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Abstract. We propose a control variate multilevel Monte Carlo method for the kinetic Bhatnagar—Gross—Krook
model of the Boltzmann equation subject to random inputs. The method combines a multilevel
Monte Carlo technique with the computation of the optimal control variate multipliers derived from
local or global variance minimization problems. Consistency and convergence analysis for the method
equipped with a second-order positivity-preserving and asymptotic-preserving scheme in space and
time is also performed. Various numerical examples confirm that the optimized multilevel Monte
Carlo method outperforms the classical multilevel Monte Carlo method especially for problems with
discontinuities.
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1. Introduction. Kinetic theory, from a statistical physics viewpoint [5], represents an
essential tool to model the nonequilibrium dynamics in a variety of fields including rarefied
gases, semiconductors, plasmas, and even large particle systems in biological and social sci-
ences [4, 27, 34]. The most fundamental kinetic equation, the Boltzmann equation, describes
the statistical behavior of a thermodynamic system by taking into account particle transport
and binary collisions [3]:

1
(1.1) Of +v -Vl = ZQ(f, ), x€DCR? veR? ¢t>0,

where f = f(x,v,t) is the phase space distribution function of position x, velocity v, and
time ¢. The collision term Q(f, f) is a five-fold, quadratic integral operator, and e is the
Knudsen number, defined as the ratio of the mean free path and the typical length scale.
In most applications, e varies from O(1), the kinetic regime, to ¢ < 1, the fluid regime.
Although the Boltzmann equation is widely applicable, the complexity of the collision operator
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Q(f, f) makes both analysis and computation of the equation extremely challenging. Hence
many simplified collisional models have been introduced to mimic the properties of the full
Boltzmann operator. Among these, the Bhatnagar-Gross-Krook (BGK) model [1], which
assumes a simple relaxation to equilibrium, has been widely used. The model reads as follows:

(1.2) 8tf+v-fo:%(M[f]—f), xeDCR3 veR? t>0,

where M|f] is the so-called Maxwellian equilibrium function given by

vy Pt VU
(13) MG, ’t)_(QWT(x,t))% p< 27 (x, 1) >

where p(x,t), U(x,t), T(x,t) are the density, bulk velocity, and temperature defined through
the moments of f:

p(x,t) = . f(x,v,t) dv, U(x,t) = p(it) /]R3 vf(x,v,t) dv,
(1.4) ’
T(x,t) = 3p(ic,t) /Rs]v —U(x,t)|]?f(x,v,t) dv.

Let ®(v) = [1,v, 3|v|?]T; then one has the following conservation property:

p p
(1.5) MIfl(x,v,t)®(v)dv = fx, v, t)®(v)dv = pU = |m]|,
R R sor+ bovp] B

where m is the momentum and F is the total energy. Using (1.5), if we multiply (1.2) by
®(v) and integrate over v, we obtain the following local conservation law:

(&g/ de+Vx‘/ vfdv =0,

R3 R3

(1.6) 8t/ Vfdv+Vx-/ vevfdv =0,
R3 R3

1 1
at/ ~|v[]2fdv + Vi / —v|v[*fdv = 0.
R3 2 R3 2

When ¢ — 0, formally we have f — M[f] from (1.2). Replacing f by M[f] in the above local
conservation law yields the compressible Euler equations:

8tp+Vx : (pU) = 0,
(1.7) O(pU) + Vx - (pU @ U + pTI) =0,
WE +Vx-(E+pT)U) = 0.
In the last decades, research activities in kinetic theory have focused mainly on determinis-

tic kinetic equations, both theoretically and numerically [4, 9, 34], ignoring the presence of un-
certain/random inputs. In reality, uncertainties may arise in initial/boundary conditions and
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other parameters, like the details of the microscopic interaction, because of incomplete knowl-
edge or imprecise measurement. Recently, there has been a significant interest in studying the
impact of these random inputs in kinetic equations; see [17, 26] and the whole collection [19]
for an overview. In order to quantify the above uncertainties, the construction of numerical
methods for kinetic equations has been mostly oriented on stochastic Galerkin approximation
based on generalized polynomial chaos expansion (gPC-sG), already successfully applied to
many physical and engineering problems [13, 35]. We mention that recently gPC-sG methods
have been successfully applied also to direct simulation Monte Carlo methods for the Boltz-
mann equation [28]. Despite the fact that gPC-sG methods have been able to show spectral
accuracy for smooth solutions, they suffer the drawback of the curse of dimensionality and
their highly intrusive nature. On one hand, existing codes for simulating the deterministic
kinetic problems need to be completely reconfigured to implement the gPC-sG method. On
the other hand, intrusiveness can induce some nonphysical approximations even when the de-
terministic numerical solvers possess the correct physical properties. For example, due to the
gPC expansion, the methods may induce approximations with nonpositive density; further-
more, close to fluid regimes, it is well-known that the gPC-sG system may lose hyperbolicity
and lead to spurious solutions [7].

Another class of methods for uncertainty quantification is based on statistical Monte Carlo
(MC) sampling, where the random space is sampled and the underlying deterministic PDE is
solved for each sample. The nonintrusiveness of the method enables the approximated solu-
tions to inherit properties, like positivity preservation, of the existing deterministic solvers and
makes parallel computing feasible for implementation. However, the asymptotic convergence
rate is nonimprovable by the central limit theorem, and accelerated algorithms are obtained
through variance reduction techniques [2]. In this context, multifidelity methods for kinetic
equations have been recently introduced in [10, 11, 22]; see also the recent survey [29] for an
introduction to the topic. These methods are capable of providing a significant speedup of the
convergence properties of the MC solver using as control variates simplified surrogate models
that are cheaper to solve than the full model. A related line of research is based on the use of
multilevel Monte Carlo (MLMC) methods (see [14, 16] and [24, 25] for these methods applied
to hyperbolic conservation laws), where the approximation of statistical expectation breaks
up into telescopic sums of expectations of consecutive mesh sizes. These methods are closely
related to multifidelity methods, since they essentially use in a recursive way the solution of
the full model with various coarser meshes as surrogate models.

In this manuscript, following the above analogy, we develop MLMC methods in a control
variate setting for the multiscale kinetic equations. Therefore, in our MLMC method each
level in the telescopic sum depends on an additional parameter which is computed in order
to minimize the variance of the solver. We will perform this strategy both locally between
two different levels and globally among all levels. As a prototype kinetic equation to design
our methodology we consider the BGK model (1.2) of the Boltzmann equation subject to
random inputs. Following the well-posedness results in [30, 31], we provide a direct analogue
of the former to the BGK equation with random parameters. Due to the nonintrusiveness
of MC-type methods, approximations of the statistical moments can preserve properties from
the deterministic solvers. We adopt the implicit-explicit Runge-Kutta (IMEX-RK) scheme
from [18] to construct a second-order positivity-preserving (the distribution f is positive for all
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¢) and asymptotic-preserving (the scheme becomes a solver for the limiting Euler system (1.7)
when & goes to zero) scheme for time and spatial discretizations. Various numerical examples
confirm the good performance of MLMC methods compared to standard MC methods and
demonstrate that the control variate MLMC method outperforms the classical MLMC method
especially for problems with discontinuities.

The rest of this paper is organized as follows. In the next section, we introduce the
BGK equation with random inputs and establish the well-posedness of the equation. The
MC methods and analysis are presented in section 3, whereas in section 4 we discuss their
multilevel extension in a standard and control variate setting. In section 5 we show the
numerical results obtained with standard MC, MLMC, and control variate MLMC methods.
Finally some conclusions are drawn in section 6. In a separate Appendix A we report the
details of the dimension reduction method and the numerical scheme adopted to solve the
deterministic BGK equation.

2. The BGK equation with random inputs. In this section we formulate systematically
the BGK equation with random inputs and establish the well-posedness of the equation by
extending the results in [30, 31].

2.1. Setup of the problem. In the BGK equation, due to uncertain initial or boundary
conditions, the resulting solution f would be a random variable taking values in the functional
space in which the solution of the BGK equation (1.2) lies. In most circumstances, it is the
physical observables or macroscopic quantities (such as p, U, T') at certain time that are of
interest; hence we will mainly consider random variables taking values in L!(D), where D is
the physical domain. Following the discussion in [24], we first present some basic concepts
from probability theory and functional analysis.

Let (Q,.%#,P) be a probability space with © being the set of elementary events, .# the
corresponding o-algebra, and P the probability measure mapping 2 into [0, 1] such that P(Q2) =
1. A random variable taking values in L'(D), a separable Banach space, is defined to be a
mapping X: Q — LY(D) such that for any A € ¢, the preimage X '(A) € .%, where
X HA) ={weQ: X(w) € A} and (L}(D),¥) is a measurable space.

To define the expectation and variance of random variables in L'(D), we need the con-
cept of Bochner integral by extending the Lebesgue integral theory. The strong measurable
mapping X : Q — LY(D) is Bochner integrable if, for any probability measure P on the
measurable space (2, .%),

(2.1) /Q 1X (@)l]1 () dP(w) < 0.

Moreover, any Bochner integrable random variable X : Q — L!(D) can be approximated by
a sequence of simple random variables {X,, },en defined as follows:

N
(2.2) Xn =Y TniXA, Ani€F, wni€ L'(D), N < oo,

i=1
To get moments like expectation or central moments like variance, similar to the derivation
of the Lebesgue integral, the Bochner integral is defined by taking the limit of sequences of
simple random variables {X,,(w)}; for example, the kth order moments are defined as
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(2.3) E[X¥] .= /Q X*(w) dP(w) = lim [ XF(w) dP(w),

n—oo Q

and the variance is defined as

(24)  V[X]:=E[(X - E[X])))] = /Q(X(w) — E[X])* dP(w) = E[X?] — (E[X])*.

For the error analysis, we need to introduce the Banach space LP(Q,.%#,P; L'(D)) with the
norm
1
(2.5) HXHLP(Q;Ll(D)) = (E[HXH?l(D)DP < oo, 1 <p<oo,
and L>®(Q,.7,P; L}(D)) with the norm
(2.6) | X | oo (1 (D)) := esssupyeall X || L1(p)-

The BGK equation with random inputs hence reads

0uf (i, ¥, 0) + ¥ Tl (0, v,0) = Z(MIf) 5%, v,0) = [ (w3, V1)),

(2.7)
we, xeDCR? veR? t>0,
where
. t _ . t 2
(2.9 MUl v t) = P o (T
(2rT (w;x,t))2 2T (w; x, t)
with
1

plw;x,t) = flw;x,v,t) dv, U(w;x,t :/ vf(w;x,v,t) dv,

WU B (i) =~ | vi(uixv.0
’ 1

T(w;x,t) = 3p(w:ix. 1) RS’V — U(w; x,t)* f(w; x, v, 1) dv,
The initial condition is given as
(2.10) f(w;x,v,0) = fo(w;x,v), we, x€DCR3 veR3

For the boundary condition, we consider one of the following:
e periodic boundary: f(w;x+a,v,t) = f(w;x,v,t) for x € D and some a € R3;
e Dirichlet boundary: f(w;x,v,t) = g(w;x,v,t) for x € dD;
e purely diffusive Maxwell boundary: for x € 9D,

(2.11) flwyx,v,t) = My(w;x,v,t), v-n <0,
where n is the outward normal of D and M, is given by

puw(w;x,t) < [v|? >
3 eXp\ < s
(27T (w; X, 1)) 2 2T (w; %, 1)

where Ty, (w; x,t) is the wall temperature and p,,(w; X, t) is chosen such that

(2.12) My(w;x, v, t) =

(2.13) / v-n f(w;x,v,t) dV:—/ v -nM,(w;x,v,t) dv.
v-n>0 n<0
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2.2. Well-posedness of the equation and some estimates of the macroscopic quanti-
ties. In the following, we establish the well-posedness of the BGK equation (2.7) with random
inputs. We also obtain some estimates for the macroscopic quantities p, U, and T. For sim-
plicity, we assume the periodic boundary condition and consider the uncertainty only arising
in the initial condition fj.

First of all, some general estimates on the macroscopic quantities can be obtained point-
wise in w following [31] for the deterministic BGK equation.

Proposition 2.1 ([31]). Suppose that f(w;x,v,t) > 0. Define p(w;x,t), U(w;x,t), T'(w;

x,t) according to (2.9). Moreover, set

(2.14) Ny(f)(w;t) :=supsup f(w;x,v,t)|v|!, ¢>0.

X v

Then the following estimates hold:

(2.15) M < CoNo(f)
T(w;x,t)?
(2.16) plw;x, )3T (w:x,t) + U (w;x,)]) T < CuNy(f) for q>5,

where Cy, Cy are some positive constants.

Based on the above estimates, one can obtain the existence and uniqueness of the solution
to (2.7) also following [31] in a pointwise manner in w.

Theorem 2.2 ([31]). Set

(2.17) Ng(f)(w;t) := supsup f(w;x,v,t)(1+ |v]|?);

X v

then, by definition, Nq(f) < Ng(f). Suppose that the initial condition fo(w;x,v) > 0 and that
for some q¢ > 5,

Ng(fo)(w) = supsup fo(w;x,v)(1+[v|?),

(2.18) v
sup Ny (fo)(w) < Ag < oo,

and

Y(w; x,t) 1= /fo(w;x —vt,v) dv,
(2.19) R3

infinfirtlf’y(w;x, t) > A1 > 0;

then, for fired Knudsen number € > 0, there exists a unique mild solution of the initial-value
problem (2.7)—~(2.10) with periodic boundary condition.
Moreover, for all t > 0, the following bounds hold:

(2.20) No(f)(w: £) < Ag exp (i%) L N,(F)(wst) < Agexp (i‘ft) ,
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(2.21) inf p(w;x,t) > Ay exp <—t) )
X 9

where Cy and Cy are the same constants appearing in Proposition 2.1.

As a direct consequence of Proposition 2.1 and Theorem 2.2, we have the following corol-
lary on the upper bounds of the macroscopic quantities.

Corollary 2.3. Suppose that the conditions in Theorem 2.2 hold. We also assume the Knud-
sen number € > g9 > 0. Then for all t > 0, the following bounds hold:

(2.22) supsup {p(w;x,£), [Uwix,0)], T(w;x, 1)} < Cr exp (Ct) |
w X 0

where Cy and Cy are positive constants depending only on Ay, A1, Co, and Cy.
Proof. By (2.16), (2.20), and (2.21), we have

2,93 Cqu(f) CqAo Cq+1

. : : < < .
(2.23) BT (w;x, 1) + [U(w;x,t)[7) 2 < o) = A OP p—
Hence
(2.24)

2 1
1 /C,Ap\ a3 2(0 +1) CyAp\ a3 Cy+1

T(w;x,t) < = [ =L il B ] < | =2 —4 .

i) < 3 (S0) 7 e (FE ), o) < (S20) T e (L)

By (2.15) and (2.24), we have

p(w;x,t) < CoNo(f)T(w;x,t)?

2.25 3 a4 __3_ — u
(229 <3T2CC{ AT A T exp <3(Cq u (1) +3()q 3)0015) .
q—9)E

3. Standard MC method. In this section, we describe the basic MC sampling method
to solve the BGK equation (2.7) and establish some error estimates. For simplicity, we will
consider that the uncertainty only comes from the initial condition. The case for the random
boundary condition is similar.

3.1. MC method. Suppose we generate M independent and identically distributed (i.i.d.)
random samples fg, i = 1,...,M, according to the random initial condition fy(w;x, V).
Then each f}(w;x,v) will yield a unique analytical solution to (2.7) at time ¢, denoted by
fi(w;x,v,t). From fi(w;x,v,t), we can easily compute

(3.1)

then U? and T" are given by
m’(w; x, t)

20" (w; x, 1) E' (w; x, ) — |m* (w; x, )|
pl(w;x, t) '

32)  U'(wix,t) = 3(p'(w; x,1))?

. TH(w;x,t) =

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 05/22/21 to 128.210.126.199. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

UNCERTAINTY QUANTIFICATION FOR THE KINETIC BGK EQUATION 657

Since it is the macroscopic quantities we are interested in, in the following, without further
notice we will use a single variable ¢ to denote p, |U|, or T.

Given the samples ¢, i = 1,..., M, the MC estimate of the expectation E[q(w;x,t)] is
given by

M
(33) Elaw; x,0] ~ Exla(w; x,0] = 17 > ¢ (wix,).

i=1
To estimate the error between E[q(w;x,t)] and Ejs[q(w;x,t)], we need the following lemma.

Lemma 3.1. For every finite sequence {Y}}]]Vil of independent random variables with zero
mean in L?(Q; L?(D)),

2

M
(3.4) ZYJ‘ Z |YHL2 Q;L2(D))"

7=t Nl oy
Proof. From independence of {Y]}]]\i1 and that E[Y;] = 0,

M 2 M 2 M

(3.5) >y, :/DE ;Yj dX:/DV ;Yj dx

PR COZ)

M M M
— [ Svilax=3" [ BV dx= Y% By ®
D= — JD —
7j=1 j=1 7j=1
We have the following consistency theorem.
Theorem 3.2. For any M € N, at time t = t1,
1,1 1
(3.6) [Elg(w;x, t1)] = Enrlg(w; x, t)ll| 2001 (py) < M2 [DI2[[Vg(w; x, t)I| 1 -

Proof. We interpret the M samples { 3 ,f\il as unique realizations of M independent sam-
ples of fo in the probability space (€2, %,P). In other words, {f¢}M, are i.i.d. copies of fj €
LY(D x R3). As a result, the corresponding copies of macroscopic quantities {q*(w; x, tl)}f\il
derived from the initial data {f}}}, are also independent in L?(Q; L*(D)).

Denote E[g(w;x,t1)] — ¢‘(w;x,t1) by A¢*(w,x,t1); then
(3.7) E[Aq¢ (w,x,t1)] =0

and

(3.8)  [[Elg(w;x,t1)] = Emlg(w;x, t1)]l| 201 ()

L?(Q;D(D))
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Using the boundedness of domain D,

M 2 M 2
(3.9) > A (w,x, 1) <[DI|1>AG (w,x, 1)
=1 L1(D) i=1 L2(D)

Taking the expectation, noting that Aq’ are independent, and using Lemma 3.1, we have

M M
ZAqi(w,x,tl) < |D\% ZAqi(w,x,tl)
=1 L2(Q;L1(D)) =1 L*(9;L2(D))
M
(3.10) = D12 | DIAG (w, %, 1) 0,12, D
i=1

1 1 i
= |DI2M2|| A" (w, %, t1)|| 2 (0:2(D))

1.1 L
= | D2 M= |[V[g(w; x, t)I| 11 -
As a direct result of Theorem 3.2 and Corollary 2.3, we have the following convergence
theorem.

Theorem 3.3. Under assumptions of Theorem 2.2 and Corollary 2.3, for 0 < t; < oo,
as M — oo, the MC estimate Ep[q(w;x,t1)] converges in L?(2; LY(D)) to E[q(w;x,t1)].
Furthermore, for any M € N*, there holds the error bound

C _1
(3.11) 1Elg(ws x, 11)] — Exrla(w; x, t)] |2z oy < C1| D] exp (Ot) ME,

Proof. we only need to note that
3 2 3 3 &
(312 [Vigwix ]l < B wix )l i, < DIECrexs (20 0

3.2. MC method with fully discrete scheme. To complete the error analysis, we need to
consider the MC method coupled with the fully discrete scheme for the BGK equation, which
includes discretization in time, physical space, and velocity space. The details are given in Ap-
pendix A. Simply speaking, we are using Gauss quadrature in the velocity space, second-order
IMEX-RK scheme for time discretization, and second-order monotonic upstream-centered
scheme for conservation laws (MUSCL) [33] finite volume scheme for spatial discretization
(under the hyperbolic CFL condition At < CAx). Overall, this leads to a second-order
positivity-preserving and asymptotic-preserving scheme for the deterministic BGK equation.
In the following, we assume that the velocity discretization is accurate enough and ignore the
work and error in velocity space. It is then reasonable to assume that the numerical solution
gaz at(w; x,t1), computed with mesh size Az and time step At corresponding to initial data
fo(w;x,v) up to time ¢, satisfies the following error estimate pointwise in w.
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Assumption 3.1. For fixed time ¢; > 0, under the hyperbolic CFL condition At < CAz,
we have

(813)  lla(wsx.t) = qasawix 0 < C(w) ((A2) +(A°) < Cu(Ax)?,

where C,, is some positive constant.

The MC estimate of the expectation E[g(w;x,t)] is now given by

M
1 i
(3.14) Elg(w;x,t)] & Eylans,at(wix, t)] = 57 > Ghwac(wix, t).
i=1
We have the following.

Theorem 3.4. For any M € NT, at time t = tq,
(3.15)

1 1 1
IElg(w;x, t1)] = Enrlgas,ae(w; x, )] 201 (pyy < M2 |DIZ||[VIg(w; x, t1)]l|71 py + Cu(Az).

Proof.
1E[g(w;x,t1)] — Emlgaz,at(w;x, )]l 2201 py) < IElg] — Emlalll 22001 (p))
(3.16)
+ 1Ewmlq] — Emlaneadllr2n (p)):-
It is enough to apply Theorem 3.2 and Assumption 3.1. |

The following corollary is a direct result of Theorem 3.4.

Corollary 3.5. Under assumptions of Theorem 2.2 and Corollary 2.3, for 0 < t; < oo, as
M — oo and Az, At — 0, the MC estimate En[qaz.at(w;x,t1)] converges in L*(Q; L' (D))
to Elg(w;x,t1)]. Furthermore, for any M € NT, there holds the error bound

(3.17)

C 1
IElq(ws x, 12)] — Earlane.ae(ws %, )]l zz@uamy < CalD]exp (Ot) M 4 Cu(An).

4. Control variate MLMC method. In this section we first introduce the MLMC method,
and then following [11] we discuss the use of control variate techniques to optimize its variance
reduction properties locally using two subsequent levels or globally among all levels.

4.1. MLMC method. The MLMC method is defined as a multilevel discretization in x
and ¢t with a level [ dependent number of samples M;. Suppose we have a nested triangulation
{Ti}£, of the spatial domain D (L € N* is the number of levels) such that the mesh size Az,
at level [ satisfies

(4.1) Ax; =sup{diam(K) : K € T)} \, asl 7.
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Set inl‘m Ato (w; x,t) := 0; then given a target level L of spatial resolution, the MLMC estimate
of the expectation E[g(w;x,t)] is given as follows:

Elg(w;x,t)] ~ EX (g, Aty (w;x, )]

L
= ZEMl [qAxl A (WX, 1) = qag, Atlil(w;x,t)}
(4.2) —

L M
- ZZ [qml 2 (Wi, 0) = Gy, ar, (w3, )]
=1 i=1
Hence what we really sample is the difference of solutions at two consecutive levels. At each
level I, we separately generate M; i.i.d. samples fé, i =1,..., M, of the initial data fy on
meshes Az; and Az;_q, respectlvely, and then use the fully discrete scheme for the BGK
equation (2.7) to advance solutions g, a; and ga,, , ¢ , to a certain time .

To simplify the notation, we set qazyat, (w;X,t) = O and define the random variable
Y = qpq, A (w;x,t) — qAxl,l,At,,l(U’?th) and the specific samples Y}’ := in%Atl (w;x,t) —
N Atlil(w;x,t). We have the following consistency and convergence results for the esti-
mator (4.2).

Theorem 4.1. For any M; e NT,1=1,...,L, at time t = t1,
|E[q(w;x, t1)] — E*[gaey.at, (wix,t)]l 12021 (py) < Cu (AxL)2

(4.3)
DS M VI
=1
Proof.
|1Elg] — E"[qac, . ae )l 201 (0))
L
= ||E[q] — Z By Y]

=1 L2(@;L1(D))
L L L

(4.4) < |Elg] = > E[Y; > By V=) EV
=1 L2(Q,L1(D)) =1 =1 L2(L1(D))

L
1
< |[Elg] — Elgazy a1 py + D12 D 1B [Yi] = EYilll 220
=1

=I1+1IL
For part I, Assumption 3.1 yields
(4.5) I=|lq(w; %, t1) — qazy,ae, (WX, 1) |11 p1(p)) < Cul(Azr)?.
For part II, using Lemma 3.1,
L
1 S U
(4.6) =Dz M2V} - EYilll2 @20y = IDI? ZMZ 2| V[Y; ]IILl(D : u
I=1 I=1
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Theorem 4.2. Under the assumptions of Theorem 2.2 and Corollary 2.3, for 0 < t1 <
00, as M) — oo and Az, At — 0, the MLMC estimate EX[qaz, at, (w;x,t1)] converges in
L?(Q; LY (D)) to E[g(w;x,t1)]. Furthermore, there holds the error bound

IE[q(w;x, t1)] — E*[gaeg.ae, (wix, 0]l r20.2(p))
_1
< Cw(AJ}L)Q + <Cw|D’§(A$1)2 —+ Cl’D‘ exp <C(2t1)> Ml 2
(4.7 €0

+ 37 CulDIZ ((Az)? + (Azi-1)?) M,

SIS

Proof. From (2.4), we can see that V[X] < E[X?]; then from Theorem 4.1 for [ = 1,

1Y — EMilllz2(0.22(p)) = l1dazs A, — Eldae, anllz2@.r2(0)

< ghwy A 122 0:22(0))
(4.8) <Nlqag,, a6 — ¢ l2@;z20)) + 14| L2(:02(D))

< Cu(Az1)? + D3Oy exp (S%l) ,
0
and similarly for [ > 2,

1Y) — BVl 220y < IVl L2@:r2(py)
(4.9) = lqan, At — Ty, a0 I 12(0:02(0))
< ”inxl,Atl - qi||L2(Q;L2(D)) + ||qi - inzl,l,Atl,l HL2(Q;L2(D))
< C’w((Axl)2 + (Axl_1)2). [ |

Remark 4.3. The summation term on the right-hand side of (4.7) implies that, if the
mesh is refined by a factor of 2 as the level increases, then, to balance the errors in different
levels, the sample ratio across levels should be chosen as 2* = 16. Furthermore, it should be
noted that the above error estimate highly depends on the regularity of the solution and is
valid when the solution is smooth (typical when the BGK equation is in the kinetic regime).
When the solution contains discontinuities/shocks (typical when the BGK equation is close
to the fluid regime), it is well-known that the numerical scheme will not maintain its original
order. A second-order scheme as we considered here will generally degenerate to first order or
even worse [21]. Therefore, to balance the errors in different levels, the sample ratio can be
chosen smaller. Our numerical results in section 5.2 (smooth solutions) and sections 5.3-5.4
(discontinuous solutions) indeed confirmed this prediction (the general trend follows, though
the actual ratio value chosen may not be exactly the above predicted number due to the
nonnegligible first two terms on the right-hand side of (4.7)).

4.2. Quasi-optimal and optimal MLMC method. In this section we generalize the previ-
ous MLMC method following [11]. To start with, take the 2 level MLMC method for example.
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Suppose we have a low fidelity (coarse mesh) approximation ¢; and a high fidelity (fine mesh)
approximation go; then the 2 level MLMC method with control variate reads as follows

(4.10) Elq) = Eum, [Aa1] + Eum, g2 — Aq1),

where the multiplier A has to be determined in order to minimize the overall variance V[q] =
A2V [q1] + V[g2 — Aq1]. It can be shown that for independent samples the optimal value of X is
given by

_ Coviq, ¢2]
(4.11) A=t

When M, < M, the contribution from V[Aq] is negligible compared to V[ga — Ag1]. We
therefore can only focus on the minimization of the variance V[g; — Agz]. In this case, the
optimal value of X\ is given by

My .
_ Cov{qi, g2] N z;l(ql AT
= V[ql] ~ M2 A B b
> (g1 —@1)?

=1

(4.12) A

where §1 = Ewm,[q1], @2 = Ew,lqe], and in the above expression the covariance and variance
are estimated directly from the MC samples.

Generally, suppose we have L levels of solutions {gagz; At }i=1,..1, from coarsest level
qAz,,At, to finest level gaz; ¢, - Then the MLMC method with control variates is given by

E[Q(w; X, t)] ~ Eé’V[QAxL,AtL]

(4.13) L L L
= H A7,E]\41 [QA:rl,AtJ + Z H )\ZEMZ [QA:rl,Atl - )\l_IQAwlflvAtlfl]'
i=1 =2 i=l

Note that {)\}Z, here are the coefficients to be determined and Az = 1. If we only consider
the variance reduction for each pair of consecutive levels, then we can easily get the analogy
of (4.11) to estimate {\;}, which we refer to as the quasi-optimal MLMC method:

(4.14)
M .
i 7 z —q
. Cov[qul’Atl, qul_hAtl_l] i;(thml Qsz,Atz)(QAxl,l,Atl,l QA$1_17Atz—1)
-1 = ~
V[qAxl_l,Atl_l] Ml 7 N 2 ,
a(qﬁxzq,Ath o qAxlfl’At“l)
1=

where qaz,at, = En[gas,an]-
However, if we focus on minimizing the overall variance of the estimator (4.13) and assume
that the levels are independent, then denoting

(4.15) =[x 1=1,....L,
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the optimality conditions yield a tridiagonal system for 5\1:

)\ZV[QAIZ,AQ] - )\l—l-l COV[qAIl+1,Atl+1 ) QAa:l,Atl]

l
M; + M,
(4.16) 1+ My

3 +1
- )‘l—17+COV[qul,l,Atl,17QA:EZ,Atl] = Oa l= 17 cee 7L - 17

where we assumed 5\0 = 0, 5\L = 1, and gazy,at, = 0. A practical way to solve the above
tridiagonal system is to rewrite (4.16) in terms of original \;. For simplicity, we denote

V[qACCl,AtJ by Vl and COV[qACIZl+1,Atl+17qAIl,Atl] by COVZ to get

My
MV ————C =0
1V1 M, + M, ovy )

M Ms
AVy — ——C — AMAy—F-—C =0
2V2 My + Ms ova 12M2+M3 ovy ,

(4.17) AV —AC — Do) AC -0
3V3 Ms + M, ov3 231\434_]\/[4 ova )
ML_1 ML

A-1Vy_ 1 ———————Covy_9 — A _9A_1——Covy_o = 0,
L-1VYL-1 M1+ M, L—2 L2L1ML—1+ML L—2

which can be easily solved by recursive substitution. This is what we refer to as the optimal
MLMC method.
Denote the correlation coefficient of gaz; Ay, and gaz,,, Aty by

(418) = COV[QAZZ,Atl ) QAle,AtlH]

19
(V[QAUCI-H,Atl+1]V[qAévz7Atz]) 2
we can prove the following consistency and convergence results for the estimator (4.13).

Theorem 4.4. For any M; e Nt 1 =1,...,L, if {\;} are quasi-optimal and exact, i.e.,

(419) )\l _ CO/U[qAaZhAtlu qA$l+1,Atl+1]
V[QAM,AQ]

Y

then at time t = tq,

IElq(w; x,t1)] — Efv[qac,,ae, (w; X, 1] 2(0:01 (D))

1 _12 1
(4.20) . CM%LL)Q + 1DIE My A Vigan an]l 2
1 _1lx 1 1
1012 30 MM = o) [ Vigan.anlllf -
=2

Proof. The proof is similar to Theorem 4.1. All we need is to note that when A is quasi-
optimal, we have for [ > 2,

V[Qsz,Atz - )\l—l(ZAacl,l,Atl,l] = V[QAzz,Atz] + )‘l2—1V[QAzzf17Atlf1]
(421) - 2)\Z—ICOV[QA:pl,Atl ) QAa:l,l,Atl,J u
= (1= 1) V[gaz,a)-
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Theorem 4.5. Under the assumptions of Theorem 2.2 and Corollary 2.3, and if {\;} are
quasi-optimal and exact, we have for 0 < t; < oo, as M; — oo and Ax, At — 0, the quasi-
optimal MLMC estimate Efy[qaz, at, (w;x,t1)] converges in L*(Q; LY(D)) to E[g(w;x,t1)]
with the error bound

IElq(w; x,t1)] — Efv[qae,,ae, (w;x, 1)l 20:01 (D))
L 1
< Cw(Azp)? + Y CulDIZAM, ? (1 —1F )3 (Ay)?
1=2

1
+ (Cw]D\é(Axl)Q + Cl‘D| exp (S’Qh)) ]\41 2.
0

(4.22)

Remark 4.6. Note that the computational cost for quasi-optimal and optimal MLMC is
the same as the standard MLMC method. One can use the data from MLMC to estimate )\;
using (4.14) or (4.17). Finally, we emphasize that in [15] one of the estimators, the weighted
recursive difference estimator, in fact coincides with our optimal MLMC strategy (see also
[11]). However, the method has never been analyzed in the case of kinetic equations, and
additionally, the quasi-MLMC method does not appear in the previous literature. Without
solving a tridiagonal system which may suffer from ill-conditioning, the quasi-MLMC method
offers an efficient and robust alternative to the optimal MLMC method.

5. Numerical results. In this section, we present several numerical examples for the BGK
equation (2.7) with random initial condition or random boundary condition. The details
of the deterministic solver are provided in Appendix A. Simply speaking, we are solving a
reduced system (A.6) and (A.7), which is equivalent to the full BGK equation in one spatial
dimension. We use the IMEX-RK scheme for time discretization and finite volume scheme for
spatial discretization so that the overall method is second order in both time and space. We
choose z € [0,1] and v € [—5, 5], where 40 Legendre-Gauss quadrature points are used in the
velocity space to ensure that the error in velocity is negligible. The CFL condition is fixed as
At =0.1Ax.

5.1. Error evaluation. In the following, we assume the uncertainties come from either the
initial condition or boundary condition. Since the solution is a random field, the numerical
error is a random quantity as well. For error analysis, we therefore compute a statistical
estimator by averaging numerical errors from several independent experiments.

More precisely, for each method we perform K = 40 experiments and get the corresponding
approximations {q(j)(az,t)}, j=1,..., K, where q can be p, U, or T. We approximate the
overall error in norm ||| z2(q;z1(py) via

K
1 .
(51) E<t) = EZHCI(J)(at) _Qref(‘vt)H%l(D)a
j=1

where gyef(,t) is the reference solution obtained using the stochastic collocation method [35]
with 120 Legendre—Gauss collocation points and N, = 1280 spatial points. We are also
interested in the error at each spatial point:
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K
(5.2) el t) = \| 2 D@0, 0) — gurl, 1))
=1

Sometimes to better evaluate the error from the random domain, we would like to ig-
nore the error induced by spatial discretization. To achieve this, we consider another kind
of reference solution, ¢i(z,t), obtained again using the stochastic collocation with 120 col-
location points, while in the spatial domain we use the same finest mesh Az as that in the
corresponding MLMC method to obtain q\9) (z,t). Therefore, we can assess the error as

(q(j) ('T? t) - Qrel(x7 t))2'

M) >

1
(5.3) Ereing(z,t) = i 2 1
j:

In each of the following tests, we perform two stages of computations. The experimental
stage is to determine the optimal sample allocation parameters (there is some guidance from
the theoretical estimates—see Remark 4.3—but we still choose to do a careful testing just as
a way to verify the theory). The simulation stage is to perform various methods to estimate
the physical quantities of interest.

5.2. Test 1: Smooth random initial condition. We first consider the BGK equation
subject to random initial condition:

(5.4) fox,v,2) =0.5M,uyr+05M, ur
with
p(Xv Z) |V_ U(X7 Z)|2
(55) M ’U’T(X,V,Z) = ———3 exXp <— s
g (27T (x,2))? 27'(x, 2)
where

2 + sin(2 3 sin(4
ploe ) = 2T, LG AT gy~ (0.2.0,0),
(5.6) 3 4 cos(2mx) + & cos(4nz)z
T(x,z) = Z

4 )

and the random variable z obeys the uniform distribution on [—1,1]. The periodic boundary
condition is used, and the Knudsen number ¢ = 1.

To determine the number of samples needed in MC and MLMC methods as well as the
sample ratio across levels in MLMC methods, we proceed as follows.

In the MC method, we consider a series of spatial discretizations: N = 10, 20, 30, 40, and
for each case, we vary the sample size as M =5, 10, 15, ... The results are shown in Figure 1
(left), where we plot the error (5.1). It can be observed that when the number of samples is
small, the statistical error dominates, and when there are enough samples, the spatial error
dominates. Therefore, we can roughly determine the minimum number of samples needed so
that the statistical error O(M _%) balances with the spatial /temporal error O(Ax?):
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107 " 107 " "
—©— MC:N=10 —&— MLMC:L3R2
—0— MC:N=20 —©— MLMC:L3R4
—&— MC:N=30 ~—&— MLMC:L3R8
—+— MC:N=40 —#%— MLMC:L3R16
Standard MC rate Standard MC rate

SR

10° 10' 10? 10° 10 10°  10° 10’ 102 10° 10* 10°
Number of samples Number of samples of the first level

Figure 1. Test 1: Error (5.1) (density p) of MC method (left) and MLMC method (right) versus number
of samples (for MLMC, it is the number of samples in the first level).

T
—O—MC:N=10
—&— MC:N=20
—&— MC:N=30
—+— MC:N=40
—*— MLMC:L3R2
—<— MLMC:L3R4
——MLMC:L3R8
—%— MLMC:L3R16

1021

102 10° 10 10° 10° 107 10°
Total computational workload

Figure 2. Test 1: Error (5.1) (density p) of MC and MLMC methods versus computational workload.

N =10, M = 40.

N =20, M = 640.
N =30, M =~ 3300.
N =40, M = 10240.

In the MLMC method, we consider three levels of spatial discretizations: N; = 10, No =
20, N3 = 40, and the corresponding number of samples at each level are chosen as Mj,
My = %, and M3 = %, where we test different ratios a = 2,4,8,16. We then vary the
starting sample size as M; = 16, 32, 48, ... The results are shown in Figure 1 (right), where
we can see that regardless of ratios, the statistical error and spatial/temporal error are roughly
balanced when M; ~ 10240 (the error saturates when the sample size further increases).

In Figure 2 we combine all the previous MC and MLMC results under the scale of workload.
Since we are essentially solving a 1D BGK problem, the workload for one deterministic run up
to certain time with N spatial points is O(N?). Then for the MC method with M samples,
the total work is O(MN?). For the MLMC method with ratio a, the amount of work is
O(MiN? + My(N? + N3) + M3(N3 + N3) = WMM\T%). As we can see clearly from
Figure 2, with the same workload, the MLMC methods can achieve better accuracy compared
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to various MC methods. Among MLMC methods with different ratios, there is no significant
difference except for ratio a = 2. Therefore, we empirically set a = 4 for this smooth random
initial condition test.

Now we fix the mesh sizes N1 = 10, Ny = 20, N3 = 40 and sample sizes M; = 10240,
Mo = 2560, M3 = 640 in the MLMC method. We then find the number of samples in the MC
method such that they have the same workload. This means

e N =10, M = 30720,

e N =20, M = 7680,

o N =30, M = 3413,

o N =40, M = 1920.
Note that comparing with the numbers we found earlier, for N = 10 and 20, the numbers
of samples are far beyond the minimum number of samples needed, while for N = 30, M
is around the minimum number of samples needed. Finally for N = 40, the number of
samples here is not enough to balance the statistical error and numerical error in the MC
method. Using the above parameters, we compare the errors of the standard MC method and
three MLMC methods, namely, the standard MLMC, the quasi-optimal MLMC, and optimal
MLMC. The results are shown in Figure 3, from which we clearly see the better accuracy
of MLMC methods compared to standard MC for fixed workload. On the other hand, the
differences of three MLMC methods are not obvious in this example.

Next we examine the errors of the three MLMC methods as defined in (5.2), (5.3). The
results are gathered in Figure 4. We can see that the three MLMC methods perform equally
well in this test (the differences of the three methods are not significant, though the optimal
MLMC has the smallest error overall), largely because the solution is smooth.

To better understand this, we plot the values of \; and As in the quasi-optimal and optimal
MLMC methods in Figure 5. We can see that almost all values are not far from 1, which
means the methods are not far from the standard MLMC.

5.3. Test 2: Shock tube problem. In this test, we consider two kinds of shock tube
problems with random initial condition. The first one has uncertainty in the interface location:

102

: :
—6— MC:N=10
—+— MC:N=20 r¢

MC:N=30
—&6— MC:N=40
—&— MLMC:L3R4
- = - - quasi-MLMC:L3R4
optimal-MLMC:L3R4

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
time

Figure 3. Test 1: Time evolution of the errors (5.1) (density p) using MC and various MLMC methods.
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—6—MLmC
—+— quasi-MLMC
—#— optimal-MLMC

—e—mLme
—+— quasi-MLMC
—+— optimal-MLMC

—6—mLme
—+— quasi-MLMC

0.9 —+#— optimal-MLMC

0.8

0.7

0.6

0.5

0 0.2 04 0.6 0.8 1 o 0.2 04 06 08 1 0 0.2 04 06 0.8 1

—e—mLme
—+— quasi-MLMC
—#— optimal-MLMC

—6—MLMe
—+— quasi-MLMC
—#— optimal-MLMC

—6—MLMC
—+— quasi-MLMC
—#— optimal-MLMC

0 02 04 0.6 0.8 1 0 02 04 0.6 0.8 1

—e—mLmc 0N —e—mLmc
3 || —+— quasi-MLMC —+— quasi-MLMC
—+#— optimal-MLMC —#— optimal-MLMC

—6—MLMe
—+— quasi-MLMC P
—#— optimal-MLMC | /¢ ")

10°
0 0.2 0.4 06 08 1

X X X

Figure 4. Test 1: Approzimated expectation of density E[p] (left), velocity E[U] (middle), and temperature
E[T] (right) using MLMC, quasi-optimal MLMC, and optimal MLMC methods at time t = 0.1 (top row). Error
(5.2) of expectation of density (left), velocity (middle), and temperature (right) using three MLMC methods
(middle row). Relative error (5.3) of expectation of density (left), velocity (middle), and temperature (right)
using three MLMC methods (bottom row).

pr=1, U =(0,0,0), T,=1, fo=Myu,n  «<05+0.05z,

57) 1:
(5.7) pr=0125, U, =(0,0,0), T,=025 fo=M, g  x>0.5+0.052

The second one has uncertainty in the state variables:

pr= 1+ 0.1(2 =+ 1), Ul = (0,0,0), Tl = 1, f(] = Mpl,Ul,Tl z < 0.5,

(5.8) II:
pr = 0.125, U, =(0,0,0), T,=025 fo=M,u.r x>0.5

The random variable z obeys the uniform distribution on [—1, 1]. We set the Knudsen number
e = 107% so that the problem is close to the fluid regime.

For problem I, similarly as the previous example, we perform a series of tests to determine
the optimal number of samples needed in MC and MLMC methods as well as the sample
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lambda=1

—&— quasi-Velocity | 4

—&— optimal-Density
—<&— optimal-Velocity | |
optimal-Temp
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0 0.2 04 06 08 10 0.2 04 06 08 1

—6— quasi-Density —6— optimal-Density
—<&— quasi-Velocity —<— optimal-Velocity
quasi-Temp |1 1.6 optimal-Temp | ]
lambda=1 lambda=1

0.8

0.6 1 06

0.4 . . . . 0.4

X X

Figure 5. Test 1: Values of A\ in quasi-optimal (left) and optimal (right) MLMC methods (top row).
Values of A2 in quasi-optimal (left) and optimal (right) MLMC methods (bottom row).

—6— MC:N=10 p! —&— MLMC:L3R2
o— —0— MC:N=20 —6— MLMC:L3R4
—8— MC:N=30 ~—~—— MLMC:L3R8
———— —+— MC:N=40 —#— MLMC:L3R16
— 2 Standard MC rate Standard MC rate
\o\ [
1021
< ]
102
10-3 L L L X
10’ 102 10° 10* 10' 102 10°

Number of samples Number of samples of the first level

Figure 6. Test 2 (I): Error (5.1) (density p) of MC method (left) and MLMC method (right) versus number
of samples (for MLMC, it is the number of samples in the first level).

ratio across levels. Figure 6 shows the analogous tests as those in Figure 1. The main
difference from the previous example is that the errors saturate much quicker as the number
of samples increases. This is due to the low regularity of the solution so that the error
from spatial/temporal discretization dominants easily. In Figure 7 we combine both MC and
MLMC results under the scale of workload. Similarly as what we observed in Figure 2, with
the same workload, the MLMC methods can achieve better accuracy compared to MC. In

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 05/22/21 to 128.210.126.199. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

670 JINGWEI HU, LORENZO PARESCHI, AND YUBO WANG

0.035 i
—6—MC:N=10
—6— MC:N=20
0.03 —&— MC:N=30
—6—6—6—6—6—6—€ —+—MC:N=40
—#— MLMC:L3R2
L —<—MLMC:L3R4 | ]
0.025 ~——%— MLMC:L3R8
—%— MLMC:L3R16
0.02
0.015
10? 10° 10 10° 108 107

Total computational workload

Figure 7. Test 2 (I): Error (5.1) (density p) of MC and MLMC methods versus computational workload.
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Figure 8. Test 2 (I): Approzimated expectation of density Elp] (left), velocity E[U] (middle), and tem-
perature E[T] (right) using MLMC, quasi-optimal MLMC, and optimal MLMC methods at time t = 0.15 (top
row). Relative error (5.3) of expectation of density (left), velocity (middle), and temperature (right) using three
MLMC methods (bottom row).

addition, the MLMC methods with ratios a = 2,4 are more accurate than ¢ = 8,16. This
is consistent with our earlier theoretical prediction; see Remark 4.3. From the right plot
in Figure 6, we also see that M; = 320 is the minimum number of samples needed for the
MLMC method to balance the statistical error and spatial/temporal error. Therefore, we
choose the following parameters in the MLMC methods: mesh sizes Ny = 10, Ny = 20,
N3 = 40 and sample sizes M; = 320, My = 80, M3 = 20. In Figures 8-9, we report
the results obtained using the standard MLMC, quasi-optimal MLMC, and optimal MLMC

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 05/22/21 to 128.210.126.199. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

UNCERTAINTY QUANTIFICATION FOR THE KINETIC BGK EQUATION 671

x10°

—O—mLme 016 0.035
—+— quasi-MLMC —O—MLmc —e—mLMe
5 | —#— optimal-MLMC 0.14 |- |—+— quasi-MLMC i quasiMLMC
Ref ~—#— optimal-MLMC 0.03 optimal-MLMC
Ref Ref

"o 02 0.4 06 08 170 02 04 06 08

Figure 9. Test 2 (I): Approzimated variance of density V(p] (left), velocity V[U] (middle), and temperature
VIT] (right) using MLMC, quasi-optimal MLMC, and optimal MLMC methods at time t = 0.15 (top row).
Relative error (5.3) of variance of density (left), velocity (middle), and temperature (right) using three methods
(bottom row).

methods. We mainly examine the approximation to the expectation E[g| as the proposed
quasi-MLMC and optimal MLMC methods are especially designed to minimize the variance
in the estimation of E[g]. As a by-product, we also plot the approximation to the variance V|q]
using the samples generated for expectation. Note that the MLMC methods are based on the
linearity of the expectation operator, not the variance operator. Hence to approximate the
variance, we approximate separately two different expectations E[¢?] and E[q] and use them to
obtain V[q] = E[¢?] — (E[q])?. We refer to [20] for other approaches to variance approximation
including error control. The results clearly show that both control variate MLMC methods
outperform the standard MLMC in regions where the solution presents strong variations,
namely, close to the shock position. Although the results are very close, as expected, the
optimal MLMC method performs slightly better than the quasi-optimal MLMC.

For problem II, we choose the following parameters: mesh sizes N1 = 10, No = 20, N3 = 40
and number of samples M; = 640, My = 160, M3 = 40 (these parameters are chosen based on
a similar test as problem I, and we omit the detail). The results are shown in Figures 10 and
11, where the same observation as problem I is obtained.

To better see the difference of the three MLMC methods, we plot the values of A\; and A2 in
the quasi-optimal and optimal MLMC methods for both problems I and II in Figures 12 and
13. It is clear that for these problems with shocks/discontinuities the values are far from one
in various regions of the computational domain. This is particularly true for the temperature
and velocity in agreement with the corresponding errors observed in the previous figures.
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Figure 10. Test 2 (II): Approzimated expectation of density E[p] (left), velocity E[U] (middle), and tem-
perature E[T] (right) using MLMC, quasi-optimal MLMC, and optimal MLMC methods at time t = 0.15 (top
row). Relative error (5.3) of expectation of density (left), velocity (middle), and temperature (right) using three
MLMC methods (bottom row).
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Figure 11. Test 2 (II): Approzimated variance of density V(p] (left), velocity V[U] (middle), and temperature
VIT] (right) using MLMC, quasi-optimal MLMC, and optimal MLMC methods at time t = 0.15 (top row).
Relative error (5.3) of variance of density (left), velocity (middle), and temperature (right) using three methods
(bottom row).
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Figure 12. Test 2 (I): Values of A1 in quasi-optimal (left) and optimal (right) MLMC methods (top row).

Values of A2 in quasi-optimal (left) and optimal (right) MLMC methods (bottom row).
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Figure 13. Test 2 (II): Values of A1 in quasi-optimal (left) and optimal (right) MLMC methods (top row).

Values of A2 in quasi-optimal (left) and optimal (right) MLMC methods (bottom row).
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Figure 14. Test 3: Approzimated expectation of density E[p] (left), velocity E[U] (middle), and temperature
E[T] (right) using MLMC, quasi-optimal MLMC, and optimal MLMC methods at time t = 0.1 (top row).
Relative error (5.3) of expectation of density (left), velocity (middle), and temperature (right) using three
methods (bottom row).

5.4. Test 3: Sudden heating problem. In the last test, we consider a problem with
random boundary condition. The gas is initially in a constant state with pg = 1, Uy = (0,0, 0),
To =1, and fo(x,v) = My, U, 1,- At time ¢ = 0, we suddenly change the wall temperature at
left boundary z = 0 to

(5.9) Tw(z) = 3(Th + sz), s =0.2,

where the random variable z obeys the uniform distribution on [—1,1]. We assume purely dif-
fusive Maxwell boundary condition at x = 0 and homogeneous Neumann boundary condition
at £ = 1. The Knudsen number is set as ¢ = 0.1. This is a classical benchmark test in kinetic
theory. With the sudden rise of the wall temperature, the gas close to the wall is heated, and
accordingly the pressure rises sharply and pushes the gas away, forming a shock propagating
into the domain.

We compare the three MLMC methods using the following parameters: mesh sizes N3 =
10, Ny = 20, N3 = 40 and number of samples M; = 1280, My = 320, M3 = 80 (these param-
eters are chosen based on a similar test as in previous examples). The results are shown in
Figure 14 and Figure 15. Again the control variate MLMC methods outperform the standard
MLMC in all simulations, and the optimal MLMC method yields slightly better results than
the quasi-optimal MLMC.

6. Conclusions. We have introduced a control variate MLMC method for the BGK model
of the Boltzmann equation with uncertainty. Well-posedness of the BGK equation with ran-
dom parameters, consistency, and convergence analysis for various MC-type methods are
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Figure 15. Test 3: Approzimated variance of density V(p] (left), velocity V[U] (middle) and temperature
VIT] (right) using MLMC, quasi-optimal MLMC' and optimal MLMC methods at time t = 0.1 (top row).
Relative error (5.3) of variance of density (left), velocity (middle) and temperature (right) using three methods
(bottom row).

established. Extensive numerical results confirm that the MLMC methods perform much
better than the standard MC, and the control variate MLMC is capable of providing further
improvement over the conventional MLMC, in particular for problems close to fluid regimes
and in presence of discontinuities, where the fidelity degree of the various levels is reduced and
traditional gPC-SG based methods may fail (see [7]). In addition to an optimal strategy, we
have introduced a simplified quasi-optimal approach that does not require solving a tridiago-
nal system of linear equations. In the numerical examples, this simplified approach provided
only slightly less accurate results than those obtained with the optimal strategy. The control
variate MLMC methods here developed naturally extend to other kinetic equations of Boltz-
mann type which combines deterministic discretizations in the phase space with MC sampling
in the random space. In particular, even if our study were limited to one space dimension, we
expect the gains of MLMC methods over standard MC to be even more significant in higher
dimensions.

Appendix A. Dimension reduction method and deterministic solver for the BGK
equation.

In this appendix, we briefly describe the dimension reduction method adopted to reduce
the computational complexity of the BGK equation and the details of the numerical meth-
ods used to discretize time, physical space, and velocity space. Since the MC methods are
nonintrusive, our discussion will be based on the deterministic equation (1.2) for simplicity.
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A.1. The Chu reduction method. The BGK equation (1.2) is formulated in a six-
dimensional phase space where computations can be extremely expensive. Under certain
homogeneity assumptions, one can reduce the dimension using the so-called Chu reduction [6].

Let x = (21, x2,23), v = (v1,v2,v3), and U = (Uy, Us, Us). If the solution f only varies
in one spatial dimension, then effectively we are solving a one-dimensional problem, and it is
reasonable to assume the following:

(A.1) Oy f =03, f =0, Uy=Us=0.
Then (1.2) becomes
1
(AQ) atf(mla 'Ul,’UQ,’Ug,t) + Ulaxlf(xl,vl,UQ, U3, t) = g (M[f] - f(l'l,Ul,UQ,Ug,t)) )
where

(A.3) M[f)(z1,v1,v2,v3,1) =

plent) (_ (01— Uslar, )" + 03 + )
(@nT(1,1))3 2T (1,1) |

The Chu reduction proceeds by introducing two distribution functions:

(A4) P(x1,v1,t) = //2 f(z1,v1,v2,v3,t) dvadus,
R
Lo 1,
(A.5) Y(x1,v1,t) = 502 + U3 f(x1,v1,v9,v3,t) dvadus.
R
It is then easy to derive that ¢ and v satisfy the following system:
1
(A.6) Orp(w1,v1,t) + 0102, (21,01, 1) = z (Mg (21,01,t) — d(1,01,1))
1
(A7) Op(z1,v1,t) + 0102, (21,01,1) = Z (My(x1,01,1) — Y(21,01,1))
where

p(z1,t) exp (_ (v1 — U1($1at))2> 7

(A-8) My(@r, 01, 8) o= /R2 M7} dvadvs = 2nT(x1,t) 2T (w1,1)

(Ag) Mw(xl,vl,t) = //R2 <;U% + ;v§> M[f] dvgdvg = T(:Ul,t)Md,.

Denoting [ -dv; = (-), it is easy to see the following relation holds:

p= [ odo= [ Mydu,
R R

(A.l()) mszlz/U1¢d1)1=/UlM¢d1)1,
R R

1 3 1 1
E:pr—l—pT:/ —v2p 41 dm:/ fv%ng—i-M,/, dwy.
2 2 e \ 2 2 \ 2

Now our task is to solve the reduced 1D BGK system (A.6)—(A.7).
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A.2. The fully discrete scheme. The fully discrete scheme used to solve (A.6)—(A.7)
consists of three components: velocity discretization, time discretization, and spatial dis-
cretization.

Velocity discretization. In the velocity space, we follow the discrete velocity method (see
section 4.1.1 in [12] or [23] for example), which satisfies a discrete entropy decay property.

We first truncate the infinite velocity domain into a bounded interval [—R, R] and then
discretize it using N,-point Gauss quadrature with (§x, wg), k = 1,2,..., N,, as abscissae and
weights. To obtain My, My from ¢ and v, normally one could use the relation in (A.10),
where the continuous integral is replaced by the Gauss quadrature. However, due to the
domain truncation error, the resulting moments are not sufficiently accurate. To remove this
error, we assume

1
(A.11) My = exp(ag + agvy + agvi), My = —qus
3
and determine oy, a9, ag such that
(M) (¢) P
(A.12) <1)1M¢> = <Ul¢> =1 mj,
(vi My + My) (3010 + ) E
where (u(v1)) := Yo%, u(&)wy, denotes the quadrature sum in the interval [-R, R]. The

above nonlinear system is solved by the Newton—-Raphson algorithm.

Time discretization. Due to the possibly stiff collision term, we use the IMEX-RK scheme
[8, 32] for the time discretization. In particular, we employ the second-order IMEX-RK scheme
proposed in [18], which is positivity preserving and asymptotic preserving (preserving the
Euler limit without At resolving ¢).

Specifically, we discretize (A.6) and (A.7) as

i—1 7

i n ~ j 1 1 i .

o) = ¢" — At;aijvﬁm@ +Atzlaij€ (Mg> - ¢<J>) L i=1,...,0,
Jj= Jj=

i—1 i
; . 1 A ]
(@) — n — G () LG G -
(A.13) ¥ (0 Atzawvlamﬂ/} + At ElaUE (Mw P >, 1=1,...,v,
j:

Jj=1

1
P — ) 4 aAth (Mg-i-l _ ¢n+1) 7

1
v =g el (gt

where the values of the coefficients a;;, a;j, & are given in section 2.6.1 of [18]. To implement
the above scheme explicitly, we first solve the moment system for i =1,...,v:

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 05/22/21 to 128.210.126.199. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

678 JINGWEI HU, LORENZO PARESCHI, AND YUBO WANG

[ (1)) (™) i—1 (010, 0))
(191 = (v1™) — ALYy (030, 01)) ;
Y (202 (@) 4 qp(@) (Lo2gm + ym) = (%U?axl(ﬁ(j) + 0185, 9))
e ()
(v19™*h) = (v16™)) ;
_<%v%¢n+1 + wn+1> <%U%¢(V) + w(u))

which is obtained by taking the moments of (A.13) and using (A.12). Hence we can obtain
p m@ and E® first and use them to define Mg) and Mé}l). Finally we solve (A.13) to get
¢ and @),

Spatial discretization. In the physical space, we use the second-order MUSCL finite vol-
ume scheme [33].

Here we take the following first-order in time scheme for ¢ as an illustration (suppose it
is evaluated at velocity point v; = &):

o (1) — ¢ (21)
At

Suppose z; € [a,b] and [a, b] is divided into N, uniform cells with size Ax = (b—a)/N, where
a=m1,b=xy 1. In the cell [acj_;,xﬂ_;}, define the cell average as
2 z 2 2 2

: (M)t (1) — ¢f (1)) -

(A'15) + §k8x1¢2(x1> = g

A w1 [Tisy
' Az J, |
i3
Then integrating (A.15) over [z, 1,z;, 1] yields
2 2
ot — ), R
(A.17) N v (LA e B

where (M@%rl = (M¢)Z+1(£Cj). Note that we have replaced the cell average of (M)} by
its point value at cell center x; (the error introduced by this is O(Ax?) which does not destroy

the overall order of the method). Fj"+1 . is the flux at interface x i+l and is defined as
29 2

(A.18) F;:_%’k = max (0, §) @7’ 1, + min(0, §) by 41 ks

with the left interface and right interface values qb}fjk, gZ)Q jk glven by

1
ik = jx + §Al‘0’?,ka
(A.19) 2

vk = ik = AT,

where 07/, is the slope of the linear reconstruction and is chosen to be the MC limiter (0 =2):

(A.20) o™, = minmod <¢>j+1,k — Ok g <¢,-,k - jl’k> y ( " ¢j’k>> |

2Ax Ax Ax
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