5. Role of bottom topography

The simulations we examined so far have a flat bottom
throughout the entire model domain, which eliminates potential
effects associated with bottom topography in the Southern
Ocean. To address the role of bottom topography, we compare
our flat-bottom simulations with a new set of simulations where
everything is kept the same except that the model is set up with
an idealized bottom topography. That is, a topographical ridge is
included, which extends the continent with a maximum height of
2 km throughout the entire channel. The exact form of the ridge
is shown in Fig. 8 and is designed to be qualitatively similar to the
model setup in Ito and Marshall (2008).
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The overturning circulation in the control simulation is sig-
nificantly affected by the presence of topography (cf. Fig. 8 to
Fig. 1). The global maximum (in terms of absolute value) now
appears in the channel rather than the basin. The effect of
topography on the overturning strength depends strongly on
where the circulation is evaluated. In Fig. 9, we compare the
overturning strength between the flat-bottom and the topog-
raphy simulations, across the full parameter range. As in the
previous analysis, we show the two different diagnostic metrics,
Vg and ¥, which measure the overturning strength in the
basin and in the channel, respectively. Although the presence
of the bottom ridge interferes with the circumpolar zonal
flow in the lower portion of the channel, we retain our earlier
definition of ¥, as the maximum streamfunction at 49°S,
which again is reasonably similar to the isopycnally averaged
streamfunction in the channel, (¥) (Fig. 10).
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FIG. 9. Comparison of the overturning strength between the flat-bottom simulations and the simulations with
bottom topography: (left) ¥z and (right) W¢.
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FI1G. 10. As in Fig. 3, but for the simulations with bottom topography. The lines indicate the power-law scaling predicted by Eq. (18).

The V¥ in simulations with topography is only slightly larger
than in the flat-bottom simulations; the two scale well with each
other and have very similar parameter dependence (left panel
in Fig. 9). This suggests that the presence of bottom topography
in the channel has little impact on the dynamics controlling the
overturning strength within the basin. It also reaffirms that the
details of the channel dynamics, which are strongly affected by
the bottom topography, may not be as crucial to understand the
abyssal circulation in the basin.

On the contrary, the results for W are substantially
modified after the bottom topography is introduced (right
panel in Fig. 9). The magnitude of W in the topography
simulations is generally much larger than in the flat-bottom
simulations, and the two cases do not seem to scale well with
each other.

A decomposition of the channel-averaged streamfunction
() reveals that the difference between the flat-bottom and
topography simulations is in part due to the contribution by
the stationary eddy streamfunction <\PST>. In the topography
simulations, stationary eddies contribute significantly to the
total transport, owing to the presence of bottom topography
that breaks the zonal symmetry in the channel. As shown in
Fig. 11, (¥ST) acts to approximately cancel (WEY). This almost
perfect standing eddy compensation is especially important in
explaining the much weaker 79 dependence of (¥) in the to-
pography simulations (Fig. 11) relative to the flat-bottom
simulations (Fig. 4). We note that a similar behavior is re-
ported by Bishop et al. (2016), although the reasons for and
robustness of this compensation remain unclear.

A direct result of the compensation between (\IfST> and
(¥EYY is that (W) is left to mostly follow (¥S™), which
makes Eq. (19) a decent approximation, albeit not for
the reason assumed in the existing theories (i.e., (¥5T) ~
(¥EY) ~ 0). Moreover, we find that the dimensionless
factor d is less sensitive to the external parameters in
the simulations with bottom topography (not shown).
Consequently, Eq. (18) more accurately predicts ¥¢ in these
simulations (Fig. 10).

6. Conclusions

This study revisits existing theories for the abyssal over-
turning strength (Ito and Marshall 2008; Nikurashin and Vallis
2011; Mashayek et al. 2015; JN16), aiming to better interpret
their apparent contradiction regarding the importance of
channel versus basin dynamics. An ocean general circulation
model is set up with idealized geometry and surface forcing
conditions that encapsulate only the essential elements in these
theories. Using this model, we conducted a series of sensitivity
runs to study the parameter dependence of the circulation
strength. The external parameters we varied are the integrated
surface buoyancy loss rate prescribed in the channel B, the
diapycnal diffusivity «, the latitudinal extent of the prescribed
buoyancy loss §;, the magnitude of the prescribed wind stress
7o, and the GM diffusivity K. Our key findings are summarized
in the following:

e The strengths of the residual overturning circulation ¥
measured within the channel and within the basin can vary
with the external parameters in distinct ways due to the
possibility of a significant recirculation in the basin. Thus, the
apparent inconsistency among the theories with different
dynamical focuses can at least in part be explained by the fact
that they are attempting to explain different measures of the
circulation strength.

Within the channel, ¥ is seen to depend on all parameters, B,
K, 87, T, and K in the simulations with a flat bottom. When a
bottom ridge is included in the channel, ¥ is to-the-first-
order only sensitive to k and K, as predicted by the existing
theories that consider channel dynamics [i.e., Eq. (18)]. This
difference between the flat-bottom and topography simula-
tions is due to the presence of stationary eddies in the latter,
which effectively cancel the mean circulation, allowing the
residual circulation to be well approximated by the param-
eterized eddy-driven circulation. This approximation re-
duces the complexity of the problem and is a key assumption
in the INM theories. Why this almost perfect cancellation
occurs, however, remains unclear.
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FIG. 11. As in Fig. 4, but for the simulations with bottom topography.

e Within the basin, ¥ is found to scale with B! as
described in Eq. (25). Building on the basin-based argu-
ment proposed by JN16, this scaling is derived without
consideration of channel dynamics and is instead based on
advective—diffusive balance and thermal wind relation in the
basin. Consistent with the importance of basin over channel
dynamics, the overturning strength in the basin is similar in
simulations with and without channel topography.

Although the focus of this study is on the circulation
strength, we note that the vertical extent of the overturning
circulation, at the channel-basin interface and within the
basin, are also seen to vary differently with the external
parameters. This aspect of the circulation changes can be
potentially important when considering the interaction with
the upper (clockwise) cell. Since we have set up the model
purposely to eliminate the upper cell, this is a subject that
cannot be addressed in this study but may deserve a closer
look in future work.

A related question is to what extent these theories for the
abyssal overturning strength, which have been derived for
and validated in single-basin models so far, also apply to
multibasin and global models. Nadeau and Jansen (2020)
recently showed that the general results for the global
overturning circulation in a single-basin setup can be largely
carried over to a two-basin setup after accounting for the
domain size effects. While these results suggest that single-
basin theories remain qualitatively relevant to models with
more complicated geometries, in how far the scaling argu-
ments discussed here would hold quantitatively requires
more investigation.

In addition, the analyses we performed in this study are
limited to the equilibrium response of the circulation changes.
All theories we discussed make use of the basin thermodynamic
scaling [i.e., Eq. (11)], which assumes the basin buoyancy budget
to be in equilibrium. This assumption will need to be modified

when the storage term in the budget is nonnegligible—for
example, as is expected during anthropogenic climate change
in the coming decades.

Despite these remaining questions, we believe our results
can provide useful insights that improve our understanding of
the relative importance of different mechanisms in controlling
the abyssal circulation. Particularly noteworthy is the impor-
tance of thermodynamics, specifically buoyancy forcing and
diapycnal mixing, and the comparatively small role of wind
stress in controlling the abyssal overturning in the basin as well
as in the channel when topography is present. A better un-
derstanding of the processes that control buoyancy forcing
around Antarctica and turbulent mixing in the abyss is thus
crucial to better constrain and predict past and future changes
in the abyssal overturning circulation.
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APPENDIX

Dimensionless Factors in Eq. (25)

Equation (25) predicts the parameter dependence of the
basin overturning strength in terms of external parameters only
if the combination of the dimensionless factors, d3d,, is inde-
pendent of the external parameters. To verify this assumption,
we have explicitly diagnosed d, = h,/h and d, = Ab,/Abg from
our simulations. Specifically, based on Eq. (21) and loosely
following JN16, we calculate 4, as the height of the maximum
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Eulerian overturning WEV above the ocean bottom and Ab, as
the zonal buoyancy difference across the basin and averaged
vertically between the bottom and the height of the stream-
function maximum. The definition for Abg is specified in
Eq. (23). Asin section 2, we compute 4 from Eq. (11), using the
diagnosed ¥ and assuming / = L to get an estimate of A.

The obtained results indicate that d?d, is indeed mostly in-
variant in our simulations, although both d; and d, individually
vary with the external parameters. As seen in Fig. Al, the varia-
tions in /4, (numerator of d;) and & (denominator of d;) do not
generally scale with each other, so that d; is generally not constant.
Similarly, Ab, (numerator of d,) and Abg (denominator of d,) do
not generally scale with each other, leading to variations in d».
However, d? scales reasonably well with d; !, such that d3d,, which
enters the scaling in Eq. (25), remains approximately constant.

An implication of the constancy of d2d, is that we can re-
write Eq. (21) as a modified thermal wind scaling,

q,EU

which effectively replaces /i, and Ab, with 4 and Abg in
Eq. (21). Equation (A1) combined with Egs. (11), (20), and
(23) gives Eq. (25), but with the dependence on d; and d,
eliminated. Although Eq. (A1) holds in our simulations, it
remains unclear to us as to how far this relationship can be
expected to be robust.
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